Sample records for ustilago

  1. LOCATION OF ACYL GROUPS ON TWO PARTLY ACYLATED GLYCOLIPIDS FROM STRAINS OF USTILAGO (SMUT FUNGI),

    DTIC Science & Technology

    erythritol from Ustilago sp. (probably U. nuda (Jens.) Rostr. = U. tritici (Pers.) Rostr.) PRL-627 were acetalated with methyl vinyl ether, deacylated...Partly acylated ustilagic acids 8 (from Ustilago maydis (DC) Corda (= U. zeae Unger) PRL-119), consisting of partially esterified beta-cellobiosyl

  2. Ustilago echinata: Infection in a Mixed Martial Artist Following an Open Fracture.

    PubMed

    Stewart, Ethan; Waldman, Sarah; Sutton, Deanna A; Sanders, Carmita; Lindner, Jonathan; Fan, Hongxin; Wiederhold, Nathan P; Thompson, George R

    2016-04-01

    Ustilago, a common fungal parasite of grains, is infrequently isolated as a pathogen in humans. We describe a case of Ustilago echinata infection following an open distal tibia fracture, review the current literature of this genus as a cause of invasive fungal infection in humans, and discuss management issues.

  3. Siderophores as iron storage compounds in the yeasts Rhodotorula minuta and Ustilago sphaerogena detected by in vivo Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Matzanke, B. F.; Bill, E.; Trautwein, A. X.; Winkelmann, G.

    1990-07-01

    In the yeasts Rhodotorula minuta and Ustilago sphaerogena siderophores represent the main intracellular iron pool. We suggest a ferritin substituting function of these siderophores in addition to their role as iron transport agents. In Rhodotorula transport and storage siderophore is the same compound whereas in Ustilago the iron-storage siderophore is ferrichrome. Besides siderophores, merely two iron metabolites can be observed. Other iron-requiring compounds are at least one order of magnitude less abundant in these yeasts. The ferrous metabolite has been detected in many other microbial systems and seems to be of general occurence and importance.

  4. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disea...

  5. Mating and Progeny Isolation in The Corn Smut Fungus Ustilago maydis

    USDA-ARS?s Scientific Manuscript database

    The corn smut pathogen, Ustilago maydis (U. maydis) (DC.) Corda, is a semi-obligate plant pathogenic fungus in the phylum Basidiomycota (Alexopoulos, Mims and Blackwell, 1996). The fungus can be easily cultured in its haploid yeast phase on common laboratory media. However, to complete its sexual cy...

  6. The virally encoded killer proteins from Ustilago maydis

    USDA-ARS?s Scientific Manuscript database

    Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in ...

  7. The metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro

    USDA-ARS?s Scientific Manuscript database

    The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for seven days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcripto...

  8. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis

    USDA-ARS?s Scientific Manuscript database

    Ustilago maydis displays dimorphic growth, alternating between a saprophytic haploid yeast form and a filamentous dikaryon, generated by mating of haploid cells and which is an obligate parasite. Induction of the dimorphic transition of haploid strains in vitro by change in ambient pH has been used...

  9. Evidence for resistance polymorphism in the Bromus tectorum/Ustilago bullata pathosystem: implications for biocontrol

    Treesearch

    S. E. Meyer; D. L. Nelson; S. Clement

    2001-01-01

    Bromus tectorum L. (cheatgrass or downy brome) is an important exotic weed in natural ecosystems as well as in winter cereal cropland in semiarid western North America. The systemic, seedling-infecting head smut pathogen Ustilago bullata Berk. commonly infects cheatgrass stands, often at epidemic levels. We examined factors...

  10. Ecological genetics of the Bromus tectorum (Poaceae) - Ustilago Bullata (Ustilaginaceae): A role for frequency dependent selection?

    Treesearch

    Susan E. Meyer; David L. Nelson; Suzette Clement; Alisa Ramakrishnan

    2010-01-01

    Evolutionary processes that maintain genetic diversity in plants are likely to include selection imposed by pathogens. Negative frequency-dependent selection is a mechanism for maintenance of resistance polymorphism in plant - pathogen interactions. We explored whether such selection operates in the Bromus tectorum - Ustilago bullata pathosystem. Gene-for-gene...

  11. Transcriptome analysis of a Ustilago maydis ust1 deletion mutant uncovers involvement of laccase and polyketide synthase genes in spore development

    USDA-ARS?s Scientific Manuscript database

    Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, produ...

  12. Castles and cuitlacoche: the first international Ustilago conference.

    PubMed

    Kronstad, J W

    2003-04-01

    The first international Ustilago conference was held in Marburg, Germany from August 22 to 25, 2002. The meeting focused on molecular genetic and cell biology research with Ustilago maydis, the causative agent of common smut of maize. This fungus has emerged as a useful experimental organism for studying the biology of basidiomycete fungi, with a particular emphasis on the interaction of the fungus with the host plant. Thus presentations at the meeting covered the range of current research topics including DNA recombination and repair, mating and sexual development, phytopathology, cell biology, the cell cycle, signaling, and genomics. The meeting also highlighted historical aspects of U. maydis research with presentations by pioneers in the field including Robin Holiday (recombination), Yigal Koltin (killer phenomenon) and Peter Day (plant pathology).

  13. Conserved and distinct functions of the "stunted" (StuA)-Homolog Ust1 during cell differentiation in the corn smut fungus Ustilago maydis

    USDA-ARS?s Scientific Manuscript database

    Ustilago maydis, causal agent of corn smut, is a model for obligate fungal plant pathogens because, although it can proliferate saprobically in its yeast form, the infectious filamentous form is absolutely dependent on the host to complete its life cycle. Maize responds to U. maydis colonization by...

  14. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response

    USDA-ARS?s Scientific Manuscript database

    Mating of compatible haploid cells of Ustilago maydis is essential for infection and disease development in the host. For mating and subsequent filamentous growth and pathogenicity, the transcription factor, prf1 is necessary. Prf1 is in turn regulated by the cAMP and MAPK pathways and other regul...

  15. Ultrastructure and phylogeny of Ustilago coicis *

    PubMed Central

    Zhang, Jing-ze; Guan, Pei-gang; Tao, Gang; Ojaghian, Mohammad Reza; Hyde, Kevin David

    2013-01-01

    Ustilago coicis causes serious smut on Coix lacryma-jobi in Dayang Town, Jinyun County, Zhejiang Province of China. In this paper, ultrastructural assessments on fungus-host interactions and teliospore development are presented, and molecular phylogenetic analyses have been done to elucidate the phylogenetic placement of the taxon. Hyphal growth within infected tissues was both intracellular and intercellular and on the surface of fungus-host interaction, and the fungal cell wall and the invaginated host plasma membrane were separated by a sheath comprising two distinct layers between the fungal cell wall and the invaginated host plasma membrane. Ornamentation development of teliospore walls was unique as they appeared to be originated from the exosporium. In addition, internal transcribed spacer (ITS) and large subunit (LSU) sequence data showed that U. coicis is closely related to Ustilago trichophora which infects grass species of the genus Echinochloa (Poaceae). PMID:23549851

  16. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of ustilago.

    PubMed

    Menzies, J G; Bakkeren, G; Matheson, F; Procunier, J D; Woods, S

    2003-02-01

    ABSTRACT In the smut fungi, few features are available for use as taxonomic criteria (spore size, shape, morphology, germination type, and host range). DNA-based molecular techniques are useful in expanding the traits considered in determining relationships among these fungi. We examined the phylogenetic relationships among seven species of Ustilago (U. avenae, U. bullata, U. hordei, U. kolleri, U. nigra, U. nuda, and U. tritici) using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphisms (AFLPs) to compare their DNA profiles. Fifty-four isolates of different Ustilago spp. were analyzed using ISSR primers, and 16 isolates of Ustilago were studied using AFLP primers. The variability among isolates within species was low for all species except U. bullata. The isolates of U. bullata, U. nuda, and U. tritici were well separated and our data supports their speciation. U. avenae and U. kolleri isolates did not separate from each other and there was little variability between these species. U. hordei and U. nigra isolates also showed little variability between species, but the isolates from each species grouped together. Our data suggest that U. avenae and U. kolleri are monophyletic and should be considered one species, as should U. hordei and U. nigra.

  17. Actinomycin D Inhibition of the Zinc-induced Formation of Cytochrome c in Ustilago1

    PubMed Central

    Brown, D. H.; Cappellini, R. A.; Price, C. A.

    1966-01-01

    As reported earlier by Grimm & Allen, the addition of zinc to the sporidia of the smut fungus, Ustilago sphaerogena, evokes the formation of large amounts of cytochrome c. This occurs under conditions where the rates of increase of dry weight, RNA, and DNA remain unaffected. Actinomycin D added with zinc specifically abolishes the formation of cytochrome c. The system behaves as if cytochrome c were formed de novo. PMID:5956845

  18. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants.

    PubMed

    Quijano, Carolina Diaz; Wichmann, Fabienne; Schlaich, Thomas; Fammartino, Alessandro; Huckauf, Jana; Schmidt, Kerstin; Unger, Christoph; Broer, Inge; Sautter, Christof

    2016-09-01

    Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  19. The gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis contains a group I intron.

    PubMed Central

    De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y

    1992-01-01

    The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081

  20. The fungus Ustilago maydis, from the aztec cuisine to the research laboratory.

    PubMed

    Ruiz-Herrera, J; Martínez-Espinoza, A D

    1998-06-01

    Ustilago maydis is a plant pathogen fungus responsible for corn smut. It has a complex life cycle. In its saprophitic stage, it grows as haploid yeast cells, while in the invasive stage it grows as a mycelium formed by diploid cells. Thus, a correlation exists between genetic ploidy, pathogenicity and morphogenesis. Dimorphism can be modulated in vitro by changing environmental parameters such as pH. Studies with auxotrophic mutants have shown that polyamines play a central role in regulating dimorphism. Molecular biology approaches are being employed for the analysis of fundamental aspects of the biology of this fungus, such as mating type regulation, dimorphism or cell wall biogenesis.

  1. Phytohormone Involvement in the Ustilago maydis– Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue

    PubMed Central

    Morrison, Erin N.; Emery, R. J. Neil; Saville, Barry J.

    2015-01-01

    Ustilago maydis is the causative agent of common smut of corn. Early studies noted its ability to synthesize phytohormones and, more recently these growth promoting substances were confirmed as cytokinins (CKs). Cytokinins comprise a group of phytohormones commonly associated with actively dividing tissues. Lab analyses identified variation in virulence between U. maydis dikaryon and solopathogen infections of corn cob tissue. Samples from infected cob tissue were taken at sequential time points post infection and biochemical profiling was performed using high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS). This hormone profiling revealed that there were altered levels of ABA and major CKs, with a marked reduction in CK glucosides, increases in methylthiol CKs and a particularly dramatic increase in cisZ CK forms, in U. maydis infected tissue. These changes were more pronounced in the more virulent dikaryon relative to the solopathogenic strain suggesting a role for cytokinins in moderating virulence during biotrophic infection. These findings highlight the fact that U. maydis does not simply mimic a fertilized seed but instead reprograms the host tissue. Results underscore the suitability of the Ustilago maydis– Zea mays model as a basis for investigating the control of phytohormone dynamics during biotrophic infection of plants. PMID:26107181

  2. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi.

    PubMed Central

    Bakkeren, G; Kronstad, J W

    1994-01-01

    Sexual compatibility requires self vs. non-self recognition. Genetically, two compatibility or mating-type systems govern recognition in heterothallic basidiomycete fungi such as the edible and woodrotting mushrooms and the economically important rust and smut phytopathogens. A bipolar system is defined by a single genetic locus (MAT) that can have two or multiple alleles. A tetrapolar system has two loci, each with two or more specificities. We have employed two species from the genus Ustilago (smut fungi) to discover a molecular explanation for the genetic difference in mating systems. Ustilago maydis, a tetrapolar species, has two genetically unlinked loci that encode the distinct mating functions of cell fusion (a locus) and subsequent sexual development and pathogenicity (b locus). We have recently described a b locus in a bipolar species, Ustilago hordei, wherein the existence of an a locus has been suspected, but not demonstrated. We report here the cloning of an allele of the a locus (a1) from U. hordei and the discovery that physical linkage of the a and b loci in this bipolar fungus accounts for the distinct mating system. Linkage establishes a large complex MAT locus in U. hordei; this locus appears to be in a region suppressed for recombination. Images PMID:7913746

  3. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-05-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  4. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-02-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  5. Use of HPLC for the detection of iron chelators in cultures of bacteria, fungi, and algae. [E. coli; Bacillus megaterium; Ustilago sphaerogena; Anabaena flos-aqua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, G.L.; Speirs, R.J.; Morse, P.D.

    1990-06-01

    Iron is essential for the growth of living cells. To meet biochemical needs, microorganisms, including algae, produce high affinity chelators termed siderophores. These compounds solubilize Fe and increase its bioavailability. We have developed a new method to study siderophore formation in cultured and natural environments. Based on the fact siderophores tightly bind 55-Fe, the radioactive complexes can be separated by HPLC using an inert PRP-1 column and detected by scintillation counting. This method cleanly resolves several known siderophores, including ferrichrome A, ferrichrome, desferal, and rhodotorulic acid. The optimization of the method and its use for analysis of siderophore formation inmore » bacteria (E. coli, and Bacillus megaterium), fungi (Ustilago sphaerogena), and cyanobacteria (Anabaena flos-aqua UTEX 1444 and Anabaena sp. ATCC 27898) will be presented.« less

  6. Genetic Evidence for the Action of Oxathiin and Thiazole Derivatives on the Succinic Dehydrogenase System of Ustilago maydis Mitochondria

    PubMed Central

    Georgopoulos, S. G.; Alexandri, E.; Chrysayi, M.

    1972-01-01

    The inhibitory effect of fungitoxic derivatives of 1,4-oxathiin on substrate oxidation by the basidiomycete Ustilago maydis is diminished by a single-gene mutation (oxr). The difference between mutant and wild type is approximately the same on the basis of inhibition of either growth and operation of the tricarboxylic acid cycle in intact cells or succinate-driven reduction of ferricyanide by mitochondrial preparations. The mutation affects the behavior of the succinic dehydrogenase system of mitochondria not only in the presence but also in the absence of the toxicant, from which it is concluded that some component of the system itself has been modified. The malonate and the antimycin A sensitivity of the oxr mutant is similar to that of the wild type but cross-resistance to thiazole derivatives is easily demonstrated. Images PMID:5030620

  7. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    PubMed

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Differential activity staining: its use in characterization of guanylyl-specific ribonuclease in the genus Ustilago.

    PubMed Central

    Blank, A; Dekker, C A

    1975-01-01

    Guanylyl-specific ribonuclease can be identified by a novel technique employing electrophoresis in polyacrylamide slabs followed by differential activity staining. The technique requires as little as 7 ng of enzyme which may be grossly admixed with contaminants, including other ribonucleases. Upon electrophoresis and activity staining, a variety of ribonucleases can be visualized as light or clear bands in a colored background formed by toluidine blue complexed with oligonucleotide substrate. Guanylyl-specific ribonuclease, which is detectable when using an oligonucleotide substrate of random base sequence, does not yield a band when using oligonucleotides bearing guanylyl residues at the 3'-termini only and containing, therefore, no susceptible internucleotide bonds; in contrast, a ribonuclease with a different base specificity or no base specificity yields a band with either substrate. This differential activity staining method for establishing guanylyl specificity permits estimation of the extent of nonspecific cleavage of internucleotide linkages by a putatively guanylyl-specific enzyme and is at least as sensitive as conventional procedures for determination of base specificity. With this new technique guanyloribonuclease has been identified in the unfractionated culture medium of 10 organisms belonging to the phytopathogenic fungal genus Ustilago. It is suggested that guanylyl-specific ribonuclease is widely distributed among Ustilago species; its electrophoretic properties may be revealing of phylogenetic relationships among these plant parasites and among their hosts. The general technique of differential activity staining, developed for determination of the base specificity of ribonucleases, may be widely applicable to analysis of enzymes catalyzing depolymerization reactions. Images PMID:813217

  9. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  10. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The effect of some organic substances on the mycelium of the fungus Ustilago nuda (Jens.) Rostr.

    PubMed

    Krátká, J

    1976-01-01

    Research was performed for studying the effect of some organic compounds, considered by many authors as the products ob barley seed metabolism generated after anaerobic seed treatment, on the mycelium of the fungus Ustilago nuda (Jens.) Rostr. The author examined the effectiveness of ethylacohol, acetaldehyde, acetic acid, succinic acid, lactic acid, and hydroquinone in concentrations from 1 M to 10(-6) M, and the effectiveness of extracts from disinfected seeds in doses from 10 g to 0.001 g/l. The effect of the mentioned solutions was examined as exerted on the growth of dicaryotic mycelium and on the growth of the haploid promycelium of the fungus. The dicaryotic mycelium of Ustilago nuda (Jens.) Rostr. was cultivated on potato agar with benzoic acid. The presence of the acid prevents mitosis, and the chlamydospores germinate on the nutritive medium with two fibres having binuclear cells. The haploid promycelium was cultivated on potato agar; chlamydospores germinated with one four-cell fibre, and individual cells are mononuclear and haploid. Only later, a dicarytic mycelium is created in a complex process. In all the substances used, the concentration of 1 M was found to stop further growth of mycelium. The concentration of 10(-1) M of acetic acid and hydroquinone also stopped growth, the same concentration of acetaldehyde, lactic acid, succinic acid, ethylacohol stimulated mycelium growth in comparison with the control. The concentration of 10(-6) M stimulated mycelium growth in a majority of cases. Extracts from disinfected seeds did not influence mycelium growth significantly in all cases in comparison with the control. The results were similar in the two types of mycelium.

  12. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.

    PubMed

    Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M

    2018-01-01

    The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST  = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.

  13. The Transcription Factor Rbf1 Is the Master Regulator for b-Mating Type Controlled Pathogenic Development in Ustilago maydis

    PubMed Central

    Vranes, Miroslav; Wahl, Ramon; Pothiratana, Chetsada; Schuler, David; Vincon, Volker; Finkernagel, Florian; Flor-Parra, Ignacio; Kämper, Jörg

    2010-01-01

    In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development. PMID:20700446

  14. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize

    PubMed Central

    Tanaka, Shigeyuki; Brefort, Thomas; Neidig, Nina; Djamei, Armin; Kahnt, Jörg; Vermerris, Wilfred; Koenig, Stefanie; Feussner, Kirstin; Feussner, Ivo; Kahmann, Regine

    2014-01-01

    The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin–proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001 PMID:24473076

  15. A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

    PubMed Central

    Goos, Sarah; Kämper, Jörg; Sauer, Norbert

    2010-01-01

    Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717

  16. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra

    Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover,more » our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.« less

  17. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem

    DOE PAGES

    Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; ...

    2016-11-11

    Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover,more » our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.« less

  18. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem

    PubMed Central

    Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; Guse, Tilo; Bauer, Lisa; Seitner, Denise; Rabanal, Fernando A; Czedik-Eysenberg, Angelika; Uhse, Simon; Bindics, Janos; Genenncher, Bianca; Navarrete, Fernando; Kellner, Ronny; Ekker, Heinz; Kumlehn, Jochen; Vogel, John P; Gordon, Sean P; Marcel, Thierry C; Münsterkötter, Martin; Walter, Mathias C; Sieber, Christian MK; Mannhaupt, Gertrud; Güldener, Ulrich; Kahmann, Regine; Djamei, Armin

    2016-01-01

    Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver. DOI: http://dx.doi.org/10.7554/eLife.20522.001 PMID:27835569

  19. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain)

    NASA Astrophysics Data System (ADS)

    Sabariego, S.; Díaz de la Guardia, C.; Alba, F.

    A study was made of the link between climatic factors and the daily content of certain fungal spores in the atmosphere of the city of Granada in 1994. Sampling was carried out with a Burkard 7-day-recording spore trap. The spores analysed corresponded to the taxa Alternaria, Ustilago and Cladosporium, with two morphologically different spore types in the latter genus, cladosporioides and herbarum. These spores were selected both for their allergenic capacity and for the high level of their presence in the atmosphere, particularly during the spring and autumn. The spores of Cladosporium were the most abundant (93.82% of the total spores identified). The Spearman correlation coefficients between the spore concentrations studied and the meteorological parameters show different indices depending on the taxon being analysed. Alternaria and Cladosporium are significantly correlated with temperature and hours of sunlight, while Ustilago shows positive correlation indices with relative humidity and negative indices with wind speed.

  20. Systemic fungicidal activity of 1,4-oxathiin derivatives.

    PubMed

    Schmeling, B V; Kulka, M

    1966-04-29

    Treatment of pinto bean and barley seed with 1,4-oxathiin derivatives gave disease control by systemic fungicidal action of such pathogenic fungi as Uromyces phaseoli and Ustilago nuda. The two chemicals, D735 and F461, were highly specific and selective against the pathogens without injury of the hosts.

  1. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut

    USDA-ARS?s Scientific Manuscript database

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a tran...

  2. Stripe smuts of grasses: one lineage or high levels of polyphyly?

    USDA-ARS?s Scientific Manuscript database

    Stripe smut of grasses, Ustilago striiformis s.l., is caused by a complex of smut fungi widely distributed over temperate and subtropical regions. The disease results in the shredding and death of leaf tissue following the rupture of elongated sori. Nearly 100 different grass species in more than 30...

  3. Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development.

    PubMed

    Valdez-Morales, Maribel; Carlos, L Céspedes; Valverde, María Elena; Ramírez-Chávez, Enrique; Paredes-López, Octavio

    2016-12-01

    Huitlacoche mushroom (composed by the fruiting bodies growing on the maize ears from the basidiomycete Ustilago maydis) is a culinary delicacy with a great economic and nutraceutical value. In this work, phenolic content, antioxidant activity, ergosterol and fatty acids profile from huitlacoche produced in 15 creole and in one hybrid maize genotypes, and harvested at different stages of development were determined. The hybrid crop was studied in raw and cooked samples. Total phenolic content ranged from 415.6 to 921.8.0 mg gallic acid equivalents per 100 g of flour. Samples exhibited attractive antioxidant activities: 75 % of antiradical activity on average by DPPH methodology, and ORAC values up to 7661.3 μmol Trolox equivalents /100  g. Important quantities of ferulic acid, quercetin, ergosterol, linoleic and oleic acids were observed. Stage of development and cooking process had an effect on evaluated compounds, sometimes negative and sometimes positive. Results suggest that huitlacoche is an attractive food source of phenolics with excellent antioxidant potential and interesting lipidic compounds.

  4. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-12-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, $gamma$-carotene; and one yellow mutant, $beta$-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange- yellow, respectively. The whitemore » mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants. (auth)« less

  5. Ustilago maydis populations tracked maize through domestication and cultivation in the Americas

    PubMed Central

    Munkacsi, Andrew B; Stoxen, Sam; May, Georgiana

    2008-01-01

    The domestication of crops and the development of agricultural societies not only brought about major changes in human interactions with the environment but also in plants' interactions with the diseases that challenge them. We evaluated the impact of the domestication of maize from teosinte and the widespread cultivation of maize on the historical demography of Ustilago maydis, a fungal pathogen of maize. To determine the evolutionary response of the pathogen's populations, we obtained multilocus genotypes for 1088 U. maydis diploid individuals from two teosinte subspecies in Mexico and from maize in Mexico and throughout the Americas. Results identified five major U. maydis populations: two in Mexico; two in South America; and one in the United States. The two populations in Mexico diverged from the other populations at times comparable to those for the domestication of maize at 6000–10 000 years before present. Maize domestication and agriculture enforced sweeping changes in U. maydis populations such that the standing variation in extant pathogen populations reflects evolution only since the time of the crop's domestication. PMID:18252671

  6. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins.

    PubMed

    Ma, Lay-Sun; Wang, Lei; Trippel, Christine; Mendoza-Mendoza, Artemio; Ullmann, Steffen; Moretti, Marino; Carsten, Alexander; Kahnt, Jörg; Reissmann, Stefanie; Zechmann, Bernd; Bange, Gert; Kahmann, Regine

    2018-04-27

    To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism.

  7. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis

    PubMed Central

    Fink, Gero; Schuchardt, Isabel; Colombelli, Julien; Stelzer, Ernst; Steinberg, Gero

    2006-01-01

    Spindle elongation segregates chromosomes and occurs in anaphase, an essential step in mitosis. Dynein-mediated pulling forces position the spindle, but their role in anaphase is a matter of debate. Here, we demonstrate that dynein is responsible for rapid spindle elongation in the model fungus Ustilago maydis. We show that initial slow elongation is supported by kinesin-5, which is located in the spindle mid-zone. When the spindle reaches ∼2 μm in length, the elongation rate increases four-fold. This coincides with the appearance of long and less-dynamic microtubules (MTs) at each pole that accumulate dynein at their tips. Laser-mediated nanosurgery revealed that these MTs exert pulling forces in control cells, but not in dynein mutants. In addition, dynein mutants undergo initial slow anaphase, but fail to establish less-dynamic MTs and do not perform rapid spindle elongation, suggesting that dynein drives anaphase B. This is most likely mediated by cortical sliding of astral MTs along stationary dynein, which is off-loaded from the MT plus-end to the cortex. PMID:17024185

  8. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.

    PubMed

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  9. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.

    PubMed

    van der Linde, Karina; Doehlemann, Gunther

    2013-01-01

    While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.

  10. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH.

    PubMed

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    2013-01-01

    Dimorphism is the property of fungi to grow as budding yeasts or mycelium, depending on the environmental conditions. This phenomenon is important as a model of differentiation in eukaryotic organisms, and since a large number of fungal diseases are caused by dimorphic fungi, its study is important for practical reasons. In this work, we examined the transcriptome during the dimorphic transition of the basidiomycota phytopathogenic fungus Ustilago maydis using microarrays, utilizing yeast and mycelium monomorphic mutants as controls. This way, we thereby identified 154 genes of the fungus that are specifically involved in the dimorphic transition induced by a pH change. Of these, 82 genes were up-regulated, and 72 were down-regulated. Differential categorization of these genes revealed that they mostly belonged to the classes of metabolism, cell cycle and DNA processing, transcription and protein fate, transport and cellular communication, stress, cell differentiation and biogenesis of cellular components, while a significant number of them corresponded to unclassified proteins. The data reported in this work are important for our understanding of the molecular bases of dimorphism in U. maydis, and possibly of other fungi. Copyright © 2013. Published by Elsevier Inc.

  11. Galactose metabolism and toxicity in Ustilago maydis.

    PubMed

    Schuler, David; Höll, Christina; Grün, Nathalie; Ulrich, Jonas; Dillner, Bastian; Klebl, Franz; Ammon, Alexandra; Voll, Lars M; Kämper, Jörg

    2018-05-01

    In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis

    PubMed Central

    Brachmann, Andreas; Schirawski, Jan; Müller, Philip; Kahmann, Regine

    2003-01-01

    In Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bW and bE. We have identified by RNA fingerprinting a b-regulated gene, kpp6, which encodes an unusual MAP kinase. Kpp6 is similar to a number of other fungal MAP kinases involved in mating and pathogenicity, but contains an additional N-terminal domain unrelated to other proteins. Transcription of the kpp6 gene yields two transcripts differing in length, but encoding proteins of identical mass. One transcript is upregulated by the bW/bE heterodimer, while the other is induced after pheromone stimulation. kpp6 deletion mutants are attenuated in pathogenicity. kpp6T355A,Y357F mutants carrying a non-activatable allele of kpp6 are more severely compromised in pathogenesis. These strains can still form appressoria, but are defective in the subsequent penetration of the plant cuticle. Kpp6 is expressed during all stages of the sexual life cycle except mature spores. We speculate that Kpp6 may respond to a plant signal and regulate the genes necessary for efficient penetration of plant tissue. PMID:12727886

  13. Inheritance of Carboxin Resistance in a European Field Isolate of Ustilago nuda.

    PubMed

    Newcombe, G; Thomas, P L

    2000-02-01

    ABSTRACT Two carboxin-resistant field isolates of Ustilago nuda from Europe were crossed with a carboxin-sensitive field isolate from North America. Meiotic tetrads isolated from germinating F(1) teliospores of one of the hybrids were tested for carboxin resistance and mating type. Carboxin resistance was shown to be controlled by a single gene (CBX1R), because a 1:1 segregation of carboxin resistance was observed in all 27 tetrads. Tetrad analysis indicated that the loci for carboxin resistance (Cbx1) and mating type (MAT1) segregate independently but may be located on the same chromosome. Tetrad analysis was not possible with the F(1) hybrid of he other field isolate, and its resistance cannot yet be attributed to CBX1R. Carboxin resistance was qualitatively dominant to sensitivity in vitro, as demonstrated by triad analysis of germinating F(1) teliospores. Quantitative in planta infection percents supported the conclusion that CBX1R is dominant, although incompletely, in the F(1) hybrid of one of the field isolates. Also, fewer than expected carboxin-sensitive F(2) individuals were observed in planta. However, inoculations of host plants with U. nuda have resulted in similar, unexpected variation in the past.

  14. Heterologous production and characterization of a chlorogenic acid esterase from Ustilago maydis with a potential use in baking.

    PubMed

    Nieter, Annabel; Kelle, Sebastian; Takenberg, Meike; Linke, Diana; Bunzel, Mirko; Popper, Lutz; Berger, Ralf G

    2016-10-15

    Ustilago maydis, an edible mushroom growing on maize (Zea mays), is consumed as the food delicacy huitlacoche in Mexico. A chlorogenic acid esterase from this basidiomycete was expressed in good yields cultivating the heterologous host Pichia pastoris on the 5L bioreactor scale (reUmChlE; 45.9UL(-1)). In contrast to previously described chlorogenic acid esterases, the reUmChlE was also active towards feruloylated saccharides. The enzyme preferred substrates with the ferulic acid esterified to the O-5 position of arabinose residues, typical of graminaceous monocots, over the O-2 position of arabinose or the O-6 position of galactose residues. Determination of kcat/Km showed that the reUmChlE hydrolyzed chlorogenic acid 18-fold more efficiently than methyl ferulate, p-coumarate or caffeate. Phenolic acids were released by reUmChlE from natural substrates, such as destarched wheat bran, sugar beet pectin and coffee pulp. Treatment of wheat dough using reUmChlE resulted in a noticeable softening indicating a potential application of the enzyme in bakery and confectionery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis[OPEN

    PubMed Central

    Lanver, Daniel; Müller, André N.; Happel, Petra; Franitza, Marek; Reissmann, Stefanie; Altmüller, Janine

    2018-01-01

    The maize smut fungus Ustilago maydis is a model organism for elucidating host colonization strategies of biotrophic fungi. Here, we performed an in depth transcriptional profiling of the entire plant-associated development of U. maydis wild-type strains. In our analysis, we focused on fungal metabolism, nutritional strategies, secreted effectors, and regulatory networks. Secreted proteins were enriched in three distinct expression modules corresponding to stages on the plant surface, establishment of biotrophy, and induction of tumors. These modules are likely the key determinants for U. maydis virulence. With respect to nutrient utilization, we observed that expression of several nutrient transporters was tied to these virulence modules rather than being controlled by nutrient availability. We show that oligopeptide transporters likely involved in nitrogen assimilation are important virulence factors. By measuring the intramodular connectivity of transcription factors, we identified the potential drivers for the virulence modules. While known components of the b-mating type cascade emerged as inducers for the plant surface and biotrophy module, we identified a set of yet uncharacterized transcription factors as likely responsible for expression of the tumor module. We demonstrate a crucial role for leaf tumor formation and effector gene expression for one of these transcription factors. PMID:29371439

  16. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis.

    PubMed

    Xoconostle-Cázares, B; Specht, C A; Robbins, P W; Liu, Y; León, C; Ruiz-Herrera, J

    1997-12-01

    A fragment corresponding to a conserved region of a fifth gene coding for chitin synthase in the plant pathogenic fungus Ustilago maydis was amplified by means of the polymerase chain reaction (PCR). The amplified fragment was utilized as a probe for the identification of the whole gene in a genomic library of the fungus. The predicted gene product of Umchs5 has highest similarity with class IV chitin synthases encoded by the CHS3 genes from Saccharomyces cerevisiae and Candida albicans, chs-4 from Neurospora crassa, and chsE from Aspergillus nidulans. Umchs5 null mutants were constructed by substitution of most of the coding sequence with the hygromycin B resistance cassette. Mutants displayed significant reduction in growth rate, chitin content, and chitin synthase activity, specially in the mycelial form. Virulence to corn plantules was also reduced in the mutants. PCR was also used to obtain a fragment of a sixth chitin synthase, Umchs6. It is suggested that multigenic control of chitin synthesis in U. maydis operates as a protection mechanism for fungal viability in which the loss of one activity is partially compensated by the remaining enzymes. Copyright 1997 Academic Press.

  17. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis.

    PubMed

    Martínez-Montiel, Nancy; Morales-Lara, Laura; Hernández-Pérez, Julio M; Martínez-Contreras, Rebeca D

    2016-01-01

    The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization, mechanical stability, physicochemical properties and spatial organization in comparison to the NMD factor depicted for Homo sapiens. These observations strongly support the notion that human and fungal UPF1 could perform equivalent biological activities.

  18. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    PubMed Central

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  19. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    PubMed

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  20. The Transition from a Phytopathogenic Smut Ancestor to an Anamorphic Biocontrol Agent Deciphered by Comparative Whole-Genome Analysis[W][OPEN

    PubMed Central

    Lefebvre, François; Joly, David L.; Labbé, Caroline; Teichmann, Beate; Linning, Rob; Belzile, François; Bakkeren, Guus; Bélanger, Richard R.

    2013-01-01

    Pseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ∼23 Mb includes 6877 predicted protein coding genes. Genome features, including hallmarks of pathogenicity, are very similar in P. flocculosa and U. maydis, Sporisorium reilianum, and Ustilago hordei. Furthermore, P. flocculosa, a strict anamorph, revealed conserved and seemingly intact mating-type and meiosis loci typical of Ustilaginales. By contrast, we observed the loss of a specific subset of candidate secreted effector proteins reported to influence virulence in U. maydis as the singular divergence that could explain its nonpathogenic nature. These results suggest that P. flocculosa could have once been a virulent smut fungus that lost the specific effectors necessary for host compatibility. Interestingly, the biocontrol agent appears to have acquired genes encoding secreted proteins not found in the compared Ustilaginales, including necrosis-inducing-Phytophthora-protein- and Lysin-motif- containing proteins believed to have direct relevance to its lifestyle. The genome sequence should contribute to new insights into the subtle genetic differences that can lead to drastic changes in fungal pathogen lifestyles. PMID:23800965

  1. The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution.

    PubMed

    Czedik-Eysenberg, Angelika; Seitner, Sebastian; Güldener, Ulrich; Koemeda, Stefanie; Jez, Jakub; Colombini, Martin; Djamei, Armin

    2018-04-05

    There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U. bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U. maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N. benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis

    PubMed Central

    Stirnberg, Alexandra

    2016-01-01

    Summary The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colonization of maize by U. maydis. We show that apB73 is transcriptionally induced during the biotrophic stages of the fungal life cycle. The deletion of the apB73 gene results in cultivar‐specific loss of gall formation in the host. The ApB73 protein is conserved among closely related smut fungi. However, using virulence assays, we show that only the orthologue of the maize‐infecting head smut Sporisorium reilianum can complement the mutant phenotype of U. maydis. Although microscopy shows that ApB73 is secreted into the biotrophic interface, it seems to remain associated with fungal cell wall components or the fungal plasma membrane. Taken together, the results show that ApB73 is a conserved and important virulence factor of U. maydis that localizes to the interface between the pathogen and its host Zea mays. PMID:27279632

  3. JPRS Report, Science and Technology USSR: Life Sciences.

    DTIC Science & Technology

    1990-09-26

    newly observed smut flowers infected with Ustilago vaillantii smut, infection parasite does not destroy the host, so it probably does of its spores by...designed to further expand studies on transgenic plants. selected on hygromycin B. All characterized clones syn- pABDI was constructed from Escherichia coli...they numbered more than 2,000 in July- farms into four groups, according to number of workers: September. In livestock breeding , the largest number of

  4. Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components

    PubMed Central

    Geiser, Elena; Reindl, Michèle; Blank, Lars M.; Feldbrügge, Michael

    2016-01-01

    ABSTRACT The microbial conversion of plant biomass to valuable products in a consolidated bioprocess could greatly increase the ecologic and economic impact of a biorefinery. Current strategies for hydrolyzing plant material mostly rely on the external application of carbohydrate-active enzymes (CAZymes). Alternatively, production organisms can be engineered to secrete CAZymes to reduce the reliance on externally added enzymes. Plant-pathogenic fungi have a vast repertoire of hydrolytic enzymes to sustain their lifestyle, but expression of the corresponding genes is usually highly regulated and restricted to the pathogenic phase. Here, we present a new strategy in using the biotrophic smut fungus Ustilago maydis for the degradation of plant cell wall components by activating its intrinsic enzyme potential during axenic growth. This fungal model organism is fully equipped with hydrolytic enzymes, and moreover, it naturally produces value-added substances, such as organic acids and biosurfactants. To achieve the deregulated expression of hydrolytic enzymes during the industrially relevant yeast-like growth in axenic culture, the native promoters of the respective genes were replaced by constitutively active synthetic promoters. This led to an enhanced conversion of xylan, cellobiose, and carboxymethyl cellulose to fermentable sugars. Moreover, a combination of strains with activated endoglucanase and β-glucanase increased the release of glucose from carboxymethyl cellulose and regenerated amorphous cellulose, suggesting that mixed cultivations could be a means for degrading more complex substrates in the future. In summary, this proof of principle demonstrates the potential applicability of activating the expression of native CAZymes from phytopathogens in a biocatalytic process. IMPORTANCE This study describes basic experiments that aim at the degradation of plant cell wall components by the smut fungus Ustilago maydis. As a plant pathogen, this fungus contains a set of lignocellulose-degrading enzymes that may be suited for biomass degradation. However, its hydrolytic enzymes are specifically expressed only during plant infection. Here, we provide the proof of principle that these intrinsic enzymes can be synthetically activated during the industrially relevant yeast-like growth. The fungus is known to naturally synthesize valuable compounds, such as itaconate or glycolipids. Therefore, it could be suited for use in a consolidated bioprocess in which more complex and natural substrates are simultaneously converted to fermentable sugars and to value-added compounds in the future. PMID:27316952

  5. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.

    PubMed

    Moretti, Marino; Wang, Lei; Grognet, Pierre; Lanver, Daniel; Link, Hannes; Kahmann, Regine

    2017-09-01

    Regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling negatively. To broaden an understanding of the roles of RGS proteins in fungal pathogens, we functionally characterized the three RGS protein-encoding genes (rgs1, rgs2 and rgs3) in the phytopathogenic fungus Ustilago maydis. It was found that RGS proteins played distinct roles in the regulation of development and virulence. rgs1 had a minor role in virulence when deleted in a solopathogenic strain. In crosses, rgs1 was dispensable for mating and filamentation, but was required for teliospore production. Haploid rgs2 mutants were affected in cell morphology, growth, mating and were unable to cause disease symptoms in crosses. However, virulence was unaffected when rgs2 was deleted in a solopathogenic strain, suggesting an exclusive involvement in pre-fusion events. These rgs2 phenotypes are likely connected to elevated intracellular cAMP levels. rgs3 mutants were severely attenuated in mating, in their response to pheromone, virulence and formation of mature teliospores. The mating defect could be traced back to reduced expression of the transcription factor rop1. It was speculated that the distinct roles of the three U. maydis RGS proteins were achieved by direct modulation of the Gα subunit-activated signaling pathways as well as through Gα-independent functions. © 2017 John Wiley & Sons Ltd.

  6. The Ustilago maydis Effector Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity

    PubMed Central

    Zechmann, Bernd; Hillmer, Morten; Doehlemann, Gunther

    2012-01-01

    The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H2O2 strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction. PMID:22589719

  7. The O-Mannosyltransferase PMT4 Is Essential for Normal Appressorium Formation and Penetration in Ustilago maydis[W][OA

    PubMed Central

    Fernández-Álvarez, Alfonso; Elías-Villalobos, Alberto; Ibeas, José I.

    2009-01-01

    In Saccharomyces cerevisiae, the PMT, KRE2/MNT1, and MNN1 mannosyltransferase protein families catalyze the steps of the O-mannosylation pathway, sequentially adding mannoses to target proteins. We have identified members of all three families and analyzed their roles in pathogenesis of the maize smut fungus Ustilago maydis. Furthermore, we have shown that PMT4, one of the three PMT family members in U. maydis, is essential for tumor formation in Zea mays. Significantly, PMT4 seems to be required only for pathogenesis and is dispensable for other aspects of the U. maydis life cycle. We subsequently show that the deletion of pmt4 results in a strong reduction in the frequency of appressorium formation, with the few appressoria that do form lacking the capacity to penetrate the plant cuticle. Our findings suggest that the O-mannosylation pathway plays a key role in the posttranslational modification of proteins involved in the pathogenic development of U. maydis. The fact that PMT homologs are not found in plants may open new avenues for the development of fungal control strategies. Moreover, the discovery of a highly specific requirement for a single O-mannosyltransferase should aid in the identification of the proteins directly involved in fungal plant penetration, thus leading to a better understanding of plant–fungi interactions. PMID:19880800

  8. Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis

    PubMed Central

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A.; Kämper, Jörg; Bölker, Michael

    2006-01-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  9. The mitochondrial alternative oxidase Aox1 is needed to cope with respiratory stress but dispensable for pathogenic development in Ustilago maydis

    PubMed Central

    Piñón-Zárate, Gabriela; Matus-Ortega, Genaro; Guerra, Guadalupe; Feldbrügge, Michael; Pardo, Juan Pablo

    2017-01-01

    The mitochondrial alternative oxidase is an important enzyme that allows respiratory activity and the functioning of the Krebs cycle upon disturbance of the respiration chain. It works as a security valve in transferring excessive electrons to oxygen, thereby preventing potential damage by the generation of harmful radicals. A clear biological function, besides the stress response, has so far convincingly only been shown for plants that use the alternative oxidase to generate heat to distribute volatiles. In fungi it was described that the alternative oxidase is needed for pathogenicity. Here, we investigate expression and function of the alternative oxidase at different stages of the life cycle of the corn pathogen Ustilago maydis (Aox1). Interestingly, expression of Aox1 is specifically induced during the stationary phase suggesting a role at high cell density when nutrients become limiting. Studying deletion strains as well as overexpressing strains revealed that Aox1 is dispensable for normal growth, for cell morphology, for response to temperature stress as well as for filamentous growth and plant pathogenicity. However, during conditions eliciting respiratory stress yeast-like growth as well as hyphal growth is strongly affected. We conclude that Aox1 is dispensable for the normal biology of the fungus but specifically needed to cope with respiratory stress. PMID:28273139

  10. Genome Comparison of Barley and Maize Smut Fungi Reveals Targeted Loss of RNA Silencing Components and Species-Specific Presence of Transposable Elements[W

    PubMed Central

    Laurie, John D.; Ali, Shawkat; Linning, Rob; Mannhaupt, Gertrud; Wong, Philip; Güldener, Ulrich; Münsterkötter, Martin; Moore, Richard; Kahmann, Regine; Bakkeren, Guus; Schirawski, Jan

    2012-01-01

    Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts. PMID:22623492

  11. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements.

    PubMed

    Laurie, John D; Ali, Shawkat; Linning, Rob; Mannhaupt, Gertrud; Wong, Philip; Güldener, Ulrich; Münsterkötter, Martin; Moore, Richard; Kahmann, Regine; Bakkeren, Guus; Schirawski, Jan

    2012-05-01

    Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.

  12. The Ustilago maydis Nit2 Homolog Regulates Nitrogen Utilization and Is Required for Efficient Induction of Filamentous Growth

    PubMed Central

    Horst, Robin J.; Zeh, Christine; Saur, Alexandra; Sonnewald, Sophia; Sonnewald, Uwe

    2012-01-01

    Nitrogen catabolite repression (NCR) is a regulatory strategy found in microorganisms that restricts the utilization of complex and unfavored nitrogen sources in the presence of favored nitrogen sources. In fungi, this concept has been best studied in yeasts and filamentous ascomycetes, where the GATA transcription factors Gln3p and Gat1p (in yeasts) and Nit2/AreA (in ascomycetes) constitute the main positive regulators of NCR. The reason why functional Nit2 homologs of some phytopathogenic fungi are required for full virulence in their hosts has remained elusive. We have identified the Nit2 homolog in the basidiomycetous phytopathogen Ustilago maydis and show that it is a major, but not the exclusive, positive regulator of nitrogen utilization. By transcriptome analysis of sporidia grown on artificial media devoid of favored nitrogen sources, we show that only a subset of nitrogen-responsive genes are regulated by Nit2, including the Gal4-like transcription factor Ton1 (a target of Nit2). Ustilagic acid biosynthesis is not under the control of Nit2, while nitrogen starvation-induced filamentous growth is largely dependent on functional Nit2. nit2 deletion mutants show the delayed initiation of filamentous growth on maize leaves and exhibit strongly compromised virulence, demonstrating that Nit2 is required to efficiently initiate the pathogenicity program of U. maydis. PMID:22247264

  13. Analysis of a polygalacturonase gene of Ustilago maydis and characterization of the encoded enzyme.

    PubMed

    Castruita-Domínguez, José P; González-Hernández, Sandra E; Polaina, Julio; Flores-Villavicencio, Lérida L; Alvarez-Vargas, Aurelio; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Leal-Morales, Carlos A

    2014-05-01

    Ustilago maydis is a pathogenic fungus that produces the corn smut. It is a biotrophic parasite that depends on living plant tissues for its proliferation and development. Polygalacturonases are secreted by pathogens to solubilize the plant cell-wall and are required for pathogen virulence. In this paper, we report the isolation of a U. maydis polygalacturonase gene (Pgu1) and the functional and structural characterization of the encoded enzyme. The U. maydis Pgu1 gene is expressed when the fungus is grown in liquid culture media containing different carbon sources. In plant tissue, the expression increased as a function of incubation time. Pgu1 gene expression was detected during plant infection around 10 days post-infection with U. maydis FB-D12 strain in combination with teliospore formation. Synthesis and secretion of active recombinant PGU1 were achieved using Pichia pastoris, the purified enzyme had a optimum temperature of 34 °C, optimum pH of 4.5, a Km of 57.84 g/L for polygalacturonic acid, and a Vmax of 28.9 µg/min mg. Structural models of PGU1 based on homologous enzymes yielded a typical right-handed β-helix fold of pectinolytic enzymes classified in the glycosyl hydrolases family 28, and the U. maydis PGU1 is related with endo rather than exo polygalacturonases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    PubMed

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  15. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.

    PubMed

    Stirnberg, Alexandra; Djamei, Armin

    2016-12-01

    The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colonization of maize by U. maydis. We show that apB73 is transcriptionally induced during the biotrophic stages of the fungal life cycle. The deletion of the apB73 gene results in cultivar-specific loss of gall formation in the host. The ApB73 protein is conserved among closely related smut fungi. However, using virulence assays, we show that only the orthologue of the maize-infecting head smut Sporisorium reilianum can complement the mutant phenotype of U. maydis. Although microscopy shows that ApB73 is secreted into the biotrophic interface, it seems to remain associated with fungal cell wall components or the fungal plasma membrane. Taken together, the results show that ApB73 is a conserved and important virulence factor of U. maydis that localizes to the interface between the pathogen and its host Zea mays. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  16. Contributions of recombination and repair proteins to telomere maintenance in telomerase-positive and negative Ustilago maydis.

    PubMed

    Yu, Eun Young; Hsu, Min; Holloman, William K; Lue, Neal F

    2018-01-01

    Homologous recombination and repair factors are known to promote both telomere replication and recombination-based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase-positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase-negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi-solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II-like as well as ALT-like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I-like telomere features. In addition, we observed direct physical interactions between Blm and two telomere-binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination. © 2017 John Wiley & Sons Ltd.

  17. Antifungal Activity of a Phytoterpenoid (AOS-A) Isolated from Artabotrytis odoratissimus on Spore Germination of Some Fungi

    PubMed Central

    Singh, D. K.; Basha, S. Ameer; Sarma, B. K.; Pandey, V. B.

    2006-01-01

    Phytoterpenoid isolated from Artabotrytis odoratissimus inhibited spore germination of some plant pathogenic as well as saprophytic fungi e.g. Alternaria alternata, A. solani, Cercospora sp., Curvularia maculans, C. pennisetti, Fusarium udum, Helminthosporium echinochlova, H. frumentacie, H. penniseti and Ustilago cynodontis. In Curvularia maculans and H. frumentacie, spore germination was completely inhibited at 2000 ppm. However, Curvularia maculans and C. pennisetti showed considerable sensitivity to this chemical even at 500 ppm. PMID:24039483

  18. Genetic analysis of biosurfactant production in Ustilago maydis.

    PubMed

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-06-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated beta-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi.

  19. Genetic Analysis of Biosurfactant Production in Ustilago maydis

    PubMed Central

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-01-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated β-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi. PMID:15932999

  20. Defects in Mitochondrial and Peroxisomal β-Oxidation Influence Virulence in the Maize Pathogen Ustilago maydis

    PubMed Central

    Kretschmer, Matthias; Klose, Jana

    2012-01-01

    An understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogen Ustilago maydis. However, mfe2 mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in the had1 gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog, had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of an mfe2Δ mutant. We also show that short-chain fatty acids induce cell death in U. maydis and that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms by U. maydis that includes potential metabolic contributions to proliferation in planta and an effect on virulence-related morphogenesis. PMID:22707484

  1. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    PubMed Central

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  2. Evidence for a Ustilago maydis steroid 5alpha-reductase by functional expression in Arabidopsis det2-1 mutants.

    PubMed

    Basse, Christoph W; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-06-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5alpha-steroid reductases. Udh1 differs from those of known 5alpha-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5alpha-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5alpha-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins.

  3. Detection of fungal infectous agent of wheat grains in store-pits of Markazi province, Iran.

    PubMed

    Saberi-Riseh, R; Javan-Nikkhah, M; Heidarian, R; Hosseini, S; Soleimani, P

    2004-01-01

    Wheat is an economic and important crop that provides approximately 20% of food calorie in the world. It is first crop in Iran and cultivated in the most areas of this country. Store-pit fungi make undesirable changes in quality and appearance of wheat grains. Even, some fungi produce different mycotoxins which are toxic to human and livestock's that use wheat grains as source of food. In this study, several samples were randomly collected from each of five store-pits located in different areas of Markazi Province including: Arak, Mahallat, Khomein, Saveh and Sarband. Grains were treated on PDA, and blotter, agar and washing test also used for isolating and detection of fungi. At least 100 grains per each sample were randomly used for each test and treatment. The fungi that determined in this study were Cochliobolus australiensis, Cladosporium herbarum, Epicoccum sp., Tilletia leavis, Aspergillus flavus, A. niger, A. fumigatus, Alternaria alternata, Alternaria sp., Penicillium italicum, P. digitatum, Fusarium sp., Rhizopus sp., Ustilago tritici, Scytalidium sp. Among these fungi the most isolates were belonged to Cladosporium, Alternaria, Rhizopus and Fusarium. Cladosporium herbarum was the most common in different sampling areas. Tilletia laevis and Ustilago tritici were just recovered in washing test. This study revealed that different fungi are associated with wheat grains in store-pits in Markazi Province. Some of them like Aspergillus flavus normally produce aflatoxin, a very toxic and carcinogenic mycotoxin that is harmful for human.

  4. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis

    PubMed Central

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  5. The Ustilago maydis a2 Mating-Type Locus Genes lga2 and rga2 Compromise Pathogenicity in the Absence of the Mitochondrial p32 Family Protein Mrb1

    PubMed Central

    Bortfeld, Miriam; Auffarth, Kathrin; Kahmann, Regine; Basse, Christoph W.

    2004-01-01

    The Ustilago maydis mrb1 gene specifies a mitochondrial matrix protein with significant similarity to mitochondrial p32 family proteins known from human and many other eukaryotic species. Compatible mrb1 mutant strains were able to mate and form dikaryotic hyphae; however, proliferation within infected tissue and the ability to induce tumor development of infected maize (Zea mays) plants were drastically impaired. Surprisingly, manifestation of the mrb1 mutant phenotype selectively depended on the a2 mating type locus. The a2 locus contains, in addition to pheromone signaling components, the genes lga2 and rga2 of unknown function. Deletion of lga2 in an a2Δmrb1 strain fully restored pathogenicity, whereas pathogenicity was partially regained in an a2Δmrb1Δrga2 strain, implicating a concerted action between Lga2 and Rga2 in compromising pathogenicity in Δmrb1 strains. Lga2 and Rga2 localized to mitochondria and Mrb1 interacted with Rga2 in the yeast two-hybrid system. Conditional expression of lga2 in haploid cells reduced vegetative growth, conferred mitochondrial fragmentation and mitochondrial DNA degradation, and interfered with respiratory activity. The consequences of lga2 overexpression depended on the expression strength and were greatly exacerbated in Δmrb1 mutants. We propose that Lga2 interferes with mitochondrial fusion and that Mrb1 controls this activity, emphasizing a critical link between mitochondrial morphology and pathogenicity. PMID:15273296

  6. Identification of O-mannosylated Virulence Factors in Ustilago maydis

    PubMed Central

    Fernández-Álvarez, Alfonso; Marín-Menguiano, Miriam; Lanver, Daniel; Jiménez-Martín, Alberto; Elías-Villalobos, Alberto; Pérez-Pulido, Antonio J.; Kahmann, Regine; Ibeas, José I.

    2012-01-01

    The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis. PMID:22416226

  7. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings.

    PubMed

    Karakkat, Brijesh B; Gold, Scott E; Covert, Sarah F

    2013-12-01

    Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disease progression in this fungus. To test this hypothesis, we studied the function of three U. maydis velvet genes, umv1, umv2 and umv3. Using a gene replacement strategy, deletion mutants were made in all three genes in compatible haploid strains, and additionally for umv1 and umv2 in the solopathogenic strain, SG200. None of the mutants showed novel morphological phenotypes during yeast-like, in vitro growth. However, the Δumv1 mutants failed to induce galls or teliospores in maize. Chlorazol black E staining of leaves infected with Δumv1 dikaryons revealed that the Δumv1 hyphae did not proliferate normally and were blocked developmentally before teliospore formation. The Δumv2 mutants were able to induce galls and teliospores in maize, but were slow to do so and thus reduced in virulence. The Δumv3 mutants were not affected in teliospore formation or disease progression. Complementation of the Δumv1 and Δumv2 mutations in the SG200 background produced disease indices similar to those of SG200. These results indicate that two U. maydis velvet family members, umv1 and umv2, are important for normal teliospore development and disease progression in maize seedlings. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Loss of virulence in Ustilago maydis by Umchs6 gene disruption.

    PubMed

    Garcerá-Teruel, Ana; Xoconostle-Cázares, Beatriz; Rosas-Quijano, Raymundo; Ortiz, Lucila; León-Ramírez, Claudia; Specht, Charles A; Sentandreu, Rafael; Ruiz-Herrera, José

    2004-03-01

    A gene encoding a sixth chitin synthase (Umchs6, sequence GenBank accession No. ) from the plant pathogenic hemibasidiomycete Ustilago maydis (DC.) Cda. was isolated and characterized. The predicted protein is 1103 amino acids in length with a calculated molecular mass of 123.5 kDa. a2b2 null mutants were obtained by substitution of a central fragment of the Umchs6 gene with the hygromycin resistance cassette, and a1b1 null mutants were obtained by genetic recombination in plants of an a2b2deltach6 and a wild-type a1b1 strain. The mutation had no effect on the dimorphic transition in vitro or on mating, and growth rate of the mutants was only slightly reduced. On the other hand, they displayed important alterations in cell morphology, particularly at the mycelial stage, and in the staining pattern with calcofluor white. Levels of chitin synthase activity in vitro and chitin content were reduced. The most noticeable characteristic of the mutants was their almost complete loss of virulence to maize (Zea mays L.). This was a recessive character. Microscopic observations during the infectious process suggest that chitin synthase 6 activity is very important for growth of the fungus into the plant. Transformation of a2b2deltach6 mutants with an autonomous replicating plasmid carrying the full Umchs6 gene restored their normal morphological phenotype and virulence. These results are evidence that the mutation in the Umchs6 gene was solely responsible for the phenotypic alterations observed.

  9. A Technical and Practical Study of Composting as a Solid Waste Management Alternative for the Air Force

    DTIC Science & Technology

    1992-09-01

    eye) until the course of the process nears its end. When they do become apparent, they appear as a blue-gray to light green powdery to somewhat...clippings 3-6 12-15 Nonlegume vegetable wastes 2.5-4 11-12 Mixed grasses 214 19 Paper nil --- Potato tops 1.5 25 Straw, wheat 0.3-0.5 128-150 Straw, oats...Certain Fungal Plant Pathogens Organisms Disease Temperature (°C) Ustilago avenae Loose oat smut 45-53 0C U. tritici Loose smut of wheat 45-480 C U. zeae

  10. Alkanes in fungal spores.

    PubMed

    Oró, J; Laseter, J L; Weber, D

    1966-10-21

    The chlamydospores of Ustilago maydis, U. nuda, and Sphacelotheca reiliana were analyzed by gas chromatography and mass spectrometry for their hydrocarbon contents. For the first time we observed that they contain paraffinic hydrocarbons; the average contents were 42, 58, and 146 parts per million, respectively. n-Alkanes having odd numbers of carbon atoms predom-inate, with carbon-chain lengths ranging from C(14) to C(37). The major alkanes are n-C(27) in U. maydis, n-C(27) and n-C(35) in U. nuda, and n-C(29) in S. reiliana. Each type of spore carried a distinctly characteristic population of hydrocarbons.

  11. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy.

    PubMed

    Wagner-Vogel, Gaby; Lämmer, Frauke; Kämper, Jörg; Basse, Christoph W

    2015-02-06

    Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage.

  12. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity.

    PubMed

    Brundiek, Henrike; Saß, Stefan; Evitt, Andrew; Kourist, Robert; Bornscheuer, Uwe T

    2012-04-01

    The Ustilago maydis lipase UM03410 belongs to the mostly unexplored Candida antarctica lipase (CAL-A) subfamily. The two lipases with [corrected] the highest identity are a lipase from Sporisorium reilianum and the prototypic CAL-A. In contrast to the other CAL-A-type lipases, this hypothetical U. maydis lipase is annotated to possess a prolonged N-terminus of unknown function. Here, we show for the first time the recombinant expression of two versions of lipase UM03410: the full-length form (lipUMf) and an Nterminally truncated form (lipUMs). For comparison to the prototype, the expression of recombinant CAL-A in E. coli was investigated. Although both forms of lipase UM03410 could be expressed functionally in E. coli, the N-terminally truncated form (lipUMs) demonstrated significantly higher activities towards p-nitrophenyl esters. The functional expression of the N-terminally truncated lipase was further optimized by the appropriate choice of the E. coli strain, lowering the cultivation temperature to 20 °C and enrichment of the cultivation medium with glucose. Primary characteristics of the recombinant lipase are its pH optimum in the range of 6.5-7.0 and its temperature optimum at 55 °C. As is typical for lipases, lipUM03410 shows preference for long chain fatty acid esters with myristic acid ester (C14:0 ester) being the most preferred one.More importantly, lipUMs exhibits an inherent preference for C18:1Δ9 trans and C18:1Δ11 trans-fatty acid esters similar to CAL-A. Therefore, the short form of this U. maydis lipase is the only other currently known lipase with a distinct trans-fatty acid selectivity.

  13. Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis.

    PubMed

    Santos, Antonio; Navascués, Eva; Bravo, Enrique; Marquina, Domingo

    2011-01-31

    Brettanomyces bruxellensis is one of the most damaging species for wine quality, and tools for controlling its growth are limited. In this study, thirty-nine strains belonging to Saccharomyces cerevisiae and B. bruxellensis have been isolated from wineries, identified and then tested against a panel of thirty-nine killer yeasts. Here, for the first time, the killer activity of Ustilago maydis is proven to be effective against B. bruxellensis. Mixed cultures in winemaking conditions show that U. maydis CYC 1410 has the ability to inhibit B. bruxellensis, while S. cerevisiae is fully resistant to its killer activity, indicating that it could be used in wine fermentation to avoid the development of B. bruxellensis without undesirable effects on the fermentative yeast. The characterization of the dsRNAs isolated and purified from U. maydis CYC 1410 indicated that this strain produces a KP6-related toxin. Killer toxin extracts were active against B. bruxellensis at pH values between 3.0 and 4.5 and temperatures comprised between 15 °C and 25 °C, confirming their biocontrol activity in winemaking and wine aging conditions. Furthermore, small amounts (100 AU/ml) of killer toxin extracts from U. maydis significantly reduced the amount of 4-ethylphenol produced by B. bruxellensis, indicating that in addition to the growth inhibition observed for high killer toxin concentrations (ranging from 400 to 2000 AU/ml), small amounts of the toxin are able to reduce the production of volatile phenols responsible for the aroma defects in wines caused by B. bruxellensis. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The SPF27 Homologue Num1 Connects Splicing and Kinesin 1-Dependent Cytoplasmic Trafficking in Ustilago maydis

    PubMed Central

    Kellner, Nikola; Heimel, Kai; Obhof, Theresa; Finkernagel, Florian; Kämper, Jörg

    2014-01-01

    The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking. PMID:24391515

  15. Physical and genetic interaction between ammonium transporters and the signaling protein Rho1 in the plant pathogen Ustilago maydis.

    PubMed

    Paul, Jinny A; Barati, Michelle T; Cooper, Michael; Perlin, Michael H

    2014-10-01

    Dimorphic transitions between yeast-like and filamentous forms occur in many fungi and are often associated with pathogenesis. One of the cues for such a dimorphic switch is the availability of nutrients. Under conditions of nitrogen limitation, fungal cells (such as those of Saccharomyces cerevisiae and Ustilago maydis) switch from budding to pseudohyphal or filamentous growth. Ammonium transporters (AMTs) are responsible for uptake and, in some cases, for sensing the availability of ammonium, a preferred nitrogen source. Homodimer and/or heterodimer formation may be required for regulating the activity of the AMTs. To investigate the potential interactions of Ump1 and Ump2, the AMTs of the maize pathogen U. maydis, we first used the split-ubiquitin system, followed by a modified split-YFP (yellow fluorescent protein) system, to validate the interactions in vivo. This analysis showed the formation of homo- and hetero-oligomers by Ump1 and Ump2. We also demonstrated the interaction of the high-affinity ammonium transporter, Ump2, with the Rho1 GTPase, a central protein in signaling, with roles in controlling polarized growth. This is the first demonstration in eukaryotes of the physical interaction in vivo of an ammonium transporter with the signaling protein Rho1. Moreover, the Ump proteins interact with Rho1 during the growth of cells in low ammonium concentrations, a condition required for the expression of the Umps. Based on these results and the genetic evidence for the interaction of Ump2 with both Rho1 and Rac1, another small GTPase, we propose a model for the role of these interactions in controlling filamentation, a fundamental aspect of development and pathogenesis in U. maydis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Genetics of Ustilago violacea. XXXII. Genetic evidence for transposable elements.

    PubMed

    Garber, E D; Ruddat, M

    1994-12-01

    Crosses between Ustilago violacea mutant strains with different color phenotypes that were derived from the 1.A1 and 2.A2 laboratory strains yielded, as expected, bisectored teliospore colonies with the parental colors as well as the a-1 and the a-2 mating-types. Generally, wild teliospore collections usually produced sporidia of both mating-types, providing two-mating-type (TMT) strains. Occasionally, however, sporidia with only one mating-type allele, a-1 or a-2, were obtained from teliospores, providing one-mating-type (OMT) strains. Crosses between OMT and laboratory strains with different color phenotypes gave (1) bisectored teliospore colonies with the parental colors or colonies with a parental color and a nonparental color and (2) nonsectored colonies with the nonparental color or with the parental color. The frequencies for the occurrence of non-parental color ranged from 41% to 93%, depending on the strain. The yield of teliospore colonies was usually reduced for these crosses. In many of these teliospore colonies, morphologically-altered sporidia (MAS phenotype) were observed. The morphology and the size of the sporidia with the MAS phenotype differed from those of teliospore colonies of the crosses between the laboratory strains. In addition, these sporidia did not form conjugants. A cross involving the TMT strains C449 yielded the MAS phenotype as well as a high incidence of tetrad colonies with a nonparental color. The high degree of instability of the parental color phenotypes, and the high frequency of the appearance of nonparental color phenotypes as well as the appearance of the MAS phenotype, are in accord with the presence of active and inactive transposable elements in the OMT strains, TMT strains, and laboratory strains.

  17. Fungicide selective for basidiomycetes.

    PubMed

    Edgington, L V; Walton, G S; Miller, P M

    1966-07-15

    Concentrations of 2,3-dihydro-5-carboxanilido-6-methyl-1,4-oxathiin lower than 8 parts per million prevented mycelial growth of a number of Basidiomycetes. By contrast, mycelial growth of various other fungi-Phycomycetes, Ascomycetes, and Deuteromycetes-was 50 percent inhibited only by concentrations of 32 ppm or higher. Two exceptions to this pattern of selective fungitoxicity were found:an isolate of Rhizoctonia solani was not as sensitive as other Basidiomycetes, and the deuteromycete Verticillium alboatrum was inhibited by lower concentrations than affected other fungi in this group. Spore germination of two Basidiomycetes, Uromyces phaseoli and Ustilago nuda, was inhibited 95 percent or more at 10 ppm.

  18. Establishing an unusual cell type: How to make a dikaryon

    PubMed Central

    Kruzel, Emilia K.; Hull, Christina M.

    2010-01-01

    Summary The dikaryons of basidiomycete fungi represent an unusual cell type required for complete sexual development. Dikaryon formation occurs via the activities of cell type-specific homeodomain transcription factors, which form regulatory complexes to establish the dikaryotic state. Decades of classical genetic and cell biological studies in mushrooms have provided a foundation for more recent molecular studies in the pathogenic species Ustilago maydis and Cryptococcus neoformans. Studies in these systems have revealed novel mechanisms of regulation that function downstream of classic homeodomain complexes to ensure that dikaryons are established and propagated. Comparisons of these dikaryon-specific networks promise to reveal the nature of regulatory network evolution and the adaptations responsible for driving complex eukaryotic development. PMID:21036099

  19. Itaconic acid production in microorganisms.

    PubMed

    Zhao, Meilin; Lu, Xinyao; Zong, Hong; Li, Jinyang; Zhuge, Bin

    2018-03-01

    Itaconic acid, 2-methylidenebutanedioic acid, is a precursor of polymers, chemicals, and fuels. Many fungi can synthesize itaconic acid; Aspergillus terreus and Ustilago maydis produce up to 85 and 53 g l -1 , respectively. Other organisms, including Aspergillus niger and yeasts, have been engineered to produce itaconic acid. However, the titer of itaconic acid is low compared with the analogous major fermentation product, citric acid, for which the yield is > 200 g l -1 . Here, we review two types of pathway for itaconic acid biosynthesis as well as recent advances by metabolic engineering strategies and process optimization to enhance itaconic acid productivity in native producers and heterologous hosts. We also propose further improvements to overcome existing problems.

  20. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis

    PubMed Central

    Tollot, Marie; Assmann, Daniela; Becker, Christian; Altmüller, Janine; Dutheil, Julien Y.; Wegner, Carl-Eric; Kahmann, Regine

    2016-01-01

    The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 “late effectors” was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection. PMID:27332891

  1. Role of the nuclear migration protein Lis1 in cell morphogenesis in Ustilago maydis

    PubMed Central

    Valinluck, Michael; Ahlgren, Sara; Sawada, Mizuho; Locken, Kristopher; Banuett, Flora

    2010-01-01

    Ustilago maydis is a basidiomycete fungus that exhibits a yeast-like and a filamentous form. Growth of the fungus in the host leads to additional morphological transitions. The different morphologies are characterized by distinct nuclear movements. Dynein and α-tubulin are required for nuclear movements and for cell morphogenesis of the yeast-like form. Lis1 is a microtubule plus-end tracking protein (+TIPs) conserved in eukaryotes and required for nuclear migration and spindle positioning. Defects in nuclear migration result in altered cell fate and aberrant development in metazoans, slow growth in fungi and disease in humans (e.g. lissencephaly). Here we investigate the role of the human LIS1 homolog in U. maydis and demonstrate that it is essential for cell viability, not previously seen in other fungi. With a conditional null mutation we show that lis1 is necessary for nuclear migration in the yeast-like cell and during the dimorphic transition. Studies of asynchronous exponentially growing cells and time-lapse microscopy uncovered novel functions of lis1: It is necessary for cell morphogenesis, positioning of the septum and cell wall integrity. lis1-depleted cells exhibit altered axes of growth and loss of cell polarity leading to grossly aberrant cells with clusters of nuclei and morphologically altered buds devoid of nuclei. Altered septum positioning and cell wall deposition contribute to the aberrant morphology. lis1-depleted cells lyse, indicative of altered cell wall properties or composition. We also demonstrate, with indirect immunofluorescence to visualize tubulin, that lis1 is necessary for the normal organization of the microtubule cytoskeleton: lis1-depleted cells contain more and longer microtubules that can form coils perpendicular to the long axis of the cell. We propose that lis1 controls microtubule dynamics and thus the regulated delivery of vesicles to growth sites and other cell domains that govern nuclear movements. PMID:20524583

  2. Candida spencermartinsiae sp. nov., Candida taylorii sp. nov. and Pseudozyma abaconensis sp. nov., novel yeasts from mangrove and coral reef ecosystems.

    PubMed

    Statzell-Tallman, Adele; Scorzetti, Gloria; Fell, Jack W

    2010-08-01

    Three species of yeasts are taxonomically described for strains isolated from marine environments. Candida spencermartinsiae sp. nov. (type strain CBS 10894T =NRRL Y-48663T) and Candida taylorii sp. nov. (type strain CBS 8508T =NRRL Y-27213T) are anamorphic ascomycetous yeasts in a phylogenetic cluster of marine yeasts in the Debaryomyces/Lodderomyces clade of the Saccharomycetales. The two species were isolated from multiple locations among coral reefs and mangrove habitats. Pseudozyma abaconensis sp. nov. (type strain CBS 8380T =NRRL Y-17380T) is an anamorphic basidiomycete that is related to the smut fungi of the genus Ustilago in the Ustilaginales. P. abaconensis was collected from waters adjacent to a coral reef.

  3. Living and Thriving on the Skin: Malassezia Genomes Tell the Story

    PubMed Central

    Coelho, Marco A.; Sampaio, José Paulo; Gonçalves, Paula

    2013-01-01

    ABSTRACT Our understanding of the interactions between normal skin microbiota and the human host has been greatly extended by recent investigations. In their recent study in mBio, A. Gioti et al. (mBio 4[1]:e00572-12, 2013) sequenced the genome of the atopic eczema-associated yeast, Malassezia sympodialis, and compared its gene content and organization with that of Malassezia globosa, a species implicated in dandruff. Their findings were also contrasted with those previously obtained for Ustilago maydis, which is a close relative but ecologically distinct plant parasite. Besides gaining additional insight into key host-specific adaptations and the particular function and molecular evolution of allergens related to atopic eczema, Gioti et al. also uncovered several lines of evidence that elegantly suggest the presence of an extant sexual cycle, with important implications in disease. PMID:23512963

  4. Fungal model systems and the elucidation of pathogenicity determinants

    PubMed Central

    Perez-Nadales, Elena; Almeida Nogueira, Maria Filomena; Baldin, Clara; Castanheira, Sónia; El Ghalid, Mennat; Grund, Elisabeth; Lengeler, Klaus; Marchegiani, Elisabetta; Mehrotra, Pankaj Vinod; Moretti, Marino; Naik, Vikram; Oses-Ruiz, Miriam; Oskarsson, Therese; Schäfer, Katja; Wasserstrom, Lisa; Brakhage, Axel A.; Gow, Neil A.R.; Kahmann, Regine; Lebrun, Marc-Henri; Perez-Martin, José; Di Pietro, Antonio; Talbot, Nicholas J.; Toquin, Valerie; Walther, Andrea; Wendland, Jürgen

    2014-01-01

    Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity. PMID:25011008

  5. The Corn Smut ('Huitlacoche') as a New Platform for Oral Vaccines.

    PubMed

    Juárez-Montiel, Margarita; Romero-Maldonado, Andrea; Monreal-Escalante, Elizabeth; Becerra-Flora, Alicia; Korban, Schuyler S; Rosales-Mendoza, Sergio; Jiménez-Bremont, Juan Francisco

    2015-01-01

    The development of new alternative platforms for subunit vaccine production is a priority in the biomedical field. In this study, Ustilago maydis, the causal agent of common corn smut or 'huitlacoche'has been genetically engineered to assess expression and immunogenicity of the B subunit of the cholera toxin (CTB), a relevant immunomodulatory agent in vaccinology. An oligomeric CTB recombinant protein was expressed in corn smut galls at levels of up to 1.3 mg g-1 dry weight (0.8% of the total soluble protein). Mice orally immunized with 'huitlacoche'-derived CTB showed significant humoral responses that were well-correlated with protection against challenge with the cholera toxin (CT). These findings demonstrate the feasibility of using edible corn smut as a safe, effective, and low-cost platform for production and delivery of a subunit oral vaccine. The implications of this platform in the area of molecular pharming are discussed.

  6. Aberrant Synthesis of Indole-3-Acetic Acid in Saccharomyces cerevisiae Triggers Morphogenic Transition, a Virulence Trait of Pathogenic Fungi

    PubMed Central

    Rao, Reeta Prusty; Hunter, Ally; Kashpur, Olga; Normanly, Jennifer

    2010-01-01

    Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp. PMID:20233857

  7. Genetic transformation of the plant pathogens Phytophthora capsici and Phytophthora parasitica.

    PubMed Central

    Bailey, A M; Mena, G L; Herrera-Estrella, L

    1991-01-01

    Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per 1 x 10(6) protoplasts were obtained. Plasmid pCM54 appears to be transmitted in Phytophthora spp. as an extra-chromosomal element through replication, as shown by Southern blot hybridization and by the loss of plasmid methylation. In addition, transformed strains retained their capacity of infecting Serrano pepper seedlings and Mc. Intosh apple fruits, the host plants for P.capsici and P.parasitica, respectively. Images PMID:1651483

  8. The Corn Smut (‘Huitlacoche’) as a New Platform for Oral Vaccines

    PubMed Central

    Juárez-Montiel, Margarita; Romero-Maldonado, Andrea; Monreal-Escalante, Elizabeth; Becerra-Flora, Alicia; Korban, Schuyler S.; Rosales-Mendoza, Sergio; Jiménez-Bremont, Juan Francisco

    2015-01-01

    The development of new alternative platforms for subunit vaccine production is a priority in the biomedical field. In this study, Ustilago maydis, the causal agent of common corn smut or ‘huitlacoche’has been genetically engineered to assess expression and immunogenicity of the B subunit of the cholera toxin (CTB), a relevant immunomodulatory agent in vaccinology. An oligomeric CTB recombinant protein was expressed in corn smut galls at levels of up to 1.3 mg g-1 dry weight (0.8% of the total soluble protein). Mice orally immunized with ‘huitlacoche’-derived CTB showed significant humoral responses that were well-correlated with protection against challenge with the cholera toxin (CT). These findings demonstrate the feasibility of using edible corn smut as a safe, effective, and low-cost platform for production and delivery of a subunit oral vaccine. The implications of this platform in the area of molecular pharming are discussed. PMID:26207365

  9. Usefulness of heterologous promoters in the Pseudozyma flocculosa gene expression system.

    PubMed

    Avis, Tyler J; Anguenot, Raphaël; Neveu, Bertrand; Bolduc, Sébastien; Zhao, Yingyi; Cheng, Yali; Labbé, Caroline; Belzile, François; Bélanger, Richard R

    2008-02-01

    The basidiomycetous fungus Pseudozyma flocculosa represents a promising new host for the expression of complex recombinant proteins. Two novel heterologous promoter sequences, the Ustilago maydis glyceraldehyde-3-phosphate dehydrogenase (GPD) and Pseudozyma tsukubaensis alpha-glucosidase promoters, were tested for their ability to provide expression in P. flocculosa. In liquid medium, these two promoters produced lower levels of intracellular green fluorescent protein (GFP) as compared to the U. maydis hsp70 promoter. However, GPD and alpha-glucosidase sequences behaved as constitutive promoters whereas the hsp70 promoter appeared to be morphology-dependent. When using the hsp70 promoter, the expression of GFP increased proportionally to the concentration of hygromycin in the culture medium, indicating possible induction of the promoter by the antibiotic. Optimal solid-state culture conditions were designed for high throughput screening of hygromycin-resistant transformants with the hsp70 promoter in P. flocculosa.

  10. Long-distance endosome trafficking drives fungal effector production during plant infection

    PubMed Central

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero

    2014-01-01

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249

  11. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi.

    PubMed

    Lee, Nancy; D'Souza, Cletus A; Kronstad, James W

    2003-01-01

    cAMP regulates morphogenesis and virulence in a wide variety of fungi including the plant pathogens. In saprophytic yeasts such as Saccharomyces cerevisiae, cAMP signaling plays an important role in nutrient sensing. In filamentous saprophytes, the cAMP pathway appears to play an integral role in vegetative growth and sporulation, with possible connections to mating. Infection-related morphogenesis includes sporulation (conidia and teliospores), formation of appressoria, infection hyphae, and sclerotia. Here, we review studies of cAMP signaling in a variety of plant fungal pathogens. The primary fungi to be considered include Ustilago maydis, Magnaporthe grisea, Cryphonectria parasitica, Colletotrichum and Fusarium species, and Erisyphe graminis. We also include related information on Trichoderma species that act as mycoparasites and biocontrol agents of phytopathogenic fungi. We point out similarities in infection mechanisms, conservation of signaling components, as well as instances of cross-talk with other signaling pathways.

  12. 25S ribosomal RNA homologies of basidiomycetous yeasts: taxonomic and phylogenetic implications

    NASA Technical Reports Server (NTRS)

    Baharaeen, S.; Vishniac, H. S.

    1984-01-01

    Genera, families, and possibly orders of basidiomycetous yeasts can be defined by 25S rRNA homology and correlated phenotypic characters. The teleomorphic genera Filobasidium, Leucosporidium, and Rhodosporidium have greater than 96 relative binding percent (rb%) intrageneric 25S rRNA homology and significant intergeneric separation from each other and from Filobasidiella. The anamorphic genus Cryptococcus can be defined by morphology (monopolar budding), colony color, and greater than 75 rb% intrageneric homology; Vanrija is heterogeneous. Agaricostilbum (Phragmobasidiomycetes, Auriculariales), Hansenula (Ascomycotera, Endomycota), Tremella (Phragmobasidiomycetes, Tremellales), and Ustilago (Ustomycota, Ustilaginales) appear equally unrelated to the Cryptococcus, Filobasidiella, and Rhodosporidium spp. used as probes. The Filobasidiaceae and Sporidiaceae, Filobasidiales and Sporidiales, form coherent homology groups which appear to have undergone convergent 25S rRNA evolution, since their relatedness is much greater than that indicated by 5S rRNA homology. Ribosomal RNA homologies do not appear to measure evolutionary distance.

  13. Long-distance endosome trafficking drives fungal effector production during plant infection.

    PubMed

    Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero

    2014-10-06

    To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.

  14. The role of effectors of biotrophic and hemibiotrophic fungi in infection.

    PubMed

    Koeck, Markus; Hardham, Adrienne R; Dodds, Peter N

    2011-12-01

    Biotrophic and hemibiotrophic fungi are successful groups of plant pathogens that require living plant tissue to survive and complete their life cycle. Members of these groups include the rust fungi and powdery mildews and species in the Ustilago, Cladosporium and Magnaporthe genera. Collectively, they represent some of the most destructive plant parasites, causing huge economic losses and threatening global food security. During plant infection, pathogens synthesize and secrete effector proteins, some of which are translocated into the plant cytosol where they can alter the host's response to the invading pathogen. In a successful infection, pathogen effectors facilitate suppression of the plant's immune system and orchestrate the reprogramming of the infected tissue so that it becomes a source of nutrients that are required by the pathogen to support its growth and development. This review summarizes our current understanding of the function of fungal effectors in infection. © 2011 Blackwell Publishing Ltd.

  15. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking

    PubMed Central

    Haag, Carl

    2017-01-01

    In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport. PMID:28422978

  16. A host plant genome ( Zizania latifolia ) after a century-long endophyte infection

    DOE PAGES

    Guo, Longbiao; Qiu, Jie; Han, Zujing; ...

    2015-06-13

    In spite of the importance of host–microbe interactions in natural ecosystems, agriculture and medicine, the impact of long-term (especially decades or longer) microbial colonization on the dynamics of host genomes is not well understood. Moreover, the vegetable crop ‘Jiaobai’ with enlarged edible stems was domesticated from wild Zizania latifolia (Oryzeae) approximately 2000 years ago as a result of persistent infection by a fungal endophyte, Ustilago esculenta. Asexual propagation via infected rhizomes is the only means of Jiaobai production, and the Z. latifolia–endophyte complex has been maintained continuously for two centuries. Here, genomic analysis revealed that cultivated Z. latifolia has amore » significantly smaller repertoire of immune receptors compared with wild Z. latifolia. There are widespread gene losses/mutations and expression changes in the plant–pathogen interaction pathway in Jiaobai. Finally, these results show that continuous long-standing endophyte association can have a major effect on the evolution of the structural and transcriptomic components of the host genome.« less

  17. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    PubMed Central

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  18. Protein profile and protein interaction network of Moniliophthora perniciosa basidiospores.

    PubMed

    Mares, Joise Hander; Gramacho, Karina Peres; Dos Santos, Everton Cruz; Santiago, André da Silva; Silva, Edson Mário de Andrade; Alvim, Fátima Cerqueira; Pirovani, Carlos Priminho

    2016-06-24

    Witches' broom, a disease caused by the basidiomycete Moniliophthora perniciosa, is considered to be the most important disease of the cocoa crop in Bahia, an area in the Brazilian Amazon, and also in the other countries where it is found. M. perniciosa germ tubes may penetrate into the host through intact or natural openings in the cuticle surface, in epidermis cell junctions, at the base of trichomes, or through the stomata. Despite its relevance to the fungal life cycle, basidiospore biology has not been extensively investigated. In this study, our goal was to optimize techniques for producing basidiospores for protein extraction, and to produce the first proteomics analysis map of ungerminated basidiospores. We then presented a protein interaction network by using Ustilago maydis as a model. The average pileus area ranged from 17.35 to 211.24 mm(2). The minimum and maximum productivity were 23,200 and 6,666,667 basidiospores per basidiome, respectively. The protein yield in micrograms per million basidiospores were approximately 0.161; 2.307, and 3.582 for germination times of 0, 2, and 4 h after germination, respectively. A total of 178 proteins were identified through mass spectrometry. These proteins were classified according to their molecular function and their involvement in biological processes such as cellular energy production, oxidative metabolism, stress, protein synthesis, and protein folding. Furthermore, to better understand the expression pattern, signaling, and interaction events of spore proteins, we presented an interaction network using orthologous proteins from Ustilago maydis as a model. Most of the orthologous proteins that were identified in this study were not clustered in the network, but several of them play a very important role in hypha development and branching. The quantities of basidiospores 7 × 10(9); 5.2 × 10(8), and 6.7 × 10(8) were sufficient to obtain enough protein mass for the three 2D-PAGE replicates, for the 0, 2, and 4 h-treatments, respectively. The protein extraction method that is based on sedimentation, followed by sonication with SDS-dense buffer, and phenolic extraction, which was utilized in this study, was effective, presenting a satisfactory resolution and reproducibility for M. perniciosa basidiospores. This report constitutes the first comprehensive study of protein expression during the ungerminated stage of the M. perniciosa basidiospore. Identification of the spots observed in the reference gel enabled us to know the main molecular interactions involved in the initial metabolic processes of fungal development.

  19. Chemical genetics - a versatile method to combine science and higher level teaching in molecular genetics.

    PubMed

    Sandrock, Björn

    2012-10-09

    Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determination of the don3 phenotype we have chosen this approach for a genetic course for M.Sc. students and for IMPRS (International Max-Planck research school) students. According to the principle of "problem-based learning" the aim of this two-week course is to transfer knowledge about the broad spectrum of kinases to the students and that the students acquire the ability to design their own analog-sensitive kinase of interest. In addition to these training goals, we benefit from these annual courses the synthesis of basic constructs for genetic modification of several kinases in our model system U. maydis.

  20. Molecular variation of Sporisorium scitamineum in Mainland China revealed by internal transcribed spacers.

    PubMed

    Zhang, Y Y; Huang, N; Xiao, X H; Huang, L; Liu, F; Su, W H; Que, Y X

    2015-07-14

    Sugarcane smut caused by the fungus Sporisorium scitamineum is a worldwide disease and also one of the most prevalent diseases in sugarcane production in mainland China. To study molecular variation in S. scitamineum, 23 S. scitamineum isolates from the 6 primary sugar-cane production areas in mainland, China (Guangxi, Yunnan, Guangdong, Hainan, Fujian, and Jiangxi Provinces), were assessed using internal transcribed spacer (ITS) methods. The results of ITS sequence analysis showed that the organisms can be defined at the genus level, including Ustilago and Sporisorium, and can also differentiate between closely related species. This method was not suitable for phylogenetic relationship analysis of different S. scitamineum isolates and could not provide support regarding their race ascription at the molecular level. The results of the present study will be useful for studies examining the molecular diversity of S. scitamineum and for establishing a genetic foundation for their pathogenicity differentiation and new race detection. In addition, our results can provide useful information for the pathogen selection principle in sugarcane smut resistance breeding and variety distribution.

  1. Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences.

    PubMed

    Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret

    2007-11-01

    LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

  2. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes

    PubMed Central

    Bielska, Ewa; Schuster, Martin; Roger, Yvonne; Berepiki, Adokiye; Soanes, Darren M.; Talbot, Nicholas J.

    2014-01-01

    Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3– and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein. PMID:24637326

  3. A split motor domain in a cytoplasmic dynein

    PubMed Central

    Straube, Anne; Enard, Wolfgang; Berner, Alexandra; Wedlich-Söldner, Roland; Kahmann, Regine; Steinberg, Gero

    2001-01-01

    The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1–Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1–Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1–Dyn2 complex serves multiple cellular functions. PMID:11566874

  4. The Plant-Dependent Life Cycle of Thecaphora thlaspeos: A Smut Fungus Adapted to Brassicaceae.

    PubMed

    Frantzeskakis, Lamprinos; Courville, Kaitlyn J; Plücker, Lesley; Kellner, Ronny; Kruse, Julia; Brachmann, Andreas; Feldbrügge, Michael; Göhre, Vera

    2017-04-01

    Smut fungi are globally distributed plant pathogens that infect agriculturally important crop plants such as maize or potato. To date, molecular studies on plant responses to smut fungi are challenging due to the genetic complexity of their host plants. Therefore, we set out to investigate the known smut fungus of Brassicaceae hosts, Thecaphora thlaspeos. T. thlaspeos infects different Brassicaceae plant species throughout Europe, including the perennial model plant Arabis alpina. In contrast to characterized smut fungi, mature and dry T. thlaspeos teliospores germinated only in the presence of a plant signal. An infectious filament emerges from the teliospore, which can proliferate as haploid filamentous cultures. Haploid filaments from opposite mating types mate, similar to sporidia of the model smut fungus Ustilago maydis. Consistently, the a and b mating locus genes are conserved. Infectious filaments can penetrate roots and aerial tissues of host plants, causing systemic colonization along the vasculature. Notably, we could show that T. thlaspeos also infects Arabidopsis thaliana. Exploiting the genetic resources of A. thaliana and Arabis alpina will allow us to characterize plant responses to smut infection in a comparative manner and, thereby, characterize factors for endophytic growth as well as smut fungi virulence in dicot plants.

  5. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    PubMed

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Principles of mRNA transport in yeast.

    PubMed

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  7. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis.

    PubMed

    Freitag, Johannes; Lanver, Daniel; Böhmer, Christian; Schink, Kay Oliver; Bölker, Michael; Sandrock, Björn

    2011-05-01

    Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.

  8. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-16

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities' fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  9. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  10. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed Central

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-01-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents. PMID:28300143

  11. An assay for entry of secreted fungal effectors into plant cells.

    PubMed

    Lo Presti, Libera; Zechmann, Bernd; Kumlehn, Jochen; Liang, Liang; Lanver, Daniel; Tanaka, Shigeyuki; Bock, Ralph; Kahmann, Regine

    2017-01-01

    Successful colonization of plants by prokaryotic and eukaryotic pathogens requires active effector-mediated suppression of defense responses and host tissue reprogramming. Secreted effector proteins can either display their activity in the apoplast or translocate into host cells and function therein. Although characterized in bacteria, the molecular mechanisms of effector delivery by fungal phytopathogens remain elusive. Here we report the establishment of an assay that is based on biotinylation of effectors in the host cytoplasm as hallmark of uptake. The assay exploits the ability of the bacterial biotin ligase BirA to biotinylate any protein that carries a short peptide (Avitag). It is based on the stable expression of BirA in the cytoplasm of maize plants and on engineering of Ustilago maydis strains to secrete Avitagged effectors. We demonstrate translocation of a number of effectors in the U. maydis-maize system and show data that suggest that the uptake mechanism could be rather nonspecific The assay promises to be a powerful tool for the classification of effectors as well as for the functional study of effector uptake mechanism not only in the chosen system but more generally for systems where biotrophic interactions are established. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Diversity of Bacillus-like bacterial community in the sediments of the Bamenwan mangrove wetland in Hainan, China.

    PubMed

    Liu, Min; Cui, Ying; Chen, Yuqing; Lin, Xiangzhi; Huang, Huiqin; Bao, Shixiang

    2017-03-01

    Members of the genus Bacillus and related spore-forming genera are ubiquitous. However, Bacillus-like species isolated from marine sediments have attracted less interest than their terrestrial relatives. Here, we investigated the diversity of Bacillus-like bacterial communities in the sediments of the Bamenwan mangrove wetland in Hainan, China, using culture-dependent and culture-independent methods, and present the first report on this subject. We also discovered some potential novel species from the sediment samples. Four families, Bacillaceae (58%), Paenibacillaceae (22%), Alicyclobacillaceae (15%), and Planococcaceae (5%), and 9 genera, Bacillus (42%), Paenibacillus (16%), Halobacillus (13%), Alicyclobacillus (11%), Rummeliibacillus (5%), Cohnella (5%), Tumebacillus (4%), Pontibacillus (3%), and Aneurinibacillus (2%), were identified by pyrosequencing. In contrast, only 4 genera, Bacillus (57%), Paenibacillus (23%), Halobacillus (14%), and Virgibacillus (6%), were detected by the culture-dependent method. In the 16S rDNA sequencing analysis, the isolates HB12036 and HB12037 were closest to Bacillus okuhidensis Kh10-101 T and Paenibacillus xylanilyticus XIL14 T with similarities of 94.8% and 95.9%, respectively, indicating that these were novel species. Bacillus sp. HB12035 and HB12040 exhibited antimicrobial activity against Staphylococcus aureus ATCC 25923, and Bacillus sp. HB12033 exhibited antimicrobial activity against Ustilago scitaminea Syd.

  13. A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases[C][W

    PubMed Central

    van der Linde, Karina; Hemetsberger, Christoph; Kastner, Christine; Kaschani, Farnusch; van der Hoorn, Renier A.L.; Kumlehn, Jochen; Doehlemann, Gunther

    2012-01-01

    Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)–induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis. PMID:22454455

  14. Inhibition of non-enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays).

    PubMed

    Farsi, Darius Arthur; Harris, Cory S; Reid, Lana; Bennett, Steffany A L; Haddad, Pierre S; Martineau, Louis C; Arnason, John Thor

    2008-01-01

    Non-enzymatic glycation and the accumulation of advanced glycation end products (AGEs) are associated with various disease states, including complications of diabetes and aging. Secondary metabolites from several plant species are known to inhibit non-enzymatic glycation and the formation of AGEs, including flavonoids found in the style (silk) of Zea mays (maize). Thirteen modern maize inbreds and one land race were tested for in vitro inhibition of non-enzymatic glycation of bovine serum albumin. Many of the tested extracts exhibited inhibitory activity, in particular the newest inbreds, which were bred for resistance to gibberella ear rot (Fusarium graminearum) and common smut (Ustilago maydis). The most active maize genotype (CO441), displaying an IC50 of 9.5 microg/mL, was more effective than aminoguanidine, a known inhibitor of glycation. Zapalote chico, a land race with high maysin content, showed only moderate inhibitory activity compared with the modern maize genotypes. Antiglycation activity was highly correlated with the total phenolic content of silk extracts and mildly correlated with resistance to certain fungal infections. The results identify modern resistant and high phenolic maize inbreds as promising candidates for the development of natural AGE inhibitors for the prevention and treatment of diabetic complications and the degenerative effects of aging. Copyright (c) 2007 John Wiley & Sons, Ltd.

  15. Biological activity of sedaxane---a novel broad-spectrum fungicide for seed treatment.

    PubMed

    Zeun, Ronald; Scalliet, Gabriel; Oostendorp, Michael

    2013-04-01

    Sedaxane is a new broad-spectrum seed treatment fungicide developed by Syngenta Crop Protection for control of seed- and soil-borne diseases in a broad range of crops. Its physicochemical properties and activity spectrum have been optimised for use as a seed treatment providing both local and systemic protection of the seed and roots of target crops. Sedaxane inhibits respiration by binding to the succinate dehydrogenase complex in the fungal mitochondrium. Its activity spectrum covers seed-borne fungi such as Ustilago nuda, Tilletia caries, Monographella nivalis and Pyrenophora graminea, as well as the soil-borne fungi Rhizoctonia solani, R. cerealis and Typhula incarnata. Under greenhouse conditions, sedaxane showed high levels and consistent protection against U. nuda, P. graminea and Rhizoctonia spp. Under field conditions, efficacy against Rhizoctonia spp. resulted in increased yield compared with the untreated check. Efficacy against snow mould has been shown under very high disease pressure conditions. The combination of sedaxane plus fludioxonil against snow mould can provide resistance management for sustainable use. The broad spectrum and high level of activity in combination with excellent crop tolerance allow the use of sedaxane as a seed treatment in a wide variety of crops. It is a potential tool for precautionary resistance management when combined with other fungicides, especially against pathogens showing a potential for resistance development, such as M. nivalis. © 2012 Society of Chemical Industry.

  16. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.

    PubMed

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2016-03-01

    Bioprospecting is an effective way to find novel enzymes from strains with desirable phenotypes. Such bioprospecting has enabled organisms such as Saccharomyces cerevisiae to utilize nonnative pentose sugars. Yet, the efficiency of this pentose catabolism (especially for the case of arabinose) remains suboptimal. Thus, further pathway optimization or identification of novel, optimal pathways is needed. Previously, we identified a novel set of xylan catabolic pathway enzymes from a superior pentose-utilizing strain of Ustilago bevomyces. These enzymes were used to successfully engineer a xylan-utilizing S. cerevisiae through a blended approach of bioprospecting and evolutionary engineering. Here, we expanded this approach to xylose and arabinose catabolic pathway engineering and demonstrated that bioprospected xylose and arabinose catabolic pathways from U. bevomyces offer alternative choices for enabling efficient pentose catabolism in S. cerevisiae. By introducing a novel set of xylose catabolic genes from U. bevomyces, growth rates were improved up to 85 % over a set of traditional Scheffersomyces stipitis pathway genes. In addition, we suggested an alternative arabinose catabolic pathway which, after directed evolution and pathway engineering, enabled S. cerevisiae to grow on arabinose as a sole carbon source in minimal medium with growth rates upwards of 0.05 h(-1). This pathway represents the most efficient growth of yeast on pure arabinose minimal medium. These pathways provide great starting points for further strain development and demonstrate the utility of bioprospecting from U. bevomyces.

  17. Expressed sequence tags from the flower pathogen Claviceps purpurea.

    PubMed

    Oeser, Birgitt; Beaussart, François; Haarmann, Thomas; Lorenz, Nicole; Nathues, Eva; Rolke, Yvonne; Scheffer, Jan; Weiner, January; Tudzynski, Paul

    2009-09-01

    SUMMARY The ascomycete Claviceps purpurea (ergot) is a biotrophic flower pathogen of rye and other grasses. The deleterious toxic effects of infected rye seeds on humans and grazing animals have been known since the Middle Ages. To gain further insight into the molecular basis of this disease, we generated about 10 000 expressed sequence tags (ESTs)-about 25% originating from axenic fungal culture and about 75% from tissues collected 6-20 days after infection of rye spikes. The pattern of axenic vs. in planta gene expression was compared. About 200 putative plant genes were identified within the in planta library. A high percentage of these were predicted to function in plant defence against the ergot fungus and other pathogens, for example pathogenesis-related proteins. Potential fungal pathogenicity and virulence genes were found via comparison with the pathogen-host interaction database (PHI-base; http://www.phi-base.org) and with genes known to be highly expressed in the haustoria of the bean rust fungus. Comparative analysis of Claviceps and two other fungal flower pathogens (necrotrophic Fusarium graminearum and biotrophic Ustilago maydis) highlighted similarities and differences in their lifestyles, for example all three fungi have signalling components and cell wall-degrading enzymes in their arsenal. In summary, the analysis of axenic and in planta ESTs yielded a collection of candidate genes to be evaluated for functional roles in this plant-microbe interaction.

  18. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Ribeiro, H.; Delgado, J. L.; Abreu, I.

    2009-01-01

    Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005-2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores ( Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores ( Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.

  19. Tuber indicum shapes the microbial communities of ectomycorhizosphere soil and ectomycorrhizae of an indigenous tree (Pinus armandii)

    PubMed Central

    Li, Qiang; Zhao, Jian; Xiong, Chuan; Li, Xiaolin; Chen, Zuqin; Li, Ping; Huang, Wenli

    2017-01-01

    The aim of this study was to investigate the effect of an ectomycorrhizal fungus (Tuber indicum) on the diversity of microbial communities associated with an indigenous tree, Pinus armandii, and the microbial communities in the surrounding ectomycorhizosphere soil. High-throughput sequencing was used to analyze the richness of microbial communities in the roots or rhizosphere of treatments with or without ectomycorrhizae. The results indicated that the bacterial diversity of ectomycorhizosphere soil was significantly lower compared with the control soil. Presumably, the dominance of truffle mycelia in ectomycorhizosphere soil (80.91%) and ectomycorrhizae (97.64%) was the main factor that resulted in lower diversity and abundance of endophytic pathogenic fungi, including Fusarium, Monographella, Ustilago and Rhizopus and other competitive mycorrhizal fungi, such as Amanita, Lactarius and Boletus. Bacterial genera Reyranena, Rhizomicrobium, Nordella, Pseudomonas and fungal genera, Cuphophyllus, Leucangium, Histoplasma were significantly more abundant in ectomycorrhizosphere soil and ectomycorrhizae. Hierarchical cluster analysis of the similarities between rhizosphere and ectomycorrhizosphere soil based on the soil properties differed significantly, indicating the mycorrhizal synthesis may have a feedback effect on soil properties. Meanwhile, some soil properties were significantly correlated with bacterial and fungal diversity in the rhizosphere or root tips. Overall, this work illustrates the interactive network that exists among ectomycorrhizal fungi, soil properties and microbial communities associated with the host plant and furthers our understanding of the ecology and cultivation of T. indicum. PMID:28410376

  20. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ.

    PubMed

    van der Linde, Karina; Timofejeva, Ljudmilla; Egger, Rachel L; Ilau, Birger; Hammond, Reza; Teng, Chong; Meyers, Blake C; Doehlemann, Gunther; Walbot, Virginia

    2018-03-01

    Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize ( Zea mays ), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis , to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zm mac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses. © 2018 American Society of Plant Biologists. All rights reserved.

  1. Identification of multiple ear-colonizing insect and disease resistance in CIMMYT maize inbred lines with varying levels of silk maysin.

    PubMed

    Ni, Xinzhi; Krakowsky, Matthew D; Buntin, G David; Rector, Brian G; Guo, Baozhu; Snook, Maurice E

    2008-08-01

    Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.

  2. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens.

    PubMed

    Xu, Jun; Saunders, Charles W; Hu, Ping; Grant, Raymond A; Boekhout, Teun; Kuramae, Eiko E; Kronstad, James W; Deangelis, Yvonne M; Reeder, Nancy L; Johnstone, Kevin R; Leland, Meredith; Fieno, Angela M; Begley, William M; Sun, Yiping; Lacey, Martin P; Chaudhary, Tanuja; Keough, Thomas; Chu, Lien; Sears, Russell; Yuan, Bo; Dawson, Thomas L

    2007-11-20

    Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex.

  3. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens

    PubMed Central

    Xu, Jun; Saunders, Charles W.; Hu, Ping; Grant, Raymond A.; Boekhout, Teun; Kuramae, Eiko E.; Kronstad, James W.; DeAngelis, Yvonne M.; Reeder, Nancy L.; Johnstone, Kevin R.; Leland, Meredith; Fieno, Angela M.; Begley, William M.; Sun, Yiping; Lacey, Martin P.; Chaudhary, Tanuja; Keough, Thomas; Chu, Lien; Sears, Russell; Yuan, Bo; Dawson, Thomas L.

    2007-01-01

    Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex. PMID:18000048

  4. Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene.

    PubMed

    Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D

    2015-07-01

    The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.

  5. A comparison of on-line and off-line bioaerosol measurements at a biowaste site.

    PubMed

    Feeney, Patrick; Rodríguez, Santiago Fernández; Molina, Rafael; McGillicuddy, Eoin; Hellebust, Stig; Quirke, Michael; Daly, Shane; O'Connor, David; Sodeau, John

    2018-06-01

    An air measurement campaign was carried out at a green-waste composting site in the South of Ireland during Spring 2016. The aim was to quantify and identify the levels of Primary Biological Aerosol Particles (PBAP) that were present using the traditional off-line, impaction/optical microscopy method alongside an on-line, spectroscopic approach termed WIBS (Wideband Integrated Bioaerosol Sensor), which can provide number concentrations, sizes and "shapes" of airborne PBAP in real-time by use of Light Induced Fluorescence (LIF). The results from the two techniques were compared in order to validate the use of the spectroscopic method for determining the releases of the wide-range of PBAP present there as a function of site activity and meteorological conditions. The seven-day monitoring period undertaken was much longer than any real-time studies that have been previously performed and allowed due comparison between weekday (working) activities at the site and weekend (closed) releases. The time-span also allowed relationships between site activities like turning, agitation or waste delivery and the WIBS data to be determined in a quantitative manner. This information cannot be obtained with the Andersen Sampling methods generally employed at green-waste management sites. Furthermore, few specific bioaerosol types other than Aspergillus fumigatus, are identified using the traditional protocols employed for site licensing purposes. Here though the co-location of WIBS with the impaction instrument made it possible to identify the real-time release behaviour of a specific plant pathogenic spore, Ustilago maydis, present after green-waste deliveries were made by a local distillery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Online monitoring of fermentation processes via non-invasive low-field NMR.

    PubMed

    Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen

    2015-09-01

    For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales. © 2015 Wiley Periodicals, Inc.

  7. In silico mapping of quantitative trait loci in maize.

    PubMed

    Parisseaux, B; Bernardo, R

    2004-08-01

    Quantitative trait loci (QTL) are most often detected through designed mapping experiments. An alternative approach is in silico mapping, whereby genes are detected using existing phenotypic and genomic databases. We explored the usefulness of in silico mapping via a mixed-model approach in maize (Zea mays L.). Specifically, our objective was to determine if the procedure gave results that were repeatable across populations. Multilocation data were obtained from the 1995-2002 hybrid testing program of Limagrain Genetics in Europe. Nine heterotic patterns comprised 22,774 single crosses. These single crosses were made from 1,266 inbreds that had data for 96 simple sequence repeat (SSR) markers. By a mixed-model approach, we estimated the general combining ability effects associated with marker alleles in each heterotic pattern. The numbers of marker loci with significant effects--37 for plant height, 24 for smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for grain moisture--were consistent with previous results from designed mapping experiments. Each trait had many loci with small effects and few loci with large effects. For smut resistance, a marker in bin 8.05 on chromosome 8 had a significant effect in seven (out of a maximum of 18) instances. For this major QTL, the maximum effect of an allele substitution ranged from 5.4% to 41.9%, with an average of 22.0%. We conclude that in silico mapping via a mixed-model approach can detect associations that are repeatable across different populations. We speculate that in silico mapping will be more useful for gene discovery than for selection in plant breeding programs. Copyright 2004 Springer-Verlag

  8. Impact of applying edible oils to silk channels on ear pests of sweet corn.

    PubMed

    Ni, Xinzhi; Sparks, Alton N; Riley, David G; Li, Xianchun

    2011-06-01

    The impact of applying edible oils to corn silks on ear-feeding insects in sweet corn, Zea mays L., production was evaluated in 2006 and 2007. Six edible oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix neem oil and nC21 Sunspray Ultrafine, a horticultural mineral oil) were used as the controls for the experiment. Six parameters evaluated in this experiment were corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] damage rating, the number of sap beetle [Carpophilus spp. (Coleoptera: Nitidulidae)] adults and larvae, the number of corn silk fly (or picture-winged fly) (Diptera: Ulidiidae) larvae, common smut [Ustilago maydis (D.C.) Corda] infection rate, and corn husk coverage. Among the two control treatments, neem oil reduced corn earworm damage at both pre- and postpollination applications in 2006, but not in 2007, whereas the mineral oil applied at postpollination treatments reduced corn earworm damage in both years. The mineral oil also reduced the number of sap beetle adults, whereas the neem oil applied at postpollination attracted the most sap beetle adults in 2007. Among the six edible oil treatments, the corn and sesame oils applied at postpollination reduced corn earworm damage only in 2007. The application of the peanut oil at postpollination attracted more sap beetle adults in 2006, and more sap beetle larvae in 2007. Olive and neem oils significantly reduced husk coverage compared with the water control in both years. The mineral oil application consistently increased smut infection rate in both 2006 and 2007. Ramifications of using oil treatments in ear pest management also are discussed.

  9. The 3-hydroxy-3-methylglutaryl coenzyme-A reductases from fungi: a proposal as a therapeutic target and as a study model.

    PubMed

    Andrade-Pavón, Dulce; Sánchez-Sandoval, Eugenia; Rosales-Acosta, Blanca; Ibarra, José Antonio; Tamariz, Joaquín; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes

    2014-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) catalyzes the conversion of HMG-Co-A into mevalonate. This step is the limiting point for the synthesis of cholesterol in mammals and ergosterol in fungi. We describe in this article the genome organization of HMGR coding genes and those deduced from different fungi, recount the evidence showing statins as HMGR inhibitors for ergosterol synthesis and its effect in yeast viability, and propose fungal HMGR (HMGRf) as a model to study the use of pharmaceutical compounds to inhibit cholesterol and ergosterol synthesis. Bibliographical search and bioinformatic analyses were performed and discussed. HMGRfs belong to the class I with a high homology in the catalytic region. The sterol biosynthetic pathway in humans and fungi share many enzymes in the initial steps (such as the HMGR enzyme), but in the last steps enzymes are different rendering the two final products: cholesterol in mammals and ergosterol in fungi. With regards to inhibitors such as statins and other compounds, these affect also fungal viability. Since HMGR from Schizosaccharomyces pombe and Ustilago maydis are very similar to the human HMGR in the catalytic regions, we propose that fungal enzymes can be used to test inhibitors for a potential use in humans. We consider that HMGRf is a good therapeutic target to design and test new antifungal compounds. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. Assessment of fungal diversity in a water-damaged office building.

    PubMed

    Green, Brett J; Lemons, Angela R; Park, Yeonmi; Cox-Ganser, Jean M; Park, Ju-Hyeong

    2017-04-01

    Recent studies have described fungal communities in indoor environments using gene sequencing-based approaches. In this study, dust-borne fungal communities were elucidated from a water-damaged office building located in the northeastern region of the United States using internal transcribed spacer (ITS) rRNA gene sequencing. Genomic DNA was extracted from 5 mg of floor dust derived from 22 samples collected from either the lower floors (n = 8) or a top floor (n = 14) of the office building. ITS gene sequencing resolved a total of 933 ITS sequences and was clustered into 216 fungal operational taxonomic units (OTUs). Analysis of fungal OTUs at the 97% similarity threshold showed a difference between the lower and top floors that was marginally significant (p = 0.049). Species richness and diversity indices were reduced in the lower floor samples compared to the top floor samples and there was a high degree of compositional dissimilarity within and between the two different areas within the building. Fungal OTUs were placed in the phyla Ascomycota (55%), Basidiomycota (41%), Zygomycota (3%), Glomeromycota (0.4%), Chytridiomycota (0.3%), and unassigned fungi (0.5%). The Ascomycota classes with the highest relative abundances included the Dothideomycetes (30%) and Eurotiomycetes (16%). The Basidiomycota consisted of the classes Ustilaginomycetes (14%), Tremellomycetes (11%), and Agaricomycetes (8%). Sequence reads derived from the plant pathogen Ustilago syntherismae were the most abundant in the analysis as were obligate Basidiomycota yeast species that accounted for 12% and 11% of fungal ITS sequences, respectively. ITS gene sequencing provides additional insight into the diversity of fungal OTUs. These data further highlight the contribution of fungi placed in the phylum Basidiomycota, obligate yeasts, as well as xerophilic species that are typically not resolved using traditional culture methods.

  11. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

    PubMed Central

    Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe

    2011-01-01

    During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early biotrophy for the three investigated interactions. PMID:22645534

  12. Fungal spores in four catholic churches in the metropolitan area of Monterrey, Nuevo León State, Mexico--First study.

    PubMed

    Estrada, Alejandra Rocha; Torres, Elizabeth Molina; Vázquez, Marco Antonio Alvarado; Piñero, Jorge Luis Hernandez; Lucio, Marco Antonio Guzmán; Martínez, Sergio Manuel Salcedo

    2015-01-01

    About 500,000 species of fungi have been described to-date, although an estimated between 1 - 1.5 million species may occur. They have a wide distribution in nature, contributing to the decomposition of organic matter and playing a part in the biogeochemical cycles of major nutrients. A small number are considered pathogens of animals and plants. There is ample historical evidence that certain types of allergies are associated with fungi; exposure to fungal allergens occurs in both outdoor and indoor spaces. Many indoor allergens are the same as those found outside buildings, entering through windows and doors, ventilation systems, or through cracks or other fissures in the walls. To determine the diversity and abundance of fungal spores inside four churches in the metropolitan area of Monterrey city in Mexico. The study was carried out from July 2009 - January 2010 using a Hirst type volumetric collector (Burkard Manufacturing Co Ltd). A total of 31,629 spores from 54 taxa were registered in the four churches. The building that showed the highest amount of spores was the Santa Catarina Mártir Church with 12,766 spores, followed by Cristo Rey with 7,155 and Nuestra Señora del Roble with 6,887. Regularly high concentrations of spores were recorded from 14:00 - 20:00 hours. The highest concentration value was observed at the church of Santa Catarina Mártir at 16:00 hours with 1153 spores/m 3 air. The most abundant spores in the four churches studied corresponded to Cladosporium, the Aspergillus/Penicillium complex, Coprinus, Ganoderma, Curvularia and Ustilago.

  13. The cultural significance of wild mushrooms in San Mateo Huexoyucan, Tlaxcala, Mexico.

    PubMed

    Alonso-Aguilar, Luis Enrique; Montoya, Adriana; Kong, Alejandro; Estrada-Torres, Arturo; Garibay-Orijel, Roberto

    2014-03-05

    We performed an ethnomycological study in a community in Tlaxcala, Central Mexico to identify the most important species of wild mushrooms growing in an oak forest, their significance criteria, and to validate the Cultural Significance Index (CSI). Thirty-three mestizo individuals were randomly selected in San Mateo Huexoyucan and were asked seven questions based on criteria established by the CSI. Among the 49 mushroom species collected in the oak forest and open areas, 20 species were mentioned most often and were analyzed in more detail. Ordination and grouping techniques were used to determine the relationship between the cultural significance of the mushroom species, according to a perceived abundance index, frequency of use index, taste score appreciation index, multifunctional food index, knowledge transmission index, and health index. The mushrooms with highest CSI values were Agaricus campestris, Ramaria spp., Amanita aff. basii, Russula spp., Ustilago maydis, and Boletus variipes. These species were characterized by their good taste and were considered very nutritional. The species with the lowest cultural significance included Russula mexicana, Lycoperdon perlatum, and Strobylomyces strobilaceus. The ordination and grouping analyses identified four groups of mushrooms by their significance to the people of Huexoyucan. The most important variables that explained the grouping were the taste score appreciation index, health index, the knowledge transmission index, and the frequency of use index. A. aff. basii and A. campestris were the most significant wild mushrooms to the people of San Mateo. The diversity of the Russula species and the variety of Amanita and Ramaria species used by these people was outstanding. Environments outside the forest also produced useful resources. The CSI used in Oaxaca was useful for determining the cultural significance of mushrooms in SMH, Tlaxcala. This list of mushrooms can be used in conservation proposals for the Quercus forests in the area.

  14. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    PubMed

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.

  15. Spatial expression dynamics of Men-9 delineate the third floral whorl in male and female flowers of dioecious Silene latifolia.

    PubMed

    Robertson, S E; Li, Y; Scutt, C P; Willis, M E; Gilmartin, P M

    1997-07-01

    Sex determination in Silene latifolia is controlled by heteromorphic sex chromosomes. Female flowers have five fused carpels and ten arrested stamen primordia. The male-determining Y chromosome overrides female development to suppress carpel formation and promote stamen development. The isolation and characterization of two S. latifolia. Male enhanced cDNAs, Men-9a and Men-9b, which probably represent different alleles of a novel gene are reported here. Men-9a and Men-9b share 91.8% coding sequence nucleotide identity, yet only 85.4% amino acid identity. The Men-9 cDNAs are related to the previously reported MROS3 cDNA from S. latifolia. However, MROS3 is not present in the S. latifolia population used in these studies and the expression dynamics of Men-9a and Men-9b contrast dramatically with those reported for MROS3. Men-9 cDNAs are expressed primarily in anthers of young male flowers, with highest expression in 1-2 mm buds. Men-9 expression is also observed at a low level in female flowers. In situ hybridization analysis reveals two phases of Men-9 expression. The first phase is during a common stage of early stamen development in male and female flowers prior to stamen arrest in female flowers. The second phase of Men-9 expression is maximal in the epidermis and endothecium of Y chromosome- and Ustilago violacea-induced stamens; expression in male and female flowers extends to the epidermis of the staminal nectaries with strict boundaries at the second and fourth whorls, Men-9 gene expression therefore delineates the boundaries of the third floral whorl in S. latifolia flowers.

  16. Mrt, a Gene Unique to Fungi, Encodes an Oligosaccharide Transporter and Facilitates Rhizosphere Competency in Metarhizium robertsii1[C][W

    PubMed Central

    Fang, Weiguo; St. Leger, Raymond J.

    2010-01-01

    The symbiotic associations between rhizospheric fungi and plants have enormous environmental impact. Fungi are crucial to plant health as antagonists of pathogens and herbivores and facilitate the uptake of soil nutrients. However, little is known about the plant products obtained by fungi in exchange or how they are transported through the symbiotic interface. Here, we demonstrate that sucrose and raffinose family oligosaccharides in root exudates are important for rhizosphere competence in the insect pathogen Metarhizium robertsii (formerly known as Metarhizium anisopliae). We identified mutants in the Metarhizium raffinose transporter (Mrt) gene of M. robertsii that grew poorly in root exudate and were greatly reduced in rhizosphere competence on grass roots. Studies on sugar uptake, including competition assays, revealed that MRT was a sucrose and galactoside transporter. Disrupting MRT resulted in greatly reduced or no growth on sucrose and galactosides but did not affect growth on monosaccharides or oligosaccharides composed entirely of glucose subunits. Consistent with this, expression of Mrt is exclusively up-regulated by galactosides and sucrose. Expressing a green fluorescent protein gene under the control of the Mrt promoter confirmed that MRT was expressed by germlings in the vicinity of grass roots but not in surrounding bulk soil. Disrupting Mrt did not reduce virulence to insects, demonstrating that Mrt is exclusively involved in M. robertsii’s interactions with plants. To our knowledge, MRT is the first oligosaccharide transporter identified and characterized in a fungus and is unique to filamentous fungi, but homologous genes in Magnaporthe, Ustilago, Aspergillus, Fusarium, Epichloe, and Penicillium species indicate that oligosaccharide transport is of widespread significance. PMID:20837701

  17. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    PubMed

    Feretzaki, Marianna; Billmyre, R Blake; Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph

    2016-03-01

    RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  18. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle

    It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in themore » L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.« less

  19. Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance.

    PubMed

    Ni, Xinzhi; Xu, Wenwei; Blanco, Michael H; Wilson, Jeffrey P

    2012-08-01

    Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.

  20. The cultural significance of wild mushrooms in San Mateo Huexoyucan, Tlaxcala, Mexico

    PubMed Central

    2014-01-01

    Background We performed an ethnomycological study in a community in Tlaxcala, Central Mexico to identify the most important species of wild mushrooms growing in an oak forest, their significance criteria, and to validate the Cultural Significance Index (CSI). Methods Thirty-three mestizo individuals were randomly selected in San Mateo Huexoyucan and were asked seven questions based on criteria established by the CSI. Among the 49 mushroom species collected in the oak forest and open areas, 20 species were mentioned most often and were analyzed in more detail. Ordination and grouping techniques were used to determine the relationship between the cultural significance of the mushroom species, according to a perceived abundance index, frequency of use index, taste score appreciation index, multifunctional food index, knowledge transmission index, and health index. Results The mushrooms with highest CSI values were Agaricus campestris, Ramaria spp., Amanita aff. basii, Russula spp., Ustilago maydis, and Boletus variipes. These species were characterized by their good taste and were considered very nutritional. The species with the lowest cultural significance included Russula mexicana, Lycoperdon perlatum, and Strobylomyces strobilaceus. The ordination and grouping analyses identified four groups of mushrooms by their significance to the people of Huexoyucan. The most important variables that explained the grouping were the taste score appreciation index, health index, the knowledge transmission index, and the frequency of use index. Conclusions A. aff. basii and A. campestris were the most significant wild mushrooms to the people of San Mateo. The diversity of the Russula species and the variety of Amanita and Ramaria species used by these people was outstanding. Environments outside the forest also produced useful resources. The CSI used in Oaxaca was useful for determining the cultural significance of mushrooms in SMH, Tlaxcala. This list of mushrooms can be used in conservation proposals for the Quercus forests in the area. PMID:24597704

  1. Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust.

    PubMed

    Rochi, Lucia; Diéguez, María José; Burguener, Germán; Darino, Martín Alejandro; Pergolesi, María Fernanda; Ingala, Lorena Romina; Cuyeu, Alba Romina; Turjanski, Adrián; Kreff, Enrique Domingo; Sacco, Francisco

    2018-03-01

    Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Transformation in fungi.

    PubMed Central

    Fincham, J R

    1989-01-01

    Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential. PMID:2651864

  3. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi.

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-02-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High-density genetic mapping of a major QTL for resistance to multiple races of loose smut in a tetraploid wheat cross

    PubMed Central

    Kumar, Sachin; Knox, Ron E.; Singh, Asheesh K.; DePauw, Ron M.; Campbell, Heather L.; Isidro-Sanchez, Julio; Clarke, Fran R.; Pozniak, Curtis J.; N’Daye, Amidou; Meyer, Brad; Sharpe, Andrew; Ruan, Yuefeng; Cuthbert, Richard D.; Somers, Daryl; Fedak, George

    2018-01-01

    Loose smut, caused by Ustilago tritici (Pers.) Rostr., is a systemic disease of tetraploid durum wheat (Triticum turgidum L.). Loose smut can be economically controlled by growing resistant varieties, making it important to find and deploy new sources of resistance. Blackbird, a variety of T. turgidum L. subsp. carthlicum (Nevski) A. Love & D. Love, carries a high level of resistance to loose smut. Blackbird was crossed with the loose smut susceptible durum cultivar Strongfield to produce a doubled haploid (DH) mapping population. The parents and progenies were inoculated with U. tritici races T26, T32 and T33 individually and as a mixture at Swift Current, Canada in 2011 and 2012 and loose smut incidence (LSI) was assessed. Genotyping of the DH population and parents using an Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified 12,952 polymorphic SNPs. The SNPs and 426 SSRs (previously genotyped in the same population) were mapped to 16 linkage groups spanning 3008.4 cM at an average inter-marker space of 0.2 cM in a high-density genetic map. Composite interval mapping analysis revealed three significant quantitative trait loci (QTL) for loose smut resistance on chromosomes 3A, 6B and 7A. The loose smut resistance QTL on 6B (QUt.spa-6B.2) and 7A (QUt.spa-7A.2) were derived from Blackbird. Strongfield contributed the minor QTL on 3A (QUt.spa-3A.2). The resistance on 6B was a stable major QTL effective against all individual races and the mixture of the three races; it explained up to 74% of the phenotypic variation. This study is the first attempt in durum wheat to identify and map loose smut resistance QTL using a high-density genetic map. The QTL QUt.spa-6B.2 would be an effective source for breeding resistance to multiple races of the loose smut pathogen because it provides near-complete broad resistance to the predominant virulence on the Canadian prairies. PMID:29485999

  5. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host/ecological niche can influence shaping the P450 content of an organism. The present study initiates our understanding of P450 family patterns in basidiomycete biotrophic plant pathogens. PMID:26536121

  6. Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico.

    PubMed

    Quiñónez-Martínez, Miroslava; Ruan-Soto, Felipe; Aguilar-Moreno, Ivonne Estela; Garza-Ocañas, Fortunato; Lebgue-Keleng, Toutcha; Lavín-Murcio, Pablo Antonio; Enríquez-Anchondo, Irma Delia

    2014-09-17

    The Sierra Madre Occidental of Chihuahua in Northern Mexico is inhabited by indigenous Raramuris, mestizos, and other ethnic groups. The territory consists of canyons and ravines with pine, oak and pine-oak forests in the higher plateaus. A great diversity of potentially edible mushrooms is found in forests of the Municipalities of Bocoyna and Urique. Their residents are the only consumers of wild mushrooms in the Northern Mexico; they have a long tradition of collecting and eating these during the "rainy season." However, despite the wide diversity of edible mushrooms that grow in these areas, residents have a selective preference. This paper aims to record evidence of the knowledge and use of wild potentially edible mushroom species by inhabitants of towns in the Sierra Tarahumara of Chihuahua, Mexico. Using a semi-structured technique, we surveyed 197 habitants from seven locations in Urique, Bocoyna, and the Cusarare area from 2010 to 2012. Known fungi, local nomenclature, species consumed, preparation methods, appreciation of taste, forms of preservation, criteria for differentiating toxic and edible fungi, other uses, economic aspects, and traditional teaching were recorded. To identify the recognized species, photographic stimuli of 22 local edible species and two toxic species were used. The respondents reported preference for five species: Amanita rubescens, Agaricus campestris, Ustilago maydis, Hypomyces lactifluorum, and the Amanita caesarea complex. No apparent differences were found between ethnic groups in terms of preference, although mestizos used other species in Bocoyna (Boletus edulis and B. pinophilus). Some different uses of fungi are recognized by respondents, i.e. home decorations, medicine, as food in breeding rams, etc. The studied population shows a great appreciation towards five species, mainly the A. caesarea complex, and an apparent lack of knowledge of nearly 20 species which are used as food in other areas of Mexico. There are no apparent differences among Sierra inhabitants in terms of gender, occupation, or language regarding the recognition and consumption of species. The rejection of certain species is due mainly to fear of poisoning and the traditional selective teaching of families in the mountain communities of the Sierra Tarahumara.

  7. Amino Acid Permeases and Virulence in Cryptococcus neoformans

    PubMed Central

    Takahashi, Juliana Possato Fernandes; Guerra, Juliana Mariotti; Santos, Dayane Cristina da Silva; Purisco, Sônia Ueda; Melhem, Márcia de Souza Carvalho; Fazioli, Raquel dos Anjos; Phanord, Clerlune; Sartorelli, Patrícia; Vallim, Marcelo A.

    2016-01-01

    Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i) interesting physiological property of C. neoformans regarding its amino acid uptake system; (ii) an important aspect of virulence, which is the need for amino acid permeases during thermal and oxidative stress resistance and, hence, host invasion and colonization; and (iii) provides a convenient prototype for antifungal development, which are the amino acid permeases Aap4/Aap5 and their inhibitor. PMID:27695080

  8. Assessing Performance of Spore Samplers in Monitoring Aeromycobiota and Fungal Plant Pathogen Diversity in Canada.

    PubMed

    Chen, Wen; Hambleton, Sarah; Seifert, Keith A; Carisse, Odile; Diarra, Moussa S; Peters, Rick D; Lowe, Christine; Chapados, Julie T; Lévesque, C André

    2018-05-01

    Spore samplers are widely used in pathogen surveillance but not so much for monitoring the composition of aeromycobiota. In Canada, a nationwide spore-sampling network (AeroNet) was established as a pilot project to assess fungal community composition in air and rain samples collected using three different spore samplers in the summers of 2010 and 2011. Metabarcodes of the internal transcribed spacer (ITS) were exhaustively characterized for three of the network sites, in British Columbia (BC), Québec (QC), and Prince Edward Island (PEI), to compare performance of the samplers. Sampler type accounted for ca. 20% of the total explainable variance in aeromycobiota compositional heterogeneity, with air samplers recovering more Ascomycota and rain samplers recovering more Basidiomycota. Spore samplers showed different abilities to collect 27 fungal genera that are plant pathogens. For instance, Cladosporium spp., Drechslera spp., and Entyloma spp. were collected mainly by air samplers, while Fusarium spp., Microdochium spp., and Ustilago spp. were recovered more frequently with rain samplers. The diversity and abundance of some fungi were significantly affected by sampling location and time (e.g., Alternaria and Bipolaris ) and weather conditions (e.g., Mycocentrospora and Leptosphaeria ), and depended on using ITS1 or ITS2 as the barcoding region (e.g., Epicoccum and Botrytis ). The observation that Canada's aeromycobiota diversity correlates with cooler, wetter conditions and northward wind requires support from more long-term data sets. Our vision of the AeroNet network, combined with high-throughput sequencing (HTS) and well-designed sampling strategies, may contribute significantly to a national biovigilance network for protecting plants of agricultural and economic importance in Canada. IMPORTANCE The current study compared the performance of spore samplers for collecting broad-spectrum air- and rain-borne fungal pathogens using a metabarcoding approach. The results provided a thorough characterization of the aeromycobiota in the coastal regions of Canada in relation to the influence of climatic factors. This study lays the methodological basis to eventually develop knowledge-based guidance on pest surveillance by assisting in the selection of appropriate spore samplers. © Crown copyright 2018.

  9. [Atmospheric concentration of fungus spores in Ankara and the effect of meteorological factors in 2003 period].

    PubMed

    Ceter, Talip; Pinar, Nur Münevver

    2009-10-01

    The atmospheric concentrations of airborne fungus spores change continuously according to the meteorological factors, and their intensity have important allergic effects on atopic subjects and opportunistic pathogenic effects on immunocompromised patients. The aim of this study was to identify the fungal spores found in Ankara atmosphere during 2003 period and to investigate the changes in spore concentrations in relation to meteorological factors. Fungal spores were sampled by using 7-day Burkard volumetric trap between January to December 2003, and probable identification was performed microscopically based on their morphological structures. A total of 433.079 spores/m3 belonging to 35 taxa were observed during the study. The rates of these taxa were as follows; 75.5% Cladosporium, 6.1% Alternaria, 2.2% Leptosphaeria, 2.2% Ustilago, 2.1% 1-septate ascospores, 2% Exosporium, 1.6% Pleospora, and 1.3% Drechslera. The other taxa with concentrations < 1% have consisted a total of 7.1% of all atmospheric spores (Puccinia, Curvularia, Coprinus, Nigrospora, Periconia, Melanomma, Torula, Ascobolus, Agrocybe, Pithomyces, Stemphyllium, Ganoderma, Boletus, Peronospora, Venturia, Paraphaeosphaeria, Epicoccum, Didymella, Chaetomium and Fusarium rates between 0.7-0.1%; Oidium, Xylaria, Botrytis, Melanospora, Dictyosporium, Sporormiella and Tetracoccosporium rates between 0.09-0.01%). Although fungal spores were detected in all months in Ankara atmosphere, the evaluation of the seasonal distribution of spore concentrations revealed that the highest value was detected in July (100.697 spores/m3), while the lowest value was in January (4268 spores/m3). When the effects of meteorological factors on spore concentrations were investigated, it was found that, monthly mean temperature (> 20 degrees C) has a strong positive correlation (p < 0.01), and monthly mean relative humidity (< %50) and precipitation (0-20 mm) have strong negative correlations (p < 0.01) on the spore concentrations, while wind velocity (3 m/s) has a slightly positive effect. An annual spore calendar which indicated weekly concentrations and allergenicity levels of those identified fungal spores, was also prepared in this study. In conclusion, it is expected that these data would be helpful for the researchers in the area of aeropalinology and for the clinicians to evaluate allergic diseases.

  10. Reprint of "Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi".

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-07-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    PubMed Central

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence. PMID:21435244

Top