Sample records for usg cloud computing

  1. 77 FR 26509 - Notice of Public Meeting-Cloud Computing Forum & Workshop V

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ...--Cloud Computing Forum & Workshop V AGENCY: National Institute of Standards & Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop V to be held on Tuesday... workshop. This workshop will provide information on the U.S. Government (USG) Cloud Computing Technology...

  2. 76 FR 67418 - Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...

  3. USGS Science Data Life Cycle Tools - Lessons Learned in moving to the Cloud

    NASA Astrophysics Data System (ADS)

    Frame, M. T.; Mancuso, T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Urbanowski, S.; Devarakonda, R.; Palanisamy, G.

    2016-12-01

    The U.S Geological Survey (USGS) Core Science Systems has been working for the past year to design, re-architect, and implement several key tools and systems within the USGS Cloud Hosting Service supported by Amazon Web Services (AWS). As a result of emerging USGS data management policies that align with federal Open Data mandates, and as part of a concerted effort to respond to potential increasing user demand due to these policies, the USGS strategically began migrating its core data management tools and services to the AWS environment in hopes of leveraging cloud capabilities (i.e. auto-scaling, replication, etc.). The specific tools included: USGS Online Metadata Editor (OME); USGS Digital Object Identifier (DOI) generation tool; USGS Science Data Catalog (SDC); USGS ScienceBase system; and an integrative tool, the USGS Data Release Workbench, which steps bureau personnel through the process of releasing data. All of these tools existed long before the Cloud was available and presented significant challenges in migrating, re-architecting, securing, and moving to a Cloud based environment. Initially, a `lift and shift' approach, essentially moving as is, was attempted and various lessons learned about that approach will be discussed, along with recommendations that resulted from the development and eventual operational implementation of these tools. The session will discuss lessons learned related to management of these tools in an AWS environment; re-architecture strategies utilized for the tools; time investments through sprint allocations; initial benefits observed from operating within a Cloud based environment; and initial costs to support these data management tools.

  4. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  5. Measurement of ground water velocity using Rhodamine WT dye near Sheffield, Illinois

    USGS Publications Warehouse

    Garklavs, George; Toler, L.G.

    1985-01-01

    Ground-water flow velocity was estimated in a tract of land adjacent to a low-level radioactive-waste disposal site near Sheffield, Illinois, by measuring the time-of-travel between two wells spaced 110 feet apart. Rhodamine WT dye was the principal tracer used in the test. The leading edge and peak concentrations of Rhodamine WT were well defined. A ground-water velocity of 6.9 feet per day (2,500 feet per year) was computed from the arrival time of the leading edge of the tracer cloud. (USGS)

  6. Cloud-based Jupyter Notebooks for Water Data Analysis

    NASA Astrophysics Data System (ADS)

    Castronova, A. M.; Brazil, L.; Seul, M.

    2017-12-01

    The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.

  7. Coal and Open-pit surface mining impacts on American Lands (COAL)

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.

  8. A Cloud-Based System for Automatic Hazard Monitoring from Sentinel-1 SAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Arko, S. A.; Hogenson, K.; McAlpin, D. B.; Whitley, M. A.

    2017-12-01

    Despite the all-weather capabilities of Synthetic Aperture Radar (SAR), and its high performance in change detection, the application of SAR for operational hazard monitoring was limited in the past. This has largely been due to high data costs, slow product delivery, and limited temporal sampling associated with legacy SAR systems. Only since the launch of ESA's Sentinel-1 sensors have routinely acquired and free-of-charge SAR data become available, allowing—for the first time—for a meaningful contribution of SAR to disaster monitoring. In this paper, we present recent technical advances of the Sentinel-1-based SAR processing system SARVIEWS, which was originally built to generate hazard products for volcano monitoring centers. We outline the main functionalities of SARVIEWS including its automatic database interface to Sentinel-1 holdings of the Alaska Satellite Facility (ASF), and its set of automatic processing techniques. Subsequently, we present recent system improvements that were added to SARVIEWS and allowed for a vast expansion of its hazard services; specifically: (1) In early 2017, the SARVIEWS system was migrated into the Amazon Cloud, providing access to cloud capabilities such as elastic scaling of compute resources and cloud-based storage; (2) we co-located SARVIEWS with ASF's cloud-based Sentinel-1 archive, enabling the efficient and cost effective processing of large data volumes; (3) we integrated SARVIEWS with ASF's HyP3 system (http://hyp3.asf.alaska.edu/), providing functionality such as subscription creation via API or map interface as well as automatic email notification; (4) we automated the production chains for seismic and volcanic hazards by integrating SARVIEWS with the USGS earthquake notification service (ENS) and the USGS eruption alert system. Email notifications from both services are parsed and subscriptions are automatically created when certain event criteria are met; (5) finally, SARVIEWS-generated hazard products are now being made available to the public via the SARVIEWS hazard portal. These improvements have led to the expansion of SARVIEWS toward a broader set of hazard situations, now including volcanoes, earthquakes, and severe weather. We provide details on newly developed techniques and show examples of disasters for which SARVIEWS was invoked.

  9. Advances in U.S. Land Imaging Capabilities

    NASA Astrophysics Data System (ADS)

    Stryker, T. S.

    2017-12-01

    Advancements in Earth observations, cloud computing, and data science are improving everyday life. Information from land-imaging satellites, such as the U.S. Landsat system, helps us to better understand the changing landscapes where we live, work, and play. This understanding builds capacity for improved decision-making about our lands, waters, and resources, driving economic growth, protecting lives and property, and safeguarding the environment. The USGS is fostering the use of land remote sensing technology to meet local, national, and global challenges. A key dimension to meeting these challenges is the full, free, and open provision of land remote sensing observations for both public and private sector applications. To achieve maximum impact, these data must also be easily discoverable, accessible, and usable. The presenter will describe the USGS Land Remote Sensing Program's current capabilities and future plans to collect and deliver land remote sensing information for societal benefit. He will discuss these capabilities in the context of national plans and policies, domestic partnerships, and international collaboration. The presenter will conclude with examples of how Landsat data is being used on a daily basis to improve lives and livelihoods.

  10. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  11. Topographic lidar survey of the Chandeleur Islands, Louisiana, February 6, 2012

    USGS Publications Warehouse

    Guy, Kristy K.; Plant, Nathaniel G.; Bonisteel-Cormier, Jamie M.

    2014-01-01

    This Data Series Report contains lidar elevation data collected February 6, 2012, for Chandeleur Islands, Louisiana. Point cloud data in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. The point cloud data—data points described in three dimensions—were processed to extract bare earth data; therefore, the point cloud data are organized into the following classes: 1– and 17–unclassified, 2–ground, 9–water, and 10–breakline proximity. Digital Aerial Solutions, LLC, (DAS) was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 0.5 meters (m) or less. The USGS conducted two ground surveys in small areas on the Chandeleur Islands on February 5, 2012. DAS calculated a root mean square error (RMSEz) of 0.034 m by comparing the USGS ground survey point data to triangulated irregular network (TIN) models built from the lidar elevation data. This lidar survey was conducted to document the topography and topographic change of the Chandeleur Islands. The survey supports detailed studies of Louisiana, Mississippi and Alabama barrier islands that resolve annual and episodic changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

  12. Accuracy of ultrasound versus computed tomography urogram in detecting urinary tract calculi.

    PubMed

    Salinawati, B; Hing, E Y; Fam, X I; Zulfiqar, M A

    2015-08-01

    To determine the (i) sensitivity and specificity of ultrasound (USG) in the detection of urinary tract calculi, (ii) size of renal calculi detected on USG, and (iii) size of renal calculi not seen on USG but detected on computed tomography urogram (CTU). A total of 201 patients' USG and CTU were compared retrospectively for the presence of calculi. Sensitivity, specificity, accuracy, positive predictive value and negative predictive value of USG were calculated with CTU as the gold standard. From the 201 sets of data collected, 59 calculi were detected on both USG and CTU. The sensitivity and specificity of renal calculi detection on USG were 53% and 85% respectively. The mean size of the renal calculus detected on USG was 7.6 mm ± 4.1 mm and the mean size of the renal calculus not visualised on USG but detected on CTU was 4 mm ± 2.4 mm. The sensitivity and specificity of ureteric calculi detection on USG were 12% and 97% respectively. The sensitivity and specificity of urinary bladder calculi detection on USG were 20% and 100% respectively. This study showed that the accuracy of US in detecting renal, ureteric and urinary bladder calculi were 67%, 80% and 98% respectively.

  13. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.

  14. Cloud Computing Fundamentals

    NASA Astrophysics Data System (ADS)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  15. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and dispersion models, atmospheric temperature profiles, and incorporation of monitoring alerts from ground and satellite-based algorithms. Challenges for future development include reducing the latency in satellite data reception and processing, and increasing the geographic coverage from polar-orbiting satellite platforms.

  16. Mapping Antarctica using Landsat-8 - the preliminary results

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Hui, F.; Qi, X.

    2014-12-01

    The first Landsat Image Mosaic of Antarctica (LIMA) was released in 2009, which was created by USGS, BAS, and NASA from more than 1,000 Landsat ETM+ scenes. As the first major scientific outcome of the IPY, LIMA supports current scientific polar research, encourages new projects, and helps the general public visualize Antarctica and changes happening to this southernmost environment. As the latest satellite of Landsat mission, the Landsat-8 images the entire Earth every 16 days in an 8-day offset from Landsat-7. Data collected by the instruments onboard the satellite are available to download at no charge within 24 hours of reception. The standard Landsat 8 products provided by the USGS EROS Center consist of quantized and calibrated scaled Digital Numbers (DN) in 16-bit unsigned integer format and can be rescaled to the Top Of Atmosphere (TOA) reflectance and/or radiance. With the support of USGS portal, we searched and downloaded more than 1600 scenes of Level 1 T- Terrain Corrected Landsat 8 image products covering Antarctica from late 2013 to early 2014. These data were converted to planetary radiance for further processing. Since the distribution of clouds in these images are random and much complicated, statistics on the distribution of clouds were performed and then help to decide masking those thicker cloud to keep more useful information left and avoid observation holes. A preliminary result of the Landsat-8 mosaic of Antarctica under the joint efforts of Beijing Normal University, NSIDC and University of Maryland will be released on this AGU fall meeting. Comparison between Landsat 7 and 8 mosaic products will also be done to find the difference or advantage of the two products.

  17. From One Pixel to One Earth: Building a Living Atlas in the Cloud to Analyze and Monitor Global Patterns

    NASA Astrophysics Data System (ADS)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Franco, E.; Keisler, R.; Kelton, T.; Kontgis, C.; Mathis, M.; Raleigh, D.; Rudelis, X.; Skillman, S.; Warren, M. S.; Longbotham, N.

    2016-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Historical, multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes per year of high-resolution imagery with daily global coverage. Cloud computing and storage, combined with recent advances in machine learning and open software, are enabling understanding of the world at an unprecedented scale and detail. We have assembled all available satellite imagery from the USGS Landsat, NASA MODIS, and ESA Sentinel programs, as well as commercial PlanetScope and RapidEye imagery, and have analyzed over 2.8 quadrillion multispectral pixels. We leveraged the commercial cloud to generate a tiled, spatio-temporal mosaic of the Earth for fast iteration and development of new algorithms combining analysis techniques from remote sensing, machine learning, and scalable compute infrastructure. Our data platform enables processing at petabytes per day rates using multi-source data to produce calibrated, georeferenced imagery stacks at desired points in time and space that can be used for pixel level or global scale analysis. We demonstrate our data platform capability by using the European Space Agency's (ESA) published 2006 and 2009 GlobCover 20+ category label maps to train and test a Land Cover Land Use (LCLU) classifier, and generate current self-consistent LCLU maps in Brazil. We train a standard classifier on 2006 GlobCover categories using temporal imagery stacks, and we validate our results on co-registered 2009 Globcover LCLU maps and 2009 imagery. We then extend the derived LCLU model to current imagery stacks to generate an updated, in-season label map. Changes in LCLU labels can now be seamlessly monitored for a given location across the years in order to track, for example, cropland expansion, forest growth, and urban developments. An example of change monitoring is illustrated in the included figure showing rainfed cropland change in the Mato Grosso region of Brazil between 2006 and 2009.

  18. Seasonal and interannual variations in the influence of cloud cover variability on snowpack and streamflow in the western U.S.

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.

    2016-12-01

    Solar radiation (S) is a key driver of snowmelt and water fluxes, but its effect varies depending on time of year and also upon the hydrological character (e.g., dry or wet) of a given year. In this study, we use remote sensed S to quantify cloudiness variability and its effects on snowmelt and streamflow across mountain basins in the western U.S. We utilize 20 years (1996-2015) of NASA/NOAA GOES-derived cloud albedo (αcloud) at 4-km daily samples to estimate S over relatively fine spatial and temporal resolution during Feb-Jul when snowmelt is most active. Daily snow water equivalent (SWE) records from >200 CDEC and SNOTEL locations, along with daily stream discharge (Q) from USGS HCDN records are used to compute day-to-day changes (dSWE and dQ). Multivariate linear regression models of dSWE and dQ are constructed for each month, wherein αcloud from several days prior up to the concurrent day are the predictors. In Feb-May, the results show predominantly negative correlations between αcloud and dSWE, confirming the cloud-shading effect in preserving snowpack and reducing runoff. The influence of cloudiness variability on snowpack, denoted by the coefficient of determination (R2) between the measured and modeled dSWE, amounts 4%-73% over Feb-Jul, averaging 20% in the northwest and 26% in the southwest. The dQ case exhibits similar patterns, but lower explained variance. In Jun-Jul, most locations in both dSWE and dQ cases display positive correlation but with diminished R2, presumably reflecting the drying effect of summertime. In comparing dry and wet years, the R2 is somewhat higher in dry years, suggesting that the importance of cloud cover and the associated solar insolation variability is higher in cases with greater influence from other hydrological factors, including heavy precipitation events and fluctuations associated with a higher snowpack.

  19. Looking skyward to study ecosystem carbon dynamics

    USGS Publications Warehouse

    Dye, Dennis G.

    2012-01-01

    Between May and October 2011 the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program, conducted a field campaign at the ARM Southern Great Plains site in north central Oklahoma to evaluate a new instrument for quantitative image-based monitoring of sky conditions and solar radiation. The High Dynamic Range All-Sky Imaging System (HDR-ASIS) was developed by USGS to support studies of cloud- and aerosol-induced variability in the geometric properties of solar radiation (the sky radiance distribution) and its effects on photosynthesis and uptake of carbon dioxide (CO2) by terrestrial ecosystems. Under a clean, cloudless atmosphere when the Sun is above the horizon, most of the solar radiation reaching an area of the Earth's surface is concentrated in a beam coming directly from the Sun; a relatively small proportion arrives as diffuse radiation from the rest of the sky. Clouds and atmospheric aerosols cause increased scattering of the beam radiation, which increases the proportion of diffuse radiation at the surface.

  20. Cloud Computing

    DTIC Science & Technology

    2010-04-29

    Cloud Computing   The answer, my friend, is blowing in the wind.   The answer is blowing in the wind. 1Bingue ‐ Cook  Cloud   Computing  STSC 2010... Cloud   Computing  STSC 2010 Objectives • Define the cloud    • Risks of  cloud   computing f l d i• Essence o  c ou  comput ng • Deployed clouds in DoD 3Bingue...Cook  Cloud   Computing  STSC 2010 Definitions of Cloud Computing       Cloud   computing  is a model for enabling  b d d ku

  1. Feasibility of Acoustic Doppler Velocity Meters for the Production of Discharge Records from U.S. Geological Survey Streamflow-Gaging Stations

    USGS Publications Warehouse

    Morlock, Scott E.; Nguyen, Hieu T.; Ross, Jerry H.

    2002-01-01

    It is feasible to use acoustic Doppler velocity meters (ADVM's) installed at U.S. Geological Survey (USGS) streamflow-gaging stations to compute records of river discharge. ADVM's are small acoustic current meters that use the Doppler principle to measure water velocities in a two-dimensional plane. Records of river discharge can be computed from stage and ADVM velocity data using the 'index velocity' method. The ADVM-measured velocities are used as an estimator or 'index' of the mean velocity in the channel. In evaluations of ADVM's for the computation of records of river discharge, the USGS installed ADVM's at three streamflow-gaging stations in Indiana: Kankakee River at Davis, Fall Creek at Millersville, and Iroquois River near Foresman. The ADVM evaluation study period was from June 1999 to February 2001. Discharge records were computed, using ADVM data from each station. Discharge records also were computed using conventional stage-discharge methods of the USGS. The records produced from ADVM and conventional methods were compared with discharge record hydrographs and statistics. Overall, the records compared closely from the Kankakee River and Fall Creek stations. For the Iroquois River station, variable backwater was present and affected the comparison; because the ADVM record compensates for backwater, the ADVM record may be superior to the conventional record. For the three stations, the ADVM records were judged to be of a quality acceptable to USGS standards for publications and near realtime ADVM-computed discharges are served on USGS real-time data World Wide Web pages.

  2. Planetary-Scale Geospatial Data Analysis Techniques in Google's Earth Engine Platform (Invited)

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2013-12-01

    Geoscientists have more and more access to new tools for large-scale computing. With any tool, some tasks are easy and other tasks hard. It is natural to look to new computing platforms to increase the scale and efficiency of existing techniques, but there is a more exiting opportunity to discover and develop a new vocabulary of fundamental analysis idioms that are made easy and effective by these new tools. Google's Earth Engine platform is a cloud computing environment for earth data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog includes a nearly complete archive of scenes from Landsat 4, 5, 7, and 8 that have been processed by the USGS, as well as a wide variety of other remotely-sensed and ancillary data products. Earth Engine supports a just-in-time computation model that enables real-time preview during algorithm development and debugging as well as during experimental data analysis and open-ended data exploration. Data processing operations are performed in parallel across many computers in Google's datacenters. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, resampling, and associating image metadata with pixel data. Early applications of Earth Engine have included the development of Google's global cloud-free fifteen-meter base map and global multi-decadal time-lapse animations, as well as numerous large and small experimental analyses by scientists from a range of academic, government, and non-governmental institutions, working in a wide variety of application areas including forestry, agriculture, urban mapping, and species habitat modeling. Patterns in the successes and failures of these early efforts have begun to emerge, sketching the outlines of a new set of simple and effective approaches to geospatial data analysis.

  3. An Overview of Cloud Computing in Distributed Systems

    NASA Astrophysics Data System (ADS)

    Divakarla, Usha; Kumari, Geetha

    2010-11-01

    Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.

  4. Analysis on the security of cloud computing

    NASA Astrophysics Data System (ADS)

    He, Zhonglin; He, Yuhua

    2011-02-01

    Cloud computing is a new technology, which is the fusion of computer technology and Internet development. It will lead the revolution of IT and information field. However, in cloud computing data and application software is stored at large data centers, and the management of data and service is not completely trustable, resulting in safety problems, which is the difficult point to improve the quality of cloud service. This paper briefly introduces the concept of cloud computing. Considering the characteristics of cloud computing, it constructs the security architecture of cloud computing. At the same time, with an eye toward the security threats cloud computing faces, several corresponding strategies are provided from the aspect of cloud computing users and service providers.

  5. Future of Department of Defense Cloud Computing Amid Cultural Confusion

    DTIC Science & Technology

    2013-03-01

    enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .

  6. Computer-science guest-lecture series at Langston University sponsored by the U.S. Geological Survey; abstracts, 1992-93

    USGS Publications Warehouse

    Steele, K. S.

    1994-01-01

    Langston University, a Historically Black University located at Langston, Oklahoma, has a computing and information science program within the Langston University Division of Business. Since 1984, Langston University has participated in the Historically Black College and University program of the U.S. Department of Interior, which provided education, training, and funding through a combined earth-science and computer-technology cooperative program with the U.S. Geological Survey (USGS). USGS personnel have presented guest lectures at Langston University since 1984. Students have been enthusiastic about the lectures, and as a result of this program, 13 Langston University students have been hired by the USGS on a part-time basis while they continued their education at the University. The USGS expanded the offering of guest lectures in 1992 by increasing the number of visits to Langston University, and by inviting participation of speakers from throughout the country. The objectives of the guest-lecture series are to assist Langston University in offering state-of-the-art education in the computer sciences, to provide students with an opportunity to learn from and interact with skilled computer-science professionals, and to develop a pool of potential future employees for part-time and full-time employment. This report includes abstracts for guest-lecture presentations during 1992-93 school year.

  7. User guide for MODPATH Version 7—A particle-tracking model for MODFLOW

    USGS Publications Warehouse

    Pollock, David W.

    2016-09-26

    MODPATH is a particle-tracking post-processing program designed to work with MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. MODPATH version 7 is the fourth major release since its original publication. Previous versions were documented in USGS Open-File Reports 89–381 and 94–464 and in USGS Techniques and Methods 6–A41.MODPATH version 7 works with MODFLOW-2005 and MODFLOW–USG. Support for unstructured grids in MODFLOW–USG is limited to smoothed, rectangular-based quadtree and quadpatch grids.A software distribution package containing the computer program and supporting documentation, such as input instructions, output file descriptions, and example problems, is available from the USGS over the Internet (http://water.usgs.gov/ogw/modpath/).

  8. A parallel-processing approach to computing for the geographic sciences; applications and systems enhancements

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.

  9. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  10. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  11. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.

  12. Cloud Computing for DoD

    DTIC Science & Technology

    2012-05-01

    cloud computing 17 NASA Nebula Platform •  Cloud computing pilot program at NASA Ames •  Integrates open-source components into seamless, self...Mission support •  Education and public outreach (NASA Nebula , 2010) 18 NSF Supported Cloud Research •  Support for Cloud Computing in...Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145 •  NASA Nebula (2010). Retrieved from

  13. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  14. Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Klems, Markus; Nimis, Jens; Tai, Stefan

    On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.

  15. Cloud Computing and Its Applications in GIS

    NASA Astrophysics Data System (ADS)

    Kang, Cao

    2011-12-01

    Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)

  16. IBM Cloud Computing Powering a Smarter Planet

    NASA Astrophysics Data System (ADS)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  17. Cloud Computing Security Issue: Survey

    NASA Astrophysics Data System (ADS)

    Kamal, Shailza; Kaur, Rajpreet

    2011-12-01

    Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.

  18. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector centered on the volcano while NEXRAD scanned a full 360 degrees. The sector strategy scanned the volcano more frequently than the 360-degree strategy. Consequently, the USGS system detected event onset within less than a minute, while the NEXRAD required about 4 minutes. The observed column heights were as high as 20 km above sea level and compared favorably to those from NEXRAD. NEXRAD tracked ash clouds to greater distances than the USGS system. This experience shows that Doppler radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  19. T-Check in System-of-Systems Technologies: Cloud Computing

    DTIC Science & Technology

    2010-09-01

    T-Check in System-of-Systems Technologies: Cloud Computing Harrison D. Strowd Grace A. Lewis September 2010 TECHNICAL NOTE CMU/SEI-2010... Cloud Computing 1 1.2 Types of Cloud Computing 2 1.3 Drivers and Barriers to Cloud Computing Adoption 5 2 Using the T-Check Method 7 2.1 T-Check...Hypothesis 3 25 3.4.2 Deployment View of the Solution for Testing Hypothesis 3 27 3.5 Selecting Cloud Computing Providers 30 3.6 Implementing the T-Check

  20. Information Security: Governmentwide Guidance Needed to Assist Agencies in Implementing Cloud Computing

    DTIC Science & Technology

    2010-07-01

    Cloud computing , an emerging form of computing in which users have access to scalable, on-demand capabilities that are provided through Internet... cloud computing , (2) the information security implications of using cloud computing services in the Federal Government, and (3) federal guidance and...efforts to address information security when using cloud computing . The complete report is titled Information Security: Federal Guidance Needed to

  1. Multi-source Geospatial Data Analysis with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  2. Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wyld, David C.

    Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.

  3. A Review Study on Cloud Computing Issues

    NASA Astrophysics Data System (ADS)

    Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti

    2018-05-01

    Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.

  4. LiDAR and Image Point Cloud Comparison

    DTIC Science & Technology

    2014-09-01

    UAV unmanned aerial vehicle USGS United States Geological Survey UTM Universal Transverse Mercator WGS 84 World Geodetic System 1984 WSI...19  1.  Physics of LiDAR Systems ................................................................20  III.  DATA AND SOFTWARE...ground control point GPS Global Positioning System IMU inertial measurements unit LiDAR light detection and ranging MI mutual information MVS

  5. 78 FR 54453 - Notice of Public Meeting-Intersection of Cloud Computing and Mobility Forum and Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...--Intersection of Cloud Computing and Mobility Forum and Workshop AGENCY: National Institute of Standards and.../intersection-of-cloud-and-mobility.cfm . SUPPLEMENTARY INFORMATION: NIST hosted six prior Cloud Computing Forum... interoperability, portability, and security, discuss the Federal Government's experience with cloud computing...

  6. Embracing the Cloud: Six Ways to Look at the Shift to Cloud Computing

    ERIC Educational Resources Information Center

    Ullman, David F.; Haggerty, Blake

    2010-01-01

    Cloud computing is the latest paradigm shift for the delivery of IT services. Where previous paradigms (centralized, decentralized, distributed) were based on fairly straightforward approaches to technology and its management, cloud computing is radical in comparison. The literature on cloud computing, however, suffers from many divergent…

  7. The Research of the Parallel Computing Development from the Angle of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun

    2017-10-01

    Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.

  8. Cloud computing basics for librarians.

    PubMed

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC

  9. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  10. A Novel College Network Resource Management Method using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Lin, Chen

    At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.

  11. Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

    PubMed

    Cole, Brian S; Moore, Jason H

    2018-03-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

  12. Eleven quick tips for architecting biomedical informatics workflows with cloud computing

    PubMed Central

    Moore, Jason H.

    2018-01-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416

  13. Research on Quantum Authentication Methods for the Secure Access Control Among Three Elements of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Dong, Yumin; Xiao, Shufen; Ma, Hongyang; Chen, Libo

    2016-12-01

    Cloud computing and big data have become the developing engine of current information technology (IT) as a result of the rapid development of IT. However, security protection has become increasingly important for cloud computing and big data, and has become a problem that must be solved to develop cloud computing. The theft of identity authentication information remains a serious threat to the security of cloud computing. In this process, attackers intrude into cloud computing services through identity authentication information, thereby threatening the security of data from multiple perspectives. Therefore, this study proposes a model for cloud computing protection and management based on quantum authentication, introduces the principle of quantum authentication, and deduces the quantum authentication process. In theory, quantum authentication technology can be applied in cloud computing for security protection. This technology cannot be cloned; thus, it is more secure and reliable than classical methods.

  14. Opportunities and Needs for Mobile-Computing Technology to Support U.S. Geological Survey Fieldwork

    USGS Publications Warehouse

    Wood, Nathan J.; Halsing, David L.

    2006-01-01

    To assess the opportunities and needs for mobile-computing technology at the U.S. Geological Survey (USGS), we conducted an internal, Internet-based survey of bureau scientists whose research includes fieldwork. In summer 2005, 144 survey participants answered 65 questions about fieldwork activities and conditions, technology to support field research, and postfieldwork data processing and analysis. Results suggest that some types of mobile-computing technology are already commonplace, such as digital cameras and Global Positioning System (GPS) receivers, whereas others are not, such as personal digital assistants (PDAs) and tablet-based personal computers (tablet PCs). The potential for PDA use in the USGS is high: 97 percent of respondents record field observations (primarily environmental conditions and water-quality data), and 87 percent take field samples (primarily water-quality data, water samples, and sediment/soil samples). The potential for tablet PC use in the USGS is also high: 59 percent of respondents map environmental features in the field, primarily by sketching in field notebooks, on aerial photographs, or on topographic-map sheets. Results also suggest that efficient mobile-computing-technology solutions could benefit many USGS scientists because most respondents spend at least 1 week per year in the field, conduct field sessions that are least 1 week in duration, have field crews of one to three people, and typically travel on foot about 1 mi from their field vehicles. By allowing researchers to enter data directly into digital databases while in the field, mobile-computing technology could also minimize postfieldwork data processing: 93 percent of respondents enter collected field data into their office computers, and more than 50 percent spend at least 1 week per year on postfieldwork data processing. Reducing postfieldwork data processing could free up additional time for researchers and result in cost savings for the bureau. Generally, respondents support greater use of mobile-computing technology at the USGS and are interested in training opportunities and further discussions related to data archiving, access to additional digital data types, and technology development.

  15. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  16. Establishing a Cloud Computing Success Model for Hospitals in Taiwan.

    PubMed

    Lian, Jiunn-Woei

    2017-01-01

    The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.

  17. Establishing a Cloud Computing Success Model for Hospitals in Taiwan

    PubMed Central

    Lian, Jiunn-Woei

    2017-01-01

    The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020

  18. Implementation of cloud computing in higher education

    NASA Astrophysics Data System (ADS)

    Asniar; Budiawan, R.

    2016-04-01

    Cloud computing research is a new trend in distributed computing, where people have developed service and SOA (Service Oriented Architecture) based application. This technology is very useful to be implemented, especially for higher education. This research is studied the need and feasibility for the suitability of cloud computing in higher education then propose the model of cloud computing service in higher education in Indonesia that can be implemented in order to support academic activities. Literature study is used as the research methodology to get a proposed model of cloud computing in higher education. Finally, SaaS and IaaS are cloud computing service that proposed to be implemented in higher education in Indonesia and cloud hybrid is the service model that can be recommended.

  19. Research on Key Technologies of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Zhang, Shufen; Yan, Hongcan; Chen, Xuebin

    With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.

  20. The Many Colors and Shapes of Cloud

    NASA Astrophysics Data System (ADS)

    Yeh, James T.

    While many enterprises and business entities are deploying and exploiting Cloud Computing, the academic institutes and researchers are also busy trying to wrestle this beast and put a leash on this possible paradigm changing computing model. Many have argued that Cloud Computing is nothing more than a name change of Utility Computing. Others have argued that Cloud Computing is a revolutionary change of the computing architecture. So it has been difficult to put a boundary of what is in Cloud Computing, and what is not. I assert that it is equally difficult to find a group of people who would agree on even the definition of Cloud Computing. In actuality, may be all that arguments are not necessary, as Clouds have many shapes and colors. In this presentation, the speaker will attempt to illustrate that the shape and the color of the cloud depend very much on the business goals one intends to achieve. It will be a very rich territory for both the businesses to take the advantage of the benefits of Cloud Computing and the academia to integrate the technology research and business research.

  1. ATLAS Cloud R&D

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  2. The Education Value of Cloud Computing

    ERIC Educational Resources Information Center

    Katzan, Harry, Jr.

    2010-01-01

    Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…

  3. Cloud Computing. Technology Briefing. Number 1

    ERIC Educational Resources Information Center

    Alberta Education, 2013

    2013-01-01

    Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…

  4. Can cloud computing benefit health services? - a SWOT analysis.

    PubMed

    Kuo, Mu-Hsing; Kushniruk, Andre; Borycki, Elizabeth

    2011-01-01

    In this paper, we discuss cloud computing, the current state of cloud computing in healthcare, and the challenges and opportunities of adopting cloud computing in healthcare. A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis was used to evaluate the feasibility of adopting this computing model in healthcare. The paper concludes that cloud computing could have huge benefits for healthcare but there are a number of issues that will need to be addressed before its widespread use in healthcare.

  5. State of the Art of Network Security Perspectives in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Oh, Tae Hwan; Lim, Shinyoung; Choi, Young B.; Park, Kwang-Roh; Lee, Heejo; Choi, Hyunsang

    Cloud computing is now regarded as one of social phenomenon that satisfy customers' needs. It is possible that the customers' needs and the primary principle of economy - gain maximum benefits from minimum investment - reflects realization of cloud computing. We are living in the connected society with flood of information and without connected computers to the Internet, our activities and work of daily living will be impossible. Cloud computing is able to provide customers with custom-tailored features of application software and user's environment based on the customer's needs by adopting on-demand outsourcing of computing resources through the Internet. It also provides cloud computing users with high-end computing power and expensive application software package, and accordingly the users will access their data and the application software where they are located at the remote system. As the cloud computing system is connected to the Internet, network security issues of cloud computing are considered as mandatory prior to real world service. In this paper, survey and issues on the network security in cloud computing are discussed from the perspective of real world service environments.

  6. Building a Data Science capability for USGS water research and communication

    NASA Astrophysics Data System (ADS)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  7. If It's in the Cloud, Get It on Paper: Cloud Computing Contract Issues

    ERIC Educational Resources Information Center

    Trappler, Thomas J.

    2010-01-01

    Much recent discussion has focused on the pros and cons of cloud computing. Some institutions are attracted to cloud computing benefits such as rapid deployment, flexible scalability, and low initial start-up cost, while others are concerned about cloud computing risks such as those related to data location, level of service, and security…

  8. Introducing the Cloud in an Introductory IT Course

    ERIC Educational Resources Information Center

    Woods, David M.

    2018-01-01

    Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…

  9. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  10. Enhancing Security by System-Level Virtualization in Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei

    Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.

  11. Military clouds: utilization of cloud computing systems at the battlefield

    NASA Astrophysics Data System (ADS)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  12. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    NASA Astrophysics Data System (ADS)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  13. Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy

    PubMed Central

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-01-01

    Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313

  14. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    PubMed

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  15. Integrating Remote Sensing Data, Hybrid-Cloud Computing, and Event Notifications for Advanced Rapid Imaging & Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Fielding, E. J.; Agram, P.; Manipon, G.; Stough, T. M.; Simons, M.; Rosen, P. A.; Wilson, B. D.; Poland, M. P.; Cervelli, P. F.; Cruz, J.

    2013-12-01

    Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR) and Continuous Global Positioning System (CGPS) are now important elements in our toolset for monitoring earthquake-generating faults, volcanic eruptions, hurricane damage, landslides, reservoir subsidence, and other natural and man-made hazards. Geodetic imaging's unique ability to capture surface deformation with high spatial and temporal resolution has revolutionized both earthquake science and volcanology. Continuous monitoring of surface deformation and surface change before, during, and after natural hazards improves decision-making from better forecasts, increased situational awareness, and more informed recovery. However, analyses of InSAR and GPS data sets are currently handcrafted following events and are not generated rapidly and reliably enough for use in operational response to natural disasters. Additionally, the sheer data volumes needed to handle a continuous stream of InSAR data sets also presents a bottleneck. It has been estimated that continuous processing of InSAR coverage of California alone over 3-years would reach PB-scale data volumes. Our Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH) science data system enables both science and decision-making communities to monitor areas of interest with derived geodetic data products via seamless data preparation, processing, discovery, and access. We will present our findings on the use of hybrid-cloud computing to improve the timely processing and delivery of geodetic data products, integrating event notifications from USGS to improve the timely processing for response, as well as providing browse results for quick looks with other tools for integrative analysis.

  16. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  17. Identity-Based Authentication for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao

    Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.

  18. Cloud Based Educational Systems and Its Challenges and Opportunities and Issues

    ERIC Educational Resources Information Center

    Paul, Prantosh Kr.; Lata Dangwal, Kiran

    2014-01-01

    Cloud Computing (CC) is actually is a set of hardware, software, networks, storage, services an interface combines to deliver aspects of computing as a service. Cloud Computing (CC) actually uses the central remote servers to maintain data and applications. Practically Cloud Computing (CC) is extension of Grid computing with independency and…

  19. A scoping review of cloud computing in healthcare.

    PubMed

    Griebel, Lena; Prokosch, Hans-Ulrich; Köpcke, Felix; Toddenroth, Dennis; Christoph, Jan; Leb, Ines; Engel, Igor; Sedlmayr, Martin

    2015-03-19

    Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web-based" with no described benefit of the cloud paradigm. The biggest threat to the adoption in the healthcare domain is caused by involving external cloud partners: many issues of data safety and security are still to be solved. Until then, cloud computing is favored more for singular, individual features such as elasticity, pay-per-use and broad network access, rather than as cloud paradigm on its own.

  20. Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management

    DTIC Science & Technology

    2016-11-16

    order for cloud computing infrastructures to be successfully deployed in real world scenarios as tools for crisis and catastrophe management, where...Statement of the Problem Studied As cloud computing becomes the dominant computational infrastructure[1] and cloud technologies make a transition to hosting...1. Formulate rigorous mathematical models representing technological capabilities and resources in cloud computing for performance modeling and

  1. Automating NEURON Simulation Deployment in Cloud Resources.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2017-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.

  2. Automating NEURON Simulation Deployment in Cloud Resources

    PubMed Central

    Santamaria, Fidel

    2016-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341

  3. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  4. Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud

    ERIC Educational Resources Information Center

    Wang, Minjuan; Chen, Yong; Khan, Muhammad Jahanzaib

    2014-01-01

    Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing…

  5. 76 FR 13984 - Cloud Computing Forum & Workshop III

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... public workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop III to be held on April 7... provide information on the NIST strategic and tactical Cloud Computing program, including progress on the...

  6. Community Cloud Computing

    NASA Astrophysics Data System (ADS)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  7. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  8. Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-11-13

    Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for postflood recovery efforts.

  9. Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.

    PubMed

    Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P

    2010-12-22

    Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.

  10. 75 FR 64258 - Cloud Computing Forum & Workshop II

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide...

  11. 76 FR 62373 - Notice of Public Meeting-Cloud Computing Forum & Workshop IV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...--Cloud Computing Forum & Workshop IV AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop IV to be held on... to help develop open standards in interoperability, portability and security in cloud computing. This...

  12. Notification: Fieldwork for CIGIE Cloud Computing Initiative – Status of Cloud-Computing Within the Federal Government

    EPA Pesticide Factsheets

    Project #OA-FY14-0126, January 15, 2014. The EPA OIG is starting fieldwork on the Council of the Inspectors General on Integrity and Efficiency (CIGIE) Cloud Computing Initiative – Status of Cloud-Computing Environments Within the Federal Government.

  13. Intelligent cloud computing security using genetic algorithm as a computational tools

    NASA Astrophysics Data System (ADS)

    Razuky AL-Shaikhly, Mazin H.

    2018-05-01

    An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.

  14. WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K; Kagadis, G; Xing, L

    As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less

  15. Cloud Computing with iPlant Atmosphere.

    PubMed

    McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos

    2013-10-15

    Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.

  16. Energy Consumption Management of Virtual Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  17. Cloud-free resolution element statistics program

    NASA Technical Reports Server (NTRS)

    Liley, B.; Martin, C. D.

    1971-01-01

    Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.

  18. Research on Influence of Cloud Environment on Traditional Network Security

    NASA Astrophysics Data System (ADS)

    Ming, Xiaobo; Guo, Jinhua

    2018-02-01

    Cloud computing is a symbol of the progress of modern information network, cloud computing provides a lot of convenience to the Internet users, but it also brings a lot of risk to the Internet users. Second, one of the main reasons for Internet users to choose cloud computing is that the network security performance is great, it also is the cornerstone of cloud computing applications. This paper briefly explores the impact on cloud environment on traditional cybersecurity, and puts forward corresponding solutions.

  19. National electronic medical records integration on cloud computing system.

    PubMed

    Mirza, Hebah; El-Masri, Samir

    2013-01-01

    Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.

  20. Cloud computing applications for biomedical science: A perspective.

    PubMed

    Navale, Vivek; Bourne, Philip E

    2018-06-01

    Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.

  1. Cloud computing applications for biomedical science: A perspective

    PubMed Central

    2018-01-01

    Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176

  2. Research on OpenStack of open source cloud computing in colleges and universities’ computer room

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Dandan

    2017-06-01

    In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.

  3. The Adoption of Cloud Computing in the Field of Genomics Research: The Influence of Ethical and Legal Issues

    PubMed Central

    Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria

    2016-01-01

    This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers’ perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers’ legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients’ control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale. PMID:27755563

  4. The Adoption of Cloud Computing in the Field of Genomics Research: The Influence of Ethical and Legal Issues.

    PubMed

    Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria

    2016-01-01

    This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers' perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers' legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients' control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale.

  5. Implementation on Landsat Data of a Simple Cloud Mask Algorithm Developed for MODIS Land Bands

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Wilson, Michael J.; Varnai, Tamas

    2010-01-01

    This letter assesses the performance on Landsat-7 images of a modified version of a cloud masking algorithm originally developed for clear-sky compositing of Moderate Resolution Imaging Spectroradiometer (MODIS) images at northern mid-latitudes. While data from recent Landsat missions include measurements at thermal wavelengths, and such measurements are also planned for the next mission, thermal tests are not included in the suggested algorithm in its present form to maintain greater versatility and ease of use. To evaluate the masking algorithm we take advantage of the availability of manual (visual) cloud masks developed at USGS for the collection of Landsat scenes used here. As part of our evaluation we also include the Automated Cloud Cover Assesment (ACCA) algorithm that includes thermal tests and is used operationally by the Landsat-7 mission to provide scene cloud fractions, but no cloud masks. We show that the suggested algorithm can perform about as well as ACCA both in terms of scene cloud fraction and pixel-level cloud identification. Specifically, we find that the algorithm gives an error of 1.3% for the scene cloud fraction of 156 scenes, and a root mean square error of 7.2%, while it agrees with the manual mask for 93% of the pixels, figures very similar to those from ACCA (1.2%, 7.1%, 93.7%).

  6. Study of USGS/NASA land use classification system. [computer analysis from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1975-01-01

    The results of a computer mapping project using LANDSAT data and the USGS/NASA land use classification system are summarized. During the computer mapping portion of the project, accuracies of 67 percent to 79 percent were achieved using Level II of the classification system and a 4,000 acre test site centered on Douglasville, Georgia. Analysis of response to a questionaire circulated to actual and potential LANDSAT data users reveals several important findings: (1) there is a substantial desire for additional information related to LANDSAT capabilities; (2) a majority of the respondents feel computer mapping from LANDSAT data could aid present or future projects; and (3) the costs of computer mapping are substantially less than those of other methods.

  7. Cloud Computing for Complex Performance Codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  8. Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines

    DTIC Science & Technology

    2016-09-01

    DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of... Cloud computing has quickly revolutionized computing practices of organizations, to in- clude the Department of Defense. However, security concerns...vi Table of Contents 1 Introduction 1 1.1 Proliferation of Cloud Computing . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement

  9. Cloudbus Toolkit for Market-Oriented Cloud Computing

    NASA Astrophysics Data System (ADS)

    Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian

    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.

  10. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    PubMed Central

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  11. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.

    PubMed

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L

    2015-02-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Proposal for a Security Management in Cloud Computing for Health Care

    PubMed Central

    Dzombeta, Srdan; Brandis, Knud

    2014-01-01

    Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources. PMID:24701137

  13. Proposal for a security management in cloud computing for health care.

    PubMed

    Haufe, Knut; Dzombeta, Srdan; Brandis, Knud

    2014-01-01

    Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources.

  14. The Basics of Cloud Computing

    ERIC Educational Resources Information Center

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  15. Cloud Computing in Higher Education Sector for Sustainable Development

    ERIC Educational Resources Information Center

    Duan, Yuchao

    2016-01-01

    Cloud computing is considered a new frontier in the field of computing, as this technology comprises three major entities namely: software, hardware and network. The collective nature of all these entities is known as the Cloud. This research aims to examine the impacts of various aspects namely: cloud computing, sustainability, performance…

  16. Reviews on Security Issues and Challenges in Cloud Computing

    NASA Astrophysics Data System (ADS)

    An, Y. Z.; Zaaba, Z. F.; Samsudin, N. F.

    2016-11-01

    Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.

  17. A Comprehensive Review of Existing Risk Assessment Models in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Amini, Ahmad; Jamil, Norziana

    2018-05-01

    Cloud computing is a popular paradigm in information technology and computing as it offers numerous advantages in terms of economical saving and minimal management effort. Although elasticity and flexibility brings tremendous benefits, it still raises many information security issues due to its unique characteristic that allows ubiquitous computing. Therefore, the vulnerabilities and threats in cloud computing have to be identified and proper risk assessment mechanism has to be in place for better cloud computing management. Various quantitative and qualitative risk assessment models have been proposed but up to our knowledge, none of them is suitable for cloud computing environment. This paper, we compare and analyse the strengths and weaknesses of existing risk assessment models. We then propose a new risk assessment model that sufficiently address all the characteristics of cloud computing, which was not appeared in the existing models.

  18. Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems

    DTIC Science & Technology

    2012-01-31

    2012 UNCLASSIFIED 1 of 58 Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems A Report to the U.S. Department...2.1.7 Engineering of Computational Behavior .............................................................18 2.2 How the Cloud Will Impact Systems...58 Executive Summary This report discusses the impact of cloud computing and the broader revolution in computing on systems, on the disciplines of

  19. Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud

    NASA Astrophysics Data System (ADS)

    Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok

    Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.

  20. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  1. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  2. Cloud Based Applications and Platforms (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  3. 76 FR 52353 - Assumption Buster Workshop: “Current Implementations of Cloud Computing Indicate a New Approach...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... explored in this series is cloud computing. The workshop on this topic will be held in Gaithersburg, MD on October 21, 2011. Assertion: ``Current implementations of cloud computing indicate a new approach to security'' Implementations of cloud computing have provided new ways of thinking about how to secure data...

  4. 77 FR 74829 - Notice of Public Meeting-Cloud Computing and Big Data Forum and Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ...--Cloud Computing and Big Data Forum and Workshop AGENCY: National Institute of Standards and Technology... Standards and Technology (NIST) announces a Cloud Computing and Big Data Forum and Workshop to be held on... followed by a one-day hands-on workshop. The NIST Cloud Computing and Big Data Forum and Workshop will...

  5. Examining the Relationship between Technological, Organizational, and Environmental Factors and Cloud Computing Adoption

    ERIC Educational Resources Information Center

    Tweel, Abdeneaser

    2012-01-01

    High uncertainties related to cloud computing adoption may hinder IT managers from making solid decisions about adopting cloud computing. The problem addressed in this study was the lack of understanding of the relationship between factors related to the adoption of cloud computing and IT managers' interest in adopting this technology. In…

  6. The Geo Data Portal an Example Physical and Application Architecture Demonstrating the Power of the "Cloud" Concept.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Walker, J.; Kunicki, T.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics (CIDA), in holding with the President's Digital Government Strategy and the Department of Interior's IT Transformation initiative, has evolved its data center and application architecture toward the "cloud" paradigm. In this case, "cloud" refers to a goal of developing services that may be distributed to infrastructure anywhere on the Internet. This transition has taken place across the entire data management spectrum from data center location to physical hardware configuration to software design and implementation. In CIDA's case, physical hardware resides in Madison at the Wisconsin Water Science Center, in South Dakota at the Earth Resources Observation and Science Center (EROS), and in the near future at a DOI approved commercial vendor. Tasks normally conducted on desktop-based GIS software with local copies of data in proprietary formats are now done using browser-based interfaces to web processing services drawing on a network of standard data-source web services. Organizations are gaining economies of scale through data center consolidation and the creation of private cloud services as well as taking advantage of the commoditization of data processing services. Leveraging open standards for data and data management take advantage of this commoditization and provide the means to reliably build distributed service based systems. This presentation will use CIDA's experience as an illustration of the benefits and hurdles of moving to the cloud. Replicating, reformatting, and processing large data sets, such as downscaled climate projections, traditionally present a substantial challenge to environmental science researchers who need access to data subsets and derived products. The USGS Geo Data Portal (GDP) project uses cloud concepts to help earth system scientists' access subsets, spatial summaries, and derivatives of commonly needed very large data. The GDP project has developed a reusable architecture and advanced processing services that currently accesses archives hosted at Lawrence Livermore National Lab, Oregon State University, the University Corporation for Atmospheric Research, and the U.S. Geological Survey, among others. Several examples of how the GDP project uses cloud concepts will be highlighted in this presentation: 1) The high bandwidth network connectivity of large data centers reduces the need for data replication and storage local to processing services. 2) Standard data serving web services, like OPeNDAP, Web Coverage Services, and Web Feature Services allow GDP services to remotely access custom subsets of data in a variety of formats, further reducing the need for data replication and reformatting. 3) The GDP services use standard web service APIs to allow browser-based user interfaces to run complex and compute-intensive processes for users from any computer with an Internet connection. The combination of physical infrastructure and application architecture implemented for the Geo Data Portal project offer an operational example of how distributed data and processing on the cloud can be used to aid earth system science.

  7. When cloud computing meets bioinformatics: a review.

    PubMed

    Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong

    2013-10-01

    In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.

  8. Research on private cloud computing based on analysis on typical opensource platform: a case study with Eucalyptus and Wavemaker

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyuan; Yuan, Jian; Chen, Shi

    2013-03-01

    Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.

  9. Cloud4Psi: cloud computing for 3D protein structure similarity searching.

    PubMed

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-10-01

    Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.

  10. Cloud4Psi: cloud computing for 3D protein structure similarity searching

    PubMed Central

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-01-01

    Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141

  11. Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup

    PubMed Central

    Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.

    2010-01-01

    Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651

  12. Using Gridded Snow Covered Area and Snow-Water Equivalence Spatial Data Sets to Improve Snow-Pack Depletion Simulation in a Continental Scale Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Risley, J. C.; Tracey, J. A.; Markstrom, S. L.; Hay, L.

    2014-12-01

    Snow cover areal depletion curves were used in a continuous daily hydrologic model to simulate seasonal spring snowmelt during the period between maximum snowpack accumulation and total melt. The curves are defined as the ratio of snow-water equivalence (SWE) divided by the seasonal maximum snow-water equivalence (Ai) (Y axis) versus the percent snow cover area (SCA) (X axis). The slope of the curve can vary depending on local watershed conditions. Windy sparsely vegetated high elevation watersheds, for example, can have a steeper slope than lower elevation forested watersheds. To improve the accuracy of simulated runoff at ungaged watersheds, individual snow cover areal depletion curves were created for over 100,000 hydrologic response units (HRU) in the continental scale U.S. Geological Survey (USGS) National Hydrologic Model (NHM). NHM includes the same components of the USGS Precipitation-Runoff-Modeling System (PRMS), except it uses consistent land surface characterization and model parameterization across the U.S. continent. Weighted-mean daily time series of 1-kilometer gridded SWE, from Snow Data Assimilation System (SNODAS), and 500-meter gridded SCA, from Moderate Resolution Imaging Spectroradiometer (MODIS), for 2003-2014 were computed for each HRU using the USGS Geo Data Portal. Using a screening process, pairs of SWE/Ai and SCA from the snowmelt period of each year were selected. SCA values derived from imagery that did not have any cloud cover and were >0 and <100 percent were selected. Unrealistically low and high SCA values that were paired with high and low SWE/Ai ratios, respectively, were removed. Second order polynomial equations were then fit to the remaining pairs of SWE/Ai and SCA to create a unique curve for each HRU. Simulations comparing these new curves with an existing single default curve in NHM will be made to determine if there are significant improvements in runoff.

  13. Flexible services for the support of research.

    PubMed

    Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John

    2013-01-28

    Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.

  14. The emerging role of cloud computing in molecular modelling.

    PubMed

    Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W

    2013-07-01

    There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Challenges in Securing the Interface Between the Cloud and Pervasive Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagesse, Brent J

    2011-01-01

    Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less

  16. An Architecture for Cross-Cloud System Management

    NASA Astrophysics Data System (ADS)

    Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad

    The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.

  17. 'Cloud computing' and clinical trials: report from an ECRIN workshop.

    PubMed

    Ohmann, Christian; Canham, Steve; Danielyan, Edgar; Robertshaw, Steve; Legré, Yannick; Clivio, Luca; Demotes, Jacques

    2015-07-29

    Growing use of cloud computing in clinical trials prompted the European Clinical Research Infrastructures Network, a European non-profit organisation established to support multinational clinical research, to organise a one-day workshop on the topic to clarify potential benefits and risks. The issues that arose in that workshop are summarised and include the following: the nature of cloud computing and the cloud computing industry; the risks in using cloud computing services now; the lack of explicit guidance on this subject, both generally and with reference to clinical trials; and some possible ways of reducing risks. There was particular interest in developing and using a European 'community cloud' specifically for academic clinical trial data. It was recognised that the day-long workshop was only the start of an ongoing process. Future discussion needs to include clarification of trial-specific regulatory requirements for cloud computing and involve representatives from the relevant regulatory bodies.

  18. Data collection for a time-of-travel and dispersion study on the Coosa River near Childersburg, Alabama

    USGS Publications Warehouse

    Gardner, R.A.

    1985-01-01

    Approximately 2,300 dye-tracer samples were collected and analyzed during a 5-day time-of-travel study on a 23-mile reach of the Coosa River between Logan Martin and Lay dams near Childersburg, Alabama, October 27 to 31, 1984. Rhodamine WT was used as the tracer-dye. Unsteady flow conditions prevailed in the study reach. The rate of movement of the dye cloud between sampling cross sections ranged from 0.15 to 1.36 feet per second. The average rate of movement of the dye cloud between the injection cross section and the downstream sampling cross section was 0.42 foot per second. (USGS)

  19. Cloud Computing - A Unified Approach for Surveillance Issues

    NASA Astrophysics Data System (ADS)

    Rachana, C. R.; Banu, Reshma, Dr.; Ahammed, G. F. Ali, Dr.; Parameshachari, B. D., Dr.

    2017-08-01

    Cloud computing describes highly scalable resources provided as an external service via the Internet on a basis of pay-per-use. From the economic point of view, the main attractiveness of cloud computing is that users only use what they need, and only pay for what they actually use. Resources are available for access from the cloud at any time, and from any location through networks. Cloud computing is gradually replacing the traditional Information Technology Infrastructure. Securing data is one of the leading concerns and biggest issue for cloud computing. Privacy of information is always a crucial pointespecially when an individual’s personalinformation or sensitive information is beingstored in the organization. It is indeed true that today; cloud authorization systems are notrobust enough. This paper presents a unified approach for analyzing the various security issues and techniques to overcome the challenges in the cloud environment.

  20. Research on the application in disaster reduction for using cloud computing technology

    NASA Astrophysics Data System (ADS)

    Tao, Liang; Fan, Yida; Wang, Xingling

    Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.

  1. Cloud computing security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for bothmore » academia and government, including configuration options, hardware issues, challenges, and solutions.« less

  2. Cloud Computing in Support of Applied Learning: A Baseline Study of Infrastructure Design at Southern Polytechnic State University

    ERIC Educational Resources Information Center

    Conn, Samuel S.; Reichgelt, Han

    2013-01-01

    Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…

  3. Challenges and Security in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Chang, Hyokyung; Choi, Euiin

    People who live in this world want to solve any problems as they happen then. An IT technology called Ubiquitous computing should help the situations easier and we call a technology which makes it even better and powerful cloud computing. Cloud computing, however, is at the stage of the beginning to implement and use and it faces a lot of challenges in technical matters and security issues. This paper looks at the cloud computing security.

  4. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  5. A parallel-processing approach to computing for the geographic sciences

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Haga, Jim; Maddox, Brian; Feller, Mark

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting research into various areas, such as advanced computer architecture, algorithms to meet the processing needs for real-time image and data processing, the creation of custom datasets from seamless source data, rapid turn-around of products for emergency response, and support for computationally intense spatial and temporal modeling.

  6. Making Cloud Computing Available For Researchers and Innovators (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, R.

    2010-12-01

    High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.

  7. Big data mining analysis method based on cloud computing

    NASA Astrophysics Data System (ADS)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.

  8. Charting a Security Landscape in the Clouds: Data Protection and Collaboration in Cloud Storage

    DTIC Science & Technology

    2016-07-01

    cloud computing is perhaps the most revolutionary force in the information technology industry today. This field encompasses many different domains...characteristic shared by all cloud computing tasks is that they involve storing data in the cloud . In this report, we therefore aim to describe and rank the...CONCLUSION The advent of cloud computing has caused government organizations to rethink their IT architectures so that they can take advantage of the

  9. Twenty years of Landsat data accessible through the national satellite land remote sensing data archive

    USGS Publications Warehouse

    Larsen, Dana M.

    1993-01-01

    The EROS Data Center has managed to National Satellite Land Remote Sensing Data Archive's (NSLRSDA) Landsat data since 1972. The NSLRSDA includes Landsat MSS data from 1972 through 1991 and T M data from 1982 through 1993. In response to many requests from multi-disciplined users for an enhanced insight into the availability and volume of Landsat data over specific worldwide land areas, numerous world plots and corresponding statical overviews have been prepared. These presentations include information related to image quality, cloud cover, various types of data overage (i.e. regions, countries, path, rows), acquisition station coverage areas, various archive media formats (i.e. wide band video tapes, computer compatible tapes, high density tapes, etc.) and acquisition time periods (i.e. years, seasons). Plans are to publish this information in a paper sample booklet at the Pecora 12 Symposium, in a USGS circular and on a Landsat CD-ROM; the data will be also be incorporated into GLIS.

  10. Introducing Cloud Computing Topics in Curricula

    ERIC Educational Resources Information Center

    Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue

    2012-01-01

    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…

  11. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    PubMed

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  12. Bootstrapping and Maintaining Trust in the Cloud

    DTIC Science & Technology

    2016-12-01

    simultaneous cloud nodes. 1. INTRODUCTION The proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as...Amazon Web Services and Google Compute Engine means more cloud tenants are hosting sensitive, private, and business critical data and applications in the...thousands of IaaS resources as they are elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features

  13. Study on the application of mobile internet cloud computing platform

    NASA Astrophysics Data System (ADS)

    Gong, Songchun; Fu, Songyin; Chen, Zheng

    2012-04-01

    The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.

  14. Integration of Cloud resources in the LHCb Distributed Computing

    NASA Astrophysics Data System (ADS)

    Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel

    2014-06-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.

  15. SPARCCS - Smartphone-Assisted Readiness, Command and Control System

    DTIC Science & Technology

    2012-06-01

    and database needs. By doing this SPARCCS takes advantage of all the capabilities cloud computing has to offer, especially that of disbursed data...40092829/ Microsoft. (2011). Cloud Computing . Retrieved September 24, 2011, http ://www.microsoft.com/industry/government/guides/cloud_computing/2...Command, and Control System) to address these issues. We use smartphones in conjunction with cloud computing to extend the benefits of collaborative

  16. Future Naval Use of COTS Networking Infrastructure

    DTIC Science & Technology

    2009-07-01

    user to benefit from Google’s vast databases and computational resources. Obviously, the ability to harness the full power of the Cloud could be... Computing Impact Findings Action Items Take-Aways Appendices: Pages 54-68 A. Terms of Reference Document B. Sample Definitions of Cloud ...and definition of Cloud Computing . While Cloud Computing is developing in many variations – including Infrastructure as a Service (IaaS), Platform as

  17. The application of cloud computing to scientific workflows: a study of cost and performance.

    PubMed

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  18. Use of cloud computing in biomedicine.

    PubMed

    Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil

    2016-12-01

    Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.

  19. A resource management architecture based on complex network theory in cloud computing federation

    NASA Astrophysics Data System (ADS)

    Zhang, Zehua; Zhang, Xuejie

    2011-10-01

    Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.

  20. Evaluating the Efficacy of the Cloud for Cluster Computation

    NASA Technical Reports Server (NTRS)

    Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom

    2012-01-01

    Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.

  1. CSNS computing environment Based on OpenStack

    NASA Astrophysics Data System (ADS)

    Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu

    2017-10-01

    Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.

  2. COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications

    NASA Astrophysics Data System (ADS)

    Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi

    2012-05-01

    The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.

  3. Hybrid cloud: bridging of private and public cloud computing

    NASA Astrophysics Data System (ADS)

    Aryotejo, Guruh; Kristiyanto, Daniel Y.; Mufadhol

    2018-05-01

    Cloud Computing is quickly emerging as a promising paradigm in the recent years especially for the business sector. In addition, through cloud service providers, cloud computing is widely used by Information Technology (IT) based startup company to grow their business. However, the level of most businesses awareness on data security issues is low, since some Cloud Service Provider (CSP) could decrypt their data. Hybrid Cloud Deployment Model (HCDM) has characteristic as open source, which is one of secure cloud computing model, thus HCDM may solve data security issues. The objective of this study is to design, deploy and evaluate a HCDM as Infrastructure as a Service (IaaS). In the implementation process, Metal as a Service (MAAS) engine was used as a base to build an actual server and node. Followed by installing the vsftpd application, which serves as FTP server. In comparison with HCDM, public cloud was adopted through public cloud interface. As a result, the design and deployment of HCDM was conducted successfully, instead of having good security, HCDM able to transfer data faster than public cloud significantly. To the best of our knowledge, Hybrid Cloud Deployment model is one of secure cloud computing model due to its characteristic as open source. Furthermore, this study will serve as a base for future studies about Hybrid Cloud Deployment model which may relevant for solving big security issues of IT-based startup companies especially in Indonesia.

  4. Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pete Beckman and Ian Foster

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  5. Transitioning ISR architecture into the cloud

    NASA Astrophysics Data System (ADS)

    Lash, Thomas D.

    2012-06-01

    Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.

  6. Citizen Science and Crowdsourcing as effective STEM Education and Engagement activities for Diverse Audiences: case studies featured in THE CROWD & THE CLOUD public TV series.

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.; Abdalati, W.; Akuginow, E.

    2017-12-01

    Citizen science and crowdsourcing are relatively unfamiliar terms to the general public, including parents, children and teachers, as seen in focus groups convened by the NSF-funded THE CROWD & THE CLOUD public television series. Once aware, however, of the potential of today's citizen science—often relying on smartphones, apps and innovative sensors—both citizens and professional scientists become excited and seek to learn more. CROWD & CLOUD, premiering on PBS stations in April 2017, hosted by former NASA Chief Scientist Waleed Abdalati, and streaming at CrowdAndCloud.org, features a wide range of projects supported by NASA, NOAA, USGS, EPA and other Federal agencies. Some, such as EyesOnALZ, a startup which aims to accelerate research on Alzheimer's disease, adapt a crowdsourcing model first developed to help analyze data returned by NASA's Stardust spacecraft. Early results from its "StallCatchers" puzzle-game show both high quality data and have been shown to cut one year's worth of academic labor down to one month of effort by "the crowd." While longstanding citizen science projects such as Audubon's Christmas Bird Count (starting in 1900) have proven their worth, Smartfin—embedding sensors in surfboard fins—is taking advantage of recent technical innovations to track sea surface temperatures and ocean acidification, with their accuracy validated by the Scripps Institution of Oceanography. The NASA-supported GLOBE Observer mosquito habitat mapper project uses a $6 microscope attached to a smartphone to aid in species identification. Some projects tap adult volunteers, but many, such as USGS's Nature's Notebook, also appeal to youngsters. In Albuquerque local teens track invasive species and help refuge managers, usefully supplementing the sole salaried ranger. In the Rockaways, New York, high school students plant pollinator gardens and promote ecosystem resilience following Superstorm Sandy. This presentation will feature short videos demonstrating the wide variety of "Citizen Science in the Digital Age" and present a first look at findings from CROWD & CLOUD's External Evaluation (Rockman et al) including extensive surveys, web analytics and interviews with career scientists, citizen science practitioners, and members of the general public.

  7. Bigdata Driven Cloud Security: A Survey

    NASA Astrophysics Data System (ADS)

    Raja, K.; Hanifa, Sabibullah Mohamed

    2017-08-01

    Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.

  8. Galaxy CloudMan: delivering cloud compute clusters.

    PubMed

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  9. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  10. Libraries in the Cloud: Making a Case for Google and Amazon

    ERIC Educational Resources Information Center

    Buck, Stephanie

    2009-01-01

    As news outlets create headlines such as "A Cloud & A Prayer," "The Cloud Is the Computer," and "Leveraging Clouds to Make You More Efficient," many readers have been left with cloud confusion. Many definitions exist for cloud computing, and a uniform definition is hard to find. In its most basic form, cloud…

  11. In the Clouds: The Implications of Cloud Computing for Higher Education Information Technology Governance and Decision Making

    ERIC Educational Resources Information Center

    Dulaney, Malik H.

    2013-01-01

    Emerging technologies challenge the management of information technology in organizations. Paradigm changing technologies, such as cloud computing, have the ability to reverse the norms in organizational management, decision making, and information technology governance. This study explores the effects of cloud computing on information technology…

  12. Factors Influencing the Adoption of Cloud Computing by Decision Making Managers

    ERIC Educational Resources Information Center

    Ross, Virginia Watson

    2010-01-01

    Cloud computing is a growing field, addressing the market need for access to computing resources to meet organizational computing requirements. The purpose of this research is to evaluate the factors that influence an organization in their decision whether to adopt cloud computing as a part of their strategic information technology planning.…

  13. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  14. Design for Run-Time Monitor on Cloud Computing

    NASA Astrophysics Data System (ADS)

    Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.

  15. Research on phone contacts online status based on mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Wang, Wen-jinga; Ge, Weib

    2013-03-01

    Because the limited ability of storage space, CPU processing on mobile phone, it is difficult to realize complex applications on mobile phones, but along with the development of cloud computing, we can place the computing and storage in the clouds, provide users with rich cloud services, helping users complete various function through the browser has become the trend for future mobile communication. This article is taking the mobile phone contacts online status as an example to analysis the development and application of mobile cloud computing.

  16. Bootstrapping and Maintaining Trust in the Cloud

    DTIC Science & Technology

    2016-12-01

    proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as Amazon Web Services and Google Compute Engine means...IaaS trusted computing system: • Secure Bootstrapping – the system should enable the tenant to securely install an initial root secret into each cloud ...elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features, but none achieve all. Excalibur [31] sup

  17. Cloud Computing: An Overview

    NASA Astrophysics Data System (ADS)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  18. Evaluating open-source cloud computing solutions for geosciences

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong

    2013-09-01

    Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.

  19. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    ERIC Educational Resources Information Center

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…

  20. RAPPORT: running scientific high-performance computing applications on the cloud.

    PubMed

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  1. Security model for VM in cloud

    NASA Astrophysics Data System (ADS)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  2. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.

  3. A Quantitative Risk Analysis Framework for Evaluating and Monitoring Operational Reliability of Cloud Computing

    ERIC Educational Resources Information Center

    Islam, Muhammad Faysal

    2013-01-01

    Cloud computing offers the advantage of on-demand, reliable and cost efficient computing solutions without the capital investment and management resources to build and maintain in-house data centers and network infrastructures. Scalability of cloud solutions enable consumers to upgrade or downsize their services as needed. In a cloud environment,…

  4. Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic

    PubMed Central

    Sanduja, S; Jewell, P; Aron, E; Pharai, N

    2015-01-01

    Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333

  5. Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.

    PubMed

    Sanduja, S; Jewell, P; Aron, E; Pharai, N

    2015-09-01

    Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.

  6. Secure data sharing in public cloud

    NASA Astrophysics Data System (ADS)

    Venkataramana, Kanaparti; Naveen Kumar, R.; Tatekalva, Sandhya; Padmavathamma, M.

    2012-04-01

    Secure multi-party protocols have been proposed for entities (organizations or individuals) that don't fully trust each other to share sensitive information. Many types of entities need to collect, analyze, and disseminate data rapidly and accurately, without exposing sensitive information to unauthorized or untrusted parties. Solutions based on secure multiparty computation guarantee privacy and correctness, at an extra communication (too costly in communication to be practical) and computation cost. The high overhead motivates us to extend this SMC to cloud environment which provides large computation and communication capacity which makes SMC to be used between multiple clouds (i.e., it may between private or public or hybrid clouds).Cloud may encompass many high capacity servers which acts as a hosts which participate in computation (IaaS and PaaS) for final result, which is controlled by Cloud Trusted Authority (CTA) for secret sharing within the cloud. The communication between two clouds is controlled by High Level Trusted Authority (HLTA) which is one of the hosts in a cloud which provides MgaaS (Management as a Service). Due to high risk for security in clouds, HLTA generates and distributes public keys and private keys by using Carmichael-R-Prime- RSA algorithm for exchange of private data in SMC between itself and clouds. In cloud, CTA creates Group key for Secure communication between the hosts in cloud based on keys sent by HLTA for exchange of Intermediate values and shares for computation of final result. Since this scheme is extended to be used in clouds( due to high availability and scalability to increase computation power) it is possible to implement SMC practically for privacy preserving in data mining at low cost for the clients.

  7. Applications integration in a hybrid cloud computing environment: modelling and platform

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  8. Lost in Cloud

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  9. Securing the Data Storage and Processing in Cloud Computing Environment

    ERIC Educational Resources Information Center

    Owens, Rodney

    2013-01-01

    Organizations increasingly utilize cloud computing architectures to reduce costs and energy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth…

  10. A Comprehensive Toolset for General-Purpose Private Computing and Outsourcing

    DTIC Science & Technology

    2016-12-08

    project and scientific advances made towards each of the research thrusts throughout the project duration. 1 Project Objectives Cloud computing enables...possibilities that the cloud enables is computation outsourcing, when the client can utilize any necessary computing resources for its computational task...Security considerations, however, stand on the way of harnessing the full benefits of cloud computing to the fullest extent and prevent clients from

  11. Galaxy CloudMan: delivering cloud compute clusters

    PubMed Central

    2010-01-01

    Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983

  12. User's manual for SEDCALC, a computer program for computation of suspended-sediment discharge

    USGS Publications Warehouse

    Koltun, G.F.; Gray, John R.; McElhone, T.J.

    1994-01-01

    Sediment-Record Calculations (SEDCALC), a menu-driven set of interactive computer programs, was developed to facilitate computation of suspended-sediment records. The programs comprising SEDCALC were developed independently in several District offices of the U.S. Geological Survey (USGS) to minimize the intensive labor associated with various aspects of sediment-record computations. SEDCALC operates on suspended-sediment-concentration data stored in American Standard Code for Information Interchange (ASCII) files in a predefined card-image format. Program options within SEDCALC can be used to assist in creating and editing the card-image files, as well as to reformat card-image files to and from formats used by the USGS Water-Quality System. SEDCALC provides options for creating card-image files containing time series of equal-interval suspended-sediment concentrations from 1. digitized suspended-sediment-concentration traces, 2. linear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals, and 3. nonlinear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals. Suspended-sediment discharge can be computed from the streamflow and suspended-sediment-concentration data or by application of transport relations derived by regressing log-transformed instantaneous streamflows on log-transformed instantaneous suspended-sediment concentrations or discharges. The computed suspended-sediment discharge data are stored in card-image files that can be either directly imported to the USGS Automated Data Processing System or used to generate plots by means of other SEDCALC options.

  13. Security Risks of Cloud Computing and Its Emergence as 5th Utility Service

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    Cloud Computing is being projected by the major cloud services provider IT companies such as IBM, Google, Yahoo, Amazon and others as fifth utility where clients will have access for processing those applications and or software projects which need very high processing speed for compute intensive and huge data capacity for scientific, engineering research problems and also e- business and data content network applications. These services for different types of clients are provided under DASM-Direct Access Service Management based on virtualization of hardware, software and very high bandwidth Internet (Web 2.0) communication. The paper reviews these developments for Cloud Computing and Hardware/Software configuration of the cloud paradigm. The paper also examines the vital aspects of security risks projected by IT Industry experts, cloud clients. The paper also highlights the cloud provider's response to cloud security risks.

  14. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    PubMed

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  15. Flood-inundation maps for the White River at Noblesville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-11-02

    Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the White River at Noblesville, Ind., streamgage (USGS station number 03349000). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the same site as the USGS streamgage (NWS site NBLI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2016) stage-discharge rating at the USGS streamgage 03349000, White River at Noblesville, Ind., and documented high-water marks from the floods of September 4, 2003, and May 6, 2017. The hydraulic model was then used to compute 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 10.0 ft (the NWS “action stage”) to 24.0 ft, which is the highest stage interval of the current (2016) USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for postflood recovery efforts.

  16. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  17. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  18. Application verification research of cloud computing technology in the field of real time aerospace experiment

    NASA Astrophysics Data System (ADS)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  19. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  20. Formal Specification and Analysis of Cloud Computing Management

    DTIC Science & Technology

    2012-01-24

    te r Cloud Computing in a Nutshell We begin this introduction to Cloud Computing with a famous quote by Larry Ellison: “The interesting thing about...the wording of some of our ads.” — Larry Ellison, Oracle CEO [106] In view of this statement, we summarize the essential aspects of Cloud Computing...1] M. Abadi, M. Burrows , M. Manasse, and T. Wobber. Moderately hard, memory-bound functions. ACM Transactions on Internet Technology, 5(2):299–327

  1. A Test-Bed of Secure Mobile Cloud Computing for Military Applications

    DTIC Science & Technology

    2016-09-13

    searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT

  2. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  3. Preliminary geologic map of the island of Saipan, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Weary, David J.; Burton, William C.

    2011-01-01

    This map provides an update and reinterpretation of the geology of the island of Saipan. The geology of the island was previously documented in 1956 in U.S. Geological Survey (USGS) Professional Paper 280-A by Preston E. Cloud, Jr., and others. This report includes a geologic map at a scale of 1:20,000. The fieldwork for this project was performed in 2006 and 2007.

  4. CLICK: The USGS Center for LIDAR Information Coordination & Knowledge

    USGS Publications Warehouse

    Menig, Jordan C.; Stoker, Jason M.

    2007-01-01

    While this technology has proven its use as a mapping tool - effective for generating bare earth DEMs at high resolutions (1-3 m) and with high vertical accuracies (15-18 cm) - obstacles remain for its application as a remote sensing tool: * The high cost of collecting LIDAR * The steep learning curve on research and application of using the entire point cloud * The challenges of discovering whether data exist for regions of interest

  5. 69. Red Butte-Red Fir Ridge (Shasta Red Fir) (Imper 1988b, Cheng 1996d)

    Treesearch

    Sheauchi Cheng

    2004-01-01

    This established RNA is located on the Shasta-Trinity National Forest. The area is about 6.5 miles (10.5 km) N. of McCloud and occupies portions of sects. 33, 34, 35, and 36 T41N, R3W MDBM (41°21'N., 122°10'W.), USGS Mt. Shasta quad (fig. 139). Ecological subsection – High Cascades (M261Df).

  6. A Weibull distribution accrual failure detector for cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  7. Migrating Educational Data and Services to Cloud Computing: Exploring Benefits and Challenges

    ERIC Educational Resources Information Center

    Lahiri, Minakshi; Moseley, James L.

    2013-01-01

    "Cloud computing" is currently the "buzzword" in the Information Technology field. Cloud computing facilitates convenient access to information and software resources as well as easy storage and sharing of files and data, without the end users being aware of the details of the computing technology behind the process. This…

  8. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    PubMed Central

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811

  9. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    PubMed

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  10. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  11. Cloud computing for comparative genomics

    PubMed Central

    2010-01-01

    Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786

  12. Application of microarray analysis on computer cluster and cloud platforms.

    PubMed

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  13. Cloud computing for comparative genomics.

    PubMed

    Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J

    2010-05-18

    Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  14. Flood-inundation maps for the Meramec River at Valley Park and at Fenton, Missouri, 2017

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Sappington, Jacob N.

    2017-09-29

    Two sets of digital flood-inundation map libraries that spanned a combined 16.7-mile reach of the Meramec River that extends upstream from Valley Park, Missouri, to downstream from Fenton, Mo., were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, St. Louis Metropolitan Sewer District, Missouri Department of Transportation, Missouri American Water, and Federal Emergency Management Agency Region 7. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the cooperative USGS streamgages on the Meramec River at Valley Park, Mo., (USGS station number 07019130) and the Meramec River at Fenton, Mo. (USGS station number 07019210). Near-real-time stage data at these streamgages may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites (listed as NWS sites vllm7 and fnnm7, respectively).Flood profiles were computed for the stream reaches by means of a calibrated one-dimensional step-backwater hydraulic model. The model was calibrated using a stage-discharge relation at the Meramec River near Eureka streamgage (USGS station number 07019000) and documented high-water marks from the flood of December 2015 through January 2016.The calibrated hydraulic model was used to compute two sets of water-surface profiles: one set for the streamgage at Valley Park, Mo. (USGS station number 07019130), and one set for the USGS streamgage on the Meramec River at Fenton, Mo. (USGS station number 07019210). The water-surface profiles were produced for stages at 1-foot (ft) intervals referenced to the datum from each streamgage and ranging from the NWS action stage, or near bankfull discharge, to the stage corresponding to the estimated 0.2-percent annual exceedance probability (500-year recurrence interval) flood, as determined at the Eureka streamgage (USGS station number 07019000). The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.28-ft vertical accuracy and 3.28-ft horizontal resolution) to delineate the area flooded at each flood stage (water level).The availability of these maps, along with internet information regarding current stage from the USGS streamgages and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures and for postflood recovery efforts.

  15. Volunteered Cloud Computing for Disaster Management

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster management relies increasingly on interpreting earth observations and running numerical models; which require significant computing capacity - usually on short notice and at irregular intervals. Peak computing demand during event detection, hazard assessment, or incident response may exceed agency budgets; however some of it can be met through volunteered computing, which distributes subtasks to participating computers via the Internet. This approach has enabled large projects in mathematics, basic science, and climate research to harness the slack computing capacity of thousands of desktop computers. This capacity is likely to diminish as desktops give way to battery-powered mobile devices (laptops, smartphones, tablets) in the consumer market; but as cloud computing becomes commonplace, it may offer significant slack capacity -- if its users are given an easy, trustworthy mechanism for participating. Such a "volunteered cloud computing" mechanism would also offer several advantages over traditional volunteered computing: tasks distributed within a cloud have fewer bandwidth limitations; granular billing mechanisms allow small slices of "interstitial" computing at no marginal cost; and virtual storage volumes allow in-depth, reversible machine reconfiguration. Volunteered cloud computing is especially suitable for "embarrassingly parallel" tasks, including ones requiring large data volumes: examples in disaster management include near-real-time image interpretation, pattern / trend detection, or large model ensembles. In the context of a major disaster, we estimate that cloud users (if suitably informed) might volunteer hundreds to thousands of CPU cores across a large provider such as Amazon Web Services. To explore this potential, we are building a volunteered cloud computing platform and targeting it to a disaster management context. Using a lightweight, fault-tolerant network protocol, this platform helps cloud users join parallel computing projects; automates reconfiguration of their virtual machines; ensures accountability for donated computing; and optimizes the use of "interstitial" computing. Initial applications include fire detection from multispectral satellite imagery and flood risk mapping through hydrological simulations.

  16. Landsat Thematic Mapper Image Mosaic of Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Noble, Suzanne M.; Blauer, Steven L.; Friesen, Beverly A.; Bauer, Mark A.

    2010-01-01

    The U.S. Geological Survey (USGS) Rocky Mountain Geographic Science Center (RMGSC) produced a seamless, cloud-minimized remotely-sensed image spanning the State of Colorado. Multiple orthorectified Landsat 5 Thematic Mapper (TM) scenes collected during 2006-2008 were spectrally normalized via reflectance transformation and linear regression based upon pseudo-invariant features (PIFS) following the removal of clouds. Individual Landsat scenes were then mosaicked to form a six-band image composite spanning the visible to shortwave infrared spectrum. This image mosaic, presented here, will also be used to create a conifer health classification for Colorado in Scientific Investigations Map 3103. An archive of past and current Landsat imagery exists and is available to the scientific community (http://glovis.usgs.gov/), but significant pre-processing was required to produce a statewide mosaic from this information. Much of the data contained perennial cloud cover that complicated analysis and classification efforts. Existing Landsat mosaic products, typically three band image composites, did not include the full suite of multispectral information necessary to produce this assessment, and were derived using data collected in 2001 or earlier. A six-band image mosaic covering Colorado was produced. This mosaic includes blue (band 1), green (band 2), red (band 3), near infrared (band 4), and shortwave infrared information (bands 5 and 7). The image composite shown here displays three of the Landsat bands (7, 4, and 2), which are sensitive to the shortwave infrared, near infrared, and green ranges of the electromagnetic spectrum. Vegetation appears green in this image, while water looks black, and unforested areas appear pink. The lines that may be visible in the on-screen version of the PDF are an artifact of the export methods used to create this file. The file should be viewed at 150 percent zoom or greater for optimum viewing.

  17. Consolidation of cloud computing in ATLAS

    NASA Astrophysics Data System (ADS)

    Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration

    2017-10-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.

  18. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  19. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  20. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    PubMed

    Williams, Daniel R; Tang, Yinshan

    2013-05-07

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  1. cloudPEST - A python module for cloud-computing deployment of PEST, a program for parameter estimation

    USGS Publications Warehouse

    Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.

    2011-01-01

    This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).

  2. A detailed view of Earth across space and time: our changing planet through a 32-year global Landsat and Sentinel-2 timelapse video

    NASA Astrophysics Data System (ADS)

    Herwig, C.

    2017-12-01

    The Landsat program offers an unparalleled record of our changing planet, with satellites that have been observing the Earth since 1972 to the present day. However, clouds, seasonal variation, and technical challenges around access to large volumes of data make it difficult for researchers and the public to understand global and regional scale changes across time through the planetary dataset. Earth Timelapse is a global, zoomable video that has helped revolutionize how users - millions of which have never been capable of utilizing Landsat data before - monitor and understand a changing planet. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library, a technology for creating and viewing zoomable and pannable timelapses over space and time. Using Earth Engine, we combined over 5 million satellite images acquired over the past three decades by 5 different satellites. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program that has observed the Earth since the 1970s. For 2015 and 2016, we combined Landsat 8 imagery with imagery from Sentinel-2A, part of the European Commission and European Space Agency's Copernicus Earth observation program. Along with the interactive desktop Timelapse application, we created a 200-video YouTube playlist highlighting areas across the world exhibiting change in the dataset.Earth Timelapse is an example that illustrates the power of Google Earth Engine's cloud-computing platform, which enables users such as scientists, researchers, and journalists to detect changes, map trends, and quantify differences on the Earth's surface using Google's computational infrastructure and the multi-petabyte Earth Engine data catalog. Earth Timelapse also highlights the value of data visualization to communicate with non-scientific audiences with varied technical and internet connectivity. Timelapse videos - as a global, zoomable and explorable web map across time as well as curated locations hosted on YouTube - can be effective at conveying large and medium scale land surface changes over time to diverse audiences.

  3. Cloud Computing in Support of Synchronized Disaster Response Operations

    DTIC Science & Technology

    2010-09-01

    scalable, Web application based on cloud computing technologies to facilitate communication between a broad range of public and private entities without...requiring them to compromise security or competitive advantage. The proposed design applies the unique benefits of cloud computing architectures such as

  4. Streamstats: U.S. Geological Survey Web Application for Streamflow Statistics for Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.; Ries, Kernell G.; Steeves, Peter A.

    2006-01-01

    Introduction An important mission of the U. S. Geological Survey (USGS) is to provide information on streamflow in the Nation's rivers. Streamflow statistics are used by water managers, engineers, scientists, and others to protect people and property during floods and droughts, and to manage land, water, and biological resources. Common uses for streamflow statistics include dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower-facility design and regulation; and flood-plain mapping for establishing flood-insurance rates and land-use zones. In an effort to improve access to published streamflow statistics, and to make the process of computing streamflow statistics for ungaged stream sites easier, more accurate, and more consistent, the USGS and the Environmental Systems Research Institute, Inc. (ESRI) developed StreamStats (Ries and others, 2004). StreamStats is a Geographic Information System (GIS)-based Web application for serving previously published streamflow statistics and basin characteristics for USGS data-collection stations, and computing streamflow statistics and basin characteristics for ungaged stream sites. The USGS, in cooperation with the Connecticut Department of Environmental Protection and the Connecticut Department of Transportation, has implemented StreamStats for Connecticut.

  5. Architectural Implications of Cloud Computing

    DTIC Science & Technology

    2011-10-24

    Public Cloud Infrastructure-as-a- Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of...Twitter #SEIVirtualForum © 2011 Carnegie Mellon University Software -as-a- Service ( SaaS ) Model of software deployment in which a third-party...and System Solutions (RTSS) Program. Her current interests and projects are in service -oriented architecture (SOA), cloud computing, and context

  6. Integrating Cloud-Computing-Specific Model into Aircraft Design

    NASA Astrophysics Data System (ADS)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  7. Cognitive Approaches for Medicine in Cloud Computing.

    PubMed

    Ogiela, Urszula; Takizawa, Makoto; Ogiela, Lidia

    2018-03-03

    This paper will present the application potential of the cognitive approach to data interpretation, with special reference to medical areas. The possibilities of using the meaning approach to data description and analysis will be proposed for data analysis tasks in Cloud Computing. The methods of cognitive data management in Cloud Computing are aimed to support the processes of protecting data against unauthorised takeover and they serve to enhance the data management processes. The accomplishment of the proposed tasks will be the definition of algorithms for the execution of meaning data interpretation processes in safe Cloud Computing. • We proposed a cognitive methods for data description. • Proposed a techniques for secure data in Cloud Computing. • Application of cognitive approaches for medicine was described.

  8. Towards an Approach of Semantic Access Control for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai

    With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.

  9. Easy, Collaborative and Engaging--The Use of Cloud Computing in the Design of Management Classrooms

    ERIC Educational Resources Information Center

    Schneckenberg, Dirk

    2014-01-01

    Background: Cloud computing has recently received interest in information systems research and practice as a new way to organise information with the help of an increasingly ubiquitous computer infrastructure. However, the use of cloud computing in higher education institutions and business schools, as well as its potential to create novel…

  10. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    USGS Publications Warehouse

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More information regarding projects by the Michigan Water Science Center (MI WSC) is available at http://mi.water.usgs.gov/.

  11. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    PubMed Central

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  12. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  13. Reconciliation of the cloud computing model with US federal electronic health record regulations

    PubMed Central

    2011-01-01

    Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing. PMID:21727204

  14. Evaluating the Influence of the Client Behavior in Cloud Computing.

    PubMed

    Souza Pardo, Mário Henrique; Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José

    2016-01-01

    This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system.

  15. Evaluating the Influence of the Client Behavior in Cloud Computing

    PubMed Central

    Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José

    2016-01-01

    This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system. PMID:27441559

  16. A Weibull distribution accrual failure detector for cloud computing

    PubMed Central

    Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229

  17. High-performance scientific computing in the cloud

    NASA Astrophysics Data System (ADS)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  18. Reconciliation of the cloud computing model with US federal electronic health record regulations.

    PubMed

    Schweitzer, Eugene J

    2012-01-01

    Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing.

  19. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  20. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter

    PubMed Central

    Loganathan, Shyamala; Mukherjee, Saswati

    2015-01-01

    Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166

  1. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.

    PubMed

    Loganathan, Shyamala; Mukherjee, Saswati

    2015-01-01

    Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.

  2. Development of a SaaS application probe to the physical properties of the Earth's interior: An attempt at moving HPC to the cloud

    NASA Astrophysics Data System (ADS)

    Huang, Qian

    2014-09-01

    Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.

  3. Adopting Cloud Computing in the Pakistan Navy

    DTIC Science & Technology

    2015-06-01

    administrative aspect is required to operate optimally, provide synchronized delivery of cloud services, and integrate multi-provider cloud environment...AND ABBREVIATIONS ANSI American National Standards Institute AWS Amazon web services CIA Confidentiality Integrity Availability CIO Chief...also adopted cloud computing as an integral component of military operations conducted either locally or remotely. With the use of 2 cloud services

  4. Translational bioinformatics in the cloud: an affordable alternative

    PubMed Central

    2010-01-01

    With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073

  5. Does Cloud Computing in the Atmospheric Sciences Make Sense? A case study of hybrid cloud computing at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.

    2014-12-01

    The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.

  6. Cloud Computing Explained

    ERIC Educational Resources Information Center

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  7. Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing

    PubMed Central

    Balasubramaniam, S.; Kavitha, V.

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826

  8. Geometric data perturbation-based personal health record transactions in cloud computing.

    PubMed

    Balasubramaniam, S; Kavitha, V

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.

  9. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.

  10. An Assessment of Security Vulnerabilities Comprehension of Cloud Computing Environments: A Quantitative Study Using the Unified Theory of Acceptance and Use

    ERIC Educational Resources Information Center

    Venkatesh, Vijay P.

    2013-01-01

    The current computing landscape owes its roots to the birth of hardware and software technologies from the 1940s and 1950s. Since then, the advent of mainframes, miniaturized computing, and internetworking has given rise to the now prevalent cloud computing era. In the past few months just after 2010, cloud computing adoption has picked up pace…

  11. Cloud Computing at the Tactical Edge

    DTIC Science & Technology

    2012-10-01

    Cloud Computing (CloudCom ’09). Bejing , China , December 2009. Springer-Verlag, 2009. [Marinelli 2009] Marinelli, E. Hyrax: Cloud Computing on Mobile...offloading is appropriate. Each applica- tion overlay is generated from the same Base VM Image that resides in the cloudlet. In an opera - tional setting...overlay, the following opera - tions execute: 1. The overlay is decompressed using the tools listed in Section 4.2. 2. VM synthesis is performed through

  12. Flood-inundation maps for the Big Blue River at Shelbyville, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2017-02-13

    Digital flood-inundation maps for a 4.1-mile reach of the Big Blue River at Shelbyville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The floodinundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water. usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Big Blue River at Shelbyville, Ind. (station number 03361500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata. usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at https://water.weather.gov/ ahps/, which also forecasts flood hydrographs at this site (SBVI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Big Blue River at Shelbyville, Ind., streamgage. The calibrated hydraulic model was then used to compute 12 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 9.0 feet, or near bankfull, to 19.4 feet, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at the Big Blue River at Shelbyville, Ind., and forecasted stream stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  13. Flood-inundation maps for the White River at Spencer, Indiana

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2013-01-01

    Digital flood-inundation maps for a 5.3-mile reach of the White River at Spencer, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage White River at Spencer, Indiana (sta. no. 03357000). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. National Weather Service (NWS)-forecasted peak-stage inforamation may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the White River at Spencer, Indiana, streamgage and documented high-water marks from the flood of June 8, 2008. The hydraulic model was then used to compute 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from the NWS action stage (9 feet) to the highest rated stage (28 feet) at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the Spencer USGS streamgage and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  14. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    USGS Publications Warehouse

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview of these applications is provided in the fact sheet.

  15. Contribution of National near Real Time MODIS Forest Maximum Percentage NDVI Change Products to the U.S. ForWarn System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.

    2012-01-01

    This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product is computed for the current compositing period and integrated into the change images to account for snow related NDVI drops. The supplemental snow classification product was needed because other available QA cloud/snow mask typically underestimates snow cover. MODIS true and false color composites were also computed from eMODIS reflectance data and the true color RGBs are also posted on ForWarn?s FCAV; this data is used for assessing apparent occasional quality issues on the change products due to residual unmasked cloud cover. New forest change products are posted with typical latencies of 1-2 days after the last input eMODIS data collection date for a given 24 day compositing period.

  16. A service brokering and recommendation mechanism for better selecting cloud services.

    PubMed

    Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan

    2014-01-01

    Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).

  17. Opening the Landsat Archive

    USGS Publications Warehouse

    ,

    2008-01-01

    The USGS Landsat archive holds an unequaled 36-year record of the Earth's surface that is invaluable to climate change studies, forest and resource management activities, and emergency response operations. An aggressive effort is taking place to provide all Landsat imagery [scenes currently held in the USGS Earth Resources Observation and Science (EROS) Center archive, as well as newly acquired scenes daily] free of charge to users with electronic access via the Web by the end of December 2008. The entire Landsat 7 Enhanced Thematic Mapper Plus (ETM+) archive acquired since 1999 and any newly acquired Landsat 7 ETM+ images that have less than 40 percent cloud cover are currently available for download. When this endeavor is complete all Landsat 1-5 data will also be available for download. This includes Landsat 1-5 Multispectral Scanner (MSS) scenes, as well as Landsat 4 and 5 Thematic Mapper (TM) scenes.

  18. Teaching, Learning, and Collaborating in the Cloud: Applications of Cloud Computing for Educators in Post-Secondary Institutions

    ERIC Educational Resources Information Center

    Aaron, Lynn S.; Roche, Catherine M.

    2012-01-01

    "Cloud computing" refers to the use of computing resources on the Internet instead of on individual personal computers. The field is expanding and has significant potential value for educators. This is discussed with a focus on four main functions: file storage, file synchronization, document creation, and collaboration--each of which has…

  19. USGS Map-on-Demand Printing

    USGS Publications Warehouse

    ,

    1999-01-01

    Currently, the U.S. Geological Survey (USGS) uses conventional lithographic printing techniques to produce paper copies of most of its mapping products. This practice is not economical for those products that are in low demand. With the advent of newer technologies, high-speed, large-format printers have been coupled with innovative computer software to turn digital map data into a printed map. It is now possible to store and retrieve data from vast geospatial data bases and print a map on an as-needed basis; that is, print on demand, thereby eliminating the need to warehouse an inventory of paper maps for which there is low demand. Using print-on-demand technology, the USGS is implementing map-on-demand (MOD) printing for certain infrequently requested maps. By providing MOD, the USGS can offer an alternative to traditional, large-volume printing and can improve its responsiveness to customers by giving them greater access to USGS scientific data in a format that otherwise might not be available.

  20. The Development of an Educational Cloud for IS Curriculum through a Student-Run Data Center

    ERIC Educational Resources Information Center

    Hwang, Drew; Pike, Ron; Manson, Dan

    2016-01-01

    The industry-wide emphasis on cloud computing has created a new focus in Information Systems (IS) education. As the demand for graduates with adequate knowledge and skills in cloud computing is on the rise, IS educators are facing a challenge to integrate cloud technology into their curricula. Although public cloud tools and services are available…

  1. An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing.

    PubMed

    Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei

    2016-02-18

    Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users' costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers' resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center's energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically.

  2. An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing

    PubMed Central

    Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei

    2016-01-01

    Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users’ costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers’ resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center’s energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically. PMID:26901201

  3. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  4. 78 FR 2919 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Disability and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Rehabilitation Research--Disability and Rehabilitation Research Project--Inclusive Cloud and Web Computing CFDA... inclusive Cloud and Web computing. The Assistant Secretary may use this priority for competitions in fiscal... Priority for Inclusive Cloud and Web Computing'' in the subject line of your electronic message. FOR...

  5. Cloud Computing for Teaching Practice: A New Design?

    ERIC Educational Resources Information Center

    Saadatdoost, Robab; Sim, Alex Tze Hiang; Jafarkarimi, Hosein; Hee, Jee Mei; Saadatdoost, Leila

    2014-01-01

    Recently researchers have shown an increased interest in cloud computing technology. It is becoming increasingly difficult to ignore cloud computing technology in education context. However rapid changes in information technology are having a serious effect on teaching framework designs. So far, however, there has been little discussion about…

  6. 78 FR 26626 - Applications for New Awards; National Institute on Disability and Rehabilitation Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Rehabilitation Research--Disability and Rehabilitation Research Projects--Inclusive Cloud and Web Computing... Rehabilitation Research Projects (DRRPs)--Inclusive Cloud and Web Computing Notice inviting applications for new...#DRRP . Priorities: Priority 1--DRRP on Inclusive Cloud and Web Computing-- is from the notice of final...

  7. Navigating the Challenges of the Cloud

    ERIC Educational Resources Information Center

    Ovadia, Steven

    2010-01-01

    Cloud computing is increasingly popular in education. Cloud computing is "the delivery of computer services from vast warehouses of shared machines that enables companies and individuals to cut costs by handing over the running of their email, customer databases or accounting software to someone else, and then accessing it over the internet."…

  8. A study on strategic provisioning of cloud computing services.

    PubMed

    Whaiduzzaman, Md; Haque, Mohammad Nazmul; Rejaul Karim Chowdhury, Md; Gani, Abdullah

    2014-01-01

    Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.

  9. A Study on Strategic Provisioning of Cloud Computing Services

    PubMed Central

    Rejaul Karim Chowdhury, Md

    2014-01-01

    Cloud computing is currently emerging as an ever-changing, growing paradigm that models “everything-as-a-service.” Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified. PMID:25032243

  10. Closet to Cloud: The online archiving of tape-based continuous NCSN seismic data from 1993-2005

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Aranha, M. A.; Kohler, W. M.; Oppenheimer, D.

    2016-12-01

    As earthquake monitoring systems in the 1980s moved from analog to digital recording systems, most seismic networks only archived digital waveforms from detected events due to lack of affordable online digital storage for continuous high-rate (100 sps) data. The Northern California Earthquake Data Center (NCEDC), established in 1991 by UC Berkeley and the USGS Menlo Park, archived 20 sps continuous data and triggerd high-rate from the sparse Berkeley seismic network, but could not afford the online storage for continuous high-rate data from the 300+ stations of the USGS Northern California Seismic Network (NCSN). The discovery of non-volcanic tremor and the use of continuous waveform correlation techniques for detecting repeating earthquakes combined with the increase in disk capacity capacity and significant reduction in disk costs led the Northern California Earthquake Data Center (NCEDC) to begin archiving continuous high-rate waveforms in 2004-2005. The USGS Menlo Park NCSN network had backup tapes of continuous high-rate waveform data since 1993 on the shelf, and the USGS and NCEDC embarked on a project to restore and archive all continuous NCSN data from 1993 through 2005. We will discuss the procedures and problems encountered when reading, transcribing, converting data formats, SEED channel naming, and archiving the 1993-2005 continuous NCSN waveforms. We will also illustrate new science enabled by these data. These and other northern California seismic and geophysical data are available via web services at http://service.ncedc.org

  11. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  12. Building Effective Pipelines to Increase Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Snow, E.; Robinson, C. R.; Neal-Mujahid, R.

    2017-12-01

    The U.S. Geological Survey (USGS) recognizes and understands the importance of a diverse workforce in advancing our science. Valuing Differences is one of the guiding principles of the USGS, and is the critical basis of the collaboration among the Youth and Education in Science (YES) program in the USGS Office of Science, Quality, and Integrity (OSQI), the Office of Diversity and Equal Opportunity (ODEO), and USGS science centers to build pipeline programs targeting diverse young scientists. Pipeline programs are robust, sustained relationships between two entities that provide a pathway from one to the other, in this case, from minority serving institutions to the USGS. The USGS has benefited from pipeline programs for many years. Our longest running program, with University of Puerto Rico Mayaguez (UPR), is a targeted outreach and internship program that has been managed by USGS scientists in Florida since the mid-1980's Originally begun as the Minority Participation in the Earth Sciences (MPES ) Program, it has evolved over the years, and in its several forms has brought dozens of interns to the USGS. Based in part on that success, in 2006 USGS scientists in Woods Hole MA worked with their Florida counterparts to build a pipeline program with City College of New York (CCNY). In this program, USGS scientists visit CCNY monthly, giving a symposium and meeting with students and faculty. The talks are so successful that the college created a course around them. In 2017, the CCNY and UPR programs brought 12 students to the USGS for summer internships. The CCNY model has been so successful that USGS is exploring creating similar pipeline programs. The YES office is coordinating with ODEO and USGS science centers to identify partner universities and build relationships that will lead to robust partnership where USGS scientists will visit regularly to engage with faculty and students and recruit students for USGS internships. The ideal partner universities will have a high population of underserved students, strong support for minority and first-generation students, proximity to a USGS office, and faculty and/or majors in several of the fields most important to USGS science: geology, geochemistry, energy, biology, ecology, environmental health, hydrology, climate science, GIS, high-capacity computing, and remote sensing.

  13. Development of a hydraulic model and flood-inundation maps for the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Boldt, Justin A.

    2018-01-16

    A two-dimensional hydraulic model and digital flood‑inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation.Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water‑surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water level.The availability of these maps, along with information on the internet regarding current stage from the USGS streamgage at Mount Carmel, Ill., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  14. Flood-inundation maps for the St. Joseph River at Elkhart, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-02-01

    Digital flood-inundation maps for a 6.6-mile reach of the St. Joseph River at Elkhart, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site EKMI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind., and the documented high-water marks from the flood of March 1982. The hydraulic model was then used to compute six water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 23.0 ft (the NWS “action stage”) to 28.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 1 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution, resampled to a 10-ft grid) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  15. Flood-inundation maps for the Wabash River at Terre Haute, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 6.3-mi reach of the Wabash River from 0.1 mi downstream of the Interstate 70 bridge to 1.1 miles upstream of the Route 63 bridge, Terre Haute, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to select water levels (stages) at the USGS streamgage Wabash River at Terre Haute (station number 03341500). Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03341500&agency_cd=USGS&p"). In addition, the same data are provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps//). Within this system, the NWS forecasts flood hydrographs for the Wabash River at Terre Haute that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Wabash River at the Terre Haute streamgage. The hydraulic model was then used to compute 22 water-surface profiles for flood stages at 1-ft interval referenced to the streamgage datum and ranging from bank-full to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and a 1.02-ft horizontal accuracy) to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the USGS streamgage and forecasted stream stages from the NWS can provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  16. How to Cloud for Earth Scientists: An Introduction

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2018-01-01

    This presentation is a tutorial on getting started with cloud computing for the purposes of Earth Observation datasets. We first discuss some of the main advantages that cloud computing can provide for the Earth scientist: copious processing power, immense and affordable data storage, and rapid startup time. We also talk about some of the challenges of getting the most out of cloud computing: re-organizing the way data are analyzed, handling node failures and attending.

  17. Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork

    ERIC Educational Resources Information Center

    Qin, Li; Hsu, Jeffrey; Stern, Mel

    2016-01-01

    With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…

  18. On the Modeling and Management of Cloud Data Analytics

    NASA Astrophysics Data System (ADS)

    Castillo, Claris; Tantawi, Asser; Steinder, Malgorzata; Pacifici, Giovanni

    A new era is dawning where vast amount of data is subjected to intensive analysis in a cloud computing environment. Over the years, data about a myriad of things, ranging from user clicks to galaxies, have been accumulated, and continue to be collected, on storage media. The increasing availability of such data, along with the abundant supply of compute power and the urge to create useful knowledge, gave rise to a new data analytics paradigm in which data is subjected to intensive analysis, and additional data is created in the process. Meanwhile, a new cloud computing environment has emerged where seemingly limitless compute and storage resources are being provided to host computation and data for multiple users through virtualization technologies. Such a cloud environment is becoming the home for data analytics. Consequently, providing good performance at run-time to data analytics workload is an important issue for cloud management. In this paper, we provide an overview of the data analytics and cloud environment landscapes, and investigate the performance management issues related to running data analytics in the cloud. In particular, we focus on topics such as workload characterization, profiling analytics applications and their pattern of data usage, cloud resource allocation, placement of computation and data and their dynamic migration in the cloud, and performance prediction. In solving such management problems one relies on various run-time analytic models. We discuss approaches for modeling and optimizing the dynamic data analytics workload in the cloud environment. All along, we use the Map-Reduce paradigm as an illustration of data analytics.

  19. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  20. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  1. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    PubMed

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  2. Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.

    PubMed

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.

  3. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    PubMed Central

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  4. Secure Cloud Computing Implementation Study For Singapore Military Operations

    DTIC Science & Technology

    2016-09-01

    COMPUTING IMPLEMENTATION STUDY FOR SINGAPORE MILITARY OPERATIONS by Lai Guoquan September 2016 Thesis Advisor: John D. Fulp Co-Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SECURE CLOUD COMPUTING IMPLEMENTATION STUDY FOR SINGAPORE MILITARY OPERATIONS 5. FUNDING NUMBERS...addition, from the military perspective, the benefits of cloud computing were analyzed from a study of the U.S. Department of Defense. Then, using

  5. Operating Dedicated Data Centers - Is It Cost-Effective?

    NASA Astrophysics Data System (ADS)

    Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.

  6. Cloud Technology May Widen Genomic Bottleneck - TCGA

    Cancer.gov

    Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.

  7. Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012

    USGS Publications Warehouse

    Coon, William F.

    2013-01-01

    Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft vertical accuracy and 3.9 ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps on the USGS Federal Flood Inundation Mapper Web site, along with Internet information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  8. Flood-inundation maps for the East Fork White River at Shoals, Indiana

    USGS Publications Warehouse

    Boldt, Justin A.

    2016-05-06

    Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was verified with photographs from a flood event on July 20, 2015.The availability of these maps, along with information on the Internet regarding current stage from the USGS streamgage at East Fork White River at Shoals, Ind., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  9. Platform for High-Assurance Cloud Computing

    DTIC Science & Technology

    2016-06-01

    to create today’s standard cloud computing applications and services. Additionally , our SuperCloud (a related but distinct project under the same... Additionally , our SuperCloud (a related but distinct project under the same MRC funding) reduces vendor lock-in and permits application to migrate, to follow...managing key- value storage with strong assurance properties. This first accomplishment allows us to climb the cloud technical stack, by offering

  10. MCloud: Secure Provenance for Mobile Cloud Users

    DTIC Science & Technology

    2016-10-03

    Feasibility of Smartphone Clouds , 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 04-MAY- 15, Shenzhen, China...final decision. MCloud: Secure Provenance for Mobile Cloud Users Final Report Bogdan Carbunar Florida International University Computing and...Release; Distribution Unlimited UU UU UU UU 03-10-2016 31-May-2013 30-May-2016 Final Report: MCloud: Secure Provenance for Mobile Cloud Users The views

  11. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    DOE PAGES

    Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...

    2017-09-29

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less

  12. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less

  13. A lightweight distributed framework for computational offloading in mobile cloud computing.

    PubMed

    Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul

    2014-01-01

    The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.

  14. A Lightweight Distributed Framework for Computational Offloading in Mobile Cloud Computing

    PubMed Central

    Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul

    2014-01-01

    The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC. PMID:25127245

  15. Information Security in the Age of Cloud Computing

    ERIC Educational Resources Information Center

    Sims, J. Eric

    2012-01-01

    Information security has been a particularly hot topic since the enhanced internal control requirements of Sarbanes-Oxley (SOX) were introduced in 2002. At about this same time, cloud computing started its explosive growth. Outsourcing of mission-critical functions has always been a gamble for managers, but the advantages of cloud computing are…

  16. Cloud Computing in the Curricula of Schools of Computer Science and Information Systems

    ERIC Educational Resources Information Center

    Lawler, James P.

    2011-01-01

    The cloud continues to be a developing area of information systems. Evangelistic literature in the practitioner field indicates benefit for business firms but disruption for technology departments of the firms. Though the cloud currently is immature in methodology, this study defines a model program by which computer science and information…

  17. Cloud Computing: Should It Be Integrated into the Curriculum?

    ERIC Educational Resources Information Center

    Changchit, Chuleeporn

    2015-01-01

    Cloud computing has become increasingly popular among users and businesses around the world, and education is no exception. Cloud computing can bring an increased number of benefits to an educational setting, not only for its cost effectiveness, but also for the thirst for technology that college students have today, which allows learning and…

  18. A Semantic Based Policy Management Framework for Cloud Computing Environments

    ERIC Educational Resources Information Center

    Takabi, Hassan

    2013-01-01

    Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access…

  19. A Quantitative Investigation of Cloud Computing Adoption in Nigeria: Testing an Enhanced Technology Acceptance Model

    ERIC Educational Resources Information Center

    Ishola, Bashiru Abayomi

    2017-01-01

    Cloud computing has recently emerged as a potential alternative to the traditional on-premise computing that businesses can leverage to achieve operational efficiencies. Consequently, technology managers are often tasked with the responsibilities to analyze the barriers and variables critical to organizational cloud adoption decisions. This…

  20. CANFAR+Skytree: A Cloud Computing and Data Mining System for Astronomy

    NASA Astrophysics Data System (ADS)

    Ball, N. M.

    2013-10-01

    This is a companion Focus Demonstration article to the CANFAR+Skytree poster (Ball 2013, this volume), demonstrating the usage of the Skytree machine learning software on the Canadian Advanced Network for Astronomical Research (CANFAR) cloud computing system. CANFAR+Skytree is the world's first cloud computing system for data mining in astronomy.

  1. ASSURED CLOUD COMPUTING UNIVERSITY CENTER OFEXCELLENCE (ACC UCOE)

    DTIC Science & Technology

    2018-01-18

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...infrastructure security -Design of algorithms and techniques for real- time assuredness in cloud computing -Map-reduce task assignment with data locality...46 DESIGN OF ALGORITHMS AND TECHNIQUES FOR REAL- TIME ASSUREDNESS IN CLOUD COMPUTING

  2. A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services

    PubMed Central

    Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan

    2014-01-01

    Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI). PMID:25170937

  3. A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.

    PubMed

    Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu

    2018-05-09

    The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.

  4. Cloud Computing for Protein-Ligand Binding Site Comparison

    PubMed Central

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  5. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  6. Service Mediation and Negotiation Bootstrapping as First Achievements Towards Self-adaptable Cloud Services

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Dustdar, Schahram

    Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.

  7. A new data collaboration service based on cloud computing security

    NASA Astrophysics Data System (ADS)

    Ying, Ren; Li, Hua-Wei; Wang, Li na

    2017-09-01

    With the rapid development of cloud computing, the storage and usage of data have undergone revolutionary changes. Data owners can store data in the cloud. While bringing convenience, it also brings many new challenges to cloud data security. A key issue is how to support a secure data collaboration service that supports access and updates to cloud data. This paper proposes a secure, efficient and extensible data collaboration service, which prevents data leaks in cloud storage, supports one to many encryption mechanisms, and also enables cloud data writing and fine-grained access control.

  8. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  9. An evaluation of the accuracy of modeled and computed streamflow time-series data for the Ohio River at Hannibal Lock and Dam and at a location upstream from Sardis, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2015-01-01

    Streamflow hydrographs were plotted for modeled/computed time series for the Ohio River near the USGS Sardis gage and the Ohio River at the Hannibal Lock and Dam. In general, the time series at these two locations compared well. Some notable differences include the exclusive presence of short periods of negative streamflows in the USGS 15-minute time-series data for the gage on the Ohio River above Sardis, Ohio, and the occurrence of several peak streamflows in the USACE gate/hydropower time series for the Hannibal Lock and Dam that were appreciably larger than corresponding peaks in the other time series, including those modeled/computed for the downstream Sardis gage

  10. CloudDOE: a user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce.

    PubMed

    Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung

    2014-01-01

    Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.

  11. CloudDOE: A User-Friendly Tool for Deploying Hadoop Clouds and Analyzing High-Throughput Sequencing Data with MapReduce

    PubMed Central

    Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung

    2014-01-01

    Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343

  12. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  13. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Technical Reports Server (NTRS)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  14. On Study of Building Smart Campus under Conditions of Cloud Computing and Internet of Things

    NASA Astrophysics Data System (ADS)

    Huang, Chao

    2017-12-01

    two new concepts in the information era are cloud computing and internet of things, although they are defined differently, they share close relationship. It is a new measure to realize leap-forward development of campus by virtue of cloud computing, internet of things and other internet technologies to build smart campus. This paper, centering on the construction of smart campus, analyzes and compares differences between network in traditional campus and that in smart campus, and makes proposals on how to build smart campus finally from the perspectives of cloud computing and internet of things.

  15. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    NASA Astrophysics Data System (ADS)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  16. Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus

    NASA Astrophysics Data System (ADS)

    Baun, Christian; Kunze, Marcel

    Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.

  17. Cloud detection algorithm comparison and validation for operational Landsat data products

    USGS Publications Warehouse

    Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady

    2017-01-01

    Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.

  18. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    PubMed

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  19. Using Google Applications as Part of Cloud Computing to Improve Knowledge and Teaching Skills of Faculty Members at the University of Bisha, Bisha, Saudi Arabia

    ERIC Educational Resources Information Center

    Alshihri, Bandar A.

    2017-01-01

    Cloud computing is a recent computing paradigm that has been integrated into the educational system. It provides numerous opportunities for delivering a variety of computing services in a way that has not been experienced before. The Google Company is among the top business companies that afford their cloud services by launching a number of…

  20. CloudMC: a cloud computing application for Monte Carlo simulation.

    PubMed

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  1. Integration of High-Performance Computing into Cloud Computing Services

    NASA Astrophysics Data System (ADS)

    Vouk, Mladen A.; Sills, Eric; Dreher, Patrick

    High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).

  2. Blizzards to hurricanes: computer modeling of hydrology, weathering, and isotopic fractionation across hydroclimatic regions

    Treesearch

    Richard MT Webb; David L. Parkhurst

    2016-01-01

    The U.S. Geological Survey’s (USGS) Water, Energy, and Biogeochemical Model (WEBMOD) was used to simulate hydrology, weathering, and isotopic fractionation in the Andrews Creek watershed in Rocky Mountain National Park, Colorado and the Icacos River watershed in the Luquillo Experimental Forest, Puerto Rico. WEBMOD includes hydrologic modules derived from the USGS...

  3. Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.

    PubMed

    Liao, Wen-Hwa; Qiu, Wan-Li

    2016-01-01

    Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture.

  4. Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record.

    PubMed

    Ahmadi, Maryam; Aslani, Nasim

    2018-01-01

    With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology.

  5. Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record

    PubMed Central

    Ahmadi, Maryam; Aslani, Nasim

    2018-01-01

    Background: With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. Methods: The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. Results: The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. Conclusion: According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology. PMID:29719309

  6. The Ethics of Cloud Computing.

    PubMed

    de Bruin, Boudewijn; Floridi, Luciano

    2017-02-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.

  7. Opportunities and challenges of cloud computing to improve health care services.

    PubMed

    Kuo, Alex Mu-Hsing

    2011-09-21

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed.

  8. Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing

    PubMed Central

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640

  9. Exploiting GPUs in Virtual Machine for BioCloud

    PubMed Central

    Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon

    2013-01-01

    Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment. PMID:23710465

  10. Exploiting GPUs in virtual machine for BioCloud.

    PubMed

    Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon

    2013-01-01

    Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.

  11. A Strategic Approach to Network Defense: Framing the Cloud

    DTIC Science & Technology

    2011-03-10

    accepted network defensive principles, to reduce risks associated with emerging virtualization capabilities and scalability of cloud computing . This expanded...defensive framework can assist enterprise networking and cloud computing architects to better design more secure systems.

  12. Trusted computing strengthens cloud authentication.

    PubMed

    Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  13. Trusted Computing Strengthens Cloud Authentication

    PubMed Central

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149

  14. Sector and Sphere: the design and implementation of a high-performance data cloud

    PubMed Central

    Gu, Yunhong; Grossman, Robert L.

    2009-01-01

    Cloud computing has demonstrated that processing very large datasets over commodity clusters can be done simply, given the right programming model and infrastructure. In this paper, we describe the design and implementation of the Sector storage cloud and the Sphere compute cloud. By contrast with the existing storage and compute clouds, Sector can manage data not only within a data centre, but also across geographically distributed data centres. Similarly, the Sphere compute cloud supports user-defined functions (UDFs) over data both within and across data centres. As a special case, MapReduce-style programming can be implemented in Sphere by using a Map UDF followed by a Reduce UDF. We describe some experimental studies comparing Sector/Sphere and Hadoop using the Terasort benchmark. In these studies, Sector is approximately twice as fast as Hadoop. Sector/Sphere is open source. PMID:19451100

  15. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.

  16. Testing and use of radar water level sensors by the U.S. Geological Survey

    USGS Publications Warehouse

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  17. Infrastructures for Distributed Computing: the case of BESIII

    NASA Astrophysics Data System (ADS)

    Pellegrino, J.

    2018-05-01

    The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.

  18. Examining Effects of Virtual Machine Settings on Voice over Internet Protocol in a Private Cloud Environment

    ERIC Educational Resources Information Center

    Liao, Yuan

    2011-01-01

    The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…

  19. Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chen, Lei; Li, Wen-Syan

    Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.

  20. Verifying a computational method for predicting extreme ground motion

    USGS Publications Warehouse

    Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.

    2011-01-01

    In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.

  1. Legal issues in clouds: towards a risk inventory.

    PubMed

    Djemame, Karim; Barnitzke, Benno; Corrales, Marcelo; Kiran, Mariam; Jiang, Ming; Armstrong, Django; Forgó, Nikolaus; Nwankwo, Iheanyi

    2013-01-28

    Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project.

  2. Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.

    This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elasticmore » Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.« less

  3. Dynamic partitioning as a way to exploit new computing paradigms: the cloud use case.

    NASA Astrophysics Data System (ADS)

    Ciaschini, Vincenzo; Dal Pra, Stefano; dell'Agnello, Luca

    2015-12-01

    The WLCG community and many groups in the HEP community have based their computing strategy on the Grid paradigm, which proved successful and still ensures its goals. However, Grid technology has not spread much over other communities; in the commercial world, the cloud paradigm is the emerging way to provide computing services. WLCG experiments aim to achieve integration of their existing current computing model with cloud deployments and take advantage of the so-called opportunistic resources (including HPC facilities) which are usually not Grid compliant. One missing feature in the most common cloud frameworks, is the concept of job scheduler, which plays a key role in a traditional computing centre, by enabling a fairshare based access at the resources to the experiments in a scenario where demand greatly outstrips availability. At CNAF we are investigating the possibility to access the Tier-1 computing resources as an OpenStack based cloud service. The system, exploiting the dynamic partitioning mechanism already being used to enable Multicore computing, allowed us to avoid a static splitting of the computing resources in the Tier-1 farm, while permitting a share friendly approach. The hosts in a dynamically partitioned farm may be moved to or from the partition, according to suitable policies for request and release of computing resources. Nodes being requested in the partition switch their role and become available to play a different one. In the cloud use case hosts may switch from acting as Worker Node in the Batch system farm to cloud compute node member, made available to tenants. In this paper we describe the dynamic partitioning concept, its implementation and integration with our current batch system, LSF.

  4. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  5. Spontaneous Ad Hoc Mobile Cloud Computing Network

    PubMed Central

    Lacuesta, Raquel; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes. PMID:25202715

  6. Spontaneous ad hoc mobile cloud computing network.

    PubMed

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  7. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less

  8. Water-resources investigations in Pennsylvania; programs and activities of the U.S. Geological Survey, 1990-91

    USGS Publications Warehouse

    McLanahan, L.O.

    1991-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific 'classification of the public lands, and examination of the geological structure, mineral resources, and products of national domain'. Since 1879, the research and fact-finding role of the USGS has grown and has been modified to meet the changing needs of the Nation it serves. Moneys for program operation of the USGS in Pennsylvania come from joint-funding agreements with State and local agencies , transfer of funds from other Federal agencies, and direct Federal allotments to the USGS. Funding is distributed among the following programs: National Water Quality Assessment; water quality programs; surface water programs; groundwater programs; logging and geophysical services; computer services; scientific publication and information; hydrologic investigations; and hydrologic surveillance. (Lantz-PTT)

  9. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  10. Hydroacoustic Applications in South Carolina: Technological Advancements in the Streamgaging Network

    USGS Publications Warehouse

    Shelton, John M.

    2008-01-01

    Until the 1990s, the U.S. Geological Survey (USGS) had been making streamflow measurements using the same type of equipment for more than 100 years. The Price AA current meter was developed by USGS engineers in 1896. Until recently, the majority of all streamflow measurements made by the USGS were made using this instrument. In the mid-1990s, a new technology emerged in the field of inland streamflow monitoring. The acoustic Doppler current profiler (ADCP), originally developed for oceanographic work, was adapted for inland streamflow measurements. This instrument is transforming the USGS streamgaging program. The ADCP transmits an acoustic pulse through the water column. A 'Doppler shift' is measured as the signal is reflected off of particles in the water, such as sediment and microorganisms. Based on the assumption that the particles in the water are traveling at the same velocity as the water itself, a water velocity is computed.

  11. Bioinformatics clouds for big data manipulation.

    PubMed

    Dai, Lin; Gao, Xin; Guo, Yan; Xiao, Jingfa; Zhang, Zhang

    2012-11-28

    As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor.

  12. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less

  13. Privacy and Data Security under Cloud Computing Arrangements: The Legal Framework and Practical Do's and Don'ts

    ERIC Educational Resources Information Center

    Buckman, Joel; Gold, Stephanie

    2012-01-01

    This article outlines privacy and data security compliance issues facing postsecondary education institutions when they utilize cloud computing and concludes with a practical list of do's and dont's. Cloud computing does not change an institution's privacy and data security obligations. It does involve reliance on a third party, which requires an…

  14. Cloud-Based versus Local-Based Web Development Education: An Experimental Study in Learning Experience

    ERIC Educational Resources Information Center

    Pike, Ronald E.; Pittman, Jason M.; Hwang, Drew

    2017-01-01

    This paper investigates the use of a cloud computing environment to facilitate the teaching of web development at a university in the Southwestern United States. A between-subjects study of students in a web development course was conducted to assess the merits of a cloud computing environment instead of personal computers for developing websites.…

  15. Assessing Affordances of Selected Cloud Computing Tools for Language Teacher Education in Nigeria

    ERIC Educational Resources Information Center

    Ofemile, Abdulmalik Yusuf

    2015-01-01

    This paper reports part of a study that hoped to understand Teacher Educators' (TE) assessment of the affordances of selected cloud computing tools ranked among the top 100 for the year 2010. Research has shown that ICT and by extension cloud computing has positive impacts on daily life and this informed the Nigerian government's policy to…

  16. Bio and health informatics meets cloud : BioVLab as an example.

    PubMed

    Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun

    2013-01-01

    The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.

  17. Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Srinivas R.; Rumyantsev, Alexander

    2018-03-01

    Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.

  18. Government Cloud Computing Policies: Potential Opportunities for Advancing Military Biomedical Research.

    PubMed

    Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B

    2018-02-07

    This position paper summarizes the development and the present status of Department of Defense (DoD) and other government policies and guidances regarding cloud computing services. Due to the heterogeneous and growing biomedical big datasets, cloud computing services offer an opportunity to mitigate the associated storage and analysis requirements. Having on-demand network access to a shared pool of flexible computing resources creates a consolidated system that should reduce potential duplications of effort in military biomedical research. Interactive, online literature searches were performed with Google, at the Defense Technical Information Center, and at two National Institutes of Health research portfolio information sites. References cited within some of the collected documents also served as literature resources. We gathered, selected, and reviewed DoD and other government cloud computing policies and guidances published from 2009 to 2017. These policies were intended to consolidate computer resources within the government and reduce costs by decreasing the number of federal data centers and by migrating electronic data to cloud systems. Initial White House Office of Management and Budget information technology guidelines were developed for cloud usage, followed by policies and other documents from the DoD, the Defense Health Agency, and the Armed Services. Security standards from the National Institute of Standards and Technology, the Government Services Administration, the DoD, and the Army were also developed. Government Services Administration and DoD Inspectors General monitored cloud usage by the DoD. A 2016 Government Accountability Office report characterized cloud computing as being economical, flexible and fast. A congressionally mandated independent study reported that the DoD was active in offering a wide selection of commercial cloud services in addition to its milCloud system. Our findings from the Department of Health and Human Services indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application

    NASA Astrophysics Data System (ADS)

    Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.

    2013-12-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.

  20. Realistic natural atmospheric phenomena and weather effects for interactive virtual environments

    NASA Astrophysics Data System (ADS)

    McLoughlin, Leigh

    Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..

  1. Opportunities and Challenges of Cloud Computing to Improve Health Care Services

    PubMed Central

    2011-01-01

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354

  2. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  3. Genomic cloud computing: legal and ethical points to consider

    PubMed Central

    Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Burton, Paul; Chisholm, Rex; Fortier, Isabel; Goodwin, Pat; Harris, Jennifer; Hveem, Kristian; Kaye, Jane; Kent, Alistair; Knoppers, Bartha Maria; Lindpaintner, Klaus; Little, Julian; Riegman, Peter; Ripatti, Samuli; Stolk, Ronald; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn; Joly, Yann; Kato, Kazuto; Knoppers, Bartha Maria; Rodriguez, Laura Lyman; McPherson, Treasa; Nicolás, Pilar; Ouellette, Francis; Romeo-Casabona, Carlos; Sarin, Rajiv; Wallace, Susan; Wiesner, Georgia; Wilson, Julia; Zeps, Nikolajs; Simkevitz, Howard; De Rienzo, Assunta; Knoppers, Bartha M

    2015-01-01

    The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key ‘points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These ‘points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure. PMID:25248396

  4. Genomic cloud computing: legal and ethical points to consider.

    PubMed

    Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Knoppers, Bartha M

    2015-10-01

    The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.

  5. Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration

    PubMed Central

    Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin

    2010-01-01

    This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235

  6. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  7. The Metadata Cloud: The Last Piece of a Distributed Data System Model

    NASA Astrophysics Data System (ADS)

    King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.

    2012-12-01

    Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.

  8. HYPOELLIPSE; a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern

    USGS Publications Warehouse

    Lahr, John C.

    1999-01-01

    This report provides Fortran source code and program manuals for HYPOELLIPSE, a computer program for determining hypocenters and magnitudes of near regional earthquakes and the ellipsoids that enclose the 68-percent confidence volumes of the computed hypocenters. HYPOELLIPSE was developed to meet the needs of U.S. Geological Survey (USGS) scientists studying crustal and sub-crustal earthquakes recorded by a sparse regional seismograph network. The program was extended to locate hypocenters of volcanic earthquakes recorded by seismographs distributed on and around the volcanic edifice, at elevations above and below the hypocenter. HYPOELLIPSE was used to locate events recorded by the USGS southern Alaska seismograph network from October 1971 to the early 1990s. Both UNIX and PC/DOS versions of the source code of the program are provided along with sample runs.

  9. A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.

    PubMed

    Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang

    2017-07-24

    With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.

  10. Scientific Services on the Cloud

    NASA Astrophysics Data System (ADS)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  11. Flood-inundation maps for the Saddle River in Ho-Ho-Kus Borough, the Village of Ridgewood, and Paramus Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Niemoczynski, Michal J.

    2014-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the Saddle River in New Jersey from Hollywood Avenue in Ho-Ho-Kus Borough downstream through the Village of Ridgewood and Paramus Borough to the confluence with Hohokus Brook in the Village of Ridgewood were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Saddle River at Ridgewood, New Jersey (station 01390500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390500 or at the National Weather Services (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps2/hydrograph.php?wfo=okx&gage=rwdn4. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation (March 11, 2011) at the USGS streamgage 01390500, Saddle River at Ridgewood, New Jersey. The hydraulic model was then used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from 5 ft, the NWS “action and minor flood stage”, to 14 ft, which is the maximum extent of the stage-discharge rating and 0.6 ft higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84-ft) digital elevation model derived from Light Detection and Ranging (lidar) data in order to delineate the area flooded at each water level. The availability of these maps along with information on the Internet regarding current stage from the USGS streamgage provides emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures as well as for post-flood recovery efforts.

  12. Flood-inundation maps for the Elkhart River at Goshen, Indiana

    USGS Publications Warehouse

    Strauch, Kellan R.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs, created digital flood-inundation maps for an 8.3-mile reach of the Elkhart River at Goshen, Indiana, extending from downstream of the Goshen Dam to downstream from County Road 17. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to nine selected water levels (stages) at the USGS streamgage at Elkhart River at Goshen (station number 04100500). Current conditions for the USGS streamgages in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, stream stage data have been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Elkhart River at Goshen streamgage. The hydraulic model was then used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (5 ft) to greater than the highest recorded water level (13 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital-elevation model (DEM), derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and 3.9-ft horizontal resolution in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.

  13. Effects of Atmospheric Water Vapor and Clouds on NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) Satellite Data.

    DTIC Science & Technology

    1984-07-01

    aerosols and sub pixel-sized clouds all tend to increase Channel 1 with respect to Channel 2 and reduce the computed VIN. Further, the Guide states that... computation of the VIN. Large scale cloud contamination of pixels, while diffi- cult to correct for, can at least be monitored and affected pixels...techniques have been developed for computer cloud screening. See, for example, Horvath et al. (1982), Gray and McCrary (1981a) and Nixon et al. (1983

  14. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  15. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less

  16. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. Formore » better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.« less

  17. Provider-Independent Use of the Cloud

    NASA Astrophysics Data System (ADS)

    Harmer, Terence; Wright, Peter; Cunningham, Christina; Perrott, Ron

    Utility computing offers researchers and businesses the potential of significant cost-savings, making it possible for them to match the cost of their computing and storage to their demand for such resources. A utility compute provider enables the purchase of compute infrastructures on-demand; when a user requires computing resources a provider will provision a resource for them and charge them only for their period of use of that resource. There has been a significant growth in the number of cloud computing resource providers and each has a different resource usage model, application process and application programming interface (API)-developing generic multi-resource provider applications is thus difficult and time consuming. We have developed an abstraction layer that provides a single resource usage model, user authentication model and API for compute providers that enables cloud-provider neutral applications to be developed. In this paper we outline the issues in using external resource providers, give examples of using a number of the most popular cloud providers and provide examples of developing provider neutral applications. In addition, we discuss the development of the API to create a generic provisioning model based on a common architecture for cloud computing providers.

  18. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community participation.

  19. Reprocessing Multiyear GPS Data from Continuously Operating Reference Stations on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Yoon, S.

    2016-12-01

    To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.

  20. Cloud Infrastructures for In Silico Drug Discovery: Economic and Practical Aspects

    PubMed Central

    Clematis, Andrea; Quarati, Alfonso; Cesini, Daniele; Milanesi, Luciano; Merelli, Ivan

    2013-01-01

    Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements, costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of nonfunctional requirements. PMID:24106693

  1. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.; hide

    2012-01-01

    Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.

  2. Bioinformatics clouds for big data manipulation

    PubMed Central

    2012-01-01

    Abstract As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. Reviewers This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor. PMID:23190475

  3. Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Dover, James H.; Galloway, John P.

    1989-01-01

    This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.

  4. A proposed study of multiple scattering through clouds up to 1 THz

    NASA Technical Reports Server (NTRS)

    Gerace, G. C.; Smith, E. K.

    1992-01-01

    A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations.

  5. Prediction based proactive thermal virtual machine scheduling in green clouds.

    PubMed

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.

  6. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  7. Searching for SNPs with cloud computing

    PubMed Central

    2009-01-01

    As DNA sequencing outpaces improvements in computer speed, there is a critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-computing software tool that combines the aligner Bowtie and the SNP caller SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 38-fold coverage of the human genome in three hours using a 320-CPU cluster rented from a cloud computing service for about $85. Crossbow is available from http://bowtie-bio.sourceforge.net/crossbow/. PMID:19930550

  8. Data entry module and manuals for the Land Treatment Digital Library

    USGS Publications Warehouse

    Welty, Justin L.; Pilliod, David S.

    2013-01-01

    Across the country, public land managers make decisions each year that influence landscapes and ecosystems within their jurisdictions. Many of these decisions involve vegetation manipulations, which often are referred to as land treatments. These treatments include removal or alteration of plant biomass, seeding of burned areas, application of herbicides, and other activities. Data documenting these land treatments usually are stored at local management offices in various formats. Therefore, anyone interested in the types and effects of land treatments across multiple jurisdictions must first assemble the information, which can be difficult if data discovery and organization involve multiple local offices. A centralized system for storing and accessing the data helps inform land managers when making policy and management considerations and assists scientists in developing sampling designs and studies. The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey (USGS) as a comprehensive database incorporating tabular data, documentation, photographs, and spatial data about land treatments in a single system. It was developed over a period of several years and refined based on feedback from partner agencies and stakeholders. Currently, Bureau of Land Management (BLM) land treatment data are being entered by USGS personnel as part of a memorandum of understanding between the USGS and BLM. The LTDL has a website maintained by the USGS Forest and Rangeland Ecosystem Science Center where LTDL data can be viewed http://ltdl.wr.usgs.gov/. The resources and information provided in this data series allow other agencies, organizations, and individuals to download an empty, stand-alone LTDL database to individual or networked computers. Data entered in these databases may be submitted to the USGS for possible inclusion in the online LTDL. Multiple computer programs are used to accomplish the objective of the LTDL. The support of an information-technology specialist or professionals familiar with Microsoft Access™, ESRI’s ArcGIS™, Python, Adobe Acrobat Professional™, and computer settings is essential when installing and operating the LTDL. After the program is operational, a critical element for successful data entry is an understanding of the difference between database tables and forms, and how to edit data in both formats. Complete instructions accompany the program, and they should be followed carefully to ensure the setup and operation of the database goes smoothly.

  9. Identification of Program Signatures from Cloud Computing System Telemetry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Nicole M.; Greaves, Mark T.; Smith, William P.

    Malicious cloud computing activity can take many forms, including running unauthorized programs in a virtual environment. Detection of these malicious activities while preserving the privacy of the user is an important research challenge. Prior work has shown the potential viability of using cloud service billing metrics as a mechanism for proxy identification of malicious programs. Previously this novel detection method has been evaluated in a synthetic and isolated computational environment. In this paper we demonstrate the ability of billing metrics to identify programs, in an active cloud computing environment, including multiple virtual machines running on the same hypervisor. The openmore » source cloud computing platform OpenStack, is used for private cloud management at Pacific Northwest National Laboratory. OpenStack provides a billing tool (Ceilometer) to collect system telemetry measurements. We identify four different programs running on four virtual machines under the same cloud user account. Programs were identified with up to 95% accuracy. This accuracy is dependent on the distinctiveness of telemetry measurements for the specific programs we tested. Future work will examine the scalability of this approach for a larger selection of programs to better understand the uniqueness needed to identify a program. Additionally, future work should address the separation of signatures when multiple programs are running on the same virtual machine.« less

  10. The Role of Standards in Cloud-Computing Interoperability

    DTIC Science & Technology

    2012-10-01

    services are not shared outside the organization. CloudStack, Eucalyptus, HP, Microsoft, OpenStack , Ubuntu, and VMWare provide tools for building...center requirements • Developing usage models for cloud ven- dors • Independent IT consortium OpenStack http://www.openstack.org • Open-source...software for running private clouds • Currently consists of three core software projects: OpenStack Compute (Nova), OpenStack Object Storage (Swift

  11. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    NASA Astrophysics Data System (ADS)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  12. Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing.

    PubMed

    Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio

    2017-03-06

    In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.

  13. Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing

    PubMed Central

    Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio

    2017-01-01

    In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305

  14. Construction and application of Red5 cluster based on OpenStack

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  15. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  16. The Magellan Final Report on Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,; Coghlan, Susan; Yelick, Katherine

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computingmore » Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.« less

  17. A Brief Analysis of Development Situations and Trend of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Yang, Wenyan

    2017-12-01

    in recent years, the rapid development of Internet technology has radically changed people's work, learning and lifestyles. More and more activities are completed by virtue of computers and networks. The amount of information and data generated is bigger day by day, and people rely more on computer, which makes computing power of computer fail to meet demands of accuracy and rapidity from people. The cloud computing technology has experienced fast development, which is widely applied in the computer industry as a result of advantages of high precision, fast computing and easy usage. Moreover, it has become a focus in information research at present. In this paper, the development situations and trend of cloud computing shall be analyzed and researched.

  18. The StratusLab cloud distribution: Use-cases and support for scientific applications

    NASA Astrophysics Data System (ADS)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.

  19. Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds

    NASA Astrophysics Data System (ADS)

    Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni

    2012-09-01

    Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.

  20. Research on the digital education resources of sharing pattern in independent colleges based on cloud computing environment

    NASA Astrophysics Data System (ADS)

    Xiong, Ting; He, Zhiwen

    2017-06-01

    Cloud computing was first proposed by Google Company in the United States, which was based on the Internet center, providing a standard and open network sharing service approach. With the rapid development of the higher education in China, the educational resources provided by colleges and universities had greatly gap in the actual needs of teaching resources. therefore, Cloud computing of using the Internet technology to provide shared methods liked the timely rain, which had become an important means of the Digital Education on sharing applications in the current higher education. Based on Cloud computing environment, the paper analyzed the existing problems about the sharing of digital educational resources in Jiangxi Province Independent Colleges. According to the sharing characteristics of mass storage, efficient operation and low input about Cloud computing, the author explored and studied the design of the sharing model about the digital educational resources of higher education in Independent College. Finally, the design of the shared model was put into the practical applications.

  1. Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques

    NASA Astrophysics Data System (ADS)

    Bhadauria, Rohit; Sanyal, Sugata

    2012-06-01

    Cloud Computing holds the potential to eliminate the requirements for setting up of high-cost computing infrastructure for IT-based solutions and services that the industry uses. It promises to provide a flexible IT architecture, accessible through internet for lightweight portable devices. This would allow multi-fold increase in the capacity or capabilities of the existing and new software. In a cloud computing environment, the entire data reside over a set of networked resources, enabling the data to be accessed through virtual machines. Since these data-centers may lie in any corner of the world beyond the reach and control of users, there are multifarious security and privacy challenges that need to be understood and taken care of. Also, one can never deny the possibility of a server breakdown that has been witnessed, rather quite often in the recent times. There are various issues that need to be dealt with respect to security and privacy in a cloud computing scenario. This extensive survey paper aims to elaborate and analyze the numerous unresolved issues threatening the cloud computing adoption and diffusion affecting the various stake-holders linked to it.

  2. Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center

    NASA Astrophysics Data System (ADS)

    Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.

    2016-12-01

    Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that have been realized, the difficulties that were encountered and issues that still exist.

  3. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.

  4. Free Global Dsm Assessment on Large Scale Areas Exploiting the Potentialities of the Innovative Google Earth Engine Platform

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Di Rita, M.; Ravanelli, R.; Amicuzi, M.; Esposito, S.; Crespi, M.

    2017-05-01

    The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevada, Utah) and one Italian Region (Trentino Alto- Adige, Northern Italy) exploiting the potentiality of this platform. These are large areas characterized by different terrain morphology, land covers and slopes. The assessment has been performed using two different reference DSMs: the USGS National Elevation Dataset (NED) and a LiDAR acquisition. The DSMs accuracy has been evaluated through computation of standard statistic parameters, both at global scale (considering the whole State/Region) and in function of the terrain morphology using several slope classes. The geometric accuracy in terms of Standard deviation and NMAD, for SRTM range from 2-3 meters in the first slope class to about 45 meters in the last one, whereas for ASTER, the values range from 5-6 to 30 meters. In general, the performed analysis shows a better accuracy for the SRTM in the flat areas whereas the ASTER GDEM is more reliable in the steep areas, where the slopes increase. These preliminary results highlight the GEE potentialities to perform DSM assessment on a global scale.

  5. GATECloud.net: a platform for large-scale, open-source text processing on the cloud.

    PubMed

    Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina

    2013-01-28

    Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.

  6. Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R.

    2010-12-01

    NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.

  7. Cloud life cycle investigated via high resolution and full microphysics simulations in the surroundings of Manaus, Central Amazonia

    NASA Astrophysics Data System (ADS)

    Pauliquevis, T.; Gomes, H. B.; Barbosa, H. M.

    2014-12-01

    In this study we evaluate the skill of WRF model to simulate the actual diurnal cycle of convection in the Amazon basin. Models tipically are not capable to simulate the well documented cycle of 1) shallow cumulus in the morning; 2) towering process around noon; 3) shallow-to-deep convection and rain around 14h (LT). The fail in models is explained by the typical size of shallow cumulus (~0.5 - 2.0 km) and the coarse resolution of models using convection parameterisation (> 20 km). In this study we employed high spatial resolution (Dx = 0.625 km) to reach the shallow cumulus scale. . The simulations corresponds to a dynamical downscaling of ERA-Interim from 25 to 28 February 2013 with 40 vertical levels, 30 minutes outputs,and three nested grids (10 km, 2.5 km, 0.625 km). Improved vegetation (USGS + PROVEG), albedo and greenfrac (computed from MODIS-NDVI + LEAF-2 land surface parameterization), as well as pseudo analysis of soil moisture were used as input data sets, resulting in more realistic precipitation fields when compared to observations in sensitivity tests. Convective parameterization was switched off for the 2.5/0.625 km grids, where cloud formation was solely resolved by the microphysics module (WSM6 scheme, which provided better results). Results showed a significant improved capability of the model to simulate diurnal cycle. Shallow cumulus begin to appear in the first hours in the morning. They were followed by a towering process that culminates with precipitation in the early afternoon, which is a behavior well described by observations but rarely obtained in models. Rain volumes were also realistic (~20 mm for single events) when compared to typical events during the period, which is in the core of the wet season. Cloud fields evolution also differed with respect to Amazonas River bank, which is a clear evidence of the interaction between river breeze and large scale circulation.

  8. Towards a Cloud Computing Environment: Near Real-time Cloud Product Processing and Distribution for Next Generation Satellites

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.

    2016-12-01

    The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.

  9. A conceptual prototype for the next-generation national elevation dataset

    USGS Publications Warehouse

    Stoker, Jason M.; Heidemann, Hans Karl; Evans, Gayla A.; Greenlee, Susan K.

    2013-01-01

    In 2012 the U.S. Geological Survey's (USGS) National Geospatial Program (NGP) funded a study to develop a conceptual prototype for a new National Elevation Dataset (NED) design with expanded capabilities to generate and deliver a suite of bare earth and above ground feature information over the United States. This report details the research on identifying operational requirements based on prior research, evaluation of what is needed for the USGS to meet these requirements, and development of a possible conceptual framework that could potentially deliver the kinds of information that are needed to support NGP's partners and constituents. This report provides an initial proof-of-concept demonstration using an existing dataset, and recommendations for the future, to inform NGP's ongoing and future elevation program planning and management decisions. The demonstration shows that this type of functional process can robustly create derivatives from lidar point cloud data; however, more research needs to be done to see how well it extends to multiple datasets.

  10. Mobile healthcare information management utilizing Cloud Computing and Android OS.

    PubMed

    Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias

    2010-01-01

    Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice.

  11. Retrieving and Indexing Spatial Data in the Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wang, Sheng; Zhou, Daliang

    In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.

  12. Are Cloud Environments Ready for Scientific Applications?

    NASA Astrophysics Data System (ADS)

    Mehrotra, P.; Shackleford, K.

    2011-12-01

    Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.

  13. OpenID Connect as a security service in cloud-based medical imaging systems

    PubMed Central

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-01-01

    Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  14. Extended outlook: description, utilization, and daily applications of cloud technology in radiology.

    PubMed

    Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi

    2013-12-01

    The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.

  15. The monitoring and managing application of cloud computing based on Internet of Things.

    PubMed

    Luo, Shiliang; Ren, Bin

    2016-07-01

    Cloud computing and the Internet of Things are the two hot points in the Internet application field. The application of the two new technologies is in hot discussion and research, but quite less on the field of medical monitoring and managing application. Thus, in this paper, we study and analyze the application of cloud computing and the Internet of Things on the medical field. And we manage to make a combination of the two techniques in the medical monitoring and managing field. The model architecture for remote monitoring cloud platform of healthcare information (RMCPHI) was established firstly. Then the RMCPHI architecture was analyzed. Finally an efficient PSOSAA algorithm was proposed for the medical monitoring and managing application of cloud computing. Simulation results showed that our proposed scheme can improve the efficiency about 50%. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Enhancing Instruction through Constructivism, Cooperative Learning, and Cloud Computing

    ERIC Educational Resources Information Center

    Denton, David W.

    2012-01-01

    Cloud computing technologies, such as Google Docs and Microsoft Office Live, have the potential to enhance instructional methods predicated on constructivism and cooperative learning. Cloud-based application features like file sharing and online publishing are prompting departments of education across the nation to adopt these technologies.…

  17. Research on cloud-based remote measurement and analysis system

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan

    2015-02-01

    The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.

  18. Computer-aided visual assessment in mine planning and design

    Treesearch

    Michael Hatfield; A. J. LeRoy Balzer; Roger E. Nelson

    1979-01-01

    A computer modeling technique is described for evaluating the visual impact of a proposed surface mine located within the viewshed of a national park. A computer algorithm analyzes digitized USGS baseline topography and identifies areas subject to surface disturbance visible from the park. Preliminary mine and reclamation plan information is used to describe how the...

  19. The National Flood Frequency Program, version 3 : a computer program for estimating magnitude and frequency of floods for ungaged sites

    USGS Publications Warehouse

    Ries, Kernell G.; Crouse, Michele Y.

    2002-01-01

    For many years, the U.S. Geological Survey (USGS) has been developing regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, these equations have been developed on a Statewide or metropolitan-area basis as part of cooperative study programs with specific State Departments of Transportation. In 1994, the USGS released a computer program titled the National Flood Frequency Program (NFF), which compiled all the USGS available regression equations for estimating the magnitude and frequency of floods in the United States and Puerto Rico. NFF was developed in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency. Since the initial release of NFF, the USGS has produced new equations for many areas of the Nation. A new version of NFF has been developed that incorporates these new equations and provides additional functionality and ease of use. NFF version 3 provides regression-equation estimates of flood-peak discharges for unregulated rural and urban watersheds, flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals. The Program also provides weighting techniques to improve estimates of flood-peak discharges for gaging stations and ungaged sites. The information provided by NFF should be useful to engineers and hydrologists for planning and design applications. This report describes the flood-regionalization techniques used in NFF and provides guidance on the applicability and limitations of the techniques. The NFF software and the documentation for the regression equations included in NFF are available at http://water.usgs.gov/software/nff.html.

  20. Assessment of liver volume with computed tomography and comparison of findings with ultrasonography.

    PubMed

    Bora, Aydın; Alptekin, Cem; Yavuz, Alpaslan; Batur, Abdussamet; Akdemir, Zülküf; Berköz, Mehmet

    2014-12-01

    In this study, we aimed to investigate the impact of non-alcoholic hepatic steatosis on the liver volume. As investigating hepatic steatosis, we utilized computed tomography (CT) to determine the degree of steatosis and we utilized hepatobiliary ultrasonography (USG) for densitometry and correlation. As hepatosteatosis group, 35 patients over 18 years of age and whose abdominal CT scans were requested by several clinics and performed routinely were included in this study, and as control group, 40 healthy subjects without hepatosteatosis (clinically and radiologically) and correlated with hepatosteatosis group in terms of age and gender were included in this study. CT densitometry and liver attenuation index (LAI) of all individuals who participated in our study were calculated, and contrast images of patients were transferred to CT-Volume Software (Siemens Syngo Multimodality Workplace; Version VE52A). In this study, interactive and automated volume measurement techniques were used together. The volumes were measured separately in patient and control group. In this study for each stage in USG, there was found a direct correlation in terms of LAI and volume, and this correlation was statistically significant (p < 0.01). Furthermore, statistical significance between size and USG stage draws attention (p < 0.05). A significance relationship between USG stage and age could not be determined. As a result, we have reached the conclusion that CT densitometry can be used as an assistive technique along with USG to determine the degree of steatosis in the non-alcoholic fatty liver disease, and there is a positive linear correlation between the liver size and volume, and liver volume increases in the non-alcoholic fatty liver disease.

  1. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  2. ProteoCloud: a full-featured open source proteomics cloud computing pipeline.

    PubMed

    Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart

    2013-08-02

    We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cloud computing approaches to accelerate drug discovery value chain.

    PubMed

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  4. Computational biology in the cloud: methods and new insights from computing at scale.

    PubMed

    Kasson, Peter M

    2013-01-01

    The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.

  5. Cloud-based crowd sensing: a framework for location-based crowd analyzer and advisor

    NASA Astrophysics Data System (ADS)

    Aishwarya, K. C.; Nambi, A.; Hudson, S.; Nadesh, R. K.

    2017-11-01

    Cloud computing is an emerging field of computer science to integrate and explore large and powerful computing systems and storages for personal and also for enterprise requirements. Mobile Cloud Computing is the inheritance of this concept towards mobile hand-held devices. Crowdsensing, or to be precise, Mobile Crowdsensing is the process of sharing resources from an available group of mobile handheld devices that support sharing of different resources such as data, memory and bandwidth to perform a single task for collective reasons. In this paper, we propose a framework to use Crowdsensing and perform a crowd analyzer and advisor whether the user can go to the place or not. This is an ongoing research and is a new concept to which the direction of cloud computing has shifted and is viable for more expansion in the near future.

  6. A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammad Mehedi; Huh, Eui-Nam

    In today's world the emerging Cloud computing (Weiss, 2007) offer a new computing model where resources such as computing power, storage, online applications and networking infrastructures can be shared as "services" over the internet. Cloud providers (CPs) are incentivized by the profits to be made by charging consumers for accessing these services. Consumers, such as enterprises, are attracted by the opportunity for reducing or eliminating costs associated with "in-house" provision of these services.

  7. A Simple Technique for Securing Data at Rest Stored in a Computing Cloud

    NASA Astrophysics Data System (ADS)

    Sedayao, Jeff; Su, Steven; Ma, Xiaohao; Jiang, Minghao; Miao, Kai

    "Cloud Computing" offers many potential benefits, including cost savings, the ability to deploy applications and services quickly, and the ease of scaling those application and services once they are deployed. A key barrier for enterprise adoption is the confidentiality of data stored on Cloud Computing Infrastructure. Our simple technique implemented with Open Source software solves this problem by using public key encryption to render stored data at rest unreadable by unauthorized personnel, including system administrators of the cloud computing service on which the data is stored. We validate our approach on a network measurement system implemented on PlanetLab. We then use it on a service where confidentiality is critical - a scanning application that validates external firewall implementations.

  8. A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing

    PubMed Central

    Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang

    2017-01-01

    With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733

  9. Cloud Quantum Computing of an Atomic Nucleus

    NASA Astrophysics Data System (ADS)

    Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.

    2018-05-01

    We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  10. Cloud Quantum Computing of an Atomic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute

    Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  11. Enterprise Cloud Architecture for Chinese Ministry of Railway

    NASA Astrophysics Data System (ADS)

    Shan, Xumei; Liu, Hefeng

    Enterprise like PRC Ministry of Railways (MOR), is facing various challenges ranging from highly distributed computing environment and low legacy system utilization, Cloud Computing is increasingly regarded as one workable solution to address this. This article describes full scale cloud solution with Intel Tashi as virtual machine infrastructure layer, Hadoop HDFS as computing platform, and self developed SaaS interface, gluing virtual machine and HDFS with Xen hypervisor. As a result, on demand computing task application and deployment have been tackled per MOR real working scenarios at the end of article.

  12. Dynamic VM Provisioning for TORQUE in a Cloud Environment

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.

    2014-06-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  13. Cloud Quantum Computing of an Atomic Nucleus.

    PubMed

    Dumitrescu, E F; McCaskey, A J; Hagen, G; Jansen, G R; Morris, T D; Papenbrock, T; Pooser, R C; Dean, D J; Lougovski, P

    2018-05-25

    We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  14. Cloud Quantum Computing of an Atomic Nucleus

    DOE PAGES

    Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute; ...

    2018-05-23

    Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  15. Putting Order Into the Cloud: Object-oriented UML-based Rule Enforcement for Document and Application Organization

    DTIC Science & Technology

    2010-09-01

    Cloud computing describes a new distributed computing paradigm for IT data and services that involves over-the-Internet provision of dynamically scalable and often virtualized resources. While cost reduction and flexibility in storage, services, and maintenance are important considerations when deciding on whether or how to migrate data and applications to the cloud, large organizations like the Department of Defense need to consider the organization and structure of data on the cloud and the operations on such data in order to reap the full benefit of cloud

  16. Advanced cloud fault tolerance system

    NASA Astrophysics Data System (ADS)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  17. Cloud based intelligent system for delivering health care as a service.

    PubMed

    Kaur, Pankaj Deep; Chana, Inderveer

    2014-01-01

    The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. USGEO DMWG Cloud Computing Recommendations

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.; McInerney, M.; Frame, M. T.; Summers, C.

    2017-12-01

    The US Group on Earth Observations (USGEO) Data Management Working Group (DMWG) has been developing Cloud Computing Recommendations for Earth Observations. This inter-agency report is currently in draft form; DMWG hopes to have released the report as a public Request for Information (RFI) by the time of AGU. The recommendations are geared toward organizations that have already decided to use the Cloud for some of their activities (i.e., the focus is not on "why you should use the Cloud," but rather "If you plan to use the Cloud, consider these suggestions.") The report comprises Introductory Material, including Definitions, Potential Cloud Benefits, and Potential Cloud Disadvantages, followed by Recommendations in several areas: Assessing When to Use the Cloud, Transferring Data to the Cloud, Data and Metadata Contents, Developing Applications in the Cloud, Cost Minimization, Security Considerations, Monitoring and Metrics, Agency Support, and Earth Observations-specific recommendations. This talk will summarize the recommendations and invite comment on the RFI.

  19. Cloud GIS Based Watershed Management

    NASA Astrophysics Data System (ADS)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  20. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package

    PubMed Central

    2012-01-01

    Background Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. Results In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Conclusions Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org. PMID:23281941

  1. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package.

    PubMed

    El-Kalioby, Mohamed; Abouelhoda, Mohamed; Krüger, Jan; Giegerich, Robert; Sczyrba, Alexander; Wall, Dennis P; Tonellato, Peter

    2012-01-01

    Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.

  2. Finding Tropical Cyclones on a Cloud Computing Cluster: Using Parallel Virtualization for Large-Scale Climate Simulation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasenkamp, Daren; Sim, Alexander; Wehner, Michael

    Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, whilemore » we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.« less

  3. Key Technology Research on Open Architecture for The Sharing of Heterogeneous Geographic Analysis Models

    NASA Astrophysics Data System (ADS)

    Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.

    2013-10-01

    In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.

  4. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, Bruce K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  5. Utilizing HDF4 File Content Maps for the Cloud

    NASA Technical Reports Server (NTRS)

    Lee, Hyokyung Joe

    2016-01-01

    We demonstrate a prototype study that HDF4 file content map can be used for efficiently organizing data in cloud object storage system to facilitate cloud computing. This approach can be extended to any binary data formats and to any existing big data analytics solution powered by cloud computing because HDF4 file content map project started as long term preservation of NASA data that doesn't require HDF4 APIs to access data.

  6. Department of Defense Use of Commercial Cloud Computing Capabilities and Services

    DTIC Science & Technology

    2015-11-01

    models (Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service ( SaaS )), and four deployment models (Public...NIST defines three main models for cloud computing: IaaS, PaaS, and SaaS . These models help differentiate the implementation responsibilities that fall...and SaaS . 3. Public, Private, Community, and Hybrid Clouds Cloud services come in different forms, depending on the customer’s specific needs

  7. Survey on Security Issues in File Management in Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Gupta, Udit

    2015-06-01

    Cloud computing has pervaded through every aspect of Information technology in past decade. It has become easier to process plethora of data, generated by various devices in real time, with the advent of cloud networks. The privacy of users data is maintained by data centers around the world and hence it has become feasible to operate on that data from lightweight portable devices. But with ease of processing comes the security aspect of the data. One such security aspect is secure file transfer either internally within cloud or externally from one cloud network to another. File management is central to cloud computing and it is paramount to address the security concerns which arise out of it. This survey paper aims to elucidate the various protocols which can be used for secure file transfer and analyze the ramifications of using each protocol.

  8. Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu

    2015-01-01

    The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.

  9. Benefits of cloud computing for PACS and archiving.

    PubMed

    Koch, Patrick

    2012-01-01

    The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.

  10. CloudMan as a platform for tool, data, and analysis distribution.

    PubMed

    Afgan, Enis; Chapman, Brad; Taylor, James

    2012-11-27

    Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.

  11. Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources

    NASA Astrophysics Data System (ADS)

    Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.

    2011-12-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.

  12. Reproducibility of Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Thermal Lesions in Minimally-Invasive Brain Surgery

    NASA Astrophysics Data System (ADS)

    Zahedi, Sulmaz

    This study aims to prove the feasibility of using Ultrasound-Guided High Intensity Focused Ultrasound (USg-HIFU) to create thermal lesions in neurosurgical applications, allowing for precise ablation of brain tissue, while simultaneously providing real time imaging. To test the feasibility of the system, an optically transparent HIFU compatible tissue-mimicking phantom model was produced. USg-HIFU was then used for ablation of the phantom, with and without targets. Finally, ex vivo lamb brain tissue was imaged and ablated using the USg-HIFU system. Real-time ultrasound images and videos obtained throughout the ablation process showing clear lesion formation at the focal point of the HIFU transducer. Post-ablation gross and histopathology examinations were conducted to verify thermal and mechanical damage in the ex vivo lamb brain tissue. Finally, thermocouple readings were obtained, and HIFU field computer simulations were conducted to verify findings. Results of the study concluded reproducibility of USg-HIFU thermal lesions for neurosurgical applications.

  13. Exploring the Strategies for a Community College Transition into a Cloud-Computing Environment

    ERIC Educational Resources Information Center

    DeBary, Narges

    2017-01-01

    The use of the Internet has resulted in the birth of an innovative virtualization technology called cloud computing. Virtualization can tremendously improve the instructional and operational systems of a community college. Although the incidental adoption of the cloud solutions in the community colleges of higher education has been increased,…

  14. Cloud Computing E-Communication Services in the University Environment

    ERIC Educational Resources Information Center

    Babin, Ron; Halilovic, Branka

    2017-01-01

    The use of cloud computing services has grown dramatically in post-secondary institutions in the last decade. In particular, universities have been attracted to the low-cost and flexibility of acquiring cloud software services from Google, Microsoft and others, to implement e-mail, calendar and document management and other basic office software.…

  15. Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience

    ERIC Educational Resources Information Center

    Wang, Jenny

    2017-01-01

    The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…

  16. Relationship between Trustworthiness, Transparency, and Security in Cloud Computing Environments: A Regression Analysis

    ERIC Educational Resources Information Center

    Ibrahim, Sara

    2017-01-01

    The insider security threat causes new and dangerous dimensions in cloud computing. Those internal threats are originated from contractors or the business partners' input that have access to the systems. A study of trustworthiness and transparency might assist the organizations to monitor employees' activity more cautiously on cloud technologies…

  17. Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds

    PubMed Central

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962

  18. Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices Connected to the Medical Internet of Things.

    PubMed

    Klonoff, David C

    2017-07-01

    The Internet of Things (IoT) is generating an immense volume of data. With cloud computing, medical sensor and actuator data can be stored and analyzed remotely by distributed servers. The results can then be delivered via the Internet. The number of devices in IoT includes such wireless diabetes devices as blood glucose monitors, continuous glucose monitors, insulin pens, insulin pumps, and closed-loop systems. The cloud model for data storage and analysis is increasingly unable to process the data avalanche, and processing is being pushed out to the edge of the network closer to where the data-generating devices are. Fog computing and edge computing are two architectures for data handling that can offload data from the cloud, process it nearby the patient, and transmit information machine-to-machine or machine-to-human in milliseconds or seconds. Sensor data can be processed near the sensing and actuating devices with fog computing (with local nodes) and with edge computing (within the sensing devices). Compared to cloud computing, fog computing and edge computing offer five advantages: (1) greater data transmission speed, (2) less dependence on limited bandwidths, (3) greater privacy and security, (4) greater control over data generated in foreign countries where laws may limit use or permit unwanted governmental access, and (5) lower costs because more sensor-derived data are used locally and less data are transmitted remotely. Connected diabetes devices almost all use fog computing or edge computing because diabetes patients require a very rapid response to sensor input and cannot tolerate delays for cloud computing.

  19. Provenance based data integrity checking and verification in cloud environments

    PubMed Central

    Haq, Inam Ul; Jan, Bilal; Khan, Fakhri Alam; Ahmad, Awais

    2017-01-01

    Cloud computing is a recent tendency in IT that moves computing and data away from desktop and hand-held devices into large scale processing hubs and data centers respectively. It has been proposed as an effective solution for data outsourcing and on demand computing to control the rising cost of IT setups and management in enterprises. However, with Cloud platforms user’s data is moved into remotely located storages such that users lose control over their data. This unique feature of the Cloud is facing many security and privacy challenges which need to be clearly understood and resolved. One of the important concerns that needs to be addressed is to provide the proof of data integrity, i.e., correctness of the user’s data stored in the Cloud storage. The data in Clouds is physically not accessible to the users. Therefore, a mechanism is required where users can check if the integrity of their valuable data is maintained or compromised. For this purpose some methods are proposed like mirroring, checksumming and using third party auditors amongst others. However, these methods use extra storage space by maintaining multiple copies of data or the presence of a third party verifier is required. In this paper, we address the problem of proving data integrity in Cloud computing by proposing a scheme through which users are able to check the integrity of their data stored in Clouds. In addition, users can track the violation of data integrity if occurred. For this purpose, we utilize a relatively new concept in the Cloud computing called “Data Provenance”. Our scheme is capable to reduce the need of any third party services, additional hardware support and the replication of data items on client side for integrity checking. PMID:28545151

  20. Provenance based data integrity checking and verification in cloud environments.

    PubMed

    Imran, Muhammad; Hlavacs, Helmut; Haq, Inam Ul; Jan, Bilal; Khan, Fakhri Alam; Ahmad, Awais

    2017-01-01

    Cloud computing is a recent tendency in IT that moves computing and data away from desktop and hand-held devices into large scale processing hubs and data centers respectively. It has been proposed as an effective solution for data outsourcing and on demand computing to control the rising cost of IT setups and management in enterprises. However, with Cloud platforms user's data is moved into remotely located storages such that users lose control over their data. This unique feature of the Cloud is facing many security and privacy challenges which need to be clearly understood and resolved. One of the important concerns that needs to be addressed is to provide the proof of data integrity, i.e., correctness of the user's data stored in the Cloud storage. The data in Clouds is physically not accessible to the users. Therefore, a mechanism is required where users can check if the integrity of their valuable data is maintained or compromised. For this purpose some methods are proposed like mirroring, checksumming and using third party auditors amongst others. However, these methods use extra storage space by maintaining multiple copies of data or the presence of a third party verifier is required. In this paper, we address the problem of proving data integrity in Cloud computing by proposing a scheme through which users are able to check the integrity of their data stored in Clouds. In addition, users can track the violation of data integrity if occurred. For this purpose, we utilize a relatively new concept in the Cloud computing called "Data Provenance". Our scheme is capable to reduce the need of any third party services, additional hardware support and the replication of data items on client side for integrity checking.

  1. Cloud based emergency health care information service in India.

    PubMed

    Karthikeyan, N; Sukanesh, R

    2012-12-01

    A hospital is a health care organization providing patient treatment by expert physicians, surgeons and equipments. A report from a health care accreditation group says that miscommunication between patients and health care providers is the reason for the gap in providing emergency medical care to people in need. In developing countries, illiteracy is the major key root for deaths resulting from uncertain diseases constituting a serious public health problem. Mentally affected, differently abled and unconscious patients can't communicate about their medical history to the medical practitioners. Also, Medical practitioners can't edit or view DICOM images instantly. Our aim is to provide palm vein pattern recognition based medical record retrieval system, using cloud computing for the above mentioned people. Distributed computing technology is coming in the new forms as Grid computing and Cloud computing. These new forms are assured to bring Information Technology (IT) as a service. In this paper, we have described how these new forms of distributed computing will be helpful for modern health care industries. Cloud Computing is germinating its benefit to industrial sectors especially in medical scenarios. In Cloud Computing, IT-related capabilities and resources are provided as services, via the distributed computing on-demand. This paper is concerned with sprouting software as a service (SaaS) by means of Cloud computing with an aim to bring emergency health care sector in an umbrella with physical secured patient records. In framing the emergency healthcare treatment, the crucial thing considered necessary to decide about patients is their previous health conduct records. Thus a ubiquitous access to appropriate records is essential. Palm vein pattern recognition promises a secured patient record access. Likewise our paper reveals an efficient means to view, edit or transfer the DICOM images instantly which was a challenging task for medical practitioners in the past years. We have developed two services for health care. 1. Cloud based Palm vein recognition system 2. Distributed Medical image processing tools for medical practitioners.

  2. The Landsat Image Mosaic of Antarctica

    USGS Publications Warehouse

    Bindschadler, Robert; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, Brian J.; Gorodetzky, D.

    2008-01-01

    The Landsat Image Mosaic of Antarctica (LIMA) is the first true-color, high-spatial-resolution image of the seventh continent. It is constructed from nearly 1100 individually selected Landsat-7 ETM+ scenes. Each image was orthorectified and adjusted for geometric, sensor and illumination variations to a standardized, almost seamless surface reflectance product. Mosaicing to avoid clouds produced a high quality, nearly cloud-free benchmark data set of Antarctica for the International Polar Year from images collected primarily during 1999-2003. Multiple color composites and enhancements were generated to illustrate additional characteristics of the multispectral data including: the true appearance of the surface; discrimination between snow and bare ice; reflectance variations within bright snow; recovered reflectance values in regions of sensor saturation; and subtle topographic variations associated with ice flow. LIMA is viewable and individual scenes or user defined portions of the mosaic are downloadable at http://lima.usgs.gov. Educational materials associated with LIMA are available at http://lima.nasa.gov.

  3. The USGS Side-Looking Airborne Radar (SLAR) program: CD-ROMs expand potential for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, A.N.; Schoonmaker, J.W. Jr.; Pohn. H.A.

    1991-03-01

    The United States Geological Survey (USGS) began the systematic collection of Side-Looking Airborne Radar (SLAR) data in 1980. The SLAR image data, useful for many geologic applications including petroleum exploration, are compiled into mosaics using the USGS 1:250,000-scale topographic map series for format and control. Mosaics have been prepared for over 35% of the United States. Image data collected since 1985 are also available as computer compatible tapes (CCTs) for digital analysis. However, the use of tapes is often cumbersome. To make digital data more readily available for use on a microcomputer, the USGS has started to prepare compact discs-readmore » only memory (CD-ROM). Several experimental discs have been compiled to demonstrate the utility of the medium to make available very large data sets. These discs include necessary nonproprietary software text, radar, and other image data. The SLAR images selected for these discs show significantly different geologic features and include the Long Valley caldera, a section of the San Andreas fault in the Monterey area, the Grand Canyon, and glaciers in southeastern Alaska. At present, several CD-ROMs are available as standard products distributed by the USGS EROS Data Center in Sioux Falls, South Dakota 57198. This is also the source for all USGS SLAR photographic and digital material.« less

  4. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.

  5. Analysis and Research on Spatial Data Storage Model Based on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Hu, Yong

    2017-12-01

    In this paper, the data processing and storage characteristics of cloud computing are analyzed and studied. On this basis, a cloud computing data storage model based on BP neural network is proposed. In this data storage model, it can carry out the choice of server cluster according to the different attributes of the data, so as to complete the spatial data storage model with load balancing function, and have certain feasibility and application advantages.

  6. The Role of Networks in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Lin, Geng; Devine, Mac

    The confluence of technology advancements and business developments in Broadband Internet, Web services, computing systems, and application software over the past decade has created a perfect storm for cloud computing. The "cloud model" of delivering and consuming IT functions as services is poised to fundamentally transform the IT industry and rebalance the inter-relationships among end users, enterprise IT, software companies, and the service providers in the IT ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).

  7. On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat

    NASA Astrophysics Data System (ADS)

    Hua, H.

    2016-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.

  8. Visual Analysis of Cloud Computing Performance Using Behavioral Lines.

    PubMed

    Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu

    2016-02-29

    Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

  9. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  10. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  11. Computer Education and Instructional Technology Teacher Trainees' Opinions about Cloud Computing Technology

    ERIC Educational Resources Information Center

    Karamete, Aysen

    2015-01-01

    This study aims to show the present conditions about the usage of cloud computing in the department of Computer Education and Instructional Technology (CEIT) amongst teacher trainees in School of Necatibey Education, Balikesir University, Turkey. In this study, a questionnaire with open-ended questions was used. 17 CEIT teacher trainees…

  12. Privacy authentication using key attribute-based encryption in mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, M.; Vijayan, R.

    2017-11-01

    Mobile Cloud Computing is becoming more popular in nowadays were users of smartphones are getting increased. So, the security level of cloud computing as to be increased. Privacy Authentication using key-attribute based encryption helps the users for business development were the data sharing with the organization using the cloud in a secured manner. In Privacy Authentication the sender of data will have permission to add their receivers to whom the data access provided for others the access denied. In sender application, the user can choose the file which is to be sent to receivers and then that data will be encrypted using Key-attribute based encryption using AES algorithm. In which cipher created, and that stored in Amazon Cloud along with key value and the receiver list.

  13. Dynamic Extension of a Virtualized Cluster by using Cloud Resources

    NASA Astrophysics Data System (ADS)

    Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter

    2012-12-01

    The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.

  14. Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support

    PubMed Central

    Camargo, João; Rochol, Juergen; Gerla, Mario

    2018-01-01

    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends. PMID:29364172

  15. Signal and image processing algorithm performance in a virtual and elastic computing environment

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  16. Interoperating Cloud-based Virtual Farms

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.

    2015-12-01

    The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.

  17. Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    PubMed

    Rosário, Denis; Schimuneck, Matias; Camargo, João; Nobre, Jéferson; Both, Cristiano; Rochol, Juergen; Gerla, Mario

    2018-01-24

    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends.

  18. HPC on Competitive Cloud Resources

    NASA Astrophysics Data System (ADS)

    Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff

    Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.

  19. Atlas2 Cloud: a framework for personal genome analysis in the cloud

    PubMed Central

    2012-01-01

    Background Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. Results We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. Conclusions We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms. PMID:23134663

  20. Atlas2 Cloud: a framework for personal genome analysis in the cloud.

    PubMed

    Evani, Uday S; Challis, Danny; Yu, Jin; Jackson, Andrew R; Paithankar, Sameer; Bainbridge, Matthew N; Jakkamsetti, Adinarayana; Pham, Peter; Coarfa, Cristian; Milosavljevic, Aleksandar; Yu, Fuli

    2012-01-01

    Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms.

  1. Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.

  2. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment.

    PubMed

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.

  3. Snore related signals processing in a private cloud computing system.

    PubMed

    Qian, Kun; Guo, Jian; Xu, Huijie; Zhu, Zhaomeng; Zhang, Gongxuan

    2014-09-01

    Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed.

  4. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment

    PubMed Central

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505

  5. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    2012-12-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  6. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road.

    PubMed

    Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka

    2015-01-01

    Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible.

  7. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road

    PubMed Central

    Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka

    2015-01-01

    Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on “on-demand payment” for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. PMID:26230400

  8. Quantitative Microbial Risk Assessment Tutorial: Publishing a Microbial Density Time Series as a Txt File

    EPA Science Inventory

    A SARA Timeseries Utility supports analysis and management of time-varying environmental data including listing, graphing, computing statistics, computing meteorological data and saving in a WDM or text file. File formats supported include WDM, HSPF Binary (.hbn), USGS RDB, and T...

  9. Evaluating the Acceptance of Cloud-Based Productivity Computer Solutions in Small and Medium Enterprises

    ERIC Educational Resources Information Center

    Dominguez, Alfredo

    2013-01-01

    Cloud computing has emerged as a new paradigm for on-demand delivery and consumption of shared IT resources over the Internet. Research has predicted that small and medium organizations (SMEs) would be among the earliest adopters of cloud solutions; however, this projection has not materialized. This study set out to investigate if behavior…

  10. The Potentials of Using Cloud Computing in Schools: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Hartmann, Simon Birk; Braae, Lotte Qulleq Nygaard; Pedersen, Sine; Khalid, Md. Saifuddin

    2017-01-01

    Cloud Computing (CC) refers to the physical structure of a communications network, where data is stored in large data centers and can be accessed anywhere, at any time, and from different devices. This systematic literature review identifies and categorizes the potential and barriers of cloud-based teaching in schools from an international…

  11. Assessing the Relationships among Cloud Adoption, Strategic Alignment and Information Technology Effectiveness

    ERIC Educational Resources Information Center

    Chebrolu, Shankar Babu

    2010-01-01

    Against the backdrop of new economic realities, one of the larger forces that is affecting businesses worldwide is cloud computing, whose benefits include agility, time to market, time to capability, reduced cost, renewed focus on the core and strategic partnership with the business. Cloud computing can potentially transform a majority of the…

  12. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema

    Beckman, Pete

    2017-12-11

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  13. Where the Cloud Meets the Commons

    ERIC Educational Resources Information Center

    Ipri, Tom

    2011-01-01

    Changes presented by cloud computing--shared computing services, applications, and storage available to end users via the Internet--have the potential to seriously alter how libraries provide services, not only remotely, but also within the physical library, specifically concerning challenges facing the typical desktop computing experience.…

  14. Argonne's Magellan Cloud Computing Research Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, Pete

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  15. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    PubMed

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  16. 76 FR 28443 - President's National Security Telecommunications Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Government's use of cloud computing; the Federal Emergency Management Agency's NS/EP communications... Commercial Satellite Mission Assurance; and the way forward for the committee's cloud computing effort. The...

  17. 78 FR 23637 - Identity Theft Red Flags Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Address Control Issues with Implementing Cloud Computing (May 2010), available at http://www.gao.gov/new.items/d10513.pdf (discussing information security implications of cloud computing); Department of...

  18. 77 FR 13449 - Identity Theft Red Flags Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Address Control Issues with Implementing Cloud Computing (May 2010) (available at http://www.gao.gov/new.items/d10513.pdf ) (discussing information security implications of cloud computing); Department of...

  19. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    USGS Publications Warehouse

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  20. Cloud computing and patient engagement: leveraging available technology.

    PubMed

    Noblin, Alice; Cortelyou-Ward, Kendall; Servan, Rosa M

    2014-01-01

    Cloud computing technology has the potential to transform medical practices and improve patient engagement and quality of care. However, issues such as privacy and security and "fit" can make incorporation of the cloud an intimidating decision for many physicians. This article summarizes the four most common types of clouds and discusses their ideal uses, how they engage patients, and how they improve the quality of care offered. This technology also can be used to meet Meaningful Use requirements 1 and 2; and, if speculation is correct, the cloud will provide the necessary support needed for Meaningful Use 3 as well.

Top