Sample records for user interface interactive

  1. Interface Metaphors for Interactive Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Robert J.; Blaha, Leslie M.

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less

  2. TangibleCubes — Implementation of Tangible User Interfaces through the Usage of Microcontroller and Sensor Technology

    NASA Astrophysics Data System (ADS)

    Setscheny, Stephan

    The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.

  3. Designing the user interface: strategies for effective human-computer interaction

    NASA Astrophysics Data System (ADS)

    Shneiderman, B.

    1998-03-01

    In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.

  4. A methodology for the design and evaluation of user interfaces for interactive information systems. Ph.D. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Farooq, Mohammad U.

    1986-01-01

    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.

  5. How to Develop a User Interface That Your Real Users Will Love

    ERIC Educational Resources Information Center

    Phillips, Donald

    2012-01-01

    A "user interface" is the part of an interactive system that bridges the user and the underlying functionality of the system. But people sometimes forget that the best interfaces will provide a platform to optimize the users' interactions so that they support and extend the users' activities in effective, useful, and usable ways. To look at it…

  6. Standards for the user interface - Developing a user consensus. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.

    1987-01-01

    The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.

  7. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  8. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  9. Graphical User Interface Programming in Introductory Computer Science.

    ERIC Educational Resources Information Center

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  10. Intelligent user interface concept for space station

    NASA Technical Reports Server (NTRS)

    Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen

    1986-01-01

    The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.

  11. Identifying User Interaction Patterns in E-Textbooks

    PubMed Central

    Saarinen, Santeri; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli

    2015-01-01

    We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation. PMID:26605377

  12. Identifying User Interaction Patterns in E-Textbooks.

    PubMed

    Saarinen, Santeri; Heimonen, Tomi; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Raisamo, Roope; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli

    2015-01-01

    We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation.

  13. Effective Levels of Adaptation to Different Types of Users in Interactive Museum Systems.

    ERIC Educational Resources Information Center

    Paterno, F.; Mancini, C.

    2000-01-01

    Discusses user interaction with museum application interfaces and emphasizes the importance of adaptable and adaptive interfaces to meet differing user needs. Considers levels of support that can be given to different users during navigation of museum hypermedia information, using examples from the Web site for the Marble Museum (Italy).…

  14. Emotion scents: a method of representing user emotions on GUI widgets

    NASA Astrophysics Data System (ADS)

    Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas

    2013-01-01

    The world of desktop interfaces has been dominated for years by the concept of windows and standardized user interface (UI) components. Still, while supporting the interaction and information exchange between the users and the computer system, graphical user interface (GUI) widgets are rather one-sided, neglecting to capture the subjective facets of the user experience. In this paper, we propose a set of design guidelines for visualizing user emotions on standard GUI widgets (e.g., buttons, check boxes, etc.) in order to enrich the interface with a new dimension of subjective information by adding support for emotion awareness as well as post-task analysis and decision making. We highlight the use of an EEG headset for recording the various emotional states of the user while he/she is interacting with the widgets of the interface. We propose a visualization approach, called emotion scents, that allows users to view emotional reactions corresponding to di erent GUI widgets without in uencing the layout or changing the positioning of these widgets. Our approach does not focus on highlighting the emotional experience during the interaction with an entire system, but on representing the emotional perceptions and reactions generated by the interaction with a particular UI component. Our research is motivated by enabling emotional self-awareness and subjectivity analysis through the proposed emotionenhanced UI components for desktop interfaces. These assumptions are further supported by an evaluation of emotion scents.

  15. Image Understanding and Intelligent Parallel Systems

    DTIC Science & Technology

    1991-05-09

    a common user interface for the interactive , graphical manipulation of those histories, and...Circuits and Systems, August 1987. Yap, S.-K. and M.L. Scott, "PenGuin: A language for reactive graphical user interface programming," to appear, INTERACT 󈨞, Cambridge, United Kingdom, 1990. 74 ...of up to a factor of 100 over single-workstation implementations. User interfaces to large multiprocessor computers are a difficult issue addressed

  16. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  17. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.

  18. Make E-Learning Effortless! Impact of a Redesigned User Interface on Usability through the Application of an Affordance Design Approach

    ERIC Educational Resources Information Center

    Park, Hyungjoo; Song, Hae-Deok

    2015-01-01

    Given that a user interface interacts with users, a critical factor to be considered in improving the usability of an e-learning user interface is user-friendliness. Affordances enable users to more easily approach and engage in learning tasks because they strengthen positive, activating emotions. However, most studies on affordances limit…

  19. Enabling Accessibility Through Model-Based User Interface Development.

    PubMed

    Ziegler, Daniel; Peissner, Matthias

    2017-01-01

    Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.

  20. Interactive Design and the Mythical "Intuitive User Interface."

    ERIC Educational Resources Information Center

    Bielenberg, Daniel R.

    1993-01-01

    Discusses the design of graphical user interfaces. Highlights include conceptual models, including user needs, content, and what multimedia can do; and tools for building the users' mental models, including metaphor, natural mappings, prompts, feedback, and user testing. (LRW)

  1. Network Control Center User Planning System (NCC UPS)

    NASA Astrophysics Data System (ADS)

    Dealy, Brian

    1991-09-01

    NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.

  2. Network Control Center User Planning System (NCC UPS)

    NASA Technical Reports Server (NTRS)

    Dealy, Brian

    1991-01-01

    NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.

  3. A Framework and Implementation of User Interface and Human-Computer Interaction Instruction

    ERIC Educational Resources Information Center

    Peslak, Alan

    2005-01-01

    Researchers have suggested that up to 50 % of the effort in development of information systems is devoted to user interface development (Douglas, Tremaine, Leventhal, Wills, & Manaris, 2002; Myers & Rosson, 1992). Yet little study has been performed on the inclusion of important interface and human-computer interaction topics into a current…

  4. Four principles for user interface design of computerised clinical decision support systems.

    PubMed

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    The paper presents results from a design research project of a user interface (UI) for a Computerised Clinical Decision Support System (CDSS). The ambition has been to design Human-Computer Interaction (HCI) that can minimise medication errors. Through an iterative design process a digital prototype for prescription of medicine has been developed. This paper presents results from the formative evaluation of the prototype conducted in a simulation laboratory with ten participating physicians. Data from the simulation is analysed by use of theory on how users perceive information. The conclusion is a model, which sum up four principles of interaction for design of CDSS. The four principles for design of user interfaces for CDSS are summarised as four A's: All in one, At a glance, At hand and Attention. The model emphasises integration of all four interaction principles in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors.

  5. Development of a Mobile User Interface for Image-based Dietary Assessment.

    PubMed

    Kim, Sungye; Schap, Tusarebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2010-12-31

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records.

  6. Modelling Safe Interface Interactions in Web Applications

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  7. Building the Joint Battlespace Infosphere. Volume 2: Interactive Information Technologies

    DTIC Science & Technology

    1999-12-17

    G. A . Vouros, “ A Knowledge- Based Methodology for Supporting Multilingual and User -Tailored Interfaces ,” Interacting With Computers, Vol. 9 (1998), p...project is to develop a two-handed user interface to the stereoscopic field analyzer, an interactive 3-D scientific visualization system. The...62 See http://www.hitl.washington.edu/research/vrd/. 63 R. Baumann and R. Clavel, “Haptic Interface for Virtual Reality Based

  8. A Question of Interface Design: How Do Online Service GUIs Measure Up?

    ERIC Educational Resources Information Center

    Head, Alison J.

    1997-01-01

    Describes recent improvements in graphical user interfaces (GUIs) offered by online services. Highlights include design considerations, including computer engineering capabilities and users' abilities; fundamental GUI design principles; user empowerment; visual communication and interaction; and an evaluation of online search interfaces. (LRW)

  9. Learning Analytics for Natural User Interfaces

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Shum, Simon Buckingham; Schneider, Bertrand; Charleer, Sven; Klerkx, Joris; Duval, Erik

    2017-01-01

    The continuous advancement of natural user interfaces (NUIs) allows for the development\tof novel and creative ways to support collocated collaborative work in a wide range of areas, including teaching and learning. The use of NUIs, such as those based on interactive multi-touch surfaces and tangible user interfaces (TUIs), can offer unique…

  10. Spatial Modeling Tools for Cell Biology

    DTIC Science & Technology

    2006-10-01

    multiphysics modeling expertise. A graphical user interface (GUI) for CoBi, JCoBi, was written in Java and interactive 3D graphics. CoBi has been...tools (C++ and Java ) to simulate complex cell and organ biology problems. CoBi has been designed to interact with the other Bio-SPICE software...fall of 2002. VisIt supports C++, Python and Java interfaces. The C++ and Java interfaces make it possible to provide alternate user interfaces for

  11. Embedded Process Modeling, Analogy-Based Option Generation and Analytical Graphic Interaction for Enhanced User-Computer Interaction: An Interactive Storyboard of Next Generation User-Computer Interface Technology. Phase 1

    DTIC Science & Technology

    1988-03-01

    structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN

  12. Semantics of User Interface for Image Retrieval: Possibility Theory and Learning Techniques.

    ERIC Educational Resources Information Center

    Crehange, M.; And Others

    1989-01-01

    Discusses the need for a rich semantics for the user interface in interactive image retrieval and presents two methods for building such interfaces: possibility theory applied to fuzzy data retrieval, and a machine learning technique applied to learning the user's deep need. Prototypes developed using videodisks and knowledge-based software are…

  13. Business Performer-Centered Design of User Interfaces

    NASA Astrophysics Data System (ADS)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  14. Development of a Mobile User Interface for Image-based Dietary Assessment

    PubMed Central

    Kim, SungYe; Schap, TusaRebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J.; Ebert, David S.; Boushey, Carol J.

    2011-01-01

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records. PMID:24455755

  15. MTVis: tree exploration using a multitouch interface

    NASA Astrophysics Data System (ADS)

    Andrews, David; Teoh, Soon Tee

    2010-01-01

    We present MTVis, a multi-touch interactive tree visualization system. The multi-touch interface display hardware is built using the LED-LP technology, and the tree layout is based on RINGS, but enhanced with multitouch interactions. We describe the features of the system, and how the multi-touch interface enhances the user's experience in exploring the tree data structure. In particular, the multi-touch interface allows the user to simultaneously control two child nodes of the root, and rotate them so that some nodes are magnified, while preserving the layout of the tree. We also describe the other meaninful touch screen gestures the users can use to intuitively explore the tree.

  16. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    NASA Astrophysics Data System (ADS)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  17. Challenges of Malaysian Developers in Creating Good Interfaces for Interactive Courseware

    ERIC Educational Resources Information Center

    Kamaruddin, Norfadilah

    2010-01-01

    There are many reasons why interface design for interactive courseware fails to support quality of learning experiences. The causes such as the level of interactivity, the availability of the interfaces to interact with the end users and a lack of deep knowledge about the role of interface design by the designers in the development process are…

  18. Natural interaction for unmanned systems

    NASA Astrophysics Data System (ADS)

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  19. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    USDA-ARS?s Scientific Manuscript database

    Interactive modules for data exploration and visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data sets with a user-friendly interface. Individual modules were designed to provide toolsets to enable interactive ...

  20. Seeing the System through the End Users' Eyes: Shadow Expert Technique for Evaluating the Consistency of a Learning Management System

    NASA Astrophysics Data System (ADS)

    Holzinger, Andreas; Stickel, Christian; Fassold, Markus; Ebner, Martin

    Interface consistency is an important basic concept in web design and has an effect on performance and satisfaction of end users. Consistency also has significant effects on the learning performance of both expert and novice end users. Consequently, the evaluation of consistency within a e-learning system and the ensuing eradication of irritating discrepancies in the user interface redesign is a big issue. In this paper, we report of our experiences with the Shadow Expert Technique (SET) during the evaluation of the consistency of the user interface of a large university learning management system. The main objective of this new usability evaluation method is to understand the interaction processes of end users with a specific system interface. Two teams of usability experts worked independently from each other in order to maximize the objectivity of the results. The outcome of this SET method is a list of recommended changes to improve the user interaction processes, hence to facilitate high consistency.

  1. Role-Based And Adaptive User Interface Designs In A Teledermatology Consult System: A Way To Secure And A Way To Enhance

    PubMed Central

    Lin, Yi-Jung; Speedie, Stuart

    2003-01-01

    User interface design is one of the most important parts of developing applications. Nowadays, a quality user interface must not only accommodate interaction between machines and users, but also needs to recognize the differences and provide functionalities for users from role-to-role or even individual-to-individual. With the web-based application of our Teledermatology consult system, the development environment provides us highly useful opportunities to create dynamic user interfaces, which lets us to gain greater access control and has the potential to increase efficiency of the system. We will describe the two models of user interfaces in our system: Role-based and Adaptive. PMID:14728419

  2. TIGER: A user-friendly interactive grid generation system for complicated turbomachinery and axis-symmetric configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1993-01-01

    The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.

  3. Distributed user interfaces for clinical ubiquitous computing applications.

    PubMed

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  4. Applying Pragmatics Principles for Interaction with Visual Analytics.

    PubMed

    Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac

    2018-01-01

    Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.

  5. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  6. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  7. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  8. CDROM User Interface Evaluation: The Appropriateness of GUIs.

    ERIC Educational Resources Information Center

    Bosch, Victoria Manglano; Hancock-Beaulieu, Micheline

    1995-01-01

    Assesses the appropriateness of GUIs (graphical user interfaces), more specifically Windows-based interfaces for CD-ROM. An evaluation model is described that was developed to carry out an expert evaluation of the interfaces of seven CD-ROM products. Results are discussed in light of HCI (human-computer interaction) usability criteria and design…

  9. Users' Interaction with World Wide Web Resources: An Exploratory Study Using a Holistic Approach.

    ERIC Educational Resources Information Center

    Wang, Peiling; Hawk, William B.; Tenopir, Carol

    2000-01-01

    Presents results of a study that explores factors of user-Web interaction in finding factual information, develops a conceptual framework for studying user-Web interaction, and applies a process-tracing method for conducting holistic user-Web studies. Describes measurement techniques and proposes a model consisting of the user, interface, and the…

  10. Model-Driven Development of Interactive Multimedia Applications with MML

    NASA Astrophysics Data System (ADS)

    Pleuss, Andreas; Hussmann, Heinrich

    There is an increasing demand for high-quality interactive applications which combine complex application logic with a sophisticated user interface, making use of individual media objects like graphics, animations, 3D graphics, audio or video. Their development is still challenging as it requires the integration of software design, user interface design, and media design.

  11. Web-Based Interactive Electronic Technical Manual (IETM) Common User Interface Style Guide, Version 2.0

    DTIC Science & Technology

    2003-07-01

    Technical Report WEB-BASED INTERACTIVE ELECTRONIC TECHNICAL MANUAL (IETM) COMMON USER INTERFACE STYLE GUIDE Version 2.0 – July 2003 by L. John Junod ...ACKNOWLEDGEMENTS The principal authors of this document were: John Junod – NSWC, Carderock Division, Phil Deuell – AMSEC LLC, Kathleen Moore

  12. Understanding and Creating Accessible Touch Screen Interactions for Blind People

    ERIC Educational Resources Information Center

    Kane, Shaun K.

    2011-01-01

    Using touch screens presents a number of usability and accessibility challenges for blind people. Most touch screen-based user interfaces are optimized for visual interaction, and are therefore difficult or impossible to use without vision. This dissertation presents an approach to redesigning gesture-based user interfaces to enable blind people…

  13. Comparing two anesthesia information management system user interfaces: a usability evaluation.

    PubMed

    Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M

    2012-11-01

    Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface design problems were identified in the revised user interface. The usability of anesthesia information management systems can be evaluated using a low-fidelity simulated clinical environment. User testing of the revised user interface showed improvement in some usability metrics and highlighted areas for further revision. Vendors of AIMS and those who use them should consider adopting methods to evaluate and improve AIMS usability.

  14. Customization of user interfaces to reduce errors and enhance user acceptance.

    PubMed

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. User interaction with the LUCIFER control software

    NASA Astrophysics Data System (ADS)

    Knierim, Volker; Jütte, Marcus; Polsterer, Kai; Schimmelmann, Jan

    2006-06-01

    We present the concept and design of the interaction between users and the LUCIFER Control Software Package. The necessary functionality that must be provided to a user depends on and differs greatly for the different user types (i.e., engineers and observers). While engineers want total control over every service provided by the software system, observers are typically only interested in a fault tolerant and efficient user interface that helps them to carry out their observations in the best possible way during the night. To provide the functionality engineers need, direct access to a service is necessary. This may harbor a possible threat to the instrument in the case of a faulty operation by the engineer, but is the only way to test every unit during integration and commissioning of the instrument, and for service time later on. The observer on the other hand should only have indirect access to the instrument, controlled by an instrument manager service that ensures the necessary safety checks so that no harm can be done to the instrument. Our design of the user interaction provides such an approach on a level that is transparent to any interaction component regardless of interface type (i.e., textual or graphical). Using the interface and inheritance concepts of the Java Programming Language and its tools to create graphical user interfaces, it is possible to provide the necessary level of flexibility for the different user types on one side, while ensuring maximum reusability of code on the other side.

  16. CLIPS application user interface for the PC

    NASA Technical Reports Server (NTRS)

    Jenkins, Jim; Holbrook, Rebecca; Shewhart, Mark; Crouse, Joey; Yarost, Stuart

    1991-01-01

    The majority of applications that utilize expert system development programs for their knowledge representation and inferencing capability require some form of interface with the end user. This interface is more than likely an interaction through the computer screen. When building an application the user interface can prove to be the most difficult and time consuming aspect to program. Commercial products currently exist which address this issue. To keep pace C Language Integrated Production System (CLIPS) will need to find a solution for their lack of an easy to use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user community and provides the backbone of a possible solution.

  17. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  18. Research and Development for an Operational Information Ecology: The User-System Interface Agent Project

    NASA Technical Reports Server (NTRS)

    Srivastava, Sadanand; deLamadrid, James

    1998-01-01

    The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.

  19. Interface Anywhere: Development of a Voice and Gesture System for Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Thompson, Shelby; Haddock, Maxwell; Overland, David

    2013-01-01

    The Interface Anywhere Project was funded through Innovation Charge Account (ICA) at NASA JSC in the Fall of 2012. The project was collaboration between human factors and engineering to explore the possibility of designing an interface to control basic habitat operations through gesture and voice control; (a) Current interfaces require the users to be physically near an input device in order to interact with the system; and (b) By using voice and gesture commands, the user is able to interact with the system anywhere they want within the work environment.

  20. Usability engineering for augmented reality: employing user-based studies to inform design.

    PubMed

    Gabbard, Joseph L; Swan, J Edward

    2008-01-01

    A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.

  1. Graphical Requirements for Force Level Planning. Volume 2

    DTIC Science & Technology

    1991-09-01

    technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice

  2. An Evaluation of the Interactive Query Expansion in an Online Library Catalogue with a Graphical User Interface.

    ERIC Educational Resources Information Center

    Hancock-Beaulieu, Micheline; And Others

    1995-01-01

    An online library catalog was used to evaluate an interactive query expansion facility based on relevance feedback for the Okapi, probabilistic, term weighting, retrieval system. A graphical user interface allowed searchers to select candidate terms extracted from relevant retrieved items to reformulate queries. Results suggested that the…

  3. Design strategies and functionality of the Visual Interface for Virtual Interaction Development (VIVID) tool

    NASA Technical Reports Server (NTRS)

    Nguyen, Lac; Kenney, Patrick J.

    1993-01-01

    Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.

  4. Formal analysis and automatic generation of user interfaces: approach, methodology, and an algorithm.

    PubMed

    Heymann, Michael; Degani, Asaf

    2007-04-01

    We present a formal approach and methodology for the analysis and generation of user interfaces, with special emphasis on human-automation interaction. A conceptual approach for modeling, analyzing, and verifying the information content of user interfaces is discussed. The proposed methodology is based on two criteria: First, the interface must be correct--that is, given the interface indications and all related information (user manuals, training material, etc.), the user must be able to successfully perform the specified tasks. Second, the interface and related information must be succinct--that is, the amount of information (mode indications, mode buttons, parameter settings, etc.) presented to the user must be reduced (abstracted) to the minimum necessary. A step-by-step procedure for generating the information content of the interface that is both correct and succinct is presented and then explained and illustrated via two examples. Every user interface is an abstract description of the underlying system. The correspondence between the abstracted information presented to the user and the underlying behavior of a given machine can be analyzed and addressed formally. The procedure for generating the information content of user interfaces can be automated, and a software tool for its implementation has been developed. Potential application areas include adaptive interface systems and customized/personalized interfaces.

  5. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Degani, Asaf; Shafto, Michael; Meyer, George; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the, issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, i.e., that with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be as succinct as possible. The report discusses the underlying concepts and the formal methods for this approach. Several examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  6. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Degani, Asaf; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, that is, with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be succinct. The report discusses the underlying concepts and the formal methods for this approach. Two examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  7. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  8. A Randomized Trial Comparing Classical Participatory Design to VandAID, an Interactive CrowdSourcing Platform to Facilitate User-centered Design.

    PubMed

    Dufendach, Kevin R; Koch, Sabine; Unertl, Kim M; Lehmann, Christoph U

    2017-10-26

    Early involvement of stakeholders in the design of medical software is particularly important due to the need to incorporate complex knowledge and actions associated with clinical work. Standard user-centered design methods include focus groups and participatory design sessions with individual stakeholders, which generally limit user involvement to a small number of individuals due to the significant time investments from designers and end users. The goal of this project was to reduce the effort for end users to participate in co-design of a software user interface by developing an interactive web-based crowdsourcing platform. In a randomized trial, we compared a new web-based crowdsourcing platform to standard participatory design sessions. We developed an interactive, modular platform that allows responsive remote customization and design feedback on a visual user interface based on user preferences. The responsive canvas is a dynamic HTML template that responds in real time to user preference selections. Upon completion, the design team can view the user's interface creations through an administrator portal and download the structured selections through a REDCap interface. We have created a software platform that allows users to customize a user interface and see the results of that customization in real time, receiving immediate feedback on the impact of their design choices. Neonatal clinicians used the new platform to successfully design and customize a neonatal handoff tool. They received no specific instruction and yet were able to use the software easily and reported high usability. VandAID, a new web-based crowdsourcing platform, can involve multiple users in user-centered design simultaneously and provides means of obtaining design feedback remotely. The software can provide design feedback at any stage in the design process, but it will be of greatest utility for specifying user requirements and evaluating iterative designs with multiple options.

  9. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  10. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

    PubMed

    Cotto, Kelsy C; Wagner, Alex H; Feng, Yang-Yang; Kiwala, Susanna; Coffman, Adam C; Spies, Gregory; Wollam, Alex; Spies, Nicholas C; Griffith, Obi L; Griffith, Malachi

    2018-01-04

    The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.

  11. Interactome INSIDER: a structural interactome browser for genomic studies.

    PubMed

    Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan

    2018-01-01

    We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.

  12. Use of natural user interfaces in water simulations

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; van Dam, A.; Jagers, B.

    2013-12-01

    Conventional graphical user interfaces, used to edit input and present results of earth science models, have seen little innovation for the past two decades. In most cases model data is presented and edited using 2D projections even when working with 3D data. The emergence of 3D motion sensing technologies, such as Microsoft Kinect and LEAP Motion, opens new possibilities for user interaction by adding more degrees of freedom compared to a classical way using mouse and keyboard. Here we investigate how interaction with hydrodynamic numerical models can be improved using these new technologies. Our research hypothesis (H1) states that properly designed 3D graphical user interface paired with the 3D motion sensor can significantly reduce the time required to setup and use numerical models. In this work we have used a LEAP motion controller combined with a shallow water flow model engine D-Flow Flexible Mesh. Interacting with numerical model using hands

  13. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  14. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  15. Discrete Abstractions of Hybrid Systems: Verification of Safety and Application to User-Interface Design

    NASA Technical Reports Server (NTRS)

    Oishi, Meeko; Tomlin, Claire; Degani, Asaf

    2003-01-01

    Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.

  16. More than Just a Pretty (Inter) Face: The Role of the Graphical User Interface in Engaging Elearners.

    ERIC Educational Resources Information Center

    Metros, Susan E.; Hedberg, John G.

    2002-01-01

    Examines the relationship between the graphical user interface (GUI) and the cognitive demands placed on the learner in eLearning (electronic learning) environments. Describes ways educators can design appropriate interfaces to facilitate meaningful interactions with educational content; and examines learner engagement and engagement theory using…

  17. Avatars and virtual agents – relationship interfaces for the elderly

    PubMed Central

    2017-01-01

    In the Digital Era, the authors witness a change in the relationship between the patient and the care-giver or Health Maintenance Organization's providing the health services. Another fact is the use of various technologies to increase the effectiveness and quality of health services across all primary and secondary users. These technologies range from telemedicine systems, decision making tools, online and self-services applications and virtual agents; all providing information and assistance. The common thread between all these digital implementations, is they all require human machine interfaces. These interfaces must be interactive, user friendly and inviting, to create user involvement and cooperation incentives. The challenge is to design interfaces which will best fit the target users and enable smooth interaction especially, for the elderly users. Avatars and Virtual Agents are one of the interfaces used for both home care monitoring and companionship. They are also inherently multimodal in nature and allow an intimate relation between the elderly users and the Avatar. This study discusses the need and nature of these relationship models, the challenges of designing for the elderly. The study proposes key features for the design and evaluation in the area of assistive applications using Avatar and Virtual agents for the elderly users. PMID:28706725

  18. Transportable Applications Environment Plus, Version 5.1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.

  19. Use of force feedback to enhance graphical user interfaces

    NASA Astrophysics Data System (ADS)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  20. Bimanual Interaction with Interscopic Multi-Touch Surfaces

    NASA Astrophysics Data System (ADS)

    Schöning, Johannes; Steinicke, Frank; Krüger, Antonio; Hinrichs, Klaus; Valkov, Dimitar

    Multi-touch interaction has received considerable attention in the last few years, in particular for natural two-dimensional (2D) interaction. However, many application areas deal with three-dimensional (3D) data and require intuitive 3D interaction techniques therefore. Indeed, virtual reality (VR) systems provide sophisticated 3D user interface, but then lack efficient 2D interaction, and are therefore rarely adopted by ordinary users or even by experts. Since multi-touch interfaces represent a good trade-off between intuitive, constrained interaction on a touch surface providing tangible feedback, and unrestricted natural interaction without any instrumentation, they have the potential to form the foundation of the next generation user interface for 2D as well as 3D interaction. In particular, stereoscopic display of 3D data provides an additional depth cue, but until now the challenges and limitations for multi-touch interaction in this context have not been considered. In this paper we present new multi-touch paradigms and interactions that combine both traditional 2D interaction and novel 3D interaction on a touch surface to form a new class of multi-touch systems, which we refer to as interscopic multi-touch surfaces (iMUTS). We discuss iMUTS-based user interfaces that support interaction with 2D content displayed in monoscopic mode and 3D content usually displayed stereoscopically. In order to underline the potential of the proposed iMUTS setup, we have developed and evaluated two example interaction metaphors for different domains. First, we present intuitive navigation techniques for virtual 3D city models, and then we describe a natural metaphor for deforming volumetric datasets in a medical context.

  1. Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1992-01-01

    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.

  2. Modeling Goal-Directed User Exploration in Human-Computer Interaction

    DTIC Science & Technology

    2011-02-01

    scent, other factors including the layout position and grouping of options in the user-interface also affect user exploration and the likelihood of...grouping of options in the user-interface also affect user exploration and the likelihood of success. This dissertation contributes a new model of goal...better inform UI design. 1.1 RESEARCH GAPS IN MODELING In addition to infoscent, the layout of the UI also affects the choices made during

  3. Experiments on Interfaces To Support Query Expansion.

    ERIC Educational Resources Information Center

    Beaulieu, M.

    1997-01-01

    Focuses on the user and human-computer interaction aspects of the research based on the Okapi text retrieval system. Three experiments implementing different approaches to query expansion are described, including the use of graphical user interfaces with different windowing techniques. (Author/LRW)

  4. Transportable Applications Environment (TAE) Plus: A NASA user interface development and management system

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The transportable Applications Environment Plus (TAE Plus), developed at the NASA Goddard Space FLight Center, is a portable, What you see is what you get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development of graphical user interfaces, as well as management of the user interface within the operational domain. TAE Plus is being applied to many types of applications, and what TAE Plus provides, how the implementation has utilizes state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA are discussed.

  5. Beyond qualitative and subjective techniques to assess usability of banking interfaces for senior citizens.

    PubMed

    Laparra-Hernández, José; Medina, Enric; Sancho, María; Soriano, Carolina; Durá, Juanvi; Barberà-Guillem, Ricard; Poveda-Puente, Rakel

    2015-01-01

    Senior citizens can benefit from banking services but the lack of usability hampers this possibility. New approaches based on physiological response, eye tracking and user movement analysis can provide more information during interface interaction. This research shows the differences depending on user knowledge and use of technology, gender and type of interface.

  6. Adaptive Motor Resistance Video Game Exercise Apparatus and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2015-01-01

    The invention comprises a method and/or an apparatus using computer configured exercise equipment and an electric motor provided physical resistance in conjunction with a game system, such as a video game system, where the exercise system provides real physical resistance to a user interface. Results of user interaction with the user interface are integrated into a video game, such as running on a game console. The resistance system comprises: a subject interface, software control, a controller, an electric servo assist/resist motor, an actuator, and/or a subject sensor. The system provides actual physical interaction with a resistance device as input to the game console and game run thereon.

  7. A study of usability principles and interface design for mobile e-books.

    PubMed

    Wang, Chao-Ming; Huang, Ching-Hua

    2015-01-01

    This study examined usability principles and interface designs in order to understand the relationship between the intentions of mobile e-book interface designs and users' perceptions. First, this study summarised 4 usability principles and 16 interface attributes, in order to conduct usability testing and questionnaire survey by referring to Nielsen (1993), Norman (2002), and Yeh (2010), who proposed the usability principles. Second, this study used the interviews to explore the perceptions and behaviours of user operations through senior users of multi-touch prototype devices. The results of this study are as follows: (1) users' behaviour of operating an interactive interface is related to user prior experience; (2) users' rating of the visibility principle is related to users' subjective perception but not related to user prior experience; however, users' ratings of the ease, efficiency, and enjoyment principles are related to user prior experience; (3) the interview survey reveals that the key attributes affecting users' behaviour of operating an interface include aesthetics, achievement, and friendliness. This study conducts experiments to explore the effects of users’ prior multi-touch experience on users’ behaviour of operating a mobile e-book interface and users’ rating of usability principles. Both qualitative and quantitative data analyses were performed. By applying protocol analysis, key attributes affecting users’ behaviour of operation were determined.

  8. Preparing for Future Learning with a Tangible User Interface: The Case of Neuroscience

    ERIC Educational Resources Information Center

    Schneider, B.; Wallace, J.; Blikstein, P.; Pea, R.

    2013-01-01

    In this paper, we describe the development and evaluation of a microworld-based learning environment for neuroscience. Our system, BrainExplorer, allows students to discover the way neural pathways work by interacting with a tangible user interface. By severing and reconfiguring connections, users can observe how the visual field is impaired and,…

  9. Gestures in an Intelligent User Interface

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; van der Vet, Paul; Nijholt, Anton

    In this chapter we investigated which hand gestures are intuitive to control a large display multimedia interface from a user's perspective. Over the course of two sequential user evaluations, we defined a simple gesture set that allows users to fully control a large display multimedia interface, intuitively. First, we evaluated numerous gesture possibilities for a set of commands that can be issued to the interface. These gestures were selected from literature, science fiction movies, and a previous exploratory study. Second, we implemented a working prototype with which the users could interact with both hands and the preferred hand gestures with 2D and 3D visualizations of biochemical structures. We found that the gestures are influenced to significant extent by the fast paced developments in multimedia interfaces such as the Apple iPhone and the Nintendo Wii and to no lesser degree by decades of experience with the more traditional WIMP-based interfaces.

  10. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    NASA Astrophysics Data System (ADS)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  11. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  12. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  13. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  14. Developing a Graphical User Interface for the ALSS Crop Planning Tool

    NASA Technical Reports Server (NTRS)

    Koehlert, Erik

    1997-01-01

    The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.

  15. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems.

    PubMed

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A; Duro, Richard

    2016-07-07

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.

  16. Gromita: a fully integrated graphical user interface to gromacs 4.

    PubMed

    Sellis, Diamantis; Vlachakis, Dimitrios; Vlassi, Metaxia

    2009-09-07

    Gromita is a fully integrated and efficient graphical user interface (GUI) to the recently updated molecular dynamics suite Gromacs, version 4. Gromita is a cross-platform, perl/tcl-tk based, interactive front end designed to break the command line barrier and introduce a new user-friendly environment to run molecular dynamics simulations through Gromacs. Our GUI features a novel workflow interface that guides the user through each logical step of the molecular dynamics setup process, making it accessible to both advanced and novice users. This tool provides a seamless interface to the Gromacs package, while providing enhanced functionality by speeding up and simplifying the task of setting up molecular dynamics simulations of biological systems. Gromita can be freely downloaded from http://bio.demokritos.gr/gromita/.

  17. Eye-gaze and intent: Application in 3D interface control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Goldberg, J.H.

    1993-06-01

    Computer interface control is typically accomplished with an input ``device`` such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less

  18. Eye-gaze and intent: Application in 3D interface control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Goldberg, J.H.

    1993-01-01

    Computer interface control is typically accomplished with an input device'' such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less

  19. Projection Mapping User Interface for Disabled People

    PubMed Central

    Simutis, Rimvydas; Maskeliūnas, Rytis

    2018-01-01

    Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities. PMID:29686827

  20. Projection Mapping User Interface for Disabled People.

    PubMed

    Gelšvartas, Julius; Simutis, Rimvydas; Maskeliūnas, Rytis

    2018-01-01

    Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities.

  1. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  2. ASV3 dial-in interface recommendation for the Repository Based Software Engineering (RBSE) program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this report is to provide insight into the approach and design of the Cooperative User Interface (CUI). The CUI is being developed based on Hypercard technology and will provide the same look and feel as is provided by the NASA Electronic Library System (NELS) X-Window interface. The interaction between the user and ASCII-LIB is presented as well as the set of Hypercard Cards with which the user will work.

  3. HAWQS Beta Flyer

    EPA Pesticide Factsheets

    HAWQS is a web-based interactive water quantity and quality modeling system that provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, graphs and raw output data; and a user guide.

  4. HAWQS beta flyer

    EPA Pesticide Factsheets

    HAWQS is a web-based interactive water quantity and quality modeling system that provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, graphs and raw output data; and a user guide.

  5. User Interface Technology for Formal Specification Development

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  6. Human-telerobot interactions - Information, control, and mental models

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Gillan, Douglas J.

    1987-01-01

    A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.

  7. User Interface Models for Multidisciplinary Bibliographic Information Dissemination Centers.

    ERIC Educational Resources Information Center

    Zipperer, W. C.

    Two information dissemination centers at University of California at Los Angeles and University of Georgia studied the interactions between computer based search facilities and their users. The study, largely descriptive in nature, investigated the interaction processes between data base users and profile analysis or information specialists in…

  8. Aesthetics, Usefulness and Performance in User--Search-Engine Interaction

    ERIC Educational Resources Information Center

    Katz, Adi

    2010-01-01

    Issues of visual appeal have become an integral part of designing interactive systems. Interface aesthetics may form users' attitudes towards computer applications and information technology. Aesthetics can affect user satisfaction, and influence their willingness to buy or adopt a system. This study follows previous studies that found that users…

  9. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  10. A Proposed Intelligent Policy-Based Interface for a Mobile eHealth Environment

    NASA Astrophysics Data System (ADS)

    Tavasoli, Amir; Archer, Norm

    Users of mobile eHealth systems are often novices, and the learning process for them may be very time consuming. In order for systems to be attractive to potential adopters, it is important that the interface should be very convenient and easy to learn. However, the community of potential users of a mobile eHealth system may be quite varied in their requirements, so the system must be able to adapt easily to suit user preferences. One way to accomplish this is to have the interface driven by intelligent policies. These policies can be refined gradually, using inputs from potential users, through intelligent agents. This paper develops a framework for policy refinement for eHealth mobile interfaces, based on dynamic learning from user interactions.

  11. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  12. Graphical user interfaces for symbol-oriented database visualization and interaction

    NASA Astrophysics Data System (ADS)

    Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger

    1997-04-01

    In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.

  13. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  14. Integrating Conjoint Analysis with TOPSIS Algorithm to the Visual Effect of Icon Design Based on Multiple Users' Image Perceptions

    ERIC Educational Resources Information Center

    Tung, Ting-Chun; Chen, Hung-Yuan

    2017-01-01

    With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…

  15. Spatial issues in user interface design from a graphic design perspective

    NASA Technical Reports Server (NTRS)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  16. User interaction in smart ambient environment targeted for senior citizen.

    PubMed

    Pulli, Petri; Hyry, Jaakko; Pouke, Matti; Yamamoto, Goshiro

    2012-11-01

    Many countries are facing a problem when the age-structure of the society is changing. The numbers of senior citizen are rising rapidly, and caretaking personnel numbers cannot match the problems and needs of these citizens. Using smart, ubiquitous technologies can offer ways in coping with the need of more nursing staff and the rising costs of taking care of senior citizens for the society. Helping senior citizens with a novel, easy to use interface that guides and helps, could improve their quality of living and make them participate more in daily activities. This paper presents a projection-based display system for elderly people with memory impairments and the proposed user interface for the system. The user's process recognition based on a sensor network is also described. Elderly people wearing the system can interact the projected user interface by tapping physical surfaces (such as walls, tables, or doors) using them as a natural, haptic feedback input surface.

  17. Technical development of PubMed interact: an improved interface for MEDLINE/PubMed searches.

    PubMed

    Muin, Michael; Fontelo, Paul

    2006-11-03

    The project aims to create an alternative search interface for MEDLINE/PubMed that may provide assistance to the novice user and added convenience to the advanced user. An earlier version of the project was the 'Slider Interface for MEDLINE/PubMed searches' (SLIM) which provided JavaScript slider bars to control search parameters. In this new version, recent developments in Web-based technologies were implemented. These changes may prove to be even more valuable in enhancing user interactivity through client-side manipulation and management of results. PubMed Interact is a Web-based MEDLINE/PubMed search application built with HTML, JavaScript and PHP. It is implemented on a Windows Server 2003 with Apache 2.0.52, PHP 4.4.1 and MySQL 4.1.18. PHP scripts provide the backend engine that connects with E-Utilities and parses XML files. JavaScript manages client-side functionalities and converts Web pages into interactive platforms using dynamic HTML (DHTML), Document Object Model (DOM) tree manipulation and Ajax methods. With PubMed Interact, users can limit searches with JavaScript slider bars, preview result counts, delete citations from the list, display and add related articles and create relevance lists. Many interactive features occur at client-side, which allow instant feedback without reloading or refreshing the page resulting in a more efficient user experience. PubMed Interact is a highly interactive Web-based search application for MEDLINE/PubMed that explores recent trends in Web technologies like DOM tree manipulation and Ajax. It may become a valuable technical development for online medical search applications.

  18. CERESVis: A QC Tool for CERES that Leverages Browser Technology for Data Validation

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Heckert, E.; Chen, Y.; Doelling, D.

    2015-12-01

    In this poster, we are going to present three user interfaces that CERES team uses to validate pixel-level data. Besides our home grown tools, we will aslo present the browser technology that we use to provide interactive interfaces, such as jquery, HighCharts and Google Earth. We pass data to the users' browsers and use the browsers to do some simple computations. The three user interfaces are: Thumbnails -- it displays hundrends images to allow users to browse 24-hour data files in few seconds. Multiple-synchronized cursors -- it allows users to compare multiple images side by side. Bounding Boxes and Histograms -- it allows users to draw multiple bounding boxes on an image and the browser computes/display the histograms.

  19. Passive sensor technology interface to assess elder activity in independent living.

    PubMed

    Alexander, Gregory L; Wakefield, Bonnie J; Rantz, Marilyn; Skubic, Marjorie; Aud, Myra A; Erdelez, Sanda; Ghenaimi, Said Al

    2011-01-01

    The effectiveness of clinical information systems to improve nursing and patient outcomes depends on human factors, including system usability, organizational workflow, and user satisfaction. The aim of this study was to examine to what extent residents, family members, and clinicians find a sensor data interface used to monitor elder activity levels usable and useful in an independent living setting. Three independent expert reviewers conducted an initial heuristic evaluation. Subsequently, 20 end users (5 residents, 5 family members, 5 registered nurses, and 5 physicians) participated in the evaluation. During the evaluation, each participant was asked to complete three scenarios taken from three residents. Morae recorder software was used to capture data during the user interactions. The heuristic evaluation resulted in 26 recommendations for interface improvement; these were classified under the headings content, aesthetic appeal, navigation, and architecture, which were derived from heuristic results. Total time for elderly residents to complete scenarios was much greater than for other users. Family members spent more time than clinicians but less time than residents did to complete scenarios. Elder residents and family members had difficulty interpreting clinical data and graphs, experienced information overload, and did not understand terminology. All users found the sensor data interface useful for identifying changing resident activities. Older adult users have special needs that should be addressed when designing clinical interfaces for them, especially information as important as health information. Evaluating human factors during user interactions with clinical information systems should be a requirement before implementation.

  20. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems

    PubMed Central

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A.; Duro, Richard

    2016-01-01

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location. PMID:27399711

  1. Visual design for the user interface, Part 1: Design fundamentals.

    PubMed

    Lynch, P J

    1994-01-01

    Digital audiovisual media and computer-based documents will be the dominant forms of professional communication in both clinical medicine and the biomedical sciences. The design of highly interactive multimedia systems will shortly become a major activity for biocommunications professionals. The problems of human-computer interface design are intimately linked with graphic design for multimedia presentations and on-line document systems. This article outlines the history of graphic interface design and the theories that have influenced the development of today's major graphic user interfaces.

  2. User productivity as a function of AutoCAD interface design.

    PubMed

    Mitta, D A; Flores, P L

    1995-12-01

    Increased operator productivity is a desired outcome of user-CAD interaction scenarios. Two objectives of this research were to (1) define a measure of operator productivity and (2) empirically investigate the potential effects of CAD interface design on operator productivity, where productivity is defined as the percentage of a drawing session correctly completed per unit time. Here, AutoCAD provides the CAD environment of interest. Productivity with respect to two AutoCAD interface designs (menu, template) and three task types (draw, dimension, display) was investigated. Analysis of user productivity data revealed significantly higher productivity under the menu interface condition than under the template interface condition. A significant effect of task type was also discovered, where user productivity under display tasks was higher than productivity under the draw and dimension tasks. Implications of these results are presented.

  3. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (HP9000 SERIES 300/400 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.

  4. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.

  5. User-Centered Design, Experience, and Usability of an Electronic Consent User Interface to Facilitate Informed Decision-Making in an HIV Clinic.

    PubMed

    Ramos, S Raquel

    2017-11-01

    Health information exchange is the electronic accessibility and transferability of patient medical records across various healthcare settings and providers. In some states, patients have to formally give consent to allow their medical records to be electronically shared. The purpose of this study was to apply a novel user-centered, multistep, multiframework approach to design and test an electronic consent user interface, so patients with HIV can make more informed decisions about electronically sharing their health information. This study consisted of two steps. Step 1 was a cross-sectional, descriptive, qualitative study that used user-centric design interviews to create the user interface. This informed Step 2. Step 2 consisted of a one group posttest to examine perceptions of usefulness, ease of use, preference, and comprehension of a health information exchange electronic consent user interface. More than half of the study population had college experience, but challenges remained with overall comprehension regarding consent. The user interface was not independently successful, suggesting that in addition to an electronic consent user interface, human interaction may also be necessary to address the complexities associated with consenting to electronically share health information. Comprehension is key factor in the ability to make informed decisions.

  6. Social Benefits of a Tangible User Interface for Children with Autistic Spectrum Conditions

    ERIC Educational Resources Information Center

    Farr, William; Yuill, Nicola; Raffle, Hayes

    2010-01-01

    Tangible user interfaces (TUIs) embed computer technology in graspable objects. This study assessed the potential of Topobo, a construction toy with programmable movement, to support social interaction in children with Autistic Spectrum Conditions (ASC). Groups of either typically developing (TD) children or those with ASC had group play sessions…

  7. TIGER: A graphically interactive grid system for turbomachinery applications

    NASA Technical Reports Server (NTRS)

    Shih, Ming-Hsin; Soni, Bharat K.

    1992-01-01

    Numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to the use of general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical User Interactions are provided in the algorithm, allowing the user to design and manipulate the grid lines with a mouse.

  8. IDEA: Interactive Display for Evolutionary Analyses.

    PubMed

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  9. IDEA: Interactive Display for Evolutionary Analyses

    PubMed Central

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-01-01

    Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522

  10. Affective Interface Adaptations in the Musickiosk Interactive Entertainment Application

    NASA Astrophysics Data System (ADS)

    Malatesta, L.; Raouzaiou, A.; Pearce, L.; Karpouzis, K.

    The current work presents the affective interface adaptations in the Musickiosk application. Adaptive interaction poses several open questions since there is no unique way of mapping affective factors of user behaviour to the output of the system. Musickiosk uses a non-contact interface and implicit interaction through emotional affect rather than explicit interaction where a gesture, sound or other input directly maps to an output behaviour - as in traditional entertainment applications. PAD model is used for characterizing the different affective states and emotions.

  11. Graphical user interface for a neonatal parenteral nutrition decision support system.

    PubMed Central

    Peverini, R. L.; Beach, D. S.; Wan, K. W.; Vyhmeister, N. R.

    2000-01-01

    We developed and implemented a decision support system for prescribing parenteral nutrition (PN) solutions for infants in our neonatal intensive care unit. We employed a graphical user interface to provide clinical guidelines and aid the understanding of the interaction among the various ingredients that make up a PN solution. In particular, by displaying the interaction between the PN total solution volume, protein, calcium and phosphorus, we have eliminated PN orders that previously would have resulted in calcium-phosphorus precipitation errors. PMID:11079964

  12. The Design of an Interactive Data Retrieval System for Casual Users.

    ERIC Educational Resources Information Center

    Radhakrishnan, T.; And Others

    1982-01-01

    Describes an interactive data retrieval system which was designed and implemented for casual users and which incorporates a user-friendly interface, aids to train beginners in use of the system, versatility in output, and error recovery protocols. A 14-item reference list and two figures illustrating system operation and output are included. (JL)

  13. Metaphors for the Nature of Human-Computer Interaction in an Empowering Environment: Interaction Style Influences the Manner of Human Accomplishment.

    ERIC Educational Resources Information Center

    Weller, Herman G.; Hartson, H. Rex

    1992-01-01

    Describes human-computer interface needs for empowering environments in computer usage in which the machine handles the routine mechanics of problem solving while the user concentrates on its higher order meanings. A closed-loop model of interaction is described, interface as illusion is discussed, and metaphors for human-computer interaction are…

  14. ECCE Toolkit: Prototyping Sensor-Based Interaction.

    PubMed

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-02-23

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  15. KFC Server: interactive forecasting of protein interaction hot spots.

    PubMed

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

  16. KFC Server: interactive forecasting of protein interaction hot spots

    PubMed Central

    Darnell, Steven J.; LeGault, Laura; Mitchell, Julie C.

    2008-01-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611

  17. ECCE Toolkit: Prototyping Sensor-Based Interaction

    PubMed Central

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-01-01

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  18. Deep Interactive Learning with Sharkzor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Sharkzor is a web application for machine-learning assisted image sort and summary. Deep learning algorithms are leveraged to infer, augment, and automate the user’s mental model. Initially, images uploaded by the user are spread out on a canvas. The user then interacts with the images to impute their mental model into the applications algorithmic underpinnings. Methods of interaction within Sharkzor’s user interface and user experience support three primary user tasks: triage, organize and automate. The user triages the large pile of overlapping images by moving images of interest into proximity. The user then organizes said images into meaningful groups. Aftermore » interacting with the images and groups, deep learning helps to automate the user’s interactions. The loop of interaction, automation, and response by the user allows the system to quickly make sense of large amounts of data.« less

  19. Does this interface make my sensor look bad? Basic principles for designing usable, useful interfaces for sensor technology operators

    NASA Astrophysics Data System (ADS)

    McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura

    2017-05-01

    Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.

  20. CE-SAM: a conversational interface for ISR mission support

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  1. Accessibility of Mobile Devices for Visually Impaired Users: An Evaluation of the Screen-Reader VoiceOver.

    PubMed

    Smaradottir, Berglind; Håland, Jarle; Martinez, Santiago

    2017-01-01

    A mobile device's touchscreen allows users to use a choreography of hand gestures to interact with the user interface. A screen reader on a mobile device is designed to support the interaction of visually disabled users while using gestures. This paper presents an evaluation of VoiceOver, a screen reader in Apple Inc. products. The evaluation was a part of the research project "Visually impaired users touching the screen - a user evaluation of assistive technology".

  2. Technical development of PubMed Interact: an improved interface for MEDLINE/PubMed searches

    PubMed Central

    Muin, Michael; Fontelo, Paul

    2006-01-01

    Background The project aims to create an alternative search interface for MEDLINE/PubMed that may provide assistance to the novice user and added convenience to the advanced user. An earlier version of the project was the 'Slider Interface for MEDLINE/PubMed searches' (SLIM) which provided JavaScript slider bars to control search parameters. In this new version, recent developments in Web-based technologies were implemented. These changes may prove to be even more valuable in enhancing user interactivity through client-side manipulation and management of results. Results PubMed Interact is a Web-based MEDLINE/PubMed search application built with HTML, JavaScript and PHP. It is implemented on a Windows Server 2003 with Apache 2.0.52, PHP 4.4.1 and MySQL 4.1.18. PHP scripts provide the backend engine that connects with E-Utilities and parses XML files. JavaScript manages client-side functionalities and converts Web pages into interactive platforms using dynamic HTML (DHTML), Document Object Model (DOM) tree manipulation and Ajax methods. With PubMed Interact, users can limit searches with JavaScript slider bars, preview result counts, delete citations from the list, display and add related articles and create relevance lists. Many interactive features occur at client-side, which allow instant feedback without reloading or refreshing the page resulting in a more efficient user experience. Conclusion PubMed Interact is a highly interactive Web-based search application for MEDLINE/PubMed that explores recent trends in Web technologies like DOM tree manipulation and Ajax. It may become a valuable technical development for online medical search applications. PMID:17083729

  3. Visualization of usability and functionality of a professional website through web-mining.

    PubMed

    Jones, Josette F; Mahoui, Malika; Gopa, Venkata Devi Pragna

    2007-10-11

    Functional interface design requires understanding of the information system structure and the user. Web logs record user interactions with the interface, and thus provide some insight into user search behavior and efficiency of the search process. The present study uses a data-mining approach with techniques such as association rules, clustering and classification, to visualize the usability and functionality of a digital library through in depth analyses of web logs.

  4. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  5. Experimental setup for evaluating an adaptive user interface for teleoperation control

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.

    2017-05-01

    A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.

  6. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Tian-Jy; Kim, Younghun

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented thatmore » communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.« less

  8. Amino Acid Interaction (INTAA) web server.

    PubMed

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. WIFIP: a web-based user interface for automated synchrotron beamlines.

    PubMed

    Sallaz-Damaz, Yoann; Ferrer, Jean Luc

    2017-09-01

    The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.

  10. Effect of alignment perturbations in a trans-tibial prosthesis user: A pilot study.

    PubMed

    Courtney, Anna; Orendurff, Michael S; Buis, Arjan

    2016-04-01

    A recurring complication in trans-tibial prosthetic limb users is "poor socket fit" with painful residuum-socket interfaces, a consequence of excess pressure. This is due to both poor socket fit and poor socket alignment; however, the interaction of these factors has not been quantified. Through evaluation of kinetic data this study aimed to articulate an interaction uniting socket design, alignment and interface pressures. The results will help to refine future studies and will hopefully help determine whether sockets can be designed, fitted and aligned to maximize mobility whilst minimizing injurious forces. Interface pressures were recorded throughout ambulation in one user with "optimal (reference) alignment" followed by 5 malalignments in a patellar tendon-bearing and a hydrocast socket. Marked differences in pressure distribution were discovered when equating the patellar tendon-bearing against the hydrocast socket and when comparing interface pressures from reference with offset alignment. Patellar tendon-bearing sockets were found to be more sensitive to alignment perturbations than hydrocast sockets. A complex interaction was found, with the most prominent finding demonstrating the requisite for attainment of optimal alignment: a translational alignment error of 10 mm can increase maximum peak pressures by 227% (mean 17.5%). Refinements for future trials are described and the necessity for future research into socket design, alignment and interface pressures has been estabilished.

  11. Linking Audio and Visual Information while Navigating in a Virtual Reality Kiosk Display

    ERIC Educational Resources Information Center

    Sullivan, Briana; Ware, Colin; Plumlee, Matthew

    2006-01-01

    3D interactive virtual reality museum exhibits should be easy to use, entertaining, and informative. If the interface is intuitive, it will allow the user more time to learn the educational content of the exhibit. This research deals with interface issues concerning activating audio descriptions of images in such exhibits while the user is…

  12. Introduction of knowledge bases in patient's data management system: role of the user interface.

    PubMed

    Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M

    1995-02-01

    As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.

  13. A review of existing and potential computer user interfaces for modern radiology.

    PubMed

    Iannessi, Antoine; Marcy, Pierre-Yves; Clatz, Olivier; Bertrand, Anne-Sophie; Sugimoto, Maki

    2018-05-16

    The digitalization of modern imaging has led radiologists to become very familiar with computers and their user interfaces (UI). New options for display and command offer expanded possibilities, but the mouse and keyboard remain the most commonly utilized, for usability reasons. In this work, we review and discuss different UI and their possible application in radiology. We consider two-dimensional and three-dimensional imaging displays in the context of interventional radiology, and discuss interest in touchscreens, kinetic sensors, eye detection, and augmented or virtual reality. We show that UI design specifically for radiologists is key for future use and adoption of such new interfaces. Next-generation UI must fulfil professional needs, while considering contextual constraints. • The mouse and keyboard remain the most utilized user interfaces for radiologists. • Touchscreen, holographic, kinetic sensors and eye tracking offer new possibilities for interaction. • 3D and 2D imaging require specific user interfaces. • Holographic display and augmented reality provide a third dimension to volume imaging. • Good usability is essential for adoption of new user interfaces by radiologists.

  14. A user interface framework for the Square Kilometre Array: concepts and responsibilities

    NASA Astrophysics Data System (ADS)

    Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard

    2016-07-01

    The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.

  15. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    PubMed Central

    Grapov, Dmitry; Newman, John W.

    2012-01-01

    Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358

  16. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    PubMed

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  17. Cultural ergonomics in interactional and experiential design: conceptual framework and case study of the Taiwanese twin cup.

    PubMed

    Lin, Chih-Long; Chen, Si-Jing; Hsiao, Wen-Hsin; Lin, Rungtai

    2016-01-01

    Cultural ergonomics is an approach that considers interaction- and experience-based variations among cultures. Designers need to develop a better understanding of cultural ergonomics not just to participate in cultural contexts but also to develop interactive experiences for users. Cultural ergonomics extends our understanding of cultural meaning and our ability to utilize such understanding for design and evaluate everyday products. This study aims to combine cultural ergonomics and interactive design to explore human-culture interaction in user experiences. The linnak is a typical Taiwanese aboriginal cultural object. This study examined the cultural meaning and operational interface of the linnak, as well as the scenarios in which it is used in interaction and user experiences. The results produced a cultural ergonomics interface for examining the manner in which designers communicate across cultures as well as the interweaving of design and culture in the design process. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game

    PubMed Central

    de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549

  19. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    PubMed

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  20. Natural Language Query System Design for Interactive Information Storage and Retrieval Systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Liu, I-Hsiung

    1985-01-01

    The currently developed multi-level language interfaces of information systems are generally designed for experienced users. These interfaces commonly ignore the nature and needs of the largest user group, i.e., casual users. This research identifies the importance of natural language query system research within information storage and retrieval system development; addresses the topics of developing such a query system; and finally, proposes a framework for the development of natural language query systems in order to facilitate the communication between casual users and information storage and retrieval systems.

  1. Developing a Natural User Interface and Facial Recognition System With OpenCV and the Microsoft Kinect

    NASA Technical Reports Server (NTRS)

    Gutensohn, Michael

    2018-01-01

    The task for this project was to design, develop, test, and deploy a facial recognition system for the Kennedy Space Center Augmented/Virtual Reality Lab. This system will serve as a means of user authentication as part of the NUI of the lab. The overarching goal is to create a seamless user interface that will allow the user to initiate and interact with AR and VR experiences without ever needing to use a mouse or keyboard at any step in the process.

  2. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 5. Background Literature

    DTIC Science & Technology

    1981-02-01

    the machine . ARI’s efforts in this area focus on human perfor- mance problems related to interactions with command and control centers, and on issues...improvement of the user- machine interface. Lacking consistent design principles, current practice results in a fragmented and unsystematic approach to system...complexity in the user- machine interface of BAS, ARI supported this effort for develop- me:nt of an online language for Army tactical intelligence

  3. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  4. Concurrent Image Processing Executive (CIPE). Volume 3: User's guide

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.; Kong, Mih-Seh

    1990-01-01

    CIPE (the Concurrent Image Processing Executive) is both an executive which organizes the parameter inputs for hypercube applications and an environment which provides temporary data workspace and simple real-time function definition facilities for image analysis. CIPE provides two types of user interface. The Command Line Interface (CLI) provides a simple command-driven environment allowing interactive function definition and evaluation of algebraic expressions. The menu interface employs a hierarchical screen-oriented menu system where the user is led through a menu tree to any specific application and then given a formatted panel screen for parameter entry. How to initialize the system through the setup function, how to read data into CIPE symbols, how to manipulate and display data through the use of executive functions, and how to run an application in either user interface mode, are described.

  5. PRay - A graphical user interface for interactive visualization and modification of rayinvr models

    NASA Astrophysics Data System (ADS)

    Fromm, T.

    2016-01-01

    PRay is a graphical user interface for interactive displaying and editing of velocity models for seismic refraction. It is optimized for editing rayinvr models but can also be used as a dynamic viewer for ray tracing results from other software. The main features are the graphical editing of nodes and fast adjusting of the display (stations and phases). It can be extended by user-defined shell scripts and links to phase picking software. PRay is open source software written in the scripting language Perl, runs on Unix-like operating systems including Mac OS X and provides a version controlled source code repository for community development (https://sourceforge.net/projects/pray-plot-rayinvr/).

  6. Design Foundations for Content-Rich Acoustic Interfaces: Investigating Audemes as Referential Non-Speech Audio Cues

    ERIC Educational Resources Information Center

    Ferati, Mexhid Adem

    2012-01-01

    To access interactive systems, blind and visually impaired users can leverage their auditory senses by using non-speech sounds. The current structure of non-speech sounds, however, is geared toward conveying user interface operations (e.g., opening a file) rather than large theme-based information (e.g., a history passage) and, thus, is ill-suited…

  7. Participation as Governmentality? The Effect of Disciplinary Technologies at the Interface of Service Users and Providers, Families and the State

    ERIC Educational Resources Information Center

    McKay, Jane; Garratt, Dean

    2013-01-01

    This paper examines the concept of participation in relation to a range of recently imposed social and education policies. Drawing on recent empirical research, we explore how disciplinary technologies, including government policy, operate at the interface of service users and providers, and examine the interactional aspects of participation where…

  8. Information for the user in design of intelligent systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.

    1993-01-01

    Recommendations are made for improving intelligent system reliability and usability based on the use of information requirements in system development. Information requirements define the task-relevant messages exchanged between the intelligent system and the user by means of the user interface medium. Thus, these requirements affect the design of both the intelligent system and its user interface. Many difficulties that users have in interacting with intelligent systems are caused by information problems. These information problems result from the following: (1) not providing the right information to support domain tasks; and (2) not recognizing that using an intelligent system introduces new user supervisory tasks that require new types of information. These problems are especially prevalent in intelligent systems used for real-time space operations, where data problems and unexpected situations are common. Information problems can be solved by deriving information requirements from a description of user tasks. Using information requirements embeds human-computer interaction design into intelligent system prototyping, resulting in intelligent systems that are more robust and easier to use.

  9. End-to-end interoperability and workflows from building architecture design to one or more simulations

    DOEpatents

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  10. Transportable Applications Environment (TAE) Tenth Users' Conference

    NASA Technical Reports Server (NTRS)

    Rouff, Chris (Editor); Harris, Elfrieda (Editor); Yeager, Arleen (Editor)

    1993-01-01

    Conference proceedings are represented in graphic visual-aid form. Presentation and panel discussion topics include user experiences with C++ and Ada; the design and interaction of the user interface; the history and goals of TAE; commercialization and testing of TAE Plus; Computer-Human Interaction Models (CHIMES); data driven objects; item-to-item connections and object dependencies; and integration with other software. There follows a list of conference attendees.

  11. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (HP9000 SERIES 700/800 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  12. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (IBM RS/6000 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  13. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION WITH MOTIF)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  14. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SILICON GRAPHICS VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  15. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  16. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  17. Editing Wikipedia content by screen reader: easier interaction with the Accessible Rich Internet Applications suite.

    PubMed

    Buzzi, Marina; Leporini, Barbara

    2009-07-01

    This study aims to improve Wikipedia usability for the blind and promote the application of standards relating to Web accessibility and usability. First, accessibility and usability of Wikipedia home, search result and edit pages are analysed using the JAWS screen reader; next, suggestions for improving interaction are proposed and a new Wikipedia editing interface built. Most of the improvements were obtained using the Accessible Rich Internet Applications (WAI-ARIA) suite, developed by the World Wide Web Consortium (W3C) within the framework of the Web Accessibility Initiative (WAI). Last, a scenario of use compares interaction of blind people with the original and the modified interfaces. Our study highlights that although all contents are accessible via screen reader, usability issues exist due to the user's difficulties when interacting with the interface. The scenario of use shows how building an editing interface with the W3C WAI-ARIA suite eliminates many obstacles that can prevent blind users from actively contributing to Wikipedia. The modified Wikipedia editing page is simpler to use via a screen reader than the original one because ARIA ensures a page overview, rapid navigation, and total control of what is happening in the interface.

  18. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  19. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

    PubMed Central

    De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara

    2011-01-01

    A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented. PMID:22346574

  20. Probabilistic vs linear blending approaches to shared control for wheelchair driving.

    PubMed

    Ezeh, Chinemelu; Trautman, Pete; Devigne, Louise; Bureau, Valentin; Babel, Marie; Carlson, Tom

    2017-07-01

    Some people with severe mobility impairments are unable to operate powered wheelchairs reliably and effectively, using commercially available interfaces. This has sparked a body of research into "smart wheelchairs", which assist users to drive safely and create opportunities for them to use alternative interfaces. Various "shared control" techniques have been proposed to provide an appropriate level of assistance that is satisfactory and acceptable to the user. Most shared control techniques employ a traditional strategy called linear blending (LB), where the user's commands and wheelchair's autonomous commands are combined in some proportion. In this paper, however, we implement a more generalised form of shared control called probabilistic shared control (PSC). This probabilistic formulation improves the accuracy of modelling the interaction between the user and the wheelchair by taking into account uncertainty in the interaction. In this paper, we demonstrate the practical success of PSC over LB in terms of safety, particularly for novice users.

  1. Assessment of a User Guide for One Semi-Automated Forces (OneSAF) Version 2.0

    DTIC Science & Technology

    2009-09-01

    OneSAF uses a two-dimensional feature named a Plan View Display ( PVD ) as the primary graphical interface. The PVD replicates a map with a series...primary interface, the PVD is how the user watches the scenario unfold and requires the most interaction with the user. As seen in Table 3, all...participant indicated never using these seven map-related functions. Graphic control measures. Graphic control measures are applied to the PVD map to

  2. The Interactive Generation of Alphanumerics and Symbology with Designs on the Future.

    DTIC Science & Technology

    1985-06-01

    Interface in Airborne Systems. 22-26. IErE7AESS Symposium, Dayton DW io, Decemb*er-Tg. 17. Damodaran , L. and K. D. Eason. "Design Procedures for User...Petrocelli BkooTsInc., 1982. 19. Eason, K. D. and L. Damodaran . "The Needs of the Commercial User" in Computing Skills and the User Interface, edited...inadequate or inappropriate for another (Auld and others, 1981 : 78-92; Eason and Damodaran , 1981 : 115-122; Damadaran and Eason, 1981 : 373-387). These

  3. Unraveling Students' Interaction around a Tangible Interface Using Multimodal Learning Analytics

    ERIC Educational Resources Information Center

    Schneider, Bertrand; Blikstein, Paulo

    2015-01-01

    In this paper, we describe multimodal learning analytics (MMLA) techniques to analyze data collected around an interactive learning environment. In a previous study (Schneider & Blikstein, submitted), we designed and evaluated a Tangible User Interface (TUI) where dyads of students were asked to learn about the human hearing system by…

  4. Infant feeding: the interfaces between interaction design and cognitive ergonomics in user-centered design.

    PubMed

    Lima, Flavia; Araújo, Lilian Kely

    2012-01-01

    This text presents a discussion on the process of developing interactive products focused on infant behavior, which result was an interactive game for encouraging infant feeding. For that, it describes the use of cognitive psychology concepts added to interaction design methodology. Through this project, this article sustains how the cooperative use of these concepts provides adherent solutions to users' needs, whichever they are. Besides that, it verifies the closeness of those methodologies to boundary areas of knowledge, such as design focused on user and ergonomics.

  5. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    PubMed

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  6. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  7. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  8. Improving access to clinical practice guidelines with an interactive graphical interface using an iconic language.

    PubMed

    Pereira, Suzanne; Hassler, Sylvain; Hamek, Saliha; Boog, César; Leroy, Nicolas; Beuscart-Zéphir, Marie-Catherine; Favre, Madeleine; Venot, Alain; Duclos, Catherine; Lamy, Jean-Baptiste

    2014-08-26

    Clinical practice guidelines are useful for physicians, and guidelines are available on the Internet from various websites such as Vidal Recos. However, these guidelines are long and difficult to read, especially during consultation. Similar difficulties have been encountered with drug summaries of product characteristics. In a previous work, we have proposed an iconic language (called VCM, for Visualization of Concepts in Medicine) for representing patient conditions, treatments and laboratory tests, and we have used these icons to design a user interface that graphically indexes summaries of product characteristics. In the current study, our objective was to design and evaluate an iconic user interface for the consultation of clinical practice guidelines by physicians. Focus groups of physicians were set up to identify the difficulties encountered when reading guidelines. Icons were integrated into Vidal Recos, taking human factors into account. The resulting interface includes a graphical summary and an iconic indexation of the guideline. The new interface was evaluated. We compared the response times and the number of errors recorded when physicians answered questions about two clinical scenarios using the interactive iconic interface or a textual interface. Users' perceived usability was evaluated with the System Usability Scale. The main difficulties encountered by physicians when reading guidelines were obtaining an overview and finding recommendations for patients corresponding to "particular cases". We designed a graphical interface for guideline consultation, using icons to identify particular cases and providing a graphical summary of the icons organized by anatomy and etiology. The evaluation showed that physicians gave clinical responses more rapidly with the iconic interface than the textual interface (25.2 seconds versus 45.6, p < 0.05). The physicians appreciated the new interface, and the System Usability Scale score value was 75 (between good and excellent). An interactive iconic interface can provide physicians with an overview of clinical practice guidelines, and can decrease the time required to access the content of such guidelines.

  9. SEPS mission and system integration/interface requirements for the space transportation system. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.

    1979-01-01

    Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985

  10. Enabling User to User Interactions in Web Lectures with History-Aware User Awareness

    ERIC Educational Resources Information Center

    Ketterl, Markus; Mertens, Robert; Wiesen, Christoph; Vornberger, Oliver

    2011-01-01

    Purpose: The purpose of this paper is to present a user interface for web lectures for engaging with other users while working with video based learning content. The application allows its users to ask questions about the content and to get answers from those users that currently online are more familiar with it. The filtering is based on the…

  11. MaROS Strategic Relay Planning and Coordination Interfaces

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.

  12. User-Interface Design Characteristics of Fortune 500 B2C E-Commerce Sites and Industry Differences

    ERIC Educational Resources Information Center

    Zhao, Jensen J.; Truell, Allen D.; Alexander, Melody W.

    2006-01-01

    This study examined the user-interface design characteristics of 107 Fortune 500 B2C e-commerce Web sites and industry differences. Data were collected from corporate homepages, B2C product/service pages, B2C interactive shopping pages, as well as customer satisfaction of 321 online shoppers. The findings indicate that (a) to attract online…

  13. Designing Social Presence in e-Learning Environments: Testing the Effect of Interactivity on Children

    ERIC Educational Resources Information Center

    Tung, Fang-Wu; Deng, Yi-Shin

    2006-01-01

    The "computers are social actors" paradigm asserts that human-to-computer interactions are fundamentally social responses. Earlier research has shown that effective management of the social presence in user interface design can improve user engagement and motivation. Much of this research has focused on adult subjects. This study…

  14. Approximate Degrees of Similarity between a User's Knowledge and the Tutorial Systems' Knowledge Base

    ERIC Educational Resources Information Center

    Mogharreban, Namdar

    2004-01-01

    A typical tutorial system functions by means of interaction between four components: the expert knowledge base component, the inference engine component, the learner's knowledge component and the user interface component. In typical tutorial systems the interaction and the sequence of presentation as well as the mode of evaluation are…

  15. Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization

    DTIC Science & Technology

    2017-08-01

    visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user

  16. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    PubMed Central

    Víctor Rodrigo, Mercado-García

    2017-01-01

    Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities. PMID:29317861

  17. Adaptive interface for personalizing information seeking.

    PubMed

    Narayanan, S; Koppaka, Lavanya; Edala, Narasimha; Loritz, Don; Daley, Raymond

    2004-12-01

    An adaptive interface autonomously adjusts its display and available actions to current goals and abilities of the user by assessing user status, system task, and the context. Knowledge content adaptability is needed for knowledge acquisition and refinement tasks. In the case of knowledge content adaptability, the requirements of interface design focus on the elicitation of information from the user and the refinement of information based on patterns of interaction. In such cases, the emphasis on adaptability is on facilitating information search and knowledge discovery. In this article, we present research on adaptive interfaces that facilitates personalized information seeking from a large data warehouse. The resulting proof-of-concept system, called source recommendation system (SRS), assists users in locating and navigating data sources in the repository. Based on the initial user query and an analysis of the content of the search results, the SRS system generates a profile of the user tailored to the individual's context during information seeking. The user profiles are refined successively and are used in progressively guiding the user to the appropriate set of sources within the knowledge base. The SRS system is implemented as an Internet browser plug-in to provide a seamless and unobtrusive, personalized experience to the users during the information search process. The rationale behind our approach, system design, empirical evaluation, and implications for research on adaptive interfaces are described in this paper.

  18. MollDE: a homology modeling framework you can click with.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2005-06-15

    Molecular Integrated Development Environment (MolIDE) is an integrated application designed to provide homology modeling tools and protocols under a uniform, user-friendly graphical interface. Its main purpose is to combine the most frequent modeling steps in a semi-automatic, interactive way, guiding the user from the target protein sequence to the final three-dimensional protein structure. The typical basic homology modeling process is composed of building sequence profiles of the target sequence family, secondary structure prediction, sequence alignment with PDB structures, assisted alignment editing, side-chain prediction and loop building. All of these steps are available through a graphical user interface. MolIDE's user-friendly and streamlined interactive modeling protocol allows the user to focus on the important modeling questions, hiding from the user the raw data generation and conversion steps. MolIDE was designed from the ground up as an open-source, cross-platform, extensible framework. This allows developers to integrate additional third-party programs to MolIDE. http://dunbrack.fccc.edu/molide/molide.php rl_dunbrack@fccc.edu.

  19. Intelligent agents as a basis for natural language interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, D.N.

    1987-01-01

    Typical natural-language interfaces respond passively to the users's commands and queries. They cannot volunteer information, correction user misconceptions, or reject unethical requests. In order to do these things, a system must be an intelligent agent. UC (UNIX Consultant), a natural language system that helps the user solve problems in using the UNIX operating system, is such an intelligent agent. The agent component of UC in UCEgo. UCEgo provides UC with its own goals and plans. By adopting different goals in different situations, UCEgo creates and executes different plans, enabling it to interact appropriately with the user. UCEgo adopts goals frommore » its themes, adopts subgoals during planning, and adopts metagoals for dealing with goal interactions. It also adopts goals when it notices that the user either lacks necessary knowledge, or has incorrect beliefs. In these cases, UCEgo plans to volunteer information or correct the user's misconception as appropriate. The user's knowledge and beliefs are modeled by the KNOME (KNOwledge Model of Expertise) component of UC. KNOME is a double-stereotype system which categorizes users by expertise and categorizes UNIX facts by difficulty.« less

  20. Culture, Interface Design, and Design Methods for Mobile Devices

    NASA Astrophysics Data System (ADS)

    Lee, Kun-Pyo

    Aesthetic differences and similarities among cultures are obviously one of the very important issues in cultural design. However, ever since products became knowledge-supporting tools, the visible elements of products have become more universal so that the invisible parts of products such as interface and interaction are getting more important. Therefore, the cultural design should be extended to the invisible elements of culture like people's conceptual models beyond material and phenomenal culture. This chapter aims to explain how we address the invisible cultural elements in interface design and design methods by exploring the users' cognitive styles and communication patterns in different cultures. Regarding cultural interface design, we examined users' conceptual models while interacting with mobile phone and website interfaces, and observed cultural difference in performing tasks and viewing patterns, which appeared to agree with cultural cognitive styles known as Holistic thoughts vs. Analytic thoughts. Regarding design methods for culture, we explored how to localize design methods such as focus group interview and generative session for specific cultural groups, and the results of comparative experiments revealed cultural difference on participants' behaviors and performance in each design method and led us to suggest how to conduct them in East Asian culture. Mobile Observation Analyzer and Wi-Pro, user research tools we invented to capture user behaviors and needs especially in their mobile context, were also introduced.

  1. Usability study of clinical exome analysis software: top lessons learned and recommendations.

    PubMed

    Shyr, Casper; Kushniruk, Andre; Wasserman, Wyeth W

    2014-10-01

    New DNA sequencing technologies have revolutionized the search for genetic disruptions. Targeted sequencing of all protein coding regions of the genome, called exome analysis, is actively used in research-oriented genetics clinics, with the transition to exomes as a standard procedure underway. This transition is challenging; identification of potentially causal mutation(s) amongst ∼10(6) variants requires specialized computation in combination with expert assessment. This study analyzes the usability of user interfaces for clinical exome analysis software. There are two study objectives: (1) To ascertain the key features of successful user interfaces for clinical exome analysis software based on the perspective of expert clinical geneticists, (2) To assess user-system interactions in order to reveal strengths and weaknesses of existing software, inform future design, and accelerate the clinical uptake of exome analysis. Surveys, interviews, and cognitive task analysis were performed for the assessment of two next-generation exome sequence analysis software packages. The subjects included ten clinical geneticists who interacted with the software packages using the "think aloud" method. Subjects' interactions with the software were recorded in their clinical office within an urban research and teaching hospital. All major user interface events (from the user interactions with the packages) were time-stamped and annotated with coding categories to identify usability issues in order to characterize desired features and deficiencies in the user experience. We detected 193 usability issues, the majority of which concern interface layout and navigation, and the resolution of reports. Our study highlights gaps in specific software features typical within exome analysis. The clinicians perform best when the flow of the system is structured into well-defined yet customizable layers for incorporation within the clinical workflow. The results highlight opportunities to dramatically accelerate clinician analysis and interpretation of patient genomic data. We present the first application of usability methods to evaluate software interfaces in the context of exome analysis. Our results highlight how the study of user responses can lead to identification of usability issues and challenges and reveal software reengineering opportunities for improving clinical next-generation sequencing analysis. While the evaluation focused on two distinctive software tools, the results are general and should inform active and future software development for genome analysis software. As large-scale genome analysis becomes increasingly common in healthcare, it is critical that efficient and effective software interfaces are provided to accelerate clinical adoption of the technology. Implications for improved design of such applications are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Touchfree medical interfaces.

    PubMed

    Rossol, Nathaniel; Cheng, Irene; Rui Shen; Basu, Anup

    2014-01-01

    Real-time control of visual display systems via mid-air hand gestures offers many advantages over traditional interaction modalities. In medicine, for example, it allows a practitioner to adjust display values, e.g. contrast or zoom, on a medical visualization interface without the need to re-sterilize the interface. However, when users are holding a small tool (such as a pen, surgical needle, or computer stylus) the need to constantly put the tool down in order to make hand gesture interactions is not ideal. This work presents a novel interface that automatically adjusts for gesturing with hands and hand-held tools to precisely control medical displays. The novelty of our interface is that it uses a single set of gestures designed to be equally effective for fingers and hand-held tools without using markers. This type of interface was previously not feasible with low-resolution depth sensors such as Kinect, but is now achieved by using the recently released Leap Motion controller. Our interface is validated through a user study on a group of people given the task of adjusting parameters on a medical image.

  3. Human-scale interaction for virtual model displays: a clear case for real tools

    NASA Astrophysics Data System (ADS)

    Williams, George C.; McDowall, Ian E.; Bolas, Mark T.

    1998-04-01

    We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.

  4. Exploring the requirements for multimodal interaction for mobile devices in an end-to-end journey context.

    PubMed

    Krehl, Claudia; Sharples, Sarah

    2012-01-01

    The paper investigates the requirements for multimodal interaction on mobile devices in an end-to-end journey context. Traditional interfaces are deemed cumbersome and inefficient for exchanging information with the user. Multimodal interaction provides a different user-centred approach allowing for more natural and intuitive interaction between humans and computers. It is especially suitable for mobile interaction as it can overcome additional constraints including small screens, awkward keypads, and continuously changing settings - an inherent property of mobility. This paper is based on end-to-end journeys where users encounter several contexts during their journeys. Interviews and focus groups explore the requirements for multimodal interaction design for mobile devices by examining journey stages and identifying the users' information needs and sources. Findings suggest that multimodal communication is crucial when users multitask. Choosing suitable modalities depend on user context, characteristics and tasks.

  5. The SHIP: A SIP to HTTP Interaction Protocol

    NASA Astrophysics Data System (ADS)

    Zeiß, Joachim; Gabner, Rene; Bessler, Sandford; Happenhofer, Marco

    IMS is capable of providing a wide range of services. As a result, terminal software becomes more and more complex to deliver network intelligence to user applications. Currently mobile terminal software needs to be permanently updated so that the latest network services and functionality can be delivered to the user. In the Internet, browser based user interfaces assure that an interface is made available to the user which offers the latest services in the net immediately. Our approach combines the benefits of the Session Initiation Protocol (SIP) and those of the HTTP protocol to bring the same type of user interfacing to IMS. SIP (IMS) realizes authentication, session management, charging and Quality of Service (QoS), HTTP provides access to Internet services and allows the user interface of an application to run on a mobile terminal while processing and orchestration is done on the server. A SHIP enabled IMS client only needs to handle data transport and session management via SIP, HTTP and RTP and render streaming media, HTML and Javascript. SHIP allows new kinds of applications, which combine audio, video and data within a single multimedia session.

  6. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  7. A study of the influence of task familiarity on user behaviors and performance with a MeSH term suggestion interface for PubMed bibliographic search.

    PubMed

    Tang, Muh-Chyun; Liu, Ying-Hsang; Wu, Wan-Ching

    2013-09-01

    Previous research has shown that information seekers in biomedical domain need more support in formulating their queries. A user study was conducted to evaluate the effectiveness of a metadata based query suggestion interface for PubMed bibliographic search. The study also investigated the impact of search task familiarity on search behaviors and the effectiveness of the interface. A real user, user search request and real system approach was used for the study. Unlike tradition IR evaluation, where assigned tasks were used, the participants were asked to search requests of their own. Forty-four researchers in Health Sciences participated in the evaluation - each conducted two research requests of their own, alternately with the proposed interface and the PubMed baseline. Several performance criteria were measured to assess the potential benefits of the experimental interface, including users' assessment of their original and eventual queries, the perceived usefulness of the interfaces, satisfaction with the search results, and the average relevance score of the saved records. The results show that, when searching for an unfamiliar topic, users were more likely to change their queries, indicating the effect of familiarity on search behaviors. The results also show that the interface scored higher on several of the performance criteria, such as the "goodness" of the queries, perceived usefulness, and user satisfaction. Furthermore, in line with our hypothesis, the proposed interface was relatively more effective when less familiar search requests were attempted. Results indicate that there is a selective compatibility between search familiarity and search interface. One implication of the research for system evaluation is the importance of taking into consideration task familiarity when assessing the effectiveness of interactive IR systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Customizable scientific web-portal for DIII-D nuclear fusion experiment

    NASA Astrophysics Data System (ADS)

    Abla, G.; Kim, E. N.; Schissel, D. P.

    2010-04-01

    Increasing utilization of the Internet and convenient web technologies has made the web-portal a major application interface for remote participation and control of scientific instruments. While web-portals have provided a centralized gateway for multiple computational services, the amount of visual output often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments. Since each scientist may have different priorities and areas of interest in the experiment, filtering and organizing information based on the individual user's need can increase the usability and efficiency of a web-portal. DIII-D is the largest magnetic nuclear fusion device in the US. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It offers a customizable interface with personalized page layouts and list of services for users to select. Each individual user can create a unique working environment to fit his own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data analysis and visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, and online instant announcement services. The DIII-D web-portal development utilizes multi-tier software architecture, and Web 2.0 technologies and tools, such as AJAX and Django, to develop a highly-interactive and customizable user interface.

  9. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.

    PubMed

    Grapov, Dmitry; Newman, John W

    2012-09-01

    Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).

  10. Integrating computer programs for engineering analysis and design

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  11. A user-system interface agent

    NASA Technical Reports Server (NTRS)

    Wakim, Nagi T.; Srivastava, Sadanand; Bousaidi, Mehdi; Goh, Gin-Hua

    1995-01-01

    Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents.

  12. Workshop AccessibleTV "Accessible User Interfaces for Future TV Applications"

    NASA Astrophysics Data System (ADS)

    Hahn, Volker; Hamisu, Pascal; Jung, Christopher; Heinrich, Gregor; Duarte, Carlos; Langdon, Pat

    Approximately half of the elderly people over 55 suffer from some type of typically mild visual, auditory, motor or cognitive impairment. For them interaction, especially with PCs and other complex devices is sometimes challenging, although accessible ICT applications could make much of a difference for their living quality. Basically they have the potential to enable or simplify participation and inclusion in their surrounding private and professional communities. However, the availability of accessible user interfaces being capable to adapt to the specific needs and requirements of users with individual impairments is very limited. Although there are a number of APIs [1, 2, 3, 4] available for various platforms that allow developers to provide accessibility features within their applications, today none of them provides features for the automatic adaptation of multimodal interfaces being capable to automatically fit the individual requirements of users with different kinds of impairments. Moreover, the provision of accessible user interfaces is still expensive and risky for application developers, as they need special experience and effort for user tests. Today many implementations simply neglect the needs of elderly people, thus locking out a large portion of their potential users. The workshop is organized as part of the dissemination activity for the European-funded project GUIDE "Gentle user interfaces for elderly people", which aims to address this situation with a comprehensive approach for the realization of multimodal user interfaces being capable to adapt to the needs of users with different kinds of mild impairments. As application platform, GUIDE will mainly target TVs and Set-Top Boxes, such as the emerging Connected-TV or WebTV platforms, as they have the potential to address the needs of the elderly users with applications such as for home automation, communication or continuing education.

  13. Creating Interactive User Feedback in DGS Using Scripting Interfaces

    ERIC Educational Resources Information Center

    Fest, Andreas

    2010-01-01

    Feedback is an important component of interactive learning software. A conclusion from cognitive learning theory is that good software must give the learner more information about what he did. Following the ideas of constructivist learning theory the user should be in control of both the time and the level of feedback he receives. At the same time…

  14. Social Circles: A 3D User Interface for Facebook

    NASA Astrophysics Data System (ADS)

    Rodrigues, Diego; Oakley, Ian

    Online social network services are increasingly popular web applications which display large amounts of rich multimedia content: contacts, status updates, photos and event information. Arguing that this quantity of information overwhelms conventional user interfaces, this paper presents Social Circles, a rich interactive visualization designed to support real world users of social network services in everyday tasks such as keeping up with friends and organizing their network. It achieves this by using 3D UIs, fluid animations and a spatial metaphor to enable direct manipulation of a social network.

  15. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    USGS Publications Warehouse

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  16. Device- and system-independent personal touchless user interface for operating rooms : One personal UI to control all displays in an operating room.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Habert, Séverine; Weidert, Simon; Navab, Nassir

    2016-06-01

    In the modern day operating room, the surgeon performs surgeries with the support of different medical systems that showcase patient information, physiological data, and medical images. It is generally accepted that numerous interactions must be performed by the surgical team to control the corresponding medical system to retrieve the desired information. Joysticks and physical keys are still present in the operating room due to the disadvantages of mouses, and surgeons often communicate instructions to the surgical team when requiring information from a specific medical system. In this paper, a novel user interface is developed that allows the surgeon to personally perform touchless interaction with the various medical systems, switch effortlessly among them, all of this without modifying the systems' software and hardware. To achieve this, a wearable RGB-D sensor is mounted on the surgeon's head for inside-out tracking of his/her finger with any of the medical systems' displays. Android devices with a special application are connected to the computers on which the medical systems are running, simulating a normal USB mouse and keyboard. When the surgeon performs interaction using pointing gestures, the desired cursor position in the targeted medical system display, and gestures, are transformed into general events and then sent to the corresponding Android device. Finally, the application running on the Android devices generates the corresponding mouse or keyboard events according to the targeted medical system. To simulate an operating room setting, our unique user interface was tested by seven medical participants who performed several interactions with the visualization of CT, MRI, and fluoroscopy images at varying distances from them. Results from the system usability scale and NASA-TLX workload index indicated a strong acceptance of our proposed user interface.

  17. Eye-movements and Voice as Interface Modalities to Computer Systems

    NASA Astrophysics Data System (ADS)

    Farid, Mohsen M.; Murtagh, Fionn D.

    2003-03-01

    We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.

  18. Lung Segmentation Refinement based on Optimal Surface Finding Utilizing a Hybrid Desktop/Virtual Reality User Interface

    PubMed Central

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. PMID:23415254

  19. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  20. Human computer interface guide, revision A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Human Computer Interface Guide, SSP 30540, is a reference document for the information systems within the Space Station Freedom Program (SSFP). The Human Computer Interface Guide (HCIG) provides guidelines for the design of computer software that affects human performance, specifically, the human-computer interface. This document contains an introduction and subparagraphs on SSFP computer systems, users, and tasks; guidelines for interactions between users and the SSFP computer systems; human factors evaluation and testing of the user interface system; and example specifications. The contents of this document are intended to be consistent with the tasks and products to be prepared by NASA Work Package Centers and SSFP participants as defined in SSP 30000, Space Station Program Definition and Requirements Document. The Human Computer Interface Guide shall be implemented on all new SSFP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the deputy director.

  1. Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioral intention.

    PubMed

    Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Chen, Yan-Jiun; Chang, Yung-Sheng

    2017-01-01

    The use of the Internet and social applications has many benefits for the elderly, but numerous investigations have shown that the elderly do not perceive online social networks as a friendly social environment. Therefore, TreeIt, a social application specifically designed for the elderly, was developed for this study. In the TreeIt application, seven mechanisms promoting social interaction were designed to allow older adults to use social networking sites (SNSs) to increase social connection, maintain the intensity of social connections and strengthen social experience. This study's main objective was to investigate how user interface design affects older people's intention and attitude related to using SNSs. Fourteen user interface evaluation heuristics proposed by Zhang et al. were adopted as the criteria to assess user interface usability and further grouped into three categories: system support, user interface design and navigation. The technology acceptance model was adopted to assess older people's intention and attitude related to using SNSs. One hundred and one elderly persons were enrolled in this study as subjects, and the results showed that all of the hypotheses proposed in this study were valid: system support and perceived usefulness had a significant effect on behavioral intention; user interface design and perceived ease of use were positively correlated with perceived usefulness; and navigation exerted an influence on perceived ease of use. The results of this study are valuable for the future development of social applications for the elderly.

  2. Designers' models of the human-computer interface

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Breedin, Sarah D.

    1993-01-01

    Understanding design models of the human-computer interface (HCI) may produce two types of benefits. First, interface development often requires input from two different types of experts: human factors specialists and software developers. Given the differences in their backgrounds and roles, human factors specialists and software developers may have different cognitive models of the HCI. Yet, they have to communicate about the interface as part of the design process. If they have different models, their interactions are likely to involve a certain amount of miscommunication. Second, the design process in general is likely to be guided by designers' cognitive models of the HCI, as well as by their knowledge of the user, tasks, and system. Designers do not start with a blank slate; rather they begin with a general model of the object they are designing. The author's approach to a design model of the HCI was to have three groups make judgments of categorical similarity about the components of an interface: human factors specialists with HCI design experience, software developers with HCI design experience, and a baseline group of computer users with no experience in HCI design. The components of the user interface included both display components such as windows, text, and graphics, and user interaction concepts, such as command language, editing, and help. The judgments of the three groups were analyzed using hierarchical cluster analysis and Pathfinder. These methods indicated, respectively, how the groups categorized the concepts, and network representations of the concepts for each group. The Pathfinder analysis provides greater information about local, pairwise relations among concepts, whereas the cluster analysis shows global, categorical relations to a greater extent.

  3. CLIPS: A proposal for improved usability

    NASA Technical Reports Server (NTRS)

    Patton, Charles R.

    1990-01-01

    This paper proposes the enhancement of the CLIPS user interface to improve the over-all usability of the CLIPS development environment. It suggests some directions for the long term growth of the user interface, and discusses some specific strengths and weaknesses of the current CLIPS PC user interface. Every user of CLIPS shares a common experience: his/her first interaction with the system itself. As with any new language, between the process of installing CLIPS on the appropriate computer and the completion of a large application, an intensive learning process takes place. For those with extensive programming knowledge and LISP backgrounds, this experience may have been mostly interesting and pleasant. Being familiar with products that are similar to CLIPS in many ways, these users enjoy a relatively short training period with the product. Already familiar with many of the functions they wish to employ, experienced users are free to focus on the capabilities of CLIPS that make it uniquely useful within their working environment.

  4. Implementation of Interaction Algorithm to Non-Matching Discrete Interfaces Between Structure and Fluid Mesh

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Po

    1999-01-01

    This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.

  5. Presentation planning using an integrated knowledge base

    NASA Technical Reports Server (NTRS)

    Arens, Yigal; Miller, Lawrence; Sondheimer, Norman

    1988-01-01

    A description is given of user interface research aimed at bringing together multiple input and output modes in a way that handles mixed mode input (commands, menus, forms, natural language), interacts with a diverse collection of underlying software utilities in a uniform way, and presents the results through a combination of output modes including natural language text, maps, charts and graphs. The system, Integrated Interfaces, derives much of its ability to interact uniformly with the user and the underlying services and to build its presentations, from the information present in a central knowledge base. This knowledge base integrates models of the application domain (Navy ships in the Pacific region, in the current demonstration version); the structure of visual displays and their graphical features; the underlying services (data bases and expert systems); and interface functions. The emphasis is on a presentation planner that uses the knowledge base to produce multi-modal output. There has been a flurry of recent work in user interface management systems. (Several recent examples are listed in the references). Existing work is characterized by an attempt to relieve the software designer of the burden of handcrafting an interface for each application. The work has generally focused on intelligently handling input. This paper deals with the other end of the pipeline - presentations.

  6. An interactive in-game approach to user adjustment of stereoscopic 3D settings

    NASA Astrophysics Data System (ADS)

    Tawadrous, Mina; Hogue, Andrew; Kapralos, Bill; Collins, Karen

    2013-03-01

    Given the popularity of 3D film, content developers have been creating customizable stereoscopic 3D experiences for the user to enjoy at home. Stereoscopic 3D game developers often offer a `white box' approach whereby far too many controls and settings are exposed to the average consumer who may have little knowledge or interest to correctly adjust these settings. Improper settings can lead to users being uncomfortable or unimpressed with their own user-defined stereoscopic 3D experience. We have begun investigating interactive approaches to in-game adjustment of the various stereoscopic 3D parameters to reduce the reliance on the user doing so and thefore creating a more pleasurable stereoscopic 3D experience. In this paper, we describe a preliminary technique for interactively calibrating the various stereoscopic 3D parameters and we compare this interface with the typical slider-based control interface game developers utilize in commercial S3D games. Inspired by standard testing methodologies experienced at an optometrist, we've created a split-screen game with the same stereoscopic 3D game running in both screens, but with different interaxial distances. We expect that the interactive nature of the calibration will impact the final game experience providing us with an indication of whether in-game, interactive, S3D parameter calibration is a mechanism that game developers should adopt.

  7. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    PubMed

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  8. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    PubMed Central

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  9. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  10. Interface Design and Human Factors Considerations for Model-Based Tight Glycemic Control in Critical Care

    PubMed Central

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330

  11. P1198: software for tracing decision behavior in lending to small businesses.

    PubMed

    Andersson, P

    2001-05-01

    This paper describes a process-tracing software program specially designed to capture decision behavior in lending to small businesses. The source code was written in Lotus Notes. The software runs in a Web browser and consists of two interacting systems: a database and a user interface. The database includes three realistic loan applications. The user interface consists of different but interacting screens that enable the participant to operate the software. Log files register the decision behavior of the participant. An empirical example is presented in order to show the software's potential in providing insights into judgment and decision making. The implications of the software are discussed.

  12. Nuclear data made easily accessible through the Notre Dame Nuclear Database

    NASA Astrophysics Data System (ADS)

    Khouw, Timothy; Lee, Kevin; Fasano, Patrick; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    In 1994, the NNDC revolutionized nuclear research by providing a colorful, clickable, searchable database over the internet. Over the last twenty years, web technology has evolved dramatically. Our project, the Notre Dame Nuclear Database, aims to provide a more comprehensive and broadly searchable interactive body of data. The database can be searched by an array of filters which includes metadata such as the facility where a measurement is made, the author(s), or date of publication for the datum of interest. The user interface takes full advantage of HTML, a web markup language, CSS (cascading style sheets to define the aesthetics of the website), and JavaScript, a language that can process complex data. A command-line interface is supported that interacts with the database directly on a user's local machine which provides single command access to data. This is possible through the use of a standardized API (application programming interface) that relies upon well-defined filtering variables to produce customized search results. We offer an innovative chart of nuclides utilizing scalable vector graphics (SVG) to deliver users an unsurpassed level of interactivity supported on all computers and mobile devices. We will present a functional demo of our database at the conference.

  13. Visual exploration and analysis of human-robot interaction rules

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming interfaces, information visualization, and visual data mining methods to facilitate designing, comprehending, and evaluating HRI interfaces.

  14. bioWidgets: data interaction components for genomics.

    PubMed

    Fischer, S; Crabtree, J; Brunk, B; Gibson, M; Overton, G C

    1999-10-01

    The presentation of genomics data in a perspicuous visual format is critical for its rapid interpretation and validation. Relatively few public database developers have the resources to implement sophisticated front-end user interfaces themselves. Accordingly, these developers would benefit from a reusable toolkit of user interface and data visualization components. We have designed the bioWidget toolkit as a set of JavaBean components. It includes a wide array of user interface components and defines an architecture for assembling applications. The toolkit is founded on established software engineering design patterns and principles, including componentry, Model-View-Controller, factored models and schema neutrality. As a proof of concept, we have used the bioWidget toolkit to create three extendible applications: AnnotView, BlastView and AlignView.

  15. A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.

    PubMed

    Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L

    2003-01-01

    Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.

  16. Formal verification of human-automation interaction

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Heymann, Michael

    2002-01-01

    This paper discusses a formal and rigorous approach to the analysis of operator interaction with machines. It addresses the acute problem of detecting design errors in human-machine interaction and focuses on verifying the correctness of the interaction in complex and automated control systems. The paper describes a systematic methodology for evaluating whether the interface provides the necessary information about the machine to enable the operator to perform a specified task successfully and unambiguously. It also addresses the adequacy of information provided to the user via training material (e.g., user manual) about the machine's behavior. The essentials of the methodology, which can be automated and applied to the verification of large systems, are illustrated by several examples and through a case study of pilot interaction with an autopilot aboard a modern commercial aircraft. The expected application of this methodology is an augmentation and enhancement, by formal verification, of human-automation interfaces.

  17. Scientific customer needs - NASA user

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    Some requirements for scientific users of the Space Station are considered. The use of testbeds to evaluate design concepts for information systems, and for interfacing between designers and builders of systems is examined. The need for an information system that provides an effective interaction between ground-based users and their space-based equipment is discussed.

  18. Participatory interaction design in user requirements specification in healthcare.

    PubMed

    Martikainen, Susanna; Ikävalko, Pauliina; Korpela, Mikko

    2010-01-01

    Healthcare information systems are accused of poor usability even in the popular media in Finland. Doctors especially have been very critical and actively expressed their opinions in public. User involvement and user-centered design methods are seen as the key solution to usability problems. In this paper we describe a research case where participatory methods were experimented within healthcare information systems development in medicinal care in a hospital. The study was part of a larger research project on Activity-driven Information Systems Development in healthcare. The study started by finding out about and modeling the present state of medicinal care in the hospital. After that it was important to define and model the goal state. The goal state, facilitated by the would-be software package, was modeled with the help of user interface drawings as one way of prototyping. Traditional usability methods were extended during the study. According to the health professionals' feedback, the use of participatory and user-centered interaction design methods, particularly user interface drawings enabled them to describe their requirements and create common understanding with the system developers.

  19. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors.

    PubMed

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-07-09

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user's hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces.

  20. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.

    PubMed

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.

  1. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems

    NASA Astrophysics Data System (ADS)

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.

  2. A standard format and a graphical user interface for spin system specification.

    PubMed

    Biternas, A G; Charnock, G T P; Kuprov, Ilya

    2014-03-01

    We introduce a simple and general XML format for spin system description that is the result of extensive consultations within Magnetic Resonance community and unifies under one roof all major existing spin interaction specification conventions. The format is human-readable, easy to edit and easy to parse using standard XML libraries. We also describe a graphical user interface that was designed to facilitate construction and visualization of complicated spin systems. The interface is capable of generating input files for several popular spin dynamics simulation packages. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Flexible Parsing.

    DTIC Science & Technology

    1986-06-30

    Machine Studies .. 14. Minton, S. N., Hayes, P. J., and Fain, J. E. Controlling Search in Flexible Parsing. Proc. Ninth Int. Jt. Conf. on Artificial...interaction through the COUSIN command interface", International Journal of Man- Machine Studies , Vol. 19, No. 3, September 1983, pp. 285-305. 8...in a gracefully interacting user interface," "Dynamic strategy selection in flexible parsing," and "Parsing spoken language: a semantic case frame

  4. Machine learning techniques for energy optimization in mobile embedded systems

    NASA Astrophysics Data System (ADS)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  5. Lost in Interaction in IMS Learning Design Runtime Environments

    ERIC Educational Resources Information Center

    Derntl, Michael; Neumann, Susanne; Oberhuemer, Petra

    2014-01-01

    Educators are exploiting the advantages of advanced web-based collaboration technologies and massive online interactions. Interactions between learners and human or nonhuman resources therefore play an increasingly important pedagogical role, and the way these interactions are expressed in the user interface of virtual learning environments is…

  6. On the Suitability of Tcl/Tk for SYS

    DTIC Science & Technology

    2003-02-01

    database design, or user interface. CMU/SEI-2003-TN-001 7 4.4 Legacy Systems SYS is not now complete. The system it replaced interfaced with a dozen...a database maintained by a parent organization. Before SYS was released, many of its current users interacted directly with JSYS, so that system...rating. Rather than shades of blue, the full rainbow is exploited. Rather than window proliferation, the usual result of an action is to replace the

  7. Usable Interface Design for Everyone

    NASA Astrophysics Data System (ADS)

    de Castro Lozano, Carlos; Salcines, Enrique García; Sainz de Abajo, Beatriz; Burón Fernández, F. Javier; Ramírez, José Miguel; Recellado, José Gabriel Zato; Montoya, Rafael Sanchez; Bell, John; Marin, Francisco Alcantud

    When designing "interfaces for everyone" for interactive systems, it is important to consider factors such as cost, the intended market, the state of the environment, etc. User interfaces are fundamental for the developmental process in any application, and its design must be contemplated from the start. Of the distinct parts of a system (hardware and software), it is the interface that permits the user access to computer resources. The seven principles of "Universal Design" or "Design for Everyone" focus on a universal usable design, but at the same time acknowledge the influences of internal and external factors. Structural changes in social and health services could provide an increase in the well-being of a country's citizens through the use of self-care programming and proactive management/prevention of disease. Automated home platforms can act as an accessibility instrument which permits users to avoid, compensate, mitigate, or neutralize the deficiencies and dependencies caused by living alone.

  8. On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface.

    PubMed

    Lopes, Daniel Simões; Parreira, Pedro Duarte de Figueiredo; Paulo, Soraia Figueiredo; Nunes, Vitor; Rego, Paulo Amaral; Neves, Manuel Cassiano; Rodrigues, Pedro Silva; Jorge, Joaquim Armando

    2017-08-01

    Analyzing medical volume datasets requires interactive visualization so that users can extract anatomo-physiological information in real-time. Conventional volume rendering systems rely on 2D input devices, such as mice and keyboards, which are known to hamper 3D analysis as users often struggle to obtain the desired orientation that is only achieved after several attempts. In this paper, we address which 3D analysis tools are better performed with 3D hand cursors operating on a touchless interface comparatively to a 2D input devices running on a conventional WIMP interface. The main goals of this paper are to explore the capabilities of (simple) hand gestures to facilitate sterile manipulation of 3D medical data on a touchless interface, without resorting on wearables, and to evaluate the surgical feasibility of the proposed interface next to senior surgeons (N=5) and interns (N=2). To this end, we developed a touchless interface controlled via hand gestures and body postures to rapidly rotate and position medical volume images in three-dimensions, where each hand acts as an interactive 3D cursor. User studies were conducted with laypeople, while informal evaluation sessions were carried with senior surgeons, radiologists and professional biomedical engineers. Results demonstrate its usability as the proposed touchless interface improves spatial awareness and a more fluent interaction with the 3D volume than with traditional 2D input devices, as it requires lesser number of attempts to achieve the desired orientation by avoiding the composition of several cumulative rotations, which is typically necessary in WIMP interfaces. However, tasks requiring precision such as clipping plane visualization and tagging are best performed with mouse-based systems due to noise, incorrect gestures detection and problems in skeleton tracking that need to be addressed before tests in real medical environments might be performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioral intention

    PubMed Central

    Chang, Hsien-Tsung; Chen, Yan-Jiun; Chang, Yung-Sheng

    2017-01-01

    The use of the Internet and social applications has many benefits for the elderly, but numerous investigations have shown that the elderly do not perceive online social networks as a friendly social environment. Therefore, TreeIt, a social application specifically designed for the elderly, was developed for this study. In the TreeIt application, seven mechanisms promoting social interaction were designed to allow older adults to use social networking sites (SNSs) to increase social connection, maintain the intensity of social connections and strengthen social experience. This study’s main objective was to investigate how user interface design affects older people’s intention and attitude related to using SNSs. Fourteen user interface evaluation heuristics proposed by Zhang et al. were adopted as the criteria to assess user interface usability and further grouped into three categories: system support, user interface design and navigation. The technology acceptance model was adopted to assess older people’s intention and attitude related to using SNSs. One hundred and one elderly persons were enrolled in this study as subjects, and the results showed that all of the hypotheses proposed in this study were valid: system support and perceived usefulness had a significant effect on behavioral intention; user interface design and perceived ease of use were positively correlated with perceived usefulness; and navigation exerted an influence on perceived ease of use. The results of this study are valuable for the future development of social applications for the elderly. PMID:28837566

  10. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  11. A Robust Camera-Based Interface for Mobile Entertainment

    PubMed Central

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user’s head by processing the frames provided by the mobile device’s front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device’s orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user’s perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  12. MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations.

    PubMed

    Goret, G; Aoun, B; Pellegrini, E

    2017-01-23

    The MDANSE software-Molecular Dynamics Analysis of Neutron Scattering Experiments-is presented. It is an interactive application for postprocessing molecular dynamics (MD) simulations. Given the widespread use of MD simulations in material and biomolecular sciences to get a better insight for experimental techniques such as thermal neutron scattering (TNS), the development of MDANSE has focused on providing a user-friendly, interactive, graphical user interface for analyzing many trajectories in the same session and running several analyses simultaneously independently of the interface. This first version of MDANSE already proposes a broad range of analyses, and the application has been designed to facilitate the introduction of new analyses in the framework. All this makes MDANSE a valuable tool for extracting useful information from trajectories resulting from a wide range of MD codes.

  13. The use of Graphic User Interface for development of a user-friendly CRS-Stack software

    NASA Astrophysics Data System (ADS)

    Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah

    2017-04-01

    The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the parameter values for each operation. The knowledge of CRS-Stack processing procedure is still preserved in the software, which is easy and efficient to be learned. The software will still be developed in the future. Any new innovative seismic processing workflow will also be added into this GUI software.

  14. Development and Design of a User Interface for a Computer Automated Heating, Ventilation, and Air Conditioning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.; /Fermilab

    1999-10-08

    A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics.more » Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface. Background material pertinent to the BYAC system will cover the separate water and air subsystems and their purposes. In addition programming and system automation will also be covered.« less

  15. Ubiquitous computing to support co-located clinical teams: using the semiotics of physical objects in system design.

    PubMed

    Bang, Magnus; Timpka, Toomas

    2007-06-01

    Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.

  16. Circling motion and screen edges as an alternative input method for on-screen target manipulation.

    PubMed

    Ka, Hyun W; Simpson, Richard C

    2017-04-01

    To investigate a new alternative interaction method, called circling interface, for manipulating on-screen objects. To specify a target, the user makes a circling motion around the target. To specify a desired pointing command with the circling interface, each edge of the screen is used. The user selects a command before circling the target. To evaluate the circling interface, we conducted an experiment with 16 participants, comparing the performance on pointing tasks with different combinations of selection method (circling interface, physical mouse and dwelling interface) and input device (normal computer mouse, head pointer and joystick mouse emulator). A circling interface is compatible with many types of pointing devices, not requiring physical activation of mouse buttons, and is more efficient than dwell-clicking. Across all common pointing operations, the circling interface had a tendency to produce faster performance with a head-mounted mouse emulator than with a joystick mouse. The performance accuracy of the circling interface outperformed the dwelling interface. It was demonstrated that the circling interface has the potential as another alternative pointing method for selecting and manipulating objects in a graphical user interface. Implications for Rehabilitation A circling interface will improve clinical practice by providing an alternative pointing method that does not require physically activating mouse buttons and is more efficient than dwell-clicking. The Circling interface can also work with AAC devices.

  17. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Towards Better Human Robot Interaction: Understand Human Computer Interaction in Social Gaming Using a Video-Enhanced Diary Method

    NASA Astrophysics Data System (ADS)

    See, Swee Lan; Tan, Mitchell; Looi, Qin En

    This paper presents findings from a descriptive research on social gaming. A video-enhanced diary method was used to understand the user experience in social gaming. From this experiment, we found that natural human behavior and gamer’s decision making process can be elicited and speculated during human computer interaction. These are new information that we should consider as they can help us build better human computer interfaces and human robotic interfaces in future.

  19. TreePlus: interactive exploration of networks with enhanced tree layouts.

    PubMed

    Lee, Bongshin; Parr, Cynthia S; Plaisant, Catherine; Bederson, Benjamin B; Veksler, Vladislav D; Gray, Wayne D; Kotfila, Christopher

    2006-01-01

    Despite extensive research, it is still difficult to produce effective interactive layouts for large graphs. Dense layout and occlusion make food webs, ontologies, and social networks difficult to understand and interact with. We propose a new interactive Visual Analytics component called TreePlus that is based on a tree-style layout. TreePlus reveals the missing graph structure with visualization and interaction while maintaining good readability. To support exploration of the local structure of the graph and gathering of information from the extensive reading of labels, we use a guiding metaphor of "Plant a seed and watch it grow." It allows users to start with a node and expand the graph as needed, which complements the classic overview techniques that can be effective at (but often limited to) revealing clusters. We describe our design goals, describe the interface, and report on a controlled user study with 28 participants comparing TreePlus with a traditional graph interface for six tasks. In general, the advantage of TreePlus over the traditional interface increased as the density of the displayed data increased. Participants also reported higher levels of confidence in their answers with TreePlus and most of them preferred TreePlus.

  20. Reducing Wrong Patient Selection Errors: Exploring the Design Space of User Interface Techniques

    PubMed Central

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients’ identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed. PMID:25954415

  1. Reducing wrong patient selection errors: exploring the design space of user interface techniques.

    PubMed

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients' identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed.

  2. Concentration on performance with P300-based BCI systems: a matter of interface features.

    PubMed

    da Silva-Sauer, Leandro; Valero-Aguayo, Luis; de la Torre-Luque, Alejandro; Ron-Angevin, Ricardo; Varona-Moya, Sergio

    2016-01-01

    People who suffer from severe motor disabilities have difficulties to communicate with others or to interact with their environment using natural, i.e., muscular channels. These limitations can be overcome to some extent by using brain-computer interfaces (BCIs), because such systems allow users to communicate on the basis of their brain activity only. Among the several types of BCIs for spelling purposes, those that rely on the P300 event related potential-P300-based spellers-are chosen preferentially due to their high reliability. However, they demand from the user to sustain his/her attention to the desired character over a relatively long period of time. Therefore, the user's capacity to concentrate can affect his/her performance with a P300-based speller. The aim of this study was to test this hypothesis using three different interfaces: one based on the classic P300 speller paradigm, another also based on that speller but including a word predictor, and a third one that was based on the T9 interface developed for mobile phones. User performance was assessed by measuring the time to complete a spelling task and the accuracy of character selection. The d2 test was applied to assess attention and concentration. Sample (N = 14) was divided into two groups basing on of concentration scores. As a result, performance was better with the predictor-enriched interfaces: less time was needed to solve the task and participants made fewer errors (p < .05). There were also significant effects of concentration (p < .05) on performance with the standard P300 speller. In conclusion, the performance of those users with lower concentration level can be improved by providing BCIs with more interactive interfaces. These findings provide substantial evidence in order to highlight the impact of psychological features on BCI performance and should be taken into account for future assistive technology systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. PRince: a web server for structural and physicochemical analysis of protein-RNA interface.

    PubMed

    Barik, Amita; Mishra, Abhishek; Bahadur, Ranjit Prasad

    2012-07-01

    We have developed a web server, PRince, which analyzes the structural features and physicochemical properties of the protein-RNA interface. Users need to submit a PDB file containing the atomic coordinates of both the protein and the RNA molecules in complex form (in '.pdb' format). They should also mention the chain identifiers of interacting protein and RNA molecules. The size of the protein-RNA interface is estimated by measuring the solvent accessible surface area buried in contact. For a given protein-RNA complex, PRince calculates structural, physicochemical and hydration properties of the interacting surfaces. All these parameters generated by the server are presented in a tabular format. The interacting surfaces can also be visualized with software plug-in like Jmol. In addition, the output files containing the list of the atomic coordinates of the interacting protein, RNA and interface water molecules can be downloaded. The parameters generated by PRince are novel, and users can correlate them with the experimentally determined biophysical and biochemical parameters for better understanding the specificity of the protein-RNA recognition process. This server will be continuously upgraded to include more parameters. PRince is publicly accessible and free for use. Available at http://www.facweb.iitkgp.ernet.in/~rbahadur/prince/home.html.

  4. StarView: The object oriented design of the ST DADS user interface

    NASA Technical Reports Server (NTRS)

    Williams, J. D.; Pollizzi, J. A.

    1992-01-01

    StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.

  5. Virtual interface environment workstations

    NASA Technical Reports Server (NTRS)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  6. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  7. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  8. Knowledge representation and user interface concepts to support mixed-initiative diagnosis

    NASA Technical Reports Server (NTRS)

    Sobelman, Beverly H.; Holtzblatt, Lester J.

    1989-01-01

    The Remote Maintenance Monitoring System (RMMS) provides automated support for the maintenance and repair of ModComp computer systems used in the Launch Processing System (LPS) at Kennedy Space Center. RMMS supports manual and automated diagnosis of intermittent hardware failures, providing an efficient means for accessing and analyzing the data generated by catastrophic failure recovery procedures. This paper describes the design and functionality of the user interface for interactive analysis of memory dump data, relating it to the underlying declarative representation of memory dumps.

  9. The Design and Implementation of a Semi-Autonomous Surf-Zone Robot Using Advanced Sensors and a Common Robot Operating System

    DTIC Science & Technology

    2011-06-01

    effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the

  10. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS’ EXPERIENCES

    PubMed Central

    Opoku-Boateng, Gloria A.

    2015-01-01

    User frustration research has been one way of looking into clinicians’ experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians’ frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take. PMID:26958238

  11. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS' EXPERIENCES.

    PubMed

    Opoku-Boateng, Gloria A

    2015-01-01

    User frustration research has been one way of looking into clinicians' experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians' frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take.

  12. Make Movies out of Your Dynamical Simulations with OGRE!

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.

    2013-10-01

    We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.

  13. Make Movies out of Your Dynamical Simulations with OGRE!

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.

    2014-01-01

    We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.

  14. IGGy: An interactive environment for surface grid generation

    NASA Technical Reports Server (NTRS)

    Prewitt, Nathan C.

    1992-01-01

    A graphically interactive derivative of the EAGLE boundary code is presented. This code allows the user to interactively build and execute commands and immediately see the results. Strong ties with a batch oriented script language are maintained. A generalized treatment of grid definition parameters allows a more generic definition of the grid generation process and allows the generation of command scripts which can be applied to topologically similar configurations. The use of the graphical user interface is outlined and example applications are presented.

  15. User engineering: A new look at system engineering

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Larry L.

    1987-01-01

    User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

  16. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    NASA Astrophysics Data System (ADS)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  17. The Application of Current User Interface Technology to Interactive Wargaming Systems.

    DTIC Science & Technology

    1987-09-01

    components is essential to the Macintosh interface. Apple states that "Consistent visual communication is very powerful in delivering complex messages...interface. A visual interface uses visual objects as the basis of communication. "A visual communication object is some combination S. of text and...graphics used for communication under a system of inter- pretation, or visual language." The benefit of visual communication is V 45 "When humans are faced

  18. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  19. Designing a spoken dialogue interface to an intelligent cognitive assistant for people with dementia.

    PubMed

    Wolters, Maria Klara; Kelly, Fiona; Kilgour, Jonathan

    2016-12-01

    Intelligent cognitive assistants support people who need help performing everyday tasks by detecting when problems occur and providing tailored and context-sensitive assistance. Spoken dialogue interfaces allow users to interact with intelligent cognitive assistants while focusing on the task at hand. In order to establish requirements for voice interfaces to intelligent cognitive assistants, we conducted three focus groups with people with dementia, carers, and older people without a diagnosis of dementia. Analysis of the focus group data showed that voice and interaction style should be chosen based on the preferences of the user, not those of the carer. For people with dementia, the intelligent cognitive assistant should act like a patient, encouraging guide, while for older people without dementia, assistance should be to the point and not patronising. The intelligent cognitive assistant should be able to adapt to cognitive decline. © The Author(s) 2015.

  20. Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface.

    PubMed

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Multimodal user interfaces to improve social integration of elderly and mobility impaired.

    PubMed

    Dias, Miguel Sales; Pires, Carlos Galinho; Pinto, Fernando Miguel; Teixeira, Vítor Duarte; Freitas, João

    2012-01-01

    Technologies for Human-Computer Interaction (HCI) and Communication have evolved tremendously over the past decades. However, citizens such as mobility impaired or elderly or others, still face many difficulties interacting with communication services, either due to HCI issues or intrinsic design problems with the services. In this paper we start by presenting the results of two user studies, the first one conducted with a group of mobility impaired users, comprising paraplegic and quadriplegic individuals; and the second one with elderly. The study participants carried out a set of tasks with a multimodal (speech, touch, gesture, keyboard and mouse) and multi-platform (mobile, desktop) system, offering an integrated access to communication and entertainment services, such as email, agenda, conferencing, instant messaging and social media, referred to as LHC - Living Home Center. The system was designed to take into account the requirements captured from these users, with the objective of evaluating if the adoption of multimodal interfaces for audio-visual communication and social media services, could improve the interaction with such services. Our study revealed that a multimodal prototype system, offering natural interaction modalities, especially supporting speech and touch, can in fact improve access to the presented services, contributing to the reduction of social isolation of mobility impaired, as well as elderly, and improving their digital inclusion.

  2. Remote Data Exploration with the Interactive Data Language (IDL)

    NASA Technical Reports Server (NTRS)

    Galloy, Michael

    2013-01-01

    A difficulty for many NASA researchers is that often the data to analyze is located remotely from the scientist and the data is too large to transfer for local analysis. Researchers have developed the Data Access Protocol (DAP) for accessing remote data. Presently one can use DAP from within IDL, but the IDL-DAP interface is both limited and cumbersome. A more powerful and user-friendly interface to DAP for IDL has been developed. Users are able to browse remote data sets graphically, select partial data to retrieve, import that data and make customized plots, and have an interactive IDL command line session simultaneous with the remote visualization. All of these IDL-DAP tools are usable easily and seamlessly for any IDL user. IDL and DAP are both widely used in science, but were not easily used together. The IDL DAP bindings were incomplete and had numerous bugs that prevented their serious use. For example, the existing bindings did not read DAP Grid data, which is the organization of nearly all NASA datasets currently served via DAP. This project uniquely provides a fully featured, user-friendly interface to DAP from IDL, both from the command line and a GUI application. The DAP Explorer GUI application makes browsing a dataset more user-friendly, while also providing the capability to run user-defined functions on specified data. Methods for running remote functions on the DAP server were investigated, and a technique for accomplishing this task was decided upon.

  3. Web-based metabolic network visualization with a zooming user interface

    PubMed Central

    2011-01-01

    Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu. PMID:21595965

  4. Transforming an educational virtual reality simulation into a work of fine art.

    PubMed

    Panaiotis; Addison, Laura; Vergara, Víctor M; Hakamata, Takeshi; Alverson, Dale C; Saiki, Stanley M; Caudell, Thomas Preston

    2008-01-01

    This paper outlines user interface and interaction issues, technical considerations, and problems encountered in transforming an educational VR simulation of a reified kidney nephron into an interactive artwork appropriate for a fine arts museum.

  5. Understanding Providers' Interaction with Graphical User Interface Pertaining to Clinical Document Usage in an Electronic Health Record System

    ERIC Educational Resources Information Center

    Rizvi, Rubina Fatima

    2017-01-01

    Despite high Electronic Health Record (EHR) system adoption rates by hospital and office-based practices, many users remain highly dissatisfied with the current state of EHRs. Sub-optimal EHR usability as a result of insufficient incorporation of User-Centered Design (UCD) approach during System Development Life Cycle process (SDLC) is considered…

  6. Pointing Device Performance in Steering Tasks.

    PubMed

    Senanayake, Ransalu; Goonetilleke, Ravindra S

    2016-06-01

    Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.

  7. BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3

    PubMed Central

    Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.

    2014-01-01

    Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793

  8. Virtual Character Animation Based on Affordable Motion Capture and Reconfigurable Tangible Interfaces.

    PubMed

    Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo

    2018-05-01

    Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.

  9. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    NASA Astrophysics Data System (ADS)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  10. Interactive multi-objective path planning through a palette-based user interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph

    2016-05-01

    n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.

  11. Enhancing Navigation Skills through Audio Gaming.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  12. Enhancing Navigation Skills through Audio Gaming

    PubMed Central

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2014-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796

  13. WHAM!: a web-based visualization suite for user-defined analysis of metagenomic shotgun sequencing data.

    PubMed

    Devlin, Joseph C; Battaglia, Thomas; Blaser, Martin J; Ruggles, Kelly V

    2018-06-25

    Exploration of large data sets, such as shotgun metagenomic sequence or expression data, by biomedical experts and medical professionals remains as a major bottleneck in the scientific discovery process. Although tools for this purpose exist for 16S ribosomal RNA sequencing analysis, there is a growing but still insufficient number of user-friendly interactive visualization workflows for easy data exploration and figure generation. The development of such platforms for this purpose is necessary to accelerate and streamline microbiome laboratory research. We developed the Workflow Hub for Automated Metagenomic Exploration (WHAM!) as a web-based interactive tool capable of user-directed data visualization and statistical analysis of annotated shotgun metagenomic and metatranscriptomic data sets. WHAM! includes exploratory and hypothesis-based gene and taxa search modules for visualizing differences in microbial taxa and gene family expression across experimental groups, and for creating publication quality figures without the need for command line interface or in-house bioinformatics. WHAM! is an interactive and customizable tool for downstream metagenomic and metatranscriptomic analysis providing a user-friendly interface allowing for easy data exploration by microbiome and ecological experts to facilitate discovery in multi-dimensional and large-scale data sets.

  14. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  15. Septic safe interactions with smart glasses in health care.

    PubMed

    Czuszynski, K; Ruminski, J; Kocejko, T; Wtorek, J

    2015-08-01

    In this paper, septic safe methods of interaction with smart glasses, due to the health care environment applications consideration, are presented. The main focus is on capabilities of an optical, proximity-based gesture sensor and eye-tracker input systems. The design of both interfaces is being adapted to the open smart glasses platform that is being developed under the eGlasses project. Preliminary results obtained from the proximity sensor show that the recognition of different static and dynamic hand gestures is promising. The experiments performed for the eye-tracker module shown the possibility of interaction with simple Graphical User Interface provided by the near-to-eye display. Research leads to the conclusion of attractiveness of collaborative interfaces for interaction with smart glasses.

  16. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  17. Development of a Common User Interface for the Launch Decision Support System

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1991-01-01

    The Launch Decision Support System (LDSS) is software to be used by the NASA Test Director (NTD) in the firing room during countdown. This software is designed to assist the NTD with time management, that is, when to resume from a hold condition. This software will assist the NTD in making and evaluating alternate plans and will keep him advised of the existing situation. As such, the interface to this software must be designed to provide the maximum amount of information in the clearest fashion and in a timely manner. This research involves applying user interface guidelines to a mature prototype of LDSS and developing displays that will enable the users to easily and efficiently obtain information from the LDSS displays. This research also extends previous work on organizing and prioritizing human-computer interaction knowledge.

  18. Understanding the Factors Influencing User Experience of Social Question and Answer Services

    ERIC Educational Resources Information Center

    Deng, Shengli; Fang, Yuling; Liu, Yong; Li, Hongxiu

    2015-01-01

    Introduction: The popularity of social question and answer sites has made it an important and convenient source for obtaining knowledge. This study quantifies how three different system characteristics (interface design, interaction and answer quality) affect users' perceptions (perceived usefulness, perceived ease of use and perceived enjoyment),…

  19. A coastal information system to propel emerging science and inform environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...

  20. MOOsburg: Multi-User Domain Support for a Community Network.

    ERIC Educational Resources Information Center

    Carroll, John M.; Rosson, Mary Beth; Isenhour, Philip L.; Van Metre, Christina; Schafer, Wendy A.; Ganoe, Craig H.

    2001-01-01

    Explains MOOsburg, a community-oriented MOO that models the geography of the town of Blacksburg, Virginia and is designed to be used by local residents. Highlights include the software architecture; client-server communication; spatial database; user interface; interaction; map-based navigation; application development; and future plans. (LRW)

  1. Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail

    2014-05-01

    The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points and regions of interest while the GIS component responds accordingly by changing the scenario in a natural disaster application. Creating a 3D model representation of geospatial data provides a natural way for users to perceive and interact with space. To the best of our knowledge it is the first attempt to use Kinect II for GIS applications and generally virtual environments using novel Human Computer Interaction methods. Under a robust decision support system, the users are able to interact, combine and computationally analyze information in three dimensions using gestures. This study promotes geographic awareness and education and will prove beneficial for a wide range of geoscience applications including natural disaster and emergency management. Acknowledgements: This work is partially supported under the framework of the "Cooperation 2011" project ATLANTAS (11_SYN_6_1937) funded from the Operational Program "Competitiveness and Entrepreneurship" (co-funded by the European Regional Development Fund (ERDF)) and managed by the Greek General Secretariat for Research and Technology.

  2. The Environment-Power System Analysis Tool development program. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Wilcox, Katherine G.; Stevens, N. John; Putnam, Rand M.; Roche, James C.

    1989-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide engineers with the ability to assess the effects of a broad range of environmental interactions on space power systems. A unique user-interface-data-dictionary code architecture oversees a collection of existing and future environmental modeling codes (e.g., neutral density) and physical interaction models (e.g., sheath ionization). The user-interface presents the engineer with tables, graphs, and plots which, under supervision of the data dictionary, are automatically updated in response to parameter change. EPSAT thus provides the engineer with a comprehensive and responsive environmental assessment tool and the scientist with a framework into which new environmental or physical models can be easily incorporated.

  3. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (DEC VAX ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.

  4. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (SUN3 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.

  5. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (SUN3 VERSION WITH MOTIF)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.

  6. Translating research into practice through user-centered design: An application for osteoarthritis healthcare planning.

    PubMed

    Carr, Eloise Cj; Babione, Julie N; Marshall, Deborah

    2017-08-01

    To identify the needs and requirements of the end users, to inform the development of a user-interface to translate an existing evidence-based decision support tool into a practical and usable interface for health service planning for osteoarthritis (OA) care. We used a user-centered design (UCD) approach that emphasized the role of the end-users and is well-suited to knowledge translation (KT). The first phase used a needs assessment focus group (n=8) and interviews (n=5) with target users (health care planners) within a provincial health care organization. The second phase used a participatory design approach, with two small group sessions (n=6) to explore workflow, thought processes, and needs of intended users. The needs assessment identified five design recommendations: ensuring the user-interface supports the target user group, allowing for user-directed data explorations, input parameter flexibility, clear presentation, and provision of relevant definitions. The second phase identified workflow insights from a proposed scenario. Graphs, the need for a visual overview of the data, and interactivity were key considerations to aid in meaningful use of the model and knowledge translation. A UCD approach is well suited to identify health care planners' requirements when using a decision support tool to improve health service planning and management of OA. We believe this is one of the first applications to be used in planning for health service delivery. We identified specific design recommendations that will increase user acceptability and uptake of the user-interface and underlying decision support tool in practice. Our approach demonstrated how UCD can be used to enable knowledge translation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Easing access to R using 'shiny' to create graphical user interfaces: An example for the R package 'Luminescence'

    NASA Astrophysics Data System (ADS)

    Burow, Christoph; Kreutzer, Sebastian; Dietze, Michael; Fuchs, Margret C.; Schmidt, Christoph; Fischer, Manfred; Brückner, Helmut

    2017-04-01

    Since the release of the R package 'Luminescence' (Kreutzer et al., 2012) the functionality of the package has been greatly enhanced by implementing further functions for measurement data processing, statistical analysis and graphical output. Despite its capabilities for complex and non-standard analysis of luminescence data, working with the command-line interface (CLI) of R can be tedious at best and overwhelming at worst, especially for users without experience in programming languages. Even though much work is put into simplifying the usage of the package to continuously lower the entry threshold, at least basic knowledge of R will always be required. Thus, the potential user base of the package cannot be exhausted, at least as long as the CLI is the only means of utilising the 'Luminescence' package. But even experienced users may find it tedious to iteratively run a function until a satisfying results is produced. For example, plotting data is also at least partly subject to personal aesthetic tastes in accordance with the information it is supposed to convey and iterating through all the possible options in the R CLI can be a time-consuming task. An alternative approach to the CLI is the graphical user interface (GUI), which allows direct, interactive manipulation and interaction with the underlying software. For users with little or no experience with command-lines a GUI offers intuitive access that counteracts the perceived steep learning curve of a CLI. Even though R lacks native support for GUI functions, its capabilities of linking it to other programming languages allows to utilise external frameworks to build graphical user interfaces. A recent attempt to provide a GUI toolkit for R was the introduction of the 'shiny' package (Chang et al., 2016), which allows automatic construction of HTML, CSS and JavaScript based user interfaces straight from R. Here, we give (1) a brief introduction to the 'shiny' framework for R, before we (2) present a GUI for the R package 'Luminescence' in the form of interactive web applications. These applications can be accessed online so that a user is not even required to have a local installation of R and which provide access to most of the plotting functions of the R package 'Luminescence'. These functionalities will be demonstrated live during the PICO session. References Chang, W., Cheng, J., Allaire, JJ., Xie, Y., McPherson, J., 2016. shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30: 1-8, 2012.

  8. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta

    PubMed Central

    Kleffner, Robert; Flatten, Jeff; Leaver-Fay, Andrew; Baker, David; Siegel, Justin B.; Khatib, Firas; Cooper, Seth

    2017-01-01

    Abstract Summary: Foldit Standalone is an interactive graphical interface to the Rosetta molecular modeling package. In contrast to most command-line or batch interactions with Rosetta, Foldit Standalone is designed to allow easy, real-time, direct manipulation of protein structures, while also giving access to the extensive power of Rosetta computations. Derived from the user interface of the scientific discovery game Foldit (itself based on Rosetta), Foldit Standalone has added more advanced features and removed the competitive game elements. Foldit Standalone was built from the ground up with a custom rendering and event engine, configurable visualizations and interactions driven by Rosetta. Foldit Standalone contains, among other features: electron density and contact map visualizations, multiple sequence alignment tools for template-based modeling, rigid body transformation controls, RosettaScripts support and an embedded Lua interpreter. Availability and Implementation: Foldit Standalone is available for download at https://fold.it/standalone, under the Rosetta license, which is free for academic and non-profit users. It is implemented in cross-platform C ++ and binary executables are available for Windows, macOS and Linux. Contact: scooper@ccs.neu.edu PMID:28481970

  9. The Virtual Tablet: Virtual Reality as a Control System

    NASA Technical Reports Server (NTRS)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.

  10. NASA Interactive Forms Type Interface - NIFTI

    NASA Technical Reports Server (NTRS)

    Jain, Bobby; Morris, Bill

    2005-01-01

    A flexible database query, update, modify, and delete tool was developed that provides an easy interface to Oracle forms. This tool - the NASA interactive forms type interface, or NIFTI - features on-the- fly forms creation, forms sharing among users, the capability to query the database from user-entered criteria on forms, traversal of query results, an ability to generate tab-delimited reports, viewing and downloading of reports to the user s workstation, and a hypertext-based help system. NIFTI is a very powerful ad hoc query tool that was developed using C++, X-Windows by a Motif application framework. A unique tool, NIFTI s capabilities appear in no other known commercial-off-the- shelf (COTS) tool, because NIFTI, which can be launched from the user s desktop, is a simple yet very powerful tool with a highly intuitive, easy-to-use graphical user interface (GUI) that will expedite the creation of database query/update forms. NIFTI, therefore, can be used in NASA s International Space Station (ISS) as well as within government and industry - indeed by all users of the widely disseminated Oracle base. And it will provide significant cost savings in the areas of user training and scalability while advancing the art over current COTS browsers. No COTS browser performs all the functions NIFTI does, and NIFTI is easier to use. NIFTI s cost savings are very significant considering the very large database with which it is used and the large user community with varying data requirements it will support. Its ease of use means that personnel unfamiliar with databases (e.g., managers, supervisors, clerks, and others) can develop their own personal reports. For NASA, a tool such as NIFTI was needed to query, update, modify, and make deletions within the ISS vehicle master database (VMDB), a repository of engineering data that includes an indentured parts list and associated resource data (power, thermal, volume, weight, and the like). Since the VMDB is used both as a collection point for data and as a common repository for engineering, integration, and operations teams, a tool such as NIFTI had to be designed that could expedite the creation of database query/update forms which could then be shared among users.

  11. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    PubMed

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  12. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  13. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  14. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1986-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  15. An advanced web query interface for biological databases

    PubMed Central

    Latendresse, Mario; Karp, Peter D.

    2010-01-01

    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715

  16. Open Astronomy Catalogs API

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Cowperthwaite, Philip S.

    2018-05-01

    We announce the public release of the application program interface (API) for the Open Astronomy Catalogs (OACs), the OACAPI. The OACs serve near-complete collections of supernova, tidal disruption, kilonova, and fast stars data (including photometry, spectra, radio, and X-ray observations) via a user-friendly web interface that displays the data interactively and offers full data downloads. The OACAPI, by contrast, enables users to specifically download particular pieces of the OAC dataset via a flexible programmatic syntax, either via URL GET requests, or via a module within the astroquery Python package.

  17. Novel Virtual User Models of Mild Cognitive Impairment for Simulating Dementia

    PubMed Central

    Segkouli, Sofia; Tzovaras, Dimitrios; Tsakiris, Thanos; Tsolaki, Magda; Karagiannidis, Charalampos

    2015-01-01

    Virtual user modeling research has attempted to address critical issues of human-computer interaction (HCI) such as usability and utility through a large number of analytic, usability-oriented approaches as cognitive models in order to provide users with experiences fitting to their specific needs. However, there is demand for more specific modules embodied in cognitive architecture that will detect abnormal cognitive decline across new synthetic task environments. Also, accessibility evaluation of graphical user interfaces (GUIs) requires considerable effort for enhancing ICT products accessibility for older adults. The main aim of this study is to develop and test virtual user models (VUM) simulating mild cognitive impairment (MCI) through novel specific modules, embodied at cognitive models and defined by estimations of cognitive parameters. Well-established MCI detection tests assessed users' cognition, elaborated their ability to perform multitasks, and monitored the performance of infotainment related tasks to provide more accurate simulation results on existing conceptual frameworks and enhanced predictive validity in interfaces' design supported by increased tasks' complexity to capture a more detailed profile of users' capabilities and limitations. The final outcome is a more robust cognitive prediction model, accurately fitted to human data to be used for more reliable interfaces' evaluation through simulation on the basis of virtual models of MCI users. PMID:26339282

  18. Improving access to clinical practice guidelines with an interactive graphical interface using an iconic language

    PubMed Central

    2014-01-01

    Background Clinical practice guidelines are useful for physicians, and guidelines are available on the Internet from various websites such as Vidal Recos. However, these guidelines are long and difficult to read, especially during consultation. Similar difficulties have been encountered with drug summaries of product characteristics. In a previous work, we have proposed an iconic language (called VCM, for Visualization of Concepts in Medicine) for representing patient conditions, treatments and laboratory tests, and we have used these icons to design a user interface that graphically indexes summaries of product characteristics. In the current study, our objective was to design and evaluate an iconic user interface for the consultation of clinical practice guidelines by physicians. Methods Focus groups of physicians were set up to identify the difficulties encountered when reading guidelines. Icons were integrated into Vidal Recos, taking human factors into account. The resulting interface includes a graphical summary and an iconic indexation of the guideline. The new interface was evaluated. We compared the response times and the number of errors recorded when physicians answered questions about two clinical scenarios using the interactive iconic interface or a textual interface. Users’ perceived usability was evaluated with the System Usability Scale. Results The main difficulties encountered by physicians when reading guidelines were obtaining an overview and finding recommendations for patients corresponding to “particular cases”. We designed a graphical interface for guideline consultation, using icons to identify particular cases and providing a graphical summary of the icons organized by anatomy and etiology. The evaluation showed that physicians gave clinical responses more rapidly with the iconic interface than the textual interface (25.2 seconds versus 45.6, p < 0.05). The physicians appreciated the new interface, and the System Usability Scale score value was 75 (between good and excellent). Conclusion An interactive iconic interface can provide physicians with an overview of clinical practice guidelines, and can decrease the time required to access the content of such guidelines. PMID:25158762

  19. Focus Your Young Visitors: Kids Innovation--Fundamental Changes in Digital Edutainment.

    ERIC Educational Resources Information Center

    Sauer, Sebastian; Gobel, Stefan

    With regard to the acceptance of human-computer interfaces, immersion represents one of the most important methods for attracting young visitors into museum exhibitions. Exciting and diversely presented content as well as intuitive, natural and human-like interfaces are indispensable to bind users to an interactive system with real and digital…

  20. Experiments and Analysis on a Computer Interface to an Information-Retrieval Network.

    ERIC Educational Resources Information Center

    Marcus, Richard S.; Reintjes, J. Francis

    A primary goal of this project was to develop an interface that would provide direct access for inexperienced users to existing online bibliographic information retrieval networks. The experiment tested the concept of a virtual-system mode of access to a network of heterogeneous interactive retrieval systems and databases. An experimental…

  1. User-interactive electronic skin for instantaneous pressure visualization

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components—thin-film transistor, pressure sensor and OLED arrays—are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  2. User-interactive electronic skin for instantaneous pressure visualization.

    PubMed

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  3. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.

  4. Human-machine interface hardware: The next decade

    NASA Technical Reports Server (NTRS)

    Marcus, Elizabeth A.

    1991-01-01

    In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.

  5. A haptic interface for virtual simulation of endoscopic surgery.

    PubMed

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  6. Multi-Sensor Distributive On-Line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong

    2004-01-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.

  7. New web technologies for astronomy

    NASA Astrophysics Data System (ADS)

    Sprimont, P.-G.; Ricci, D.; Nicastro, L.

    2014-12-01

    Thanks to the new HTML5 capabilities and the huge improvements of the JavaScript language, it is now possible to design very complex and interactive web user interfaces. On top of that, the once monolithic and file-server oriented web servers are evolving into easily programmable server applications capable to cope with the complex interactions made possible by the new generation of browsers. We believe that the whole community of amateur and professionals astronomers can benefit from the potential of these new technologies. New web interfaces can be designed to provide the user with a large deal of much more intuitive and interactive tools. Accessing astronomical data archives, schedule, control and monitor observatories, and in particular robotic telescopes, supervising data reduction pipelines, all are capabilities that can now be implemented in a JavaScript web application. In this paper we describe the Sadira package we are implementing exactly to this aim.

  8. SpicyNodes Radial Map Engine

    NASA Astrophysics Data System (ADS)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  9. A new reference implementation of the PSICQUIC web service.

    PubMed

    del-Toro, Noemi; Dumousseau, Marine; Orchard, Sandra; Jimenez, Rafael C; Galeota, Eugenia; Launay, Guillaume; Goll, Johannes; Breuer, Karin; Ono, Keiichiro; Salwinski, Lukasz; Hermjakob, Henning

    2013-07-01

    The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).

  10. Starting research in interaction design with visuals for low-functioning children in the autistic spectrum: a protocol.

    PubMed

    Parés, Narcís; Carreras, Anna; Durany, Jaume; Ferrer, Jaume; Freixa, Pere; Gómez, David; Kruglanski, Orit; Parés, Roc; Ribas, J Ignasi; Soler, Miquel; Sanjurjo, Alex

    2006-04-01

    On starting to think about interaction design for low-functioning persons in the autistic spectrum (PAS), especially children, one finds a number of questions that are difficult to answer: Can we typify the PAS user? Can we engage the user in interactive communication without generating frustrating or obsessive situations? What sort of visual stimuli can we provide? Will they prefer representational or abstract visual stimuli? Will they understand three-dimensional (3D) graphic representation? What sort of interfaces will they accept? Can we set ambitious goals such as education or therapy? Unfortunately, most of these questions have no answer yet. Hence, we decided to set an apparently simple goal: to design a "fun application," with no intention to reach the level of education or therapy. The goal was to be attained by giving the users a sense of agency--by providing first a sense of control in the interaction dialogue. Our approach to visual stimuli design has been based on the use of geometric, abstract, two-dimensional (2D), real-time computer graphics in a full-body, non-invasive, interactive space. The results obtained within the European-funded project MultiSensory Environment Design for an Interface between Autistic and Typical Expressiveness (MEDIATE) have been extremely encouraging.

  11. Emotion-prints: interaction-driven emotion visualization on multi-touch interfaces

    NASA Astrophysics Data System (ADS)

    Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas

    2015-01-01

    Emotions are one of the unique aspects of human nature, and sadly at the same time one of the elements that our technological world is failing to capture and consider due to their subtlety and inherent complexity. But with the current dawn of new technologies that enable the interpretation of emotional states based on techniques involving facial expressions, speech and intonation, electrodermal response (EDS) and brain-computer interfaces (BCIs), we are finally able to access real-time user emotions in various system interfaces. In this paper we introduce emotion-prints, an approach for visualizing user emotional valence and arousal in the context of multi-touch systems. Our goal is to offer a standardized technique for representing user affective states in the moment when and at the location where the interaction occurs in order to increase affective self-awareness, support awareness in collaborative and competitive scenarios, and offer a framework for aiding the evaluation of touch applications through emotion visualization. We show that emotion-prints are not only independent of the shape of the graphical objects on the touch display, but also that they can be applied regardless of the acquisition technique used for detecting and interpreting user emotions. Moreover, our representation can encode any affective information that can be decomposed or reduced to Russell's two-dimensional space of valence and arousal. Our approach is enforced by a BCI-based user study and a follow-up discussion of advantages and limitations.

  12. VISTILES: Coordinating and Combining Co-located Mobile Devices for Visual Data Exploration.

    PubMed

    Langner, Ricardo; Horak, Tom; Dachselt, Raimund

    2017-08-29

    We present VISTILES, a conceptual framework that uses a set of mobile devices to distribute and coordinate visualization views for the exploration of multivariate data. In contrast to desktop-based interfaces for information visualization, mobile devices offer the potential to provide a dynamic and user-defined interface supporting co-located collaborative data exploration with different individual workflows. As part of our framework, we contribute concepts that enable users to interact with coordinated & multiple views (CMV) that are distributed across several mobile devices. The major components of the framework are: (i) dynamic and flexible layouts for CMV focusing on the distribution of views and (ii) an interaction concept for smart adaptations and combinations of visualizations utilizing explicit side-by-side arrangements of devices. As a result, users can benefit from the possibility to combine devices and organize them in meaningful spatial layouts. Furthermore, we present a web-based prototype implementation as a specific instance of our concepts. This implementation provides a practical application case enabling users to explore a multivariate data collection. We also illustrate the design process including feedback from a preliminary user study, which informed the design of both the concepts and the final prototype.

  13. Estuary Data Mapper: A coastal information system to propel emerging science and inform environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...

  14. Staying True to the Core: Designing the Future Academic Library Experience

    ERIC Educational Resources Information Center

    Bell, Steven J.

    2014-01-01

    In 2014, the practice of user experience design in academic libraries continues to evolve. It is typically applied in the context of interactions with digital interfaces. Some academic librarians are applying user experience approaches more broadly to design both environments and services with human-centered strategies. As the competition for the…

  15. Digital Environment for Movement Control in Surgical Skill Training.

    PubMed

    Juanes, Juan A; Gómez, Juan J; Peguero, Pedro D; Ruisoto, Pablo

    2016-06-01

    Intelligent environments are increasingly becoming useful scenarios for handling computers. Technological devices are practical tools for learning and acquiring clinical skills as part of the medical training process. Within the framework of the advanced user interface, we present a technological application using Leap Motion, to enhance interaction with the user in the process of a laparoscopic surgical intervention and integrate the navigation through augmented reality images using manual gestures. Thus, we intend to achieve a more natural interaction with the objects that participate in a surgical intervention, which are augmented and related to the user's hand movements.

  16. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  17. Closed-loop dialog model of face-to-face communication with a photo-real virtual human

    NASA Astrophysics Data System (ADS)

    Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás

    2004-01-01

    We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.

  18. Hiding the system from the user: Moving from complex mental models to elegant metaphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Nielsen; David J. Bruemmer

    2007-08-01

    In previous work, increased complexity of robot behaviors and the accompanying interface design often led to operator confusion and/or a fight for control between the robot and operator. We believe the reason for the conflict was that the design of the interface and interactions presented too much of the underlying robot design model to the operator. Since the design model includes the implementation of sensors, behaviors, and sophisticated algorithms, the result was that the operator’s cognitive efforts were focused on understanding the design of the robot system as opposed to focusing on the task at hand. This paper illustrates howmore » this very problem emerged at the INL and how the implementation of new metaphors for interaction has allowed us to hide the design model from the user and allow the user to focus more on the task at hand. Supporting the user’s focus on the task rather than on the design model allows increased use of the system and significant performance improvement in a search task with novice users.« less

  19. Anthropomorphic Robot Design and User Interaction Associated with Motion

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over robot limbs and body positions, 2) improve users ability to detect anomalous robot behavior which could signal malfunction, and 3) enable users to be better able to infer the intent of robot movement. These three benefits of anthropomorphic design are inherent implications of the anthropomorphic form but they need to be recognized by designers as part of anthropomorphic design and explicitly enhanced to maximize their beneficial impact. Examples of such enhancements are provided in this report. If implemented, these benefits of anthropomorphic design can help reduce the risk of Inadequate Design of Human and Automation Robotic Integration (HARI) associated with the HARI-01 gap by providing efficient and dexterous operator control over robots and by improving operator ability to detect malfunctions and understand the intention of robot movement.

  20. Automating a human factors evaluation of graphical user interfaces for NASA applications: An update on CHIMES

    NASA Technical Reports Server (NTRS)

    Jiang, Jian-Ping; Murphy, Elizabeth D.; Bailin, Sidney C.; Truszkowski, Walter F.

    1993-01-01

    Capturing human factors knowledge about the design of graphical user interfaces (GUI's) and applying this knowledge on-line are the primary objectives of the Computer-Human Interaction Models (CHIMES) project. The current CHIMES prototype is designed to check a GUI's compliance with industry-standard guidelines, general human factors guidelines, and human factors recommendations on color usage. Following the evaluation, CHIMES presents human factors feedback and advice to the GUI designer. The paper describes the approach to modeling human factors guidelines, the system architecture, a new method developed to convert quantitative RGB primaries into qualitative color representations, and the potential for integrating CHIMES with user interface management systems (UIMS). Both the conceptual approach and its implementation are discussed. This paper updates the presentation on CHIMES at the first International Symposium on Ground Data Systems for Spacecraft Control.

  1. apART: system for the acquisition, processing, archiving, and retrieval of digital images in an open, distributed imaging environment

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Strack, Ruediger

    1992-04-01

    apART reflects the structure of an open, distributed environment. According to the general trend in the area of imaging, network-capable, general purpose workstations with capabilities of open system image communication and image input are used. Several heterogeneous components like CCD cameras, slide scanners, and image archives can be accessed. The system is driven by an object-oriented user interface where devices (image sources and destinations), operators (derived from a commercial image processing library), and images (of different data types) are managed and presented uniformly to the user. Browsing mechanisms are used to traverse devices, operators, and images. An audit trail mechanism is offered to record interactive operations on low-resolution image derivatives. These operations are processed off-line on the original image. Thus, the processing of extremely high-resolution raster images is possible, and the performance of resolution dependent operations is enhanced significantly during interaction. An object-oriented database system (APRIL), which can be browsed, is integrated into the system. Attribute retrieval is supported by the user interface. Other essential features of the system include: implementation on top of the X Window System (X11R4) and the OSF/Motif widget set; a SUN4 general purpose workstation, inclusive ethernet, magneto optical disc, etc., as the hardware platform for the user interface; complete graphical-interactive parametrization of all operators; support of different image interchange formats (GIF, TIFF, IIF, etc.); consideration of current IPI standard activities within ISO/IEC for further refinement and extensions.

  2. Wireless device connection problems and design solutions

    NASA Astrophysics Data System (ADS)

    Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng

    2016-09-01

    Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.

  3. Designing a Safer Interactive Healthcare System - The Impact of Authentic User Participation

    NASA Astrophysics Data System (ADS)

    Went, Kathryn L.; Gregor, Peter; Ricketts, Ian W.

    Information technology has been widely promoted in the healthcare sector to improve current practice and patient safety. However, end users are seldom involved extensively in the design and development of healthcare systems, with lip service often paid to the idea of true user involvement. In this case study the impact of sustained authentic user participation was explored using an interdisciplinary team, consisting of experts both in interaction and healthcare design and consultant anaesthetists, nurses, and pharmacists, to create an electronic prescribing and administration system. This paper details the interface that was created and provides examples of the way in which the design evolved in response to the sustained authentic user participation methods. The working prototype both reduced the opportunity for user error and was preferred by its users to the existing manual system.

  4. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.

  5. Experiencing the Sights, Smells, Sounds, and Climate of Southern Italy in VR.

    PubMed

    Manghisi, Vito M; Fiorentino, Michele; Gattullo, Michele; Boccaccio, Antonio; Bevilacqua, Vitoantonio; Cascella, Giuseppe L; Dassisti, Michele; Uva, Antonio E

    2017-01-01

    This article explores what it takes to make interactive computer graphics and VR attractive as a promotional vehicle, from the points of view of tourism agencies and the tourists themselves. The authors exploited current VR and human-machine interface (HMI) technologies to develop an interactive, innovative, and attractive user experience called the Multisensory Apulia Touristic Experience (MATE). The MATE system implements a natural gesture-based interface and multisensory stimuli, including visuals, audio, smells, and climate effects.

  6. The ACE multi-user web-based Robotic Observatory Control System

    NASA Astrophysics Data System (ADS)

    Mack, P.

    2003-05-01

    We have developed an observatory control system that can be operated in interactive, remote or robotic modes. In interactive and remote mode the observer typically acquires the first object then creates a script through a window interface to complete observations for the rest of the night. The system closes early in the event of bad weather. In robotic mode observations are submitted ahead of time through a web-based interface. We present observations made with a 1.0-m telescope using these methods.

  7. An Intuitive Dashboard for Bayesian Network Inference

    NASA Astrophysics Data System (ADS)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  8. Integration of design information

    NASA Technical Reports Server (NTRS)

    Anderton, G. L.

    1980-01-01

    The overall concepts of the integrated programs for aerospace-vehicle design (IPAD) from the user's viewpoint are discussed. Also a top-level view of what the user requires from such a system is provided, and the interactions between the system and user are described. The four major components discussed are design process; data storage, management and manipulation; user interface; and project management. Although an outgrowth of aerospace production experience, the basic concepts discussed, and especially their emphasis on integration, are considered applicable to all problem solving. Thus, these concepts may offer a broad base for exploitation by industry in general. This is the first in a set of three papers, the other two being Future Integrated Design Process, by D. D. Mayer, and Requirements for Company-Wide Management of Engineering Information, by J. W. Southall. In addition to tying the three together, how project management can be handled in a computing environment and also the user interface needs are discussed in detail.

  9. Argo: an integrative, interactive, text mining-based workbench supporting curation

    PubMed Central

    Rak, Rafal; Rowley, Andrew; Black, William; Ananiadou, Sophia

    2012-01-01

    Curation of biomedical literature is often supported by the automatic analysis of textual content that generally involves a sequence of individual processing components. Text mining (TM) has been used to enhance the process of manual biocuration, but has been focused on specific databases and tasks rather than an environment integrating TM tools into the curation pipeline, catering for a variety of tasks, types of information and applications. Processing components usually come from different sources and often lack interoperability. The well established Unstructured Information Management Architecture is a framework that addresses interoperability by defining common data structures and interfaces. However, most of the efforts are targeted towards software developers and are not suitable for curators, or are otherwise inconvenient to use on a higher level of abstraction. To overcome these issues we introduce Argo, an interoperable, integrative, interactive and collaborative system for text analysis with a convenient graphic user interface to ease the development of processing workflows and boost productivity in labour-intensive manual curation. Robust, scalable text analytics follow a modular approach, adopting component modules for distinct levels of text analysis. The user interface is available entirely through a web browser that saves the user from going through often complicated and platform-dependent installation procedures. Argo comes with a predefined set of processing components commonly used in text analysis, while giving the users the ability to deposit their own components. The system accommodates various areas and levels of user expertise, from TM and computational linguistics to ontology-based curation. One of the key functionalities of Argo is its ability to seamlessly incorporate user-interactive components, such as manual annotation editors, into otherwise completely automatic pipelines. As a use case, we demonstrate the functionality of an in-built manual annotation editor that is well suited for in-text corpus annotation tasks. Database URL: http://www.nactem.ac.uk/Argo PMID:22434844

  10. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  11. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  12. Tangible User Interfaces and Contrasting Cases as a Preparation for Future Learning

    NASA Astrophysics Data System (ADS)

    Schneider, Bertrand; Blikstein, Paulo

    2018-04-01

    In this paper, we describe an experiment that compared the use of a Tangible User Interface (physical objects augmented with digital information) and a set of Contrasting Cases as a preparation for future learning. We carried out an experiment (N = 40) with a 2 × 2 design: the first factor compared traditional instruction ("Tell & Practice") with a constructivist activity designed using the Preparation for Future Learning framework (PFL). The second factor contrasted state-of-the-art PFL learning activity (i.e., students studying Contrasting Cases) with an interactive tabletop featuring digitally enhanced manipulatives. In agreement with prior work, we found that dyads of students who followed the PFL activity achieved significantly higher learning gains compared to their peers who followed a traditional "Tell & Practice" instruction (large effect size). A similar effect was found in favor of the interactive tabletop compared to the Contrasting Cases (small-to-moderate effect size). We discuss implications for designing socio-constructivist activities using new computer interfaces.

  13. Combining multivariate statistics and the think-aloud protocol to assess Human-Computer Interaction barriers in symptom checkers.

    PubMed

    Marco-Ruiz, Luis; Bønes, Erlend; de la Asunción, Estela; Gabarron, Elia; Aviles-Solis, Juan Carlos; Lee, Eunji; Traver, Vicente; Sato, Keiichi; Bellika, Johan G

    2017-10-01

    Symptom checkers are software tools that allow users to submit a set of symptoms and receive advice related to them in the form of a diagnosis list, health information or triage. The heterogeneity of their potential users and the number of different components in their user interfaces can make testing with end-users unaffordable. We designed and executed a two-phase method to test the respiratory diseases module of the symptom checker Erdusyk. Phase I consisted of an online test with a large sample of users (n=53). In Phase I, users evaluated the system remotely and completed a questionnaire based on the Technology Acceptance Model. Principal Component Analysis was used to correlate each section of the interface with the questionnaire responses, thus identifying which areas of the user interface presented significant contributions to the technology acceptance. In the second phase, the think-aloud procedure was executed with a small number of samples (n=15), focusing on the areas with significant contributions to analyze the reasons for such contributions. Our method was used effectively to optimize the testing of symptom checker user interfaces. The method allowed kept the cost of testing at reasonable levels by restricting the use of the think-aloud procedure while still assuring a high amount of coverage. The main barriers detected in Erdusyk were related to problems understanding time repetition patterns, the selection of levels in scales to record intensities, navigation, the quantification of some symptom attributes, and the characteristics of the symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. PyMidas: Interface from Python to Midas

    NASA Astrophysics Data System (ADS)

    Maisala, Sami; Oittinen, Tero

    2014-01-01

    PyMidas is an interface between Python and MIDAS, the major ESO legacy general purpose data processing system. PyMidas allows a user to exploit both the rich legacy of MIDAS software and the power of Python scripting in a unified interactive environment. PyMidas also allows the usage of other Python-based astronomical analysis systems such as PyRAF.

  15. Chipster: user-friendly analysis software for microarray and other high-throughput data.

    PubMed

    Kallio, M Aleksi; Tuimala, Jarno T; Hupponen, Taavi; Klemelä, Petri; Gentile, Massimiliano; Scheinin, Ilari; Koski, Mikko; Käki, Janne; Korpelainen, Eija I

    2011-10-14

    The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available.

  16. Chipster: user-friendly analysis software for microarray and other high-throughput data

    PubMed Central

    2011-01-01

    Background The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Results Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Conclusions Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available. PMID:21999641

  17. Usability testing of a prototype multi-user telehealth kiosk.

    PubMed

    Courtney, Karen L; Matthews, Judith T; McMillan, Julie M; Person Mecca, Laurel; Smailagic, Asim; Siewiorek, Daniel

    2015-01-01

    The overall purpose of this study was to learn how community-dwelling older adults would interact with our prototype multi-user telehealth kiosk and their views about its usability. Seven subjects participated in laboratory-based usability sessions to evaluate the physical design, appearance, functionality and perceived ease of use of a multi-user telehealth kiosk prototype. During usability testing participants recommended 18 new features (29% of comments), identified 15 software errors (23% of comments) and 29 user interface errors (47% of comments).

  18. Interacting with a security system: The Argus user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrin, E.; Davis, G.E.

    1993-12-31

    In the mid-1980s the Lawrence Livermore National Laboratory (LLNL) developed the Argus Security System. Key requirements were to eliminate the telephone as a verification device for opening and closing alarm stations and to allow need-to-know access through local enrollment at alarm stations. Resulting from these requirements was an LLNL-designed user interface called the Remote Access Panel (RAP). The Argus RAP interacts with Argus field processors to allow secure station mode changes and local station enrollment, provides user direction and response, and assists station maintenance personnel. It consists of a tamper-detecting housing containing a badge reader, a keypad with sight screen,more » special-purpose push buttons and a liquid-crystal display. This paper discusses Argus system concepts, RAP design, functional characteristics and its physical configurations. The paper also describes the RAP`s use in access-control booths, it`s integration with biometrics and its operation for multi-person-rule stations and compartmented facilities.« less

  19. Interactive genetic algorithm for user-centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana Debora; Babbar-Sebens, Meghna; Mukhopadhyay, Snehasis; Kleinberg, Austin

    2017-05-01

    Interactive Genetic Algorithms (IGA) are advanced human-in-the-loop optimization methods that enable humans to give feedback, based on their subjective and unquantified preferences and knowledge, during the algorithm's search process. While these methods are gaining popularity in multiple fields, there is a critical lack of data and analyses on (a) the nature of interactions of different humans with interfaces of decision support systems (DSS) that employ IGA in water resources planning problems and on (b) the effect of human feedback on the algorithm's ability to search for design alternatives desirable to end-users. In this paper, we present results and analyses of observational experiments in which different human participants (surrogates and stakeholders) interacted with an IGA-based, watershed DSS called WRESTORE to identify plans of conservation practices in a watershed. The main goal of this paper is to evaluate how the IGA adapts its search process in the objective space to a user's feedback, and identify whether any similarities exist in the objective space of plans found by different participants. Some participants focused on the entire watershed, while others focused only on specific local subbasins. Additionally, two different hydrology models were used to identify any potential differences in interactive search outcomes that could arise from differences in the numerical values of benefits displayed to participants. Results indicate that stakeholders, in comparison to their surrogates, were more likely to use multiple features of the DSS interface to collect information before giving feedback, and dissimilarities existed among participants in the objective space of design alternatives.

  20. Overview of the interactive task in BioCreative V

    PubMed Central

    Wang, Qinghua; S. Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I.; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K.; Jensen, Lars J.; Jimenez, Silvia; Jue, Toni R.; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M.; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D.; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J. F.; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H.; Hirschman, Lynette; Arighi, Cecilia N.

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested. Database URL: http://www.biocreative.org PMID:27589961

  1. Overview of the interactive task in BioCreative V

    DOE PAGES

    Wang, Qinghua; Abdul, Shabbir S.; Almeida, Lara; ...

    2016-09-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a formatmore » similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. Here, the partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.« less

  2. Virtual displays for 360-degree video

    NASA Astrophysics Data System (ADS)

    Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.

    2012-03-01

    In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.

  3. The Effect of Interactivity on Decision Confidence and Outcome Expectations in Computer Supported Task Environment

    ERIC Educational Resources Information Center

    Lee, Kiljae

    2013-01-01

    While interactivity is regarded as a distinguishing characteristic of computer technology, the explanation on its impact remains in its infancy. The present research investigates what it means to provide a more (or less) interactive computer interface design by attempting to uncover its cognitive influences on the user's expectation of outcome and…

  4. Ontology-Driven Search and Triage: Design of a Web-Based Visual Interface for MEDLINE.

    PubMed

    Demelo, Jonathan; Parsons, Paul; Sedig, Kamran

    2017-02-02

    Diverse users need to search health and medical literature to satisfy open-ended goals such as making evidence-based decisions and updating their knowledge. However, doing so is challenging due to at least two major difficulties: (1) articulating information needs using accurate vocabulary and (2) dealing with large document sets returned from searches. Common search interfaces such as PubMed do not provide adequate support for exploratory search tasks. Our objective was to improve support for exploratory search tasks by combining two strategies in the design of an interactive visual interface by (1) using a formal ontology to help users build domain-specific knowledge and vocabulary and (2) providing multi-stage triaging support to help mitigate the information overload problem. We developed a Web-based tool, Ontology-Driven Visual Search and Triage Interface for MEDLINE (OVERT-MED), to test our design ideas. We implemented a custom searchable index of MEDLINE, which comprises approximately 25 million document citations. We chose a popular biomedical ontology, the Human Phenotype Ontology (HPO), to test our solution to the vocabulary problem. We implemented multistage triaging support in OVERT-MED, with the aid of interactive visualization techniques, to help users deal with large document sets returned from searches. Formative evaluation suggests that the design features in OVERT-MED are helpful in addressing the two major difficulties described above. Using a formal ontology seems to help users articulate their information needs with more accurate vocabulary. In addition, multistage triaging combined with interactive visualizations shows promise in mitigating the information overload problem. Our strategies appear to be valuable in addressing the two major problems in exploratory search. Although we tested OVERT-MED with a particular ontology and document collection, we anticipate that our strategies can be transferred successfully to other contexts. ©Jonathan Demelo, Paul Parsons, Kamran Sedig. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 02.02.2017.

  5. Ontology-Driven Search and Triage: Design of a Web-Based Visual Interface for MEDLINE

    PubMed Central

    2017-01-01

    Background Diverse users need to search health and medical literature to satisfy open-ended goals such as making evidence-based decisions and updating their knowledge. However, doing so is challenging due to at least two major difficulties: (1) articulating information needs using accurate vocabulary and (2) dealing with large document sets returned from searches. Common search interfaces such as PubMed do not provide adequate support for exploratory search tasks. Objective Our objective was to improve support for exploratory search tasks by combining two strategies in the design of an interactive visual interface by (1) using a formal ontology to help users build domain-specific knowledge and vocabulary and (2) providing multi-stage triaging support to help mitigate the information overload problem. Methods We developed a Web-based tool, Ontology-Driven Visual Search and Triage Interface for MEDLINE (OVERT-MED), to test our design ideas. We implemented a custom searchable index of MEDLINE, which comprises approximately 25 million document citations. We chose a popular biomedical ontology, the Human Phenotype Ontology (HPO), to test our solution to the vocabulary problem. We implemented multistage triaging support in OVERT-MED, with the aid of interactive visualization techniques, to help users deal with large document sets returned from searches. Results Formative evaluation suggests that the design features in OVERT-MED are helpful in addressing the two major difficulties described above. Using a formal ontology seems to help users articulate their information needs with more accurate vocabulary. In addition, multistage triaging combined with interactive visualizations shows promise in mitigating the information overload problem. Conclusions Our strategies appear to be valuable in addressing the two major problems in exploratory search. Although we tested OVERT-MED with a particular ontology and document collection, we anticipate that our strategies can be transferred successfully to other contexts. PMID:28153818

  6. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    PubMed Central

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-01

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901

  7. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    PubMed

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  8. First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Gonzalez, J.

    2014-04-01

    We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.

  9. Development of Web Interfaces for Analysis Codes

    NASA Astrophysics Data System (ADS)

    Emoto, M.; Watanabe, T.; Funaba, H.; Murakami, S.; Nagayama, Y.; Kawahata, K.

    Several codes have been developed to analyze plasma physics. However, most of them are developed to run on supercomputers. Therefore, users who typically use personal computers (PCs) find it difficult to use these codes. In order to facilitate the widespread use of these codes, a user-friendly interface is required. The authors propose Web interfaces for these codes. To demonstrate the usefulness of this approach, the authors developed Web interfaces for two analysis codes. One of them is for FIT developed by Murakami. This code is used to analyze the NBI heat deposition, etc. Because it requires electron density profiles, electron temperatures, and ion temperatures as polynomial expressions, those unfamiliar with the experiments find it difficult to use this code, especially visitors from other institutes. The second one is for visualizing the lines of force in the LHD (large helical device) developed by Watanabe. This code is used to analyze the interference caused by the lines of force resulting from the various structures installed in the vacuum vessel of the LHD. This code runs on PCs; however, it requires that the necessary parameters be edited manually. Using these Web interfaces, users can execute these codes interactively.

  10. Creating Accessible Science Museums with User-Activated Environmental Audio Beacons (Ping!)

    ERIC Educational Resources Information Center

    Landau, Steven; Wiener, William; Naghshineh, Koorosh; Giusti, Ellen

    2005-01-01

    In 2003, Touch Graphics Company carried out research on a new invention that promises to improve accessibility to science museums for visitors who are visually impaired. The system, nicknamed Ping!, allows users to navigate an exhibit area, listen to audio descriptions, and interact with exhibits using a cell phone-based interface. The system…

  11. Research flight software engineering and MUST, an integrated system of support tools

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Foudriat, E. C.; Will, R. W.

    1977-01-01

    Consideration is given to software development to support NASA flight research. The Multipurpose User-Oriented Software Technology (MUST) program, designed to integrate digital systems into flight research, is discussed. Particular attention is given to the program's special interactive user interface, subroutine library, assemblers, compiler, automatic documentation tools, and test and simulation subsystems.

  12. User-Based Information Retrieval System Interface Evaluation: An Examination of an On-Line Public Access Catalog.

    ERIC Educational Resources Information Center

    Hert, Carol A.; Nilan, Michael S.

    1991-01-01

    Presents preliminary data that characterizes the relationship between what users say they are trying to accomplish when using an online public access catalog (OPAC) and their perceptions of what input to give the system. Human-machine interaction is discussed, and appropriate methods for evaluating information retrieval systems are considered. (18…

  13. Automated visual imaging interface for the plant floor

    NASA Astrophysics Data System (ADS)

    Wutke, John R.

    1991-03-01

    The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.

  14. Sequanix: a dynamic graphical interface for Snakemake workflows.

    PubMed

    Desvillechabrol, Dimitri; Legendre, Rachel; Rioualen, Claire; Bouchier, Christiane; van Helden, Jacques; Kennedy, Sean; Cokelaer, Thomas

    2018-06-01

    We designed a PyQt graphical user interface-Sequanix-aimed at democratizing the use of Snakemake pipelines in the NGS space and beyond. By default, Sequanix includes Sequana NGS pipelines (Snakemake format) (http://sequana.readthedocs.io), and is also capable of loading any external Snakemake pipeline. New users can easily, visually, edit configuration files of expert-validated pipelines and can interactively execute these production-ready workflows. Sequanix will be useful to both Snakemake developers in exposing their pipelines and to a wide audience of users. Source on http://github.com/sequana/sequana, bio-containers on http://bioconda.github.io and Singularity hub (http://singularity-hub.org). dimitri.desvillechabrol@pasteur.fr or thomas.cokelaer@pasteur.fr. Supplementary data are available at Bioinformatics online.

  15. The UMLS Knowledge Sources: Tools for Building Better User Interfaces

    PubMed Central

    Lindberg, Donald A. B.; Humphreys, Betsy L.

    1990-01-01

    The current focus of the National Library of Medicine's Unified Medical Language System (UMLS) project is the development, testing, and evaluation of the first versions of three new knowledge sources: the Metathesaurus, the Semantic Network, and the Information Sources Map. These three knowledge sources can be used by interface programs to conduct an intelligent interaction with the user and to make the conceptual link between the user's question and relevant machine-readable information. NLM is providing experimental copies of the initial versions of the UMLS knowledge sources in exchange for feedback on ways they can and should be improved. The hope is that the results of such experimentation will provide both immediate improvements in biomedical information service and useful suggestions for enhancements to the UMLS.

  16. The PANTHER User Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less

  17. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    USGS Publications Warehouse

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  18. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface.

    PubMed

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-08-25

    Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms.

  19. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    PubMed Central

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  20. Interface for the documentation and compilation of a library of computer models in physiology.

    PubMed Central

    Summers, R. L.; Montani, J. P.

    1994-01-01

    A software interface for the documentation and compilation of a library of computer models in physiology was developed. The interface is an interactive program built within a word processing template in order to provide ease and flexibility of documentation. A model editor within the interface directs the model builder as to standardized requirements for incorporating models into the library and provides the user with an index to the levels of documentation. The interface and accompanying library are intended to facilitate model development, preservation and distribution and will be available for public use. PMID:7950046

  1. Creating New Mathematical Applications Utilizing SMART Table

    ERIC Educational Resources Information Center

    Seals, Cheryl D.; Swanier, Cheryl S.; Nyagwencha, Justus Nyamweya; Cagle, Ashley L.; Houser, Navorro

    2011-01-01

    SMART Technologies is leading the way for interactive learning, through their many different tools. The SMART Table is a multi-user, multi-touch interactive interface that not only teaches children different concepts in fun ways (Steurer P., 2003), but it also inspires cooperative competition. In Alabama, the state curriculum for kindergarten…

  2. An Interactive Graphical Modeling Game for Teaching Musical Concepts.

    ERIC Educational Resources Information Center

    Lamb, Martin

    1982-01-01

    Describes an interactive computer game in which players compose music at a computer screen. They experiment with pitch and melodic shape and the effects of transposition, augmentation, diminution, retrograde, and inversion. The user interface is simple enough for children to use and powerful enough for composers to work with. (EAO)

  3. Man-systems integration and the man-machine interface

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1990-01-01

    Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).

  4. Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy

    NASA Astrophysics Data System (ADS)

    Jha, S.; Harry, D. L.; Schutt, D.

    2016-12-01

    The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.

  5. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta.

    PubMed

    Kleffner, Robert; Flatten, Jeff; Leaver-Fay, Andrew; Baker, David; Siegel, Justin B; Khatib, Firas; Cooper, Seth

    2017-09-01

    Foldit Standalone is an interactive graphical interface to the Rosetta molecular modeling package. In contrast to most command-line or batch interactions with Rosetta, Foldit Standalone is designed to allow easy, real-time, direct manipulation of protein structures, while also giving access to the extensive power of Rosetta computations. Derived from the user interface of the scientific discovery game Foldit (itself based on Rosetta), Foldit Standalone has added more advanced features and removed the competitive game elements. Foldit Standalone was built from the ground up with a custom rendering and event engine, configurable visualizations and interactions driven by Rosetta. Foldit Standalone contains, among other features: electron density and contact map visualizations, multiple sequence alignment tools for template-based modeling, rigid body transformation controls, RosettaScripts support and an embedded Lua interpreter. Foldit Standalone is available for download at https://fold.it/standalone , under the Rosetta license, which is free for academic and non-profit users. It is implemented in cross-platform C ++ and binary executables are available for Windows, macOS and Linux. scooper@ccs.neu.edu. © The Author(s) 2017. Published by Oxford University Press.

  6. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  7. AXAF user interfaces for heterogeneous analysis environments

    NASA Technical Reports Server (NTRS)

    Mandel, Eric; Roll, John; Ackerman, Mark S.

    1992-01-01

    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future.

  8. Is There a Chance for a Standardised User Interface?

    ERIC Educational Resources Information Center

    Fletcher, Liz

    1993-01-01

    Issues concerning the implementation of standard user interfaces for CD-ROMs are discussed, including differing perceptions of the ideal interface, graphical user interfaces, user needs, and the standard protocols. It is suggested users should be able to select from a variety of user interfaces on each CD-ROM. (EA)

  9. The User Interface: The Point of Competition.

    ERIC Educational Resources Information Center

    Tufte, Edward

    1992-01-01

    Discusses the importance of skillful visual design of computer screens and provides guidelines for screen design in the areas of information resolution, interaction of design elements, color, and typography and icons. (MES)

  10. Automation in the graphic arts

    NASA Astrophysics Data System (ADS)

    Truszkowski, Walt

    1995-04-01

    The CHIMES (Computer-Human Interaction Models) tool was designed to help solve a simply-stated but important problem, i.e., the problem of generating a user interface to a system that complies with established human factors standards and guidelines. Though designed for use in a fairly restricted user domain, i.e., spacecraft mission operations, the CHIMES system is essentially domain independent and applicable wherever graphical user interfaces of displays are to be encountered. The CHIMES philosophy and operating strategy are quite simple. Instead of requiring a human designer to actively maintain in his or her head the now encyclopedic knowledge that human factors and user interface specialists have evolved, CHIMES incorporates this information in its knowledge bases. When directed to evaluated a design, CHIMES determines and accesses the appropriate knowledge, performs an evaluation of the design against that information, determines whether the design is compliant with the selected guidelines and suggests corrective actions if deviations from guidelines are discovered. This paper will provide an overview of the capabilities of the current CHIMES tool and discuss the potential integration of CHIMES-like technology in automated graphic arts systems.

  11. Comparing Text-based and Graphic User Interfaces for Novice and Expert Users

    PubMed Central

    Chen, Jung-Wei; Zhang, Jiajie

    2007-01-01

    Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI. PMID:18693811

  12. Comparing Text-based and Graphic User Interfaces for novice and expert users.

    PubMed

    Chen, Jung-Wei; Zhang, Jiajie

    2007-10-11

    Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI.

  13. Icon and user interface design for emergency medical information systems: a case study.

    PubMed

    Salman, Y Batu; Cheng, Hong-In; Patterson, Patrick E

    2012-01-01

    A usable medical information system should allow for reliable and accurate interaction between users and the system in emergencies. A participatory design approach was used to develop a medical information system in two Turkish hospitals. The process consisted of task and user analysis, an icon design survey, initial icon design, final icon design and evaluation, and installation of the iconic medical information system with the icons. We observed work sites to note working processes and tasks related to the information system and interviewed medical personnel. Emergency personnel then participated in the design process to develop a usable graphical user interface, by drawing icon sketches for 23 selected tasks. Similar sketches were requested for specific tasks such as family medical history, contact information, translation, addiction, required inspections, requests and applications, and nurse observations. The sketches were analyzed and redesigned into computer icons by professional designers and the research team. A second group of physicians and nurses then tested the understandability of the icons. The user interface layout was examined and evaluated by system users, followed by the system's installation. Medical personnel reported the participatory design process was interesting and believed the resulting designs would be more familiar and friendlier. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Navigating the fifth dimension: new concepts in interactive multimodality and multidimensional image navigation

    NASA Astrophysics Data System (ADS)

    Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes

    2005-04-01

    Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.

  15. Multimodal Excitatory Interfaces with Automatic Content Classification

    NASA Astrophysics Data System (ADS)

    Williamson, John; Murray-Smith, Roderick

    We describe a non-visual interface for displaying data on mobile devices, based around active exploration: devices are shaken, revealing the contents rattling around inside. This combines sample-based contact sonification with event playback vibrotactile feedback for a rich and compelling display which produces an illusion much like balls rattling inside a box. Motion is sensed from accelerometers, directly linking the motions of the user to the feedback they receive in a tightly closed loop. The resulting interface requires no visual attention and can be operated blindly with a single hand: it is reactive rather than disruptive. This interaction style is applied to the display of an SMS inbox. We use language models to extract salient features from text messages automatically. The output of this classification process controls the timbre and physical dynamics of the simulated objects. The interface gives a rapid semantic overview of the contents of an inbox, without compromising privacy or interrupting the user.

  16. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  17. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  18. Development of the Telehealth Usability Questionnaire (TUQ).

    PubMed

    Parmanto, Bambang; Lewis, Allen Nelson; Graham, Kristin M; Bertolet, Marnie H

    2016-01-01

    Current telehealth usability questionnaires are designed primarily for older technologies, where telehealth interaction is conducted over dedicated videoconferencing applications. However, telehealth services are increasingly conducted over computer-based systems that rely on commercial software and a user supplied computer interface. Therefore, a usability questionnaire that addresses the changes in telehealth service delivery and technology is needed. The Telehealth Usability Questionnaire (TUQ) was developed to evaluate the usability of telehealth implementation and services. This paper addresses: (1) the need for a new measure of telehealth usability, (2) the development of the TUQ, (3) intended uses for the TUQ, and (4) the reliability of the TUQ. Analyses indicate that the TUQ is a solid, robust, and versatile measure that can be used to measure the quality of the computer-based user interface and the quality of the telehealth interaction and services.

  19. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.

    PubMed

    McFarland, Dennis J; Krusienski, Dean J; Wolpaw, Jonathan R

    2006-01-01

    The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.

  20. Intelligent Motion and Interaction Within Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  1. Smartphone interface to USGS 'Did You Feel It?' - Getting More Citizens Involved in Science

    NASA Astrophysics Data System (ADS)

    Savran, W. H.; Petersen, R. I.; Wukusick, M.

    2013-12-01

    Over the last hundred years, we have put forth a concerted effort to install a dense array of seismometers - used to monitor and measure seismic waves propagating through the earth. In addition to expensive instrumentation, citizens provide useful data to the earthquake science community as demonstrated by the USGS 'Did you feel it?' project. Currently, the 'Did You Feel It?' data is acquired, through an internet browser, from a long questionnaire. With the increasing number of smartphone owners, an application interfacing the population with the 'Did you feel it?' project introduces the next logical step in progressing this technology. We are developing an application, which utilizes many features of modern smartphones to provide a better interface from citizen to scientist. Our application will notify users of any earthquake within a predefined distance above a predefined size. At this point, the user has the option to answer the questionnaire and send their experience of the earthquake to the USGS 'Did you feel it?' database or simply decline. Instead of a cumbersome web-form, the user will be prompted for questions in line with the paradigm of current smartphone application development. An easy, interactive interface allows the user to answer the questions rapidly in a fun manner, resulting in more participation. In addition to putting earthquake science into the hands of many more citizens, the application will also allow the user to place an emergency call in case of casualty during the next big one. Future versions of the application will allow users to take, view, and submit photographs of damage caused by the earthquake. Also, users will be able to view intensity maps generated for the event they evaluated. The USGS has already done an incredible job setting up the 'Did you feel it?' framework; having a more accessible user interface to acquire data will greatly expand the possibilities of the 'Did you feel it?' project.

  2. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  3. Video game interfaces for interactive lower and upper member therapy.

    PubMed

    Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron; Alves, Silas

    2013-01-01

    With recent advances in electronics and mechanics, a new trend in interaction is taking place changing how we interact with our environment, daily tasks and other people. Even though sensor based technologies and tracking systems have been around for several years, recently they have become affordable and used in several areas such as physical and mental rehabilitation, educational applications, physical exercises, and natural interactions, among others. This work presents the integration of two mainstream videogame interfaces as tools for developing an interactive lower and upper member therapy tool. The goal is to study the potential of these devices as complementing didactic elements for improving and following user performance during a series of exercises with virtual and real devices.

  4. Determining the Number of Participants Needed for the Usability Evaluation of E-Learning Resources: A Monte Carlo Simulation

    ERIC Educational Resources Information Center

    Davids, Mogamat Razeen; Harvey, Justin; Halperin, Mitchell L.; Chikte, Usuf M. E.

    2015-01-01

    The usability of computer interfaces has a major influence on learning. Optimising the usability of e-learning resources is therefore essential. However, this may be neglected because of time and monetary constraints. User testing is a common approach to usability evaluation and involves studying typical end-users interacting with the application…

  5. Effective color design for displays

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  6. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.

    PubMed

    Delorme, Arnaud; Makeig, Scott

    2004-03-15

    We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.

  7. Interactive team suggestion for users of digital libraries: Using subject thesauri and co-occurrence lists for information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, B.R.; Johnson, E.H.; Cochrane, P.A.

    The basic problem in information retrieval is that large-scale searches can only match terms specified by the user to terms appearing in documents in the digital library collection. Intermediate sources that support term suggestion can thus enhance retrieval by providing alternative search terms for the user. Term suggestion increases the recall, while interaction enables the user to attempt to not decrease the precision. We are building a prototype user interface that will become the Web interface for the University of Illinois Digital Library Initiative (DLI) testbed. It supports the principal of multiple views, where different kinds of term suggestors canmore » be used to complement search and each other. This paper discusses its operation with two complementary term suggestors, subject thesauri and co-occurrence lists, and compared their utility. Thesauri are generated by human indexers and place selected terms in a subject hierarchy. Co-occurrence lists are generated by computer and place all terms in frequency order of occurrence together. This paper concludes with a discussion of how multiple views can help provide good quality Search for the Net. This is a paper about the design of a retrieval system prototype that allows users to simultaneously combine terms offered by different suggestion techniques, not about comparing the merits of each in a systematic and controlled way. It offers no experimental results.« less

  8. GeoCrystal: graphic-interactive access to geodata archives

    NASA Astrophysics Data System (ADS)

    Goebel, Stefan; Haist, Joerg; Jasnoch, Uwe

    2002-03-01

    Recently there is spent a lot of effort to establish information systems and global infrastructures enabling both data suppliers and users to describe (-> eCommerce, metadata) as well as to find appropriate data. Examples for this are metadata information systems, online-shops or portals for geodata. The main disadvantages of existing approaches are insufficient methods and mechanisms leading users to (e.g. spatial) data archives. This affects aspects concerning usability and personalization in general as well as visual feedback techniques in the different steps of the information retrieval process. Several approaches aim at the improvement of graphical user interfaces by using intuitive metaphors, but only some of them offer 3D interfaces in the form of information landscapes or geographic result scenes in the context of information systems for geodata. This paper presents GeoCrystal, which basic idea is to adopt Venn diagrams to compose complex queries and to visualize search results in a 3D information and navigation space for geodata. These concepts are enhanced with spatial metaphors and 3D information landscapes (library for geodata) wherein users can specify searches for appropriate geodata and are enabled to graphic-interactively communicate with search results (book metaphor).

  9. The IMUTUS interactive music tuition system

    NASA Astrophysics Data System (ADS)

    Tambouratzis, George; Bakamidis, Stelios; Dologlou, Ioannis; Carayannis, George; Dendrinos, Markos

    2002-05-01

    This presentation focuses on the IMUTUS project, which concerns the creation of an innovative method for training users on traditional musical instruments with no MIDI (Musical Instrument Digital Interface) output. The entities collaborating in IMUTUS are ILSP (coordinator), EXODUS, SYSTEMA, DSI, SMF, GRAME, and KTH. The IMUTUS effectiveness is enhanced via an advanced user interface incorporating multimedia techniques. Internet plays a pivotal role during training, the student receiving guidance over the net from a specially created teacher group. Interactiveness is emphasized via automatic-scoring tools, which provide fast yet accurate feedback to the user, while virtual reality methods assist the student in perfecting his technique. IMUTUS incorporates specialized recognition technology for the transformation of acoustic signals and music scores to MIDI format and incorporation in the training process. This process is enhanced by periodically enriching the score database, while customization to each user's requirements is supported. This work is partially supported by European Community under the Information Society Technology (IST) RTD programme. The authors are solely responsible for the content of this communication. It does not represent the opinion of the European Community, and the European Community is not responsible for any use that might be made of data appearing therein.

  10. A software architecture for automating operations processes

    NASA Technical Reports Server (NTRS)

    Miller, Kevin J.

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.

  11. Usability Evaluation Methods for Gesture-Based Games: A Systematic Review.

    PubMed

    Simor, Fernando Winckler; Brum, Manoela Rogofski; Schmidt, Jaison Dairon Ebertz; Rieder, Rafael; De Marchi, Ana Carolina Bertoletti

    2016-10-04

    Gestural interaction systems are increasingly being used, mainly in games, expanding the idea of entertainment and providing experiences with the purpose of promoting better physical and/or mental health. Therefore, it is necessary to establish mechanisms for evaluating the usability of these interfaces, which make gestures the basis of interaction, to achieve a balance between functionality and ease of use. This study aims to present the results of a systematic review focused on usability evaluation methods for gesture-based games, considering devices with motion-sensing capability. We considered the usability methods used, the common interface issues, and the strategies adopted to build good gesture-based games. The research was centered on four electronic databases: IEEE, Association for Computing Machinery (ACM), Springer, and Science Direct from September 4 to 21, 2015. Within 1427 studies evaluated, 10 matched the eligibility criteria. As a requirement, we considered studies about gesture-based games, Kinect and/or Wii as devices, and the use of a usability method to evaluate the user interface. In the 10 studies found, there was no standardization in the methods because they considered diverse analysis variables. Heterogeneously, authors used different instruments to evaluate gesture-based interfaces and no default approach was proposed. Questionnaires were the most used instruments (70%, 7/10), followed by interviews (30%, 3/10), and observation and video recording (20%, 2/10). Moreover, 60% (6/10) of the studies used gesture-based serious games to evaluate the performance of elderly participants in rehabilitation tasks. This highlights the need for creating an evaluation protocol for older adults to provide a user-friendly interface according to the user's age and limitations. Through this study, we conclude this field is in need of a usability evaluation method for serious games, especially games for older adults, and that the definition of a methodology and a test protocol may offer the user more comfort, welfare, and confidence.

  12. User-Friendly Interface Developed for a Web-Based Service for SpaceCAL Emulations

    NASA Technical Reports Server (NTRS)

    Liszka, Kathy J.; Holtz, Allen P.

    2004-01-01

    A team at the NASA Glenn Research Center is developing a Space Communications Architecture Laboratory (SpaceCAL) for protocol development activities for coordinated satellite missions. SpaceCAL will provide a multiuser, distributed system to emulate space-based Internet architectures, backbone networks, formation clusters, and constellations. As part of a new effort in 2003, building blocks are being defined for an open distributed system to make the satellite emulation test bed accessible through an Internet connection. The first step in creating a Web-based service to control the emulation remotely is providing a user-friendly interface for encoding the data into a well-formed and complete Extensible Markup Language (XML) document. XML provides coding that allows data to be transferred between dissimilar systems. Scenario specifications include control parameters, network routes, interface bandwidths, delay, and bit error rate. Specifications for all satellite, instruments, and ground stations in a given scenario are also included in the XML document. For the SpaceCAL emulation, the XML document can be created using XForms, a Webbased forms language for data collection. Contrary to older forms technology, the interactive user interface makes the science prevalent, not the data representation. Required versus optional input fields, default values, automatic calculations, data validation, and reuse will help researchers quickly and accurately define missions. XForms can apply any XML schema defined for the test mission to validate data before forwarding it to the emulation facility. New instrument definitions, facilities, and mission types can be added to the existing schema. The first prototype user interface incorporates components for interactive input and form processing. Internet address, data rate, and the location of the facility are implemented with basic form controls with default values provided for convenience and efficiency using basic XForms operations. Because different emulation scenarios will vary widely in their component structure, more complex operations are used to add and delete facilities.

  13. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    NASA Astrophysics Data System (ADS)

    Buszko, Marian L.; Buszko, Dominik; Wang, Daniel C.

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance.

  14. IGDS/TRAP Interface Program (ITIP). Software User Manual (SUM). [network flow diagrams for coal gasification studies

    NASA Technical Reports Server (NTRS)

    Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.

    1981-01-01

    This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.

  15. Using Eye Movement to Control a Computer: A Design for a Lightweight Electro-Oculogram Electrode Array and Computer Interface

    PubMed Central

    Iáñez, Eduardo; Azorin, Jose M.; Perez-Vidal, Carlos

    2013-01-01

    This paper describes a human-computer interface based on electro-oculography (EOG) that allows interaction with a computer using eye movement. The EOG registers the movement of the eye by measuring, through electrodes, the difference of potential between the cornea and the retina. A new pair of EOG glasses have been designed to improve the user's comfort and to remove the manual procedure of placing the EOG electrodes around the user's eye. The interface, which includes the EOG electrodes, uses a new processing algorithm that is able to detect the gaze direction and the blink of the eyes from the EOG signals. The system reliably enabled subjects to control the movement of a dot on a video screen. PMID:23843986

  16. Rule-based interface generation on mobile devices for structured documentation.

    PubMed

    Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef

    2014-01-01

    In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language.

  17. Location and Modality Effects in Online Dating: Rich Modality Profile and Location-Based Information Cues Increase Social Presence, While Moderating the Impact of Uncertainty Reduction Strategy.

    PubMed

    Jung, Soyoung; Roh, Soojin; Yang, Hyun; Biocca, Frank

    2017-09-01

    This study investigates how different interface modality features of online dating sites, such as location awareness cues and modality of profiles, affect the sense of social presence of a prospective date. We also examined how various user behaviors aimed at reducing uncertainty about online interactions affect social presence perceptions and are affected by the user interface features. Male users felt a greater sense of social presence when exposed to both location and accessibility cues (geographical proximity) and a richer medium (video profiles). Viewing a richer medium significantly increased the sense of social presence among female participants whereas location-based information sharing features did not directly affect their social presence perception. Augmented social presence, as a mediator, contributed to users' greater intention to meet potential dating partners in a face-to-face setting and to buy paid memberships on online dating sites.

  18. Software design for analysis of multichannel intracardial and body surface electrocardiograms.

    PubMed

    Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A

    2002-11-01

    Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.

  19. ROCOPT: A user friendly interactive code to optimize rocket structural components

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1989-01-01

    ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.

  20. Visual Analytics for Heterogeneous Geoscience Data

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We demonstrate with use cases how scientists can combine the query and visualization interfaces to enable a customized workflow facilitating studies using heterogeneous geoscience datasets.

  1. Human-Computer Interaction in Tactical Operations: Designing for Effective Human-Computer Dialogue

    DTIC Science & Technology

    1990-09-01

    developing re-usable interface software. Furthermore, steps can be taken toward standardization, and the specifier may be able to take on an increased...The semantic level deals with the meaning of the dialogue to the user. The user has a "point of view" or a " mental model" which provides a context for...information may not occur. As shown in Figure 3-4, the user’s mental model is termed the USER MODEL (Norman and Draper, 1986, p. 47). The programmer’s

  2. User clustering in smartphone applications.

    PubMed

    Schaefers, Klaus; Ribeiro, David

    2012-01-01

    In the context of mobile health applications usability is a crucial factor to achieve user acceptance. The successful user interface (UI) design requires a deep understanding of the needs and requirements of the targeted audience. This paper explores the application of the K-Means algorithm on smartphone usage data in order to offer Human Computer Interaction (HCI) specialists a better insight into their user group. Two different feature space representations are introduced and used to identify persona like stereotypes in a real world data set, which was obtained from a public available smartphone application.

  3. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human andmore » machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.« less

  4. A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package.

    PubMed

    Lan, Hongzhi; Updegrove, Adam; Wilson, Nathan M; Maher, Gabriel D; Shadden, Shawn C; Marsden, Alison L

    2018-02-01

    Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.

  5. Human Factors Engineering and testing for a wearable, long duration ultrasound system self-applied by an end user.

    PubMed

    Taggart, Rebecca; Langer, Matthew D; Lewis, George K

    2014-01-01

    One of the major challenges in the design of a new class of medical device is ensuring that the device will have a safe and effective user interface for the intended users. Human Factors Engineering addresses these concerns through direct study of how a user interacts with newly designed devices with unique features. In this study, a novel long duration, low intensity therapeutic ultrasound device is tested by 20 end users representative of the intended user population. Over 90% of users were able to operate the device successfully. The therapeutic ultrasound device was found to be reasonably safe and effective for the intended users, uses, and use environments.

  6. Project Ukko - Design of a climate service visualisation interface for seasonal wind forecasts

    NASA Astrophysics Data System (ADS)

    Hemment, Drew; Stefaner, Moritz; Makri, Stephann; Buontempo, Carlo; Christel, Isadora; Torralba-Fernandez, Veronica; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco; de Matos, Paula; Dykes, Jason

    2016-04-01

    Project Ukko is a prototype climate service to visually communicate probabilistic seasonal wind forecasts for the energy sector. In Project Ukko, an interactive visualisation enhances the accessibility and readability to the latests advances in seasonal wind speed predictions developed as part of the RESILIENCE prototype of the EUPORIAS (EC FP7) project. Climate services provide made-to-measure climate information, tailored to the specific requirements of different users and industries. In the wind energy sector, understanding of wind conditions in the next few months has high economic value, for instance, for the energy traders. Current energy practices use retrospective climatology, but access to reliable seasonal predictions based in the recent advances in global climate models has potential to improve their resilience to climate variability and change. Despite their potential benefits, a barrier to the development of commercially viable services is the complexity of the probabilistic forecast information, and the challenge of communicating complex and uncertain information to decision makers in industry. Project Ukko consists of an interactive climate service interface for wind energy users to explore probabilistic wind speed predictions for the coming season. This interface enables fast visual detection and exploration of interesting features and regions likely to experience unusual changes in wind speed in the coming months.The aim is not only to support users to better understand the future variability in wind power resources, but also to bridge the gap between practitioners' traditional approach and the advanced prediction systems developed by the climate science community. Project Ukko is presented as a case study of cross-disciplinary collaboration between climate science and design, for the development of climate services that are useful, usable and effective for industry users. The presentation will reflect on the challenge of developing a climate service for industry users in the wind energy sector, the background to this challenge, our approach, and the evaluation of the visualisation interface.

  7. An interactive information kiosk for the Adirondack Park Visitor Interpretive Center, Newcomb, NY

    Treesearch

    Lien Alpert; Lee P. Herrington

    1998-01-01

    Kiosks have traditionally been non-electronic, but today kiosks are being developed as interactive, electronic information centers to transmit information about government services, commercial products and recreational experiences. This project's objective was to develop and evaluate the usefulness of a user-friendly information interface for kiosks in the...

  8. A Kinect-Based Assessment System for Smart Classroom

    ERIC Educational Resources Information Center

    Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin

    2015-01-01

    With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…

  9. A Matlab/Simulink-Based Interactive Module for Servo Systems Learning

    ERIC Educational Resources Information Center

    Aliane, N.

    2010-01-01

    This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…

  10. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  11. A pen-based system to support pre-operative data collection within an anaesthesia department.

    PubMed Central

    Sanz, M. F.; Gómez, E. J.; Trueba, I.; Cano, P.; Arredondo, M. T.; del Pozo, F.

    1993-01-01

    This paper describes the design and implementation of a pen-based computer system for remote preoperative data collection. The system is envisaged to be used by anaesthesia staff at different hospital scenarios where pre-operative data are generated. Pen-based technology offers important advantages in terms of portability and human-computer interaction, as direct manipulation interfaces by direct pointing, and "notebook user interfaces metaphors". Being the human factors analysis and user interface design a vital stage to achieve the appropriate user acceptability, a methodology that integrates the "usability" evaluation from the earlier development stages was used. Additionally, the selection of a pen-based computer system as a portable device to be used by health care personnel allows to evaluate the appropriateness of this new technology for remote data collection within the hospital environment. The work presented is currently being realised under the Research Project "TANIT: Telematics in Anaesthesia and Intensive Care", within the "A.I.M.--Telematics in Health CARE" European Research Program. PMID:8130488

  12. BMRF-Net: a software tool for identification of protein interaction subnetworks by a bagging Markov random field-based method.

    PubMed

    Shi, Xu; Barnes, Robert O; Chen, Li; Shajahan-Haq, Ayesha N; Hilakivi-Clarke, Leena; Clarke, Robert; Wang, Yue; Xuan, Jianhua

    2015-07-15

    Identification of protein interaction subnetworks is an important step to help us understand complex molecular mechanisms in cancer. In this paper, we develop a BMRF-Net package, implemented in Java and C++, to identify protein interaction subnetworks based on a bagging Markov random field (BMRF) framework. By integrating gene expression data and protein-protein interaction data, this software tool can be used to identify biologically meaningful subnetworks. A user friendly graphic user interface is developed as a Cytoscape plugin for the BMRF-Net software to deal with the input/output interface. The detailed structure of the identified networks can be visualized in Cytoscape conveniently. The BMRF-Net package has been applied to breast cancer data to identify significant subnetworks related to breast cancer recurrence. The BMRF-Net package is available at http://sourceforge.net/projects/bmrfcjava/. The package is tested under Ubuntu 12.04 (64-bit), Java 7, glibc 2.15 and Cytoscape 3.1.0. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Beyond image quality: designing engaging interactions with digital products

    NASA Astrophysics Data System (ADS)

    de Ridder, Huib; Rozendaal, Marco C.

    2008-02-01

    Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed visually, but other criteria such as enjoyment, fun, engagement and hedonic quality are emerging. This paper deals with engagement, the intrinsically enjoyable readiness to put more effort into exploring and/or using a product than strictly required, thus attracting and keeping user's attention for a longer period of time. The impact of the experienced richness of an interface, both visually and degree of possible manipulations, was investigated in a series of experiments employing game-like user interfaces. This resulted in the extension of an existing conceptual framework relating engagement to richness by means of two intermediating variables, namely experienced challenge and sense of control. Predictions from this revised framework are evaluated against results of an earlier experiment assessing the ergonomic and hedonic qualities of interactive media. Test material consisted of interactive CD-ROM's containing presentations of three companies for future customers.

  14. Performance-Driven Hybrid Full-Body Character Control for Navigation and Interaction in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-06-01

    This paper presents a hybrid character control interface that provides the ability to synthesize in real-time a variety of actions based on the user's performance capture. The proposed methodology enables three different performance interaction modules: the performance animation control that enables the direct mapping of the user's pose to the character, the motion controller that synthesizes the desired motion of the character based on an activity recognition methodology, and the hybrid control that lies within the performance animation and the motion controller. With the methodology presented, the user will have the freedom to interact within the virtual environment, as well as the ability to manipulate the character and to synthesize a variety of actions that cannot be performed directly by him/her, but which the system synthesizes. Therefore, the user is able to interact with the virtual environment in a more sophisticated fashion. This paper presents examples of different scenarios based on the three different full-body character control methodologies.

  15. User interface for a tele-operated robotic hand system

    DOEpatents

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  16. Hydraulophones: Acoustic musical instruments and expressive user interfaces

    NASA Astrophysics Data System (ADS)

    Janzen, Ryan E.

    Fluid flow creates an expansive range of acoustic possibilities, particularly in the case of water, which has unique turbulence and vortex shedding properties as compared with the air of ordinary wind instruments. Sound from water flow is explained with reference to a new class of musical instruments, hydraulophones, in which oscillation originates directly from matter in its liquid state. Several hydraulophones which were realized in practical form are described. A unique user-interface consisting of a row of water jets is presented, in terms of its expressiveness, tactility, responsiveness to derivatives and integrals of displacement, and in terms of the direct physical interaction between a user and the physical process of sound production. Signal processing algorithms are introduced, which extract further information from turbulent water flow, for industrial applications as well as musical applications.

  17. IAIMS Architecture

    PubMed Central

    Hripcsak, George

    1997-01-01

    Abstract An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884

  18. Leveraging Terminology Services for Extract-Transform-Load Processes: A User-Centered Approach

    PubMed Central

    Peterson, Kevin J.; Jiang, Guoqian; Brue, Scott M.; Liu, Hongfang

    2016-01-01

    Terminology services serve an important role supporting clinical and research applications, and underpin a diverse set of processes and use cases. Through standardization efforts, terminology service-to-system interactions can leverage well-defined interfaces and predictable integration patterns. Often, however, users interact more directly with terminologies, and no such blueprints are available for describing terminology service-to-user interactions. In this work, we explore the main architecture principles necessary to build a user-centered terminology system, using an Extract-Transform-Load process as our primary usage scenario. To analyze our architecture, we present a prototype implementation based on the Common Terminology Services 2 (CTS2) standard using the Patient-Centered Network of Learning Health Systems (LHSNet) project as a concrete use case. We perform a preliminary evaluation of our prototype architecture using three architectural quality attributes: interoperability, adaptability and usability. We find that a design-time focus on user needs, cognitive models, and existing patterns is essential to maximize system utility. PMID:28269898

  19. Design and evaluation of nonverbal sound-based input for those with motor handicapped.

    PubMed

    Punyabukkana, Proadpran; Chanjaradwichai, Supadaech; Suchato, Atiwong

    2013-03-01

    Most personal computing interfaces rely on the users' ability to use their hand and arm movements to interact with on-screen graphical widgets via mainstream devices, including keyboards and mice. Without proper assistive devices, this style of input poses difficulties for motor-handicapped users. We propose a sound-based input scheme enabling users to operate Windows' Graphical User Interface by producing hums and fricatives through regular microphones. Hierarchically arranged menus are utilized so that only minimal numbers of different actions are required at a time. The proposed scheme was found to be accurate and capable of responding promptly compared to other sound-based schemes. Being able to select from multiple item-selecting modes helps reducing the average time duration needed for completing tasks in the test scenarios almost by half the time needed when the tasks were performed solely through cursor movements. Still, improvements on facilitating users to select the most appropriate modes for desired tasks should improve the overall usability of the proposed scheme.

  20. HierarchicalTopics: visually exploring large text collections using topic hierarchies.

    PubMed

    Dou, Wenwen; Yu, Li; Wang, Xiaoyu; Ma, Zhiqiang; Ribarsky, William

    2013-12-01

    Analyzing large textual collections has become increasingly challenging given the size of the data available and the rate that more data is being generated. Topic-based text summarization methods coupled with interactive visualizations have presented promising approaches to address the challenge of analyzing large text corpora. As the text corpora and vocabulary grow larger, more topics need to be generated in order to capture the meaningful latent themes and nuances in the corpora. However, it is difficult for most of current topic-based visualizations to represent large number of topics without being cluttered or illegible. To facilitate the representation and navigation of a large number of topics, we propose a visual analytics system--HierarchicalTopic (HT). HT integrates a computational algorithm, Topic Rose Tree, with an interactive visual interface. The Topic Rose Tree constructs a topic hierarchy based on a list of topics. The interactive visual interface is designed to present the topic content as well as temporal evolution of topics in a hierarchical fashion. User interactions are provided for users to make changes to the topic hierarchy based on their mental model of the topic space. To qualitatively evaluate HT, we present a case study that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups. We have also conducted a user study to quantitatively evaluate the effect of hierarchical topic structure. The study results reveal that the HT leads to faster identification of large number of relevant topics. We have also solicited user feedback during the experiments and incorporated some suggestions into the current version of HierarchicalTopics.

  1. Dakota Graphical User Interface v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest; Glickman, Matthew; Gibson, Marcus

    Graphical analysis environment for Sandia’s Dakota software for optimization and uncertainty quantification. The Dakota GUI is an interactive graphical analysis environment for creating, running, and interpreting Dakota optimization and uncertainty quantification studies. It includes problem (Dakota study) set-up, option specification, simulation interfacing, analysis execution, and results visualization. Through the use of wizards, templates, and views, Dakota GUI helps uses navigate Dakota’s complex capability landscape.

  2. Chips: A Tool for Developing Software Interfaces Interactively.

    DTIC Science & Technology

    1987-10-01

    of the application through the objects on the screen. Chips makes this easy by supplying simple and direct access to the source code and data ...object-oriented programming, user interface management systems, programming environments. Typographic Conventions Technical terms appearing in the...creating an environment in which we could do our work. This project could not have happened without him. Jeff Bonar started and managed the Chips

  3. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    ERIC Educational Resources Information Center

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  4. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  5. LinkWinds: An Approach to Visual Data Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1992-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.

  6. Acquisition of ICU data: concepts and demands.

    PubMed

    Imhoff, M

    1992-12-01

    As the issue of data overload is a problem in critical care today, it is of utmost importance to improve acquisition, storage, integration, and presentation of medical data, which appears only feasible with the help of bedside computers. The data originates from four major sources: (1) the bedside medical devices, (2) the local area network (LAN) of the ICU, (3) the hospital information system (HIS) and (4) manual input. All sources differ markedly in quality and quantity of data and in the demands of the interfaces between source of data and patient database. The demands for data acquisition from bedside medical devices, ICU-LAN and HIS concentrate on technical problems, such as computational power, storage capacity, real-time processing, interfacing with different devices and networks and the unmistakable assignment of data to the individual patient. The main problem of manual data acquisition is the definition and configuration of the user interface that must allow the inexperienced user to interact with the computer intuitively. Emphasis must be put on the construction of a pleasant, logical and easy-to-handle graphical user interface (GUI). Short response times will require high graphical processing capacity. Moreover, high computational resources are necessary in the future for additional interfacing devices such as speech recognition and 3D-GUI. Therefore, in an ICU environment the demands for computational power are enormous. These problems are complicated by the urgent need for friendly and easy-to-handle user interfaces. Both facts place ICU bedside computing at the vanguard of present and future workstation development leaving no room for solutions based on traditional concepts of personal computers.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The Body-Machine Interface: A new perspective on an old theme

    PubMed Central

    Casadio, Maura; Ranganathan, Rajiv; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    Body-machine interfaces establish a way to interact with a variety of devices, allowing their users to extend the limits of their performance. Recent advances in this field, ranging from computer-interfaces to bionic limbs, have had important consequences for people with movement disorders. In this article, we provide an overview of the basic concepts underlying the body-machine interface with special emphasis on their use for rehabilitation and for operating assistive devices. We outline the steps involved in building such an interface and we highlight the critical role of body-machine interfaces in addressing theoretical issues in motor control as well as their utility in movement rehabilitation. PMID:23237465

  8. shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics.

    PubMed

    Khomtchouk, Bohdan B; Hennessy, James R; Wahlestedt, Claes

    2017-01-01

    Transcriptomics, metabolomics, metagenomics, and other various next-generation sequencing (-omics) fields are known for their production of large datasets, especially across single-cell sequencing studies. Visualizing such big data has posed technical challenges in biology, both in terms of available computational resources as well as programming acumen. Since heatmaps are used to depict high-dimensional numerical data as a colored grid of cells, efficiency and speed have often proven to be critical considerations in the process of successfully converting data into graphics. For example, rendering interactive heatmaps from large input datasets (e.g., 100k+ rows) has been computationally infeasible on both desktop computers and web browsers. In addition to memory requirements, programming skills and knowledge have frequently been barriers-to-entry for creating highly customizable heatmaps. We propose shinyheatmap: an advanced user-friendly heatmap software suite capable of efficiently creating highly customizable static and interactive biological heatmaps in a web browser. shinyheatmap is a low memory footprint program, making it particularly well-suited for the interactive visualization of extremely large datasets that cannot typically be computed in-memory due to size restrictions. Also, shinyheatmap features a built-in high performance web plug-in, fastheatmap, for rapidly plotting interactive heatmaps of datasets as large as 105-107 rows within seconds, effectively shattering previous performance benchmarks of heatmap rendering speed. shinyheatmap is hosted online as a freely available web server with an intuitive graphical user interface: http://shinyheatmap.com. The methods are implemented in R, and are available as part of the shinyheatmap project at: https://github.com/Bohdan-Khomtchouk/shinyheatmap. Users can access fastheatmap directly from within the shinyheatmap web interface, and all source code has been made publicly available on Github: https://github.com/Bohdan-Khomtchouk/fastheatmap.

  9. Experiments in cooperative manipulation: A system perspective

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1989-01-01

    In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.

  10. Actor groups, related needs, and challenges at the climate downscaling interface

    NASA Astrophysics Data System (ADS)

    Rössler, Ole; Benestad, Rasmus; Diamando, Vlachogannis; Heike, Hübener; Kanamaru, Hideki; Pagé, Christian; Margarida Cardoso, Rita; Soares, Pedro; Maraun, Douglas; Kreienkamp, Frank; Christodoulides, Paul; Fischer, Andreas; Szabo, Peter

    2016-04-01

    At the climate downscaling interface, numerous downscaling techniques and different philosophies compete on being the best method in their specific terms. Thereby, it remains unclear to what extent and for which purpose these downscaling techniques are valid or even the most appropriate choice. A common validation framework that compares all the different available methods was missing so far. The initiative VALUE closes this gap with such a common validation framework. An essential part of a validation framework for downscaling techniques is the definition of appropriate validation measures. The selection of validation measures should consider the needs of the stakeholder: some might need a temporal or spatial average of a certain variable, others might need temporal or spatial distributions of some variables, still others might need extremes for the variables of interest or even inter-variable dependencies. Hence, a close interaction of climate data providers and climate data users is necessary. Thus, the challenge in formulating a common validation framework mirrors also the challenges between the climate data providers and the impact assessment community. This poster elaborates the issues and challenges at the downscaling interface as it is seen within the VALUE community. It suggests three different actor groups: one group consisting of the climate data providers, the other two groups being climate data users (impact modellers and societal users). Hence, the downscaling interface faces classical transdisciplinary challenges. We depict a graphical illustration of actors involved and their interactions. In addition, we identified four different types of issues that need to be considered: i.e. data based, knowledge based, communication based, and structural issues. They all may, individually or jointly, hinder an optimal exchange of data and information between the actor groups at the downscaling interface. Finally, some possible ways to tackle these issues are discussed.

  11. Design and usability evaluation of user-centered and visual-based aids for dietary food measurement on mobile devices in a randomized controlled trial.

    PubMed

    Liu, Ying-Chieh; Chen, Chien-Hung; Lee, Chien-Wei; Lin, Yu-Sheng; Chen, Hsin-Yun; Yeh, Jou-Yin; Chiu, Sherry Yueh-Hsia

    2016-12-01

    We designed and developed two interactive apps interfaces for dietary food measurements on mobile devices. The user-centered designs of both the IPI (interactive photo interface) and the SBI (sketching-based interface) were evaluated. Four types of outcomes were assessed to evaluate the usability of mobile devices for dietary measurements, including accuracy, absolute weight differences, and the response time to determine the efficacy of food measurements. The IPI presented users with images of pre-determined portion sizes of a specific food and allowed users to scan and then select the most representative image matching the food that they were measuring. The SBI required users to relate the food shape to a readily available comparator (e.g., credit card) and scribble to shade in the appropriate area. A randomized controlled trial was conducted to evaluate their usability. A total of 108 participants were randomly assigned into the following three groups: the IPI (n=36) and SBI (n=38) experimental groups and the traditional life-size photo (TLP) group as the control. A total of 18 types of food items with 3-4 different weights were randomly selected for assessment by each type. The independent Chi-square test and t-test were performed for the dichotomous and continuous variable analyses, respectively. The total accuracy rates were 66.98%, 44.15%, and 72.06% for the IPI, SBI, and TLP, respectively. No significant difference was observed between the IPI and TLP, regardless of the accuracy proportion or weight differences. The SBI accuracy rates were significantly lower than the IPI and TLP accuracy rates, especially for several spooned, square cube, and sliced pie food items. The time needed to complete the operation assessment by the user was significantly lower for the IPI than for the SBI. Our study corroborates that the user-centered visual-based design of the IPI on a mobile device is comparable the TLP in terms of the usability for dietary food measurements. However, improvements are needed because both the IPI and TLP accuracies associated with some food shapes were lower than 60%. The SBI is not yet a viable aid. This innovative alternative required further improvements to the user interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The use of ambient audio to increase safety and immersion in location-based games

    NASA Astrophysics Data System (ADS)

    Kurczak, John Jason

    The purpose of this thesis is to propose an alternative type of interface for mobile software being used while walking or running. Our work addresses the problem of visual user interfaces for mobile software be- ing potentially unsafe for pedestrians, and not being very immersive when used for location-based games. In addition, location-based games and applications can be dif- ficult to develop when directly interfacing with the sensors used to track the user's location. These problems need to be addressed because portable computing devices are be- coming a popular tool for navigation, playing games, and accessing the internet while walking. This poses a safety problem for mobile users, who may be paying too much attention to their device to notice and react to hazards in their environment. The difficulty of developing location-based games and other location-aware applications may significantly hinder the prevalence of applications that explore new interaction techniques for ubiquitous computing. We created the TREC toolkit to address the issues with tracking sensors while developing location-based games and applications. We have developed functional location-based applications with TREC to demonstrate the amount of work that can be saved by using this toolkit. In order to have a safer and more immersive alternative to visual interfaces, we have developed ambient audio interfaces for use with mobile applications. Ambient audio uses continuous streams of sound over headphones to present information to mobile users without distracting them from walking safely. In order to test the effectiveness of ambient audio, we ran a study to compare ambient audio with handheld visual interfaces in a location-based game. We compared players' ability to safely navigate the environment, their sense of immersion in the game, and their performance at the in-game tasks. We found that ambient audio was able to significantly increase players' safety and sense of immersion compared to a visual interface, while players performed signifi- cantly better at the game tasks when using the visual interface. This makes ambient audio a legitimate alternative to visual interfaces for mobile users when safety and immersion are a priority.

  13. C-quence: a tool for analyzing qualitative sequential data.

    PubMed

    Duncan, Starkey; Collier, Nicholson T

    2002-02-01

    C-quence is a software application that matches sequential patterns of qualitative data specified by the user and calculates the rate of occurrence of these patterns in a data set. Although it was designed to facilitate analyses of face-to-face interaction, it is applicable to any data set involving categorical data and sequential information. C-quence queries are constructed using a graphical user interface. The program does not limit the complexity of the sequential patterns specified by the user.

  14. Matching brain-machine interface performance to space applications.

    PubMed

    Citi, Luca; Tonet, Oliver; Marinelli, Martina

    2009-01-01

    A brain-machine interface (BMI) is a particular class of human-machine interface (HMI). BMIs have so far been studied mostly as a communication means for people who have little or no voluntary control of muscle activity. For able-bodied users, such as astronauts, a BMI would only be practical if conceived as an augmenting interface. A method is presented for pointing out effective combinations of HMIs and applications of robotics and automation to space. Latency and throughput are selected as performance measures for a hybrid bionic system (HBS), that is, the combination of a user, a device, and a HMI. We classify and briefly describe HMIs and space applications and then compare the performance of classes of interfaces with the requirements of classes of applications, both in terms of latency and throughput. Regions of overlap correspond to effective combinations. Devices requiring simpler control, such as a rover, a robotic camera, or environmental controls are suitable to be driven by means of BMI technology. Free flyers and other devices with six degrees of freedom can be controlled, but only at low-interactivity levels. More demanding applications require conventional interfaces, although they could be controlled by BMIs once the same levels of performance as currently recorded in animal experiments are attained. Robotic arms and manipulators could be the next frontier for noninvasive BMIs. Integrating smart controllers in HBSs could improve interactivity and boost the use of BMI technology in space applications.

  15. User interface enhancement report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Gangel, J.; Shields, G.; Fala, G.

    1985-01-01

    The existing user interfaces to TEMPUS, Plaid, and other systems in the OSDS are fundamentally based on only two modes of communication: alphanumeric commands or data input and grapical interaction. The latter are especially suited to the types of interaction necessary for creating workstation objects with BUILD and with performing body positioning in TEMPUS. Looking toward the future application of TEMPUS, however, the long-term goals of OSDS will include the analysis of extensive tasks in space involving one or more individuals working in concert over a period of time. In this context, the TEMPUS body positioning capability, though extremely useful in creating and validating a small number of particular body positions, will become somewhat tedious to use. The macro facility helps somewhat, since frequently used positions may be easily applied by executing a stored macro. The difference between body positioning and task execution, though subtle, is important. In the case of task execution, the important information at the user's level is what actions are to be performed rather than how the actions are performed. Viewed slightly differently, the what is constant over a set of individuals though the how may vary.

  16. Hybrid texture generator

    NASA Astrophysics Data System (ADS)

    Miyata, Kazunori; Nakajima, Masayuki

    1995-04-01

    A method is given for synthesizing a texture by using the interface of a conventional drawing tool. The majority of conventional texture generation methods are based on the procedural approach, and can generate a variety of textures that are adequate for generating a realistic image. But it is hard for a user to imagine what kind of texture will be generated simply by looking at its parameters. Furthermore, it is difficult to design a new texture freely without a knowledge of all the procedures for texture generation. Our method offers a solution to these problems, and has the following four merits: First, a variety of textures can be obtained by combining a set of feature lines and attribute functions. Second, data definitions are flexible. Third, the user can preview a texture together with its feature lines. Fourth, people can design their own textures interactively and freely by using the interface of a conventional drawing tool. For users who want to build this texture generation method into their own programs, we also give the language specifications for generating a texture. This method can interactively provide a variety of textures, and can also be used for typographic design.

  17. Scientific and Graphic Design Foundations for C2

    DTIC Science & Technology

    2007-06-01

    the elements in the composition. This section presents a summary of the concepts in graphic design layout, typography , color, and data graphics...assist the users in perceiving and recognizing patterns in information. Typography Typography is the art and technique of designing textual...Principles of typography for user interface design, interactions, Vol 5, pp. 15, Nov/Dec 1998 Kahneman, D., & Henik, A. 1981. Perceptual organization and

  18. Electronic Books.

    ERIC Educational Resources Information Center

    Barker, Philip; Giller, Susan

    1992-01-01

    Classifies types of electronic books: archival, informational, instructional, and interrogational; evaluates five commercially, available examples and two in-house examples; and describes software tools for creating and delivering electronic books. Identifies crucial design considerations: interactive end-user interfaces; use of hypermedia;…

  19. Video Discs in Libraries.

    ERIC Educational Resources Information Center

    Barker, Philip

    1986-01-01

    Discussion of developments in information storage technology likely to have significant impact upon library utilization focuses on hardware (videodisc technology) and software developments (knowledge databases; computer networks; database management systems; interactive video, computer, and multimedia user interfaces). Three generic computer-based…

  20. METAGUI 3: A graphical user interface for choosing the collective variables in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni; Laio, Alessandro; Rodriguez, Alex

    2017-08-01

    Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape.

  1. Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.

    2004-04-01

    A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.

  2. A database for TMT interface control documents

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Roberts, Scott; Brighton, Allan; Rogers, John

    2016-08-01

    The TMT Software System consists of software components that interact with one another through a software infrastructure called TMT Common Software (CSW). CSW consists of software services and library code that is used by developers to create the subsystems and components that participate in the software system. CSW also defines the types of components that can be constructed and their roles. The use of common component types and shared middleware services allows standardized software interfaces for the components. A software system called the TMT Interface Database System was constructed to support the documentation of the interfaces for components based on CSW. The programmer describes a subsystem and each of its components using JSON-style text files. A command interface file describes each command a component can receive and any commands a component sends. The event interface files describe status, alarms, and events a component publishes and status and events subscribed to by a component. A web application was created to provide a user interface for the required features. Files are ingested into the software system's database. The user interface allows browsing subsystem interfaces, publishing versions of subsystem interfaces, and constructing and publishing interface control documents that consist of the intersection of two subsystem interfaces. All published subsystem interfaces and interface control documents are versioned for configuration control and follow the standard TMT change control processes. Subsystem interfaces and interface control documents can be visualized in the browser or exported as PDF files.

  3. P43-S Computational Biology Applications Suite for High-Performance Computing (BioHPC.net)

    PubMed Central

    Pillardy, J.

    2007-01-01

    One of the challenges of high-performance computing (HPC) is user accessibility. At the Cornell University Computational Biology Service Unit, which is also a Microsoft HPC institute, we have developed a computational biology application suite that allows researchers from biological laboratories to submit their jobs to the parallel cluster through an easy-to-use Web interface. Through this system, we are providing users with popular bioinformatics tools including BLAST, HMMER, InterproScan, and MrBayes. The system is flexible and can be easily customized to include other software. It is also scalable; the installation on our servers currently processes approximately 8500 job submissions per year, many of them requiring massively parallel computations. It also has a built-in user management system, which can limit software and/or database access to specified users. TAIR, the major database of the plant model organism Arabidopsis, and SGN, the international tomato genome database, are both using our system for storage and data analysis. The system consists of a Web server running the interface (ASP.NET C#), Microsoft SQL server (ADO.NET), compute cluster running Microsoft Windows, ftp server, and file server. Users can interact with their jobs and data via a Web browser, ftp, or e-mail. The interface is accessible at http://cbsuapps.tc.cornell.edu/.

  4. Optimizing the Information Presentation on Mining Potential by using Web Services Technology with Restful Protocol

    NASA Astrophysics Data System (ADS)

    Abdillah, T.; Dai, R.; Setiawan, E.

    2018-02-01

    This study aims to develop the application of Web Services technology with RestFul Protocol to optimize the information presentation on mining potential. This study used User Interface Design approach for the information accuracy and relevance as well as the Web Service for the reliability in presenting the information. The results show that: the information accuracy and relevance regarding mining potential can be seen from the achievement of User Interface implementation in the application that is based on the following rules: The consideration of the appropriate colours and objects, the easiness of using the navigation, and users’ interaction with the applications that employs symbols and languages understood by the users; the information accuracy and relevance related to mining potential can be observed by the information presented by using charts and Tool Tip Text to help the users understand the provided chart/figure; the reliability of the information presentation is evident by the results of Web Services testing in Figure 4.5.6. This study finds out that User Interface Design and Web Services approaches (for the access of different Platform apps) are able to optimize the presentation. The results of this study can be used as a reference for software developers and Provincial Government of Gorontalo.

  5. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  6. HyFinBall: A Two-Handed, Hybrid 2D/3D Desktop VR Interface for Visualization

    DTIC Science & Technology

    2013-01-01

    user study . This is done in the context of a rich, visual analytics interface containing coordinated views with 2D and 3D visualizations and...the user interface (hardware and software), the design space, as well as preliminary results of a formal user study . This is done in the context of a ... virtual reality , user interface , two-handed interface , hybrid user interface , multi-touch, gesture,

  7. Brain-computer interface users speak up: the Virtual Users' Forum at the 2013 International Brain-Computer Interface Meeting.

    PubMed

    Peters, Betts; Bieker, Gregory; Heckman, Susan M; Huggins, Jane E; Wolf, Catherine; Zeitlin, Debra; Fried-Oken, Melanie

    2015-03-01

    More than 300 researchers gathered at the 2013 International Brain-Computer Interface (BCI) Meeting to discuss current practice and future goals for BCI research and development. The authors organized the Virtual Users' Forum at the meeting to provide the BCI community with feedback from users. We report on the Virtual Users' Forum, including initial results from ongoing research being conducted by 2 BCI groups. Online surveys and in-person interviews were used to solicit feedback from people with disabilities who are expert and novice BCI users. For the Virtual Users' Forum, their responses were organized into 4 major themes: current (non-BCI) communication methods, experiences with BCI research, challenges of current BCIs, and future BCI developments. Two authors with severe disabilities gave presentations during the Virtual Users' Forum, and their comments are integrated with the other results. While participants' hopes for BCIs of the future remain high, their comments about available systems mirror those made by consumers about conventional assistive technology. They reflect concerns about reliability (eg, typing accuracy/speed), utility (eg, applications and the desire for real-time interactions), ease of use (eg, portability and system setup), and support (eg, technical support and caregiver training). People with disabilities, as target users of BCI systems, can provide valuable feedback and input on the development of BCI as an assistive technology. To this end, participatory action research should be considered as a valuable methodology for future BCI research. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Graphical user interface simplifies infusion pump programming and enhances the ability to detect pump-related faults.

    PubMed

    Syroid, Noah; Liu, David; Albert, Robert; Agutter, James; Egan, Talmage D; Pace, Nathan L; Johnson, Ken B; Dowdle, Michael R; Pulsipher, Daniel; Westenskow, Dwayne R

    2012-11-01

    Drug administration errors are frequent and are often associated with the misuse of IV infusion pumps. One source of these errors may be the infusion pump's user interface. We used failure modes-and-effects analyses to identify programming errors and to guide the design of a new syringe pump user interface. We designed the new user interface to clearly show the pump's operating state simultaneously in more than 1 monitoring location. We evaluated anesthesia residents in laboratory and simulated environments on programming accuracy and error detection between the new user interface and the user interface of a commercially available infusion pump. With the new user interface, we observed the number of programming errors reduced by 81%, the number of keystrokes per task reduced from 9.2 ± 5.0 to 7.5 ± 5.5 (mean ± SD), the time required per task reduced from 18.1 ± 14.1 seconds to 10.9 ± 9.5 seconds and significantly less perceived workload. Residents detected 38 of 70 (54%) of the events with the new user interface and 37 of 70 (53%) with the existing user interface, despite no experience with the new user interface and extensive experience with the existing interface. The number of programming errors and workload were reduced partly because it took less time and fewer keystrokes to program the pump when using the new user interface. Despite minimal training, residents quickly identified preexisting infusion pump problems with the new user interface. Intuitive and easy-to-program infusion pump interfaces may reduce drug administration errors and infusion pump-related adverse events.

  9. Design and Evaluation of Fusion Approach for Combining Brain and Gaze Inputs for Target Selection

    PubMed Central

    Évain, Andéol; Argelaguet, Ferran; Casiez, Géry; Roussel, Nicolas; Lécuyer, Anatole

    2016-01-01

    Gaze-based interfaces and Brain-Computer Interfaces (BCIs) allow for hands-free human–computer interaction. In this paper, we investigate the combination of gaze and BCIs. We propose a novel selection technique for 2D target acquisition based on input fusion. This new approach combines the probabilistic models for each input, in order to better estimate the intent of the user. We evaluated its performance against the existing gaze and brain–computer interaction techniques. Twelve participants took part in our study, in which they had to search and select 2D targets with each of the evaluated techniques. Our fusion-based hybrid interaction technique was found to be more reliable than the previous gaze and BCI hybrid interaction techniques for 10 participants over 12, while being 29% faster on average. However, similarly to what has been observed in hybrid gaze-and-speech interaction, gaze-only interaction technique still provides the best performance. Our results should encourage the use of input fusion, as opposed to sequential interaction, in order to design better hybrid interfaces. PMID:27774048

  10. Visual Debugging of Object-Oriented Systems With the Unified Modeling Language

    DTIC Science & Technology

    2004-03-01

    to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture

  11. Fractangi: A Tangible Learning Environment for Learning about Fractions with an Interactive Number Line

    ERIC Educational Resources Information Center

    Mpiladeri, Magda; Palaigeorgiou, George; Lemonidis, Charalampos

    2016-01-01

    Tangible user interfaces (TUIs) are frequently used to teach children abstract concepts, in science and mathematics. TUIs offer a natural and immediate form of interaction that promotes active and hands-on engagement and allows for exploration and reflection. Tangible objects are representational artifacts in their essence, and they increase the…

  12. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.

    PubMed

    Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V

    2014-07-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

  13. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology

    PubMed Central

    Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.

    2014-01-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914

  14. Pilot study on real-time motion detection in UAS video data by human observer and image exploitation algorithm

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Voit, Michael; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2017-05-01

    Real-time motion video analysis is a challenging and exhausting task for the human observer, particularly in safety and security critical domains. Hence, customized video analysis systems providing functions for the analysis of subtasks like motion detection or target tracking are welcome. While such automated algorithms relieve the human operators from performing basic subtasks, they impose additional interaction duties on them. Prior work shows that, e.g., for interaction with target tracking algorithms, a gaze-enhanced user interface is beneficial. In this contribution, we present an investigation on interaction with an independent motion detection (IDM) algorithm. Besides identifying an appropriate interaction technique for the user interface - again, we compare gaze-based and traditional mouse-based interaction - we focus on the benefit an IDM algorithm might provide for an UAS video analyst. In a pilot study, we exposed ten subjects to the task of moving target detection in UAS video data twice, once performing with automatic support, once performing without it. We compare the two conditions considering performance in terms of effectiveness (correct target selections). Additionally, we report perceived workload (measured using the NASA-TLX questionnaire) and user satisfaction (measured using the ISO 9241-411 questionnaire). The results show that a combination of gaze input and automated IDM algorithm provides valuable support for the human observer, increasing the number of correct target selections up to 62% and reducing workload at the same time.

  15. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    PubMed

    Buszko; Buszko; Wang

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance. Copyright 1998 Academic Press.

  16. XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Dejus, Roger J.

    1997-11-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the user to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  17. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  18. User Interface Design in Medical Distributed Web Applications.

    PubMed

    Serban, Alexandru; Crisan-Vida, Mihaela; Mada, Leonard; Stoicu-Tivadar, Lacramioara

    2016-01-01

    User interfaces are important to facilitate easy learning and operating with an IT application especially in the medical world. An easy to use interface has to be simple and to customize the user needs and mode of operation. The technology in the background is an important tool to accomplish this. The present work aims to creating a web interface using specific technology (HTML table design combined with CSS3) to provide an optimized responsive interface for a complex web application. In the first phase, the current icMED web medical application layout is analyzed, and its structure is designed using specific tools, on source files. In the second phase, a new graphic adaptable interface to different mobile terminals is proposed, (using HTML table design (TD) and CSS3 method) that uses no source files, just lines of code for layout design, improving the interaction in terms of speed and simplicity. For a complex medical software application a new prototype layout was designed and developed using HTML tables. The method uses a CSS code with only CSS classes applied to one or multiple HTML table elements, instead of CSS styles that can be applied to just one DIV tag at once. The technique has the advantage of a simplified CSS code, and a better adaptability to different media resolutions compared to DIV-CSS style method. The presented work is a proof that adaptive web interfaces can be developed just using and combining different types of design methods and technologies, using HTML table design, resulting in a simpler to learn and use interface, suitable for healthcare services.

  19. Top-down methodology for human factors research

    NASA Technical Reports Server (NTRS)

    Sibert, J.

    1983-01-01

    User computer interaction as a conversation is discussed. The design of user interfaces which depends on viewing communications between a user and the computer as a conversion is presented. This conversation includes inputs to the computer (outputs from the user), outputs from the computer (inputs to the user), and the sequencing in both time and space of those outputs and inputs. The conversation is viewed from the user's side of the conversation. Two languages are modeled: the one with which the user communicates with the computer and the language where communication flows from the computer to the user. Both languages exist on three levels; the semantic, syntactic and lexical. It is suggested that natural languages can also be considered in these terms.

  20. Web-based access to near real-time and archived high-density time-series data: cyber infrastructure challenges & developments in the open-source Waveform Server

    NASA Astrophysics Data System (ADS)

    Reyes, J. C.; Vernon, F. L.; Newman, R. L.; Steidl, J. H.

    2010-12-01

    The Waveform Server is an interactive web-based interface to multi-station, multi-sensor and multi-channel high-density time-series data stored in Center for Seismic Studies (CSS) 3.0 schema relational databases (Newman et al., 2009). In the last twelve months, based on expanded specifications and current user feedback, both the server-side infrastructure and client-side interface have been extensively rewritten. The Python Twisted server-side code-base has been fundamentally modified to now present waveform data stored in cluster-based databases using a multi-threaded architecture, in addition to supporting the pre-existing single database model. This allows interactive web-based access to high-density (broadband @ 40Hz to strong motion @ 200Hz) waveform data that can span multiple years; the common lifetime of broadband seismic networks. The client-side interface expands on it's use of simple JSON-based AJAX queries to now incorporate a variety of User Interface (UI) improvements including standardized calendars for defining time ranges, applying on-the-fly data calibration to display SI-unit data, and increased rendering speed. This presentation will outline the various cyber infrastructure challenges we have faced while developing this application, the use-cases currently in existence, and the limitations of web-based application development.

  1. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    PubMed Central

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-01-01

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces. PMID:26184202

  2. iELM—a web server to explore short linear motif-mediated interactions

    PubMed Central

    Weatheritt, Robert J.; Jehl, Peter; Dinkel, Holger; Gibson, Toby J.

    2012-01-01

    The recent expansion in our knowledge of protein–protein interactions (PPIs) has allowed the annotation and prediction of hundreds of thousands of interactions. However, the function of many of these interactions remains elusive. The interactions of Eukaryotic Linear Motif (iELM) web server provides a resource for predicting the function and positional interface for a subset of interactions mediated by short linear motifs (SLiMs). The iELM prediction algorithm is based on the annotated SLiM classes from the Eukaryotic Linear Motif (ELM) resource and allows users to explore both annotated and user-generated PPI networks for SLiM-mediated interactions. By incorporating the annotated information from the ELM resource, iELM provides functional details of PPIs. This can be used in proteomic analysis, for example, to infer whether an interaction promotes complex formation or degradation. Furthermore, details of the molecular interface of the SLiM-mediated interactions are also predicted. This information is displayed in a fully searchable table, as well as graphically with the modular architecture of the participating proteins extracted from the UniProt and Phospho.ELM resources. A network figure is also presented to aid the interpretation of results. The iELM server supports single protein queries as well as large-scale proteomic submissions and is freely available at http://i.elm.eu.org. PMID:22638578

  3. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  4. Open Technology Approaches to Geospatial Interface Design

    NASA Astrophysics Data System (ADS)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  5. A natural language-based presentation of cognitive stimulation to people with dementia in assistive technology: A pilot study.

    PubMed

    Dethlefs, Nina; Milders, Maarten; Cuayáhuitl, Heriberto; Al-Salkini, Turkey; Douglas, Lorraine

    2017-12-01

    Currently, an estimated 36 million people worldwide are affected by Alzheimer's disease or related dementias. In the absence of a cure, non-pharmacological interventions, such as cognitive stimulation, which slow down the rate of deterioration can benefit people with dementia and their caregivers. Such interventions have shown to improve well-being and slow down the rate of cognitive decline. It has further been shown that cognitive stimulation in interaction with a computer is as effective as with a human. However, the need to operate a computer often represents a difficulty for the elderly and stands in the way of widespread adoption. A possible solution to this obstacle is to provide a spoken natural language interface that allows people with dementia to interact with the cognitive stimulation software in the same way as they would interact with a human caregiver. This makes the assistive technology accessible to users regardless of their technical skills and provides a fully intuitive user experience. This article describes a pilot study that evaluated the feasibility of computer-based cognitive stimulation through a spoken natural language interface. Prototype software was evaluated with 23 users, including healthy elderly people and people with dementia. Feedback was overwhelmingly positive.

  6. FAST User Guide

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system administration.

  7. Multimedia: Why Invest?

    ERIC Educational Resources Information Center

    Hirschbuhl, John J.

    1992-01-01

    Discusses the utilization of technology to assist the educational establishment deal with change. Topics addressed include multimedia metaphors such as graphical user interfaces; interactive videodisk systems; problems with current multimedia systems; a Multimedia Sampler developed at the University of North Carolina that includes applications…

  8. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories.

    PubMed

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution.

  9. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories

    PubMed Central

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution. PMID:29854239

  10. Connected cane: Tactile button input for controlling gestures of iOS voiceover embedded in a white cane.

    PubMed

    Batterman, Jared M; Martin, Vincent F; Yeung, Derek; Walker, Bruce N

    2018-01-01

    Accessibility of assistive consumer devices is an emerging research area with potential to benefit both users with and without visual impairments. In this article, we discuss the research and evaluation of using a tactile button interface to control an iOS device's native VoiceOver Gesture navigations (Apple Accessibility, 2014). This research effort identified potential safety and accessibility issues for users trying to interact and control their touchscreen mobile iOS devices while traveling independently. Furthermore, this article discusses the participatory design process in creating a solution that aims to solve issues in utilizing a tactile button interface in a novel device. The overall goal of this study is to enable visually impaired white cane users to access their mobile iOS device's capabilities navigation aids more safely and efficiently on the go.

  11. Sign language Web pages.

    PubMed

    Fels, Deborah I; Richards, Jan; Hardman, Jim; Lee, Daniel G

    2006-01-01

    The WORLD WIDE WEB has changed the way people interact. It has also become an important equalizer of information access for many social sectors. However, for many people, including some sign language users, Web accessing can be difficult. For some, it not only presents another barrier to overcome but has left them without cultural equality. The present article describes a system that allows sign language-only Web pages to be created and linked through a video-based technique called sign-linking. In two studies, 14 Deaf participants examined two iterations of signlinked Web pages to gauge the usability and learnability of a signing Web page interface. The first study indicated that signing Web pages were usable by sign language users but that some interface features required improvement. The second study showed increased usability for those features; users consequently couldnavigate sign language information with ease and pleasure.

  12. Overview of the interactive task in BioCreative V.

    PubMed

    Wang, Qinghua; S Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K; Jensen, Lars J; Jimenez, Silvia; Jue, Toni R; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J F; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H; Hirschman, Lynette; Arighi, Cecilia N

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  13. Interactive web-based mapping: bridging technology and data for health.

    PubMed

    Highfield, Linda; Arthasarnprasit, Jutas; Ottenweller, Cecelia A; Dasprez, Arnaud

    2011-12-23

    The Community Health Information System (CHIS) online mapping system was first launched in 1998. Its overarching goal was to provide researchers, residents and organizations access to health related data reflecting the overall health and well-being of their communities within the Greater Houston area. In September 2009, initial planning and development began for the next generation of CHIS. The overarching goal for the new version remained to make health data easily accessible for a wide variety of research audiences. However, in the new version we specifically sought to make the CHIS truly interactive and give the user more control over data selection and reporting. In July 2011, a beta version of the next-generation of the application was launched. This next-generation is also a web based interactive mapping tool comprised of two distinct portals: the Breast Health Portal and Project Safety Net. Both are accessed via a Google mapping interface. Geographic coverage for the portals is currently an 8 county region centered on Harris County, Texas. Data accessed by the application include Census 2000, Census 2010 (underway), cancer incidence from the Texas Cancer Registry (TX Dept. of State Health Services), death data from Texas Vital Statistics, clinic locations for free and low-cost health services, along with service lists, hours of operation, payment options and languages spoken, uninsured and poverty data. The system features query on the fly technology, which means the data is not generated until the query is provided to the system. This allows users to interact in real-time with the databases and generate customized reports and maps. To the author's knowledge, the Breast Health Portal and Project Safety Net are the first local-scale interactive online mapping interfaces for public health data which allow users to control the data generated. For example, users may generate breast cancer incidence rates by Census tract, in real time, for women aged 40-64. Conversely, they could then generate the same rates for women aged 35-55. The queries are user controlled.

  14. 'Fly Like This': Natural Language Interface for UAV Mission Planning

    NASA Technical Reports Server (NTRS)

    Chandarana, Meghan; Meszaros, Erica L.; Trujillo, Anna; Allen, B. Danette

    2017-01-01

    With the increasing presence of unmanned aerial vehicles (UAVs) in everyday environments, the user base of these powerful and potentially intelligent machines is expanding beyond exclusively highly trained vehicle operators to include non-expert system users. Scientists seeking to augment costly and often inflexible methods of data collection historically used are turning towards lower cost and reconfigurable UAVs. These new users require more intuitive and natural methods for UAV mission planning. This paper explores two natural language interfaces - gesture and speech - for UAV flight path generation through individual user studies. Subjects who participated in the user studies also used a mouse-based interface for a baseline comparison. Each interface allowed the user to build flight paths from a library of twelve individual trajectory segments. Individual user studies evaluated performance, efficacy, and ease-of-use of each interface using background surveys, subjective questionnaires, and observations on time and correctness. Analysis indicates that natural language interfaces are promising alternatives to traditional interfaces. The user study data collected on the efficacy and potential of each interface will be used to inform future intuitive UAV interface design for non-expert users.

  15. The GPRIME approach to finite element modeling

    NASA Technical Reports Server (NTRS)

    Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.

    1983-01-01

    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.

  16. Towards the application of interaction design to digital TV content development.

    PubMed

    Fialho, Francisco A P; Santos, Paloma Maria; Braga, Marcus de Melo; Thaler, Anelise

    2012-01-01

    Television can be considered one of the main means of mass entertainment. It occupies an important place in people's lives, influencing behavior and creating and/or enforcing consumer's habits and needs. With the advent of Digital Television, a series of new features tend to further impact upon society in many different ways. The main agent of this change is interactivity, which is the leverage that will transform the traditional viewer's role. Interactivity turns the viewer into a user, a partner who receives the content, but also produces, participates and collaborates during the viewing process. This paper aims to discuss the importance of applying interaction design in the development of projects related to digital television. The main factors that may contribute to improve the interaction design in applications for digital TV were identified drawing on a descriptive and qualitative method of investigation. The results showed that the interface design for this new media should not only be aesthetically appealing, but should also focus on usability (i.e. user's wishes and needs). Additionally, the creation of these interfaces requires the investigation of some characteristics and limitations of device interaction, considering the choice of colors, saturation levels and brightness, avoiding graphic symbols and prioritizing the navigation through the numerical buttons of the remote control.

  17. Python-based geometry preparation and simulation visualization toolkits for STEPS

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2014-01-01

    STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754

  18. Development of a task analysis tool to facilitate user interface design

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1992-01-01

    A good user interface is one that facilitates the user in carrying out his task. Such interfaces are difficult and costly to produce. The most important aspect in producing a good interface is the ability to communicate to the software designers what the user's task is. The Task Analysis Tool is a system for cooperative task analysis and specification of the user interface requirements. This tool is intended to serve as a guide to development of initial prototypes for user feedback.

  19. Unified Desktop for Monitoring & Control Applications - The Open Navigator Framework Applied for Control Centre and EGSE Applications

    NASA Astrophysics Data System (ADS)

    Brauer, U.

    2007-08-01

    The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").

  20. Defining brain-machine interface applications by matching interface performance with device requirements.

    PubMed

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.

Top