Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match
USDA-ARS?s Scientific Manuscript database
Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
This monograph consists of 25 data tables that will be included in the subject year book, revealing such information as: total US installed generating capacity; installed capacity by states; installed capacity by ownership and type of prime mover; capability - peak load - kWh requirements; generation by states; generation by fuel; sales by years and classes of service; ultimate customers - by years and classes of service; revenues - by years and classes of service; average use and revenue per customer; average revenues per kWh sold; consumption of fossil fuels for electric generation; construction expenditures; and public-utility long-term financing.
Modelling utility-scale wind power plants. Part 2: Capacity credit
NASA Astrophysics Data System (ADS)
Milligan, Michael R.
2000-10-01
As the worldwide use of wind turbine generators in utility-scale applications continues to increase, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This article is the second in a two-part series that addresses modelling approaches and results that were obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This second article focuses on wind plant capacity credit as measured with power system reliability indices. Reliability-based methods of measuring capacity credit are compared with wind plant capacity factor. The relationship between capacity credit and accurate wind forecasting is also explored. Published in 2000 by John Wiley & Sons, Ltd.
Generating capacity in US electric utilities: How is it used? How much is needed over the decade
NASA Astrophysics Data System (ADS)
Keelin, T. W.; Oatman, E. N.; Gent, M. R.
1982-10-01
This report addresses: how US generating capacity is used to supply today's consumers with electricity; whether new capacity planned over the next decade is enough to provide a secure supply of electricity; how delays and cancellations of planned capacity would result in higher electricity costs and threaten the security of electricity supply; and how today's decisions determine electricity supply for the next decade and beyond. It is concluded that there is not an electricity supply crisis currently, but there is a planning crisis. This conclusion is based on the following: existing capacity supplies current needs, but provides little room for economic growth; new capacity is planned to provide a secure supply of electricity for the demand projected by utilities; if demand is lower, planned capacity will reduce costs and, if demand is higher, planned capacity will not be adequate; planned capacity may not be realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.W.
The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less
Utility-Scale Energy Technology Capacity Factors | Energy Analysis | NREL
Transparent Cost Database Button This chart indicates the range of recent capacity factor estimates for utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost
Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The
2009-01-01
This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.
Main trends in electricity markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pariente-Davied, S.
1998-07-01
Liberalization and restructuring of electricity markets are leading to a globalization of the industry. The electricity sector is moving from state dominance to private participation, from monopoly structures to competition. Greenfield investments in generation capacity are increasingly dominated by private operators; 53% of the 780 GW global capacity additions needed by 2007 will be independent power facilities. Existing power generation assets are changing hands, either through privatization or utility divestitures; 250 GW of capacity is expected to be privatized by 2007 and 310 GW of utility spin-offs are anticipated in the US. The structure of the industry will evolve frommore » fragmentation, with many players operating in national markets, to a few global players operating across borders.« less
2017-01-01
The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.
A case study in electricity regulation: Theory, evidence, and policy
NASA Astrophysics Data System (ADS)
Luk, Stephen Kai Ming
This research provides a thorough empirical analysis of the problem of excess capacity found in the electricity supply industry in Hong Kong. I utilize a cost-function based temporary equilibrium framework to investigate empirically whether the current regulatory scheme encourages the two utilities to overinvest in capital, and how much consumers would have saved if the underutilized capacity is eliminated. The research is divided into two main parts. The first section attempts to find any evidence of over-investment in capital. As a point of departure from traditional analysis, I treat physical capital as quasi-fixed, which implies a restricted cost function to represent the firm's short-run cost structure. Under such specification, the firm minimizes the cost of employing variable factor inputs subject to predetermined levels of quasi-fixed factors. Using a transcendental logarithmic restricted cost function, I estimate the cost-side equivalent of marginal product of capital, or commonly referred to as "shadow values" of capital. The estimation results suggest that the two electric utilities consistently over-invest in generation capacity. The second part of this research focuses on the economies of capital utilization, and the estimation of distortion cost in capital investment. Again, I utilize a translog specification of the cost function to estimate the actual cost of the excess capacity, and to find out how much consumers could have saved if the underutilized generation capacity were brought closer to the international standard. Estimation results indicate that an increase in the utilization rate can significantly reduce the costs of both utilities. And if the current excess capacity were reduced to the international standard, the combined savings in costs for both firms will reach 4.4 billion. This amount of savings, if redistributed to all consumers evenly, will translate into a 650 rebate per capita. Finally, two policy recommendations: a more stringent policy towards capacity expansion and the creation of a reimbursement program, are discussed.
World Geothermal Congress WGC-2015
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2016-08-01
This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.
Capacity value of energy storage considering control strategies.
Shi, Nian; Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.
Jeremy S. Fried; Glenn Christensen; Dale Weyermann; R. Jamie Barbour; Roger Fight; Bruce Hiserote; Guy Pinjuv
2005-01-01
Utilization of small diameter trees is viewed by many as the key to making landscape-scale fuel treatment financially feasible. But little capacity currently exists for utilizing such material and capacity of sufficient scale to have a significant impact on the economics of small diameter removals will only be added if predictable feedstocks can be assured. The FIA...
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... may not exceed the following equivalent MW electrical generation capacity for any one technology... plants may not exceed 15,000 MW. Technology Pollutant Equivalent electrical capacity(MW electrical output... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility...
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... may not exceed the following equivalent MW electrical generation capacity for any one technology... plants may not exceed 15,000 MW. Technology Pollutant Equivalent electrical capacity(MW electrical output... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility...
Capacity value of energy storage considering control strategies
Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given. PMID:28558027
Balancing autonomy and utilization of solar power and battery storage for demand based microgrids
NASA Astrophysics Data System (ADS)
Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.
2015-04-01
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Weaver, Samantha; Zuboy, Jarett
Recently announced low-priced power purchase agreements (PPAs) for US utility-scale photovoltaic (PV) projects suggest $50/MWh solar might be viable under certain conditions. To explore this possibility, this paper draws on an increasing wealth of empirical data to analyze trends in three of the most important PPA price drivers: upfront installed project prices, operations, and maintenance (O&M) costs, and capacity factors. Average installed prices among a sample of utility-scale PV projects declined by more than one third (from 5.8/W AC to 3.7/WAC) from the 2007–2009 period through 2013, even as costlier systems with crystalline-silicon modules, sun tracking, and higher inverter loadingmore » ratios (ILRs) have constituted an increasing proportion of total utility-scale PV capacity (all values shown here are in 2013 dollars). Actual and projected O&M costs from a very small sample of projects appear to range from $20–$40/kW AC-year. Furthermore, the average net capacity factor is 30% for projects installed in 2012, up from 24% for projects installed in 2010, owing to better solar resources, higher ILRs, and greater use of tracking among the more recent projects. Based on these trends, a pro-forma financial model suggests that $50/MWh utility-scale PV is achievable using a combination of aggressive-but-achievable technical and financial input parameters (including receipt of the 30% federal investment tax credit). Although the US utility-scale PV market is still young, the rapid progress in the key metrics documented in this paper has made PV a viable competitor against other utility-scale renewable generators, and even conventional peaking generators, in certain regions of the country.« less
Bolinger, Mark; Weaver, Samantha; Zuboy, Jarett
2015-05-22
Recently announced low-priced power purchase agreements (PPAs) for US utility-scale photovoltaic (PV) projects suggest $50/MWh solar might be viable under certain conditions. To explore this possibility, this paper draws on an increasing wealth of empirical data to analyze trends in three of the most important PPA price drivers: upfront installed project prices, operations, and maintenance (O&M) costs, and capacity factors. Average installed prices among a sample of utility-scale PV projects declined by more than one third (from 5.8/W AC to 3.7/WAC) from the 2007–2009 period through 2013, even as costlier systems with crystalline-silicon modules, sun tracking, and higher inverter loadingmore » ratios (ILRs) have constituted an increasing proportion of total utility-scale PV capacity (all values shown here are in 2013 dollars). Actual and projected O&M costs from a very small sample of projects appear to range from $20–$40/kW AC-year. Furthermore, the average net capacity factor is 30% for projects installed in 2012, up from 24% for projects installed in 2010, owing to better solar resources, higher ILRs, and greater use of tracking among the more recent projects. Based on these trends, a pro-forma financial model suggests that $50/MWh utility-scale PV is achievable using a combination of aggressive-but-achievable technical and financial input parameters (including receipt of the 30% federal investment tax credit). Although the US utility-scale PV market is still young, the rapid progress in the key metrics documented in this paper has made PV a viable competitor against other utility-scale renewable generators, and even conventional peaking generators, in certain regions of the country.« less
NASA Astrophysics Data System (ADS)
Cretcher, C. K.; Rountredd, R. C.
1980-11-01
Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows themore » relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.« less
Essays in renewable energy and emissions trading
NASA Astrophysics Data System (ADS)
Kneifel, Joshua D.
Environmental issues have become a key political issue over the past forty years and has resulted in the enactment of many different environmental policies. The three essays in this dissertation add to the literature of renewable energy policies and sulfur dioxide emissions trading. The first essay ascertains which state policies are accelerating deployment of non-hydropower renewable electricity generation capacity into a states electric power industry. As would be expected, policies that lead to significant increases in actual renewable capacity in that state either set a Renewables Portfolio Standard with a certain level of required renewable capacity or use Clean Energy Funds to directly fund utility-scale renewable capacity construction. A surprising result is that Required Green Power Options, a policy that merely requires all utilities in a state to offer the option for consumers to purchase renewable energy at a premium rate, has a sizable impact on non-hydro renewable capacity in that state. The second essay studies the theoretical impacts fuel contract constraints have on an electricity generating unit's compliance costs of meeting the emissions compliance restrictions set by Phase I of the Title IV SO2 Emissions Trading Program. Fuel contract constraints restrict a utility's degrees of freedom in coal purchasing options, which can lead to the use of a more expensive compliance option and higher compliance costs. The third essay analytically and empirically shows how fuel contract constraints impact the emissions allowance market and total electric power industry compliance costs. This paper uses generating unit-level simulations to replicate results from previous studies and show that fuel contracts appear to explain a large portion (65%) of the previously unexplained compliance cost simulations. Also, my study considers a more appropriate plant-level decisions for compliance choices by analytically analyzing the plant level decision-making process to show how cost-minimization at the more complex plant level may deviate from cost-minimization at the generating unit level.
Future trends in computer waste generation in India.
Dwivedy, Maheshwar; Mittal, R K
2010-11-01
The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali
2016-04-01
In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrical load management at the Goldstone DSN Complex
NASA Technical Reports Server (NTRS)
Rayburn, J. C.
1981-01-01
A Power Load Management Plan was deveoped which utilizes the unique power generating capabilities of the stations to reduce the stress on the local utility's reserve capacity and reduce the cost of electrical power at the stations. The plan has greatly reduced the cost of Goldstone electrical power by completely eliminating the use of commercial power during the local utility's high usage periods each day.
Molten salt thermal energy storage for utility peaking loads
NASA Technical Reports Server (NTRS)
Ferrara, A.; Haslett, R.; Joyce, J.
1977-01-01
This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.
Wind power for the electric-utility industry: Policy incentives for fuel conservation
NASA Astrophysics Data System (ADS)
March, F.; Dlott, E. H.; Korn, D. H.; Madio, F. R.; McArthur, R. C.; Vachon, W. A.
1982-06-01
A systematic method for evaluating the economics of solar-electric/conservation technologies as fuel-savings investments for electric utilities in the presence of changing federal incentive policies is presented. The focus is on wind energy conversion systems (WECS) as the solar technology closest to near-term large scale implementation. Commercially available large WECS are described, along with computer models to calculate the economic impact of the inclusion of WECS as 10% of the base-load generating capacity on a grid. A guide to legal structures and relationships which impinge on large-scale WECS utilization is developed, together with a quantitative examination of the installation of 1000 MWe of WECS capacity by a utility in the northeast states. Engineering and financial analyses were performed, with results indicating government policy changes necessary to encourage the entrance of utilities into the field of windpower utilization.
An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization
ERIC Educational Resources Information Center
Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall
2008-01-01
Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…
NASA Astrophysics Data System (ADS)
Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui
2018-01-01
With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.
The economic impact of state ordered avoided cost rates for photovoltaic generated electricity
NASA Astrophysics Data System (ADS)
Bottaro, D.; Wheatley, N. J.
Various methods the states have devised to implement federal policy regarding the Public Utility Regulatory Policies Act (PURPA) of 1978, which requires that utilities pay their full 'avoided costs' to small power producers for the energy and capacity provided, are examined. The actions of several states are compared with rates estimated using utility expansion and rate-setting models, and the potential break-even capital costs of a photovoltaic system are estimated using models which calculate photovoltaic worth. The potential for the development of photovoltaics has been increased by the PURPA regulations more from the guarantee of utility purchase of photovoltaic power than from the high buy-back rates paid. The buy-back rate is high partly because of the surprisingly high effective capacity of photovoltaic systems in some locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, K.; Paramonov, D.
2002-07-01
IRIS (International Reactor Innovative and Secure) is a small to medium advanced light water cooled modular reactor being developed by an international consortium led by Westinghouse/BNFL. This reactor design is specifically aimed at utilities looking to install new (or replacement) nuclear capacity to match market demands, or at developing countries for their distributed power needs. To determine the optimal configuration for IRIS, analysis was undertaken to establish Generation Costs ($/MWh) and Internal Rate of Return (IRR %) to the Utility at alternative power ratings. This was then combined with global market projections for electricity demand out to 2030, segmented intomore » key geographical regions. Finally this information is brought together to form insights, conclusions and recommendations regarding the optimal design. The resultant analysis reveals a single module sized at 335 MWe, with a construction period of 3 years and a 60-year plant life. Individual modules can be installed in a staggered fashion (3 equivalent to 1005 MWe) or built in pairs (2 sets of twin units' equivalent to 1340 MWe). Uncertainty in Market Clearing Price for electricity, Annual Operating Costs and Construction Costs primarily influence lifetime Net Present Values (NPV) and hence IRR % for Utilities. Generation Costs in addition are also influenced by Fuel Costs, Plant Output, Plant Availability and Plant Capacity Factor. Therefore for a site based on 3 single modules, located in North America, Generations Costs of 28.5 $/MWh are required to achieve an IRR of 20%, a level which enables IRIS to compete with all other forms of electricity production. Plant size is critical to commercial success. Sustained (lifetime) high factors for Plant Output, Availability and Capacity Factor are required to achieve a competitive advantage. Modularity offers Utilities the option to match their investments with market conditions, adding additional capacity as and when the circumstances are right. Construction schedule needs to be controlled. There is a clear trade-off between reducing financing charges and optimising revenue streams. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alstone, Peter; Potter, Jennifer; Piette, Mary Ann
Demand response (DR) is an important resource for keeping the electricity grid stable and efficient; deferring upgrades to generation, transmission, and distribution systems; and providing other customer economic benefits. This study estimates the potential size and cost of the available DR resource for California’s three investor-owned utilities (IOUs), as the California Public Utilities Commission (CPUC) evaluates how to enhance the role of DR in meeting California’s resource planning needs and operational requirements. As the state forges a clean energy future, the contributions of wind and solar electricity from centralized and distributed generation will fundamentally change the power grid’s operational dynamics.more » This transition requires careful planning to ensure sufficient capacity is available with the right characteristics – flexibility and fast response – to meet reliability needs. Illustrated is a snapshot of how net load (the difference between demand and intermittent renewables) is expected to shift. Increasing contributions from renewable generation introduces steeper ramps and a shift, into the evening, of the hours that drive capacity needs. These hours of peak capacity need are indicated by the black dots on the plots. Ultimately this study quantifies the ability and the cost of using DR resources to help meet the capacity need at these forecasted critical hours in the state.« less
Research status of geothermal resources in China
NASA Astrophysics Data System (ADS)
Zhang, Lincheng; Li, Guang
2017-08-01
As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.
Technical, economic and legal aspects of wind energy utilization
NASA Astrophysics Data System (ADS)
Obermair, G. M.; Jarass, L.
Potentially problematical areas of the implementation of wind turbines for electricity production in West Germany are identified and briefly discussed. Variations in wind generator output due to source variability may cause power regulation difficulties in the grid and also raise uncertainties in utility capacity planning for new construction. Catastrophic machine component failures, such as a thrown blade, are hazardous to life and property, while lulls in the resource can cause power regulation capabilities only when grid penetration has reached significant levels. Economically, the lack of actual data from large scale wind projects is cited as a barrier to accurate cost comparisons of wind-derived power relative to other generating sources, although breakeven costs for wind power have been found to be $2000/kW installed capacity, i.e., a marginal cost of $0.10/kW.
Rates for backup service under PURPA when the supplying utility has excess generating capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Under PURPA, cogenerators are entitled to receive backup service. It is often said that tariffs for backup service should reflect the low probability that an unscheduled outage will occur during system peak. This memorandum concludes that probabilistic analysis of contribution to coincident peak demand is not relevant under PURPA during periods in which a utility system is experiencing generating capacity surpluses, and that in such situations, backup rates should be designed so that should the customer insist on installing a cogeneration system, that the customer's contribution to fixed costs remains constant. The reason for this is to assure that prospectivemore » cogenerators receive appropriate pricing signals in their assessment of proposed cogeneration projects, and should they decide to install cogeneration facilities requiring backup service, to hold the remaining customers on the system harmless.« less
Three essays on the effect of wind generation on power system planning and operations
NASA Astrophysics Data System (ADS)
Davis, Clay Duane
While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Oscar
The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.
Percy Thomas wind generator designs
NASA Technical Reports Server (NTRS)
Lines, C. W.
1973-01-01
The technical and economic feasibilities of constructing a windpowered generator with a capacity of 2,000 to 4,000 kilowatt are considered. Possible benefits of an integrated wind generating electric energy source in an electric utility network are elaborated. Applications of a windpowered waterpump, including its use as a pumping source for hydroelectric pump storage operations, are also mentioned. It is concluded that the greatest potential of the wind generator is to generate heat directly and not conversion to electricity and then to heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul; Diakov, Victor; Margolis, Robert
Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For amore » utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.« less
2012 Market Report on Wind Technologies in Distributed Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, Alice C.
2013-08-01
An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.
Retail wheeling - users, utilities and power producers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubacki, J. Jr.
1996-12-31
Information is outlined on the retail wheeling of electric power. Topics discussed include: SEL mission; average cost per kWh; retail pilot programs; retail wheeling activity; key tasks for industrials; power marketer quote; retail wheeling strategic planning; metered customer load profile; proposed ISO regions; conjunctive billing; interconnection areas; FERC order 888; open access same time information systems; transmission inferconnections; suppliers of energy and capacity; self-generation; FERC Form 714; rebundling unbundled services; key variables: load factor; energy and capacity; metering today; competitive industry configuration; power cost reduction: strategic planning; real-time pricing; prime sources of leverage; likeliness of switching utilities; and Strategic Energymore » Ltd.« less
Nanocrystalline zirconia: a novel sorbent for the preparation of (188)W/(188)Re generator.
Chakravarty, Rubel; Shukla, Rakesh; Tyagi, A K; Dash, Ashutosh; Venkatesh, Meera
2010-02-01
Nanocrystalline zirconia, a novel high capacity sorbent material was synthesized and tested for its utility in the preparation of (188)W/(188)Re generators. The structural investigation of the material was carried out using X-ray diffraction, surface area determination, FTIR and TEM micrograph analysis. Various experimental parameters were optimized to separate (188)Re from (188)W. The capacity of the material was found to be approximately 325mgW/g at the optimum pH. A chromatographic (188)W/(188)Re generator was developed using this material from which >80% of (188)Re generated could be eluted with 0.9% saline solution, with high radionuclidic, radiochemical and chemical purity and appreciably high radioactive concentration suitable for radiopharmaceutical applications. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
A benders decomposition approach to multiarea stochastic distributed utility planning
NASA Astrophysics Data System (ADS)
McCusker, Susan Ann
Until recently, small, modular generation and storage options---distributed resources (DRs)---have been installed principally in areas too remote for economic power grid connection and sensitive applications requiring backup capacity. Recent regulatory changes and DR advances, however, have lead utilities to reconsider the role of DRs. To a utility facing distribution capacity bottlenecks or uncertain load growth, DRs can be particularly valuable since they can be dispersed throughout the system and constructed relatively quickly. DR value is determined by comparing its costs to avoided central generation expenses (i.e., marginal costs) and distribution investments. This requires a comprehensive central and local planning and production model, since central system marginal costs result from system interactions over space and time. This dissertation develops and applies an iterative generalized Benders decomposition approach to coordinate models for optimal DR evaluation. Three coordinated models exchange investment, net power demand, and avoided cost information to minimize overall expansion costs. Local investment and production decisions are made by a local mixed integer linear program. Central system investment decisions are made by a LP, and production costs are estimated by a stochastic multi-area production costing model with Kirchhoff's Voltage and Current Law constraints. The nested decomposition is a new and unique method for distributed utility planning that partitions the variables twice to separate local and central investment and production variables, and provides upper and lower bounds on expected expansion costs. Kirchhoff's Voltage Law imposes nonlinear, nonconvex constraints that preclude use of LP if transmission capacity is available in a looped transmission system. This dissertation develops KVL constraint approximations that permit the nested decomposition to consider new transmission resources, while maintaining linearity in the three individual models. These constraints are presented as a heuristic for the given examples; future research will investigate conditions for convergence. A ten-year multi-area example demonstrates the decomposition approach and suggests the ability of DRs and new transmission to modify capacity additions and production costs by changing demand and power flows. Results demonstrate that DR and new transmission options may lead to greater capacity additions, but resulting production cost savings more than offset extra capacity costs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2662-002; Project No. 12968... with a crest elevation of 75.38 feet local datum; (d) an 18.83-foot-long gravity-type ungated spillway...-generator; (2) a 134-acre reservoir at an elevation of 77.9 feet local datum with a usable storage capacity...
van Veen-Berkx, Elizabeth; Elkhuizen, Sylvia G; Kuijper, Bart; Kazemier, Geert
2016-01-01
Two approaches prevail for reserving operating room (OR) capacity for emergency surgery: (1) dedicated emergency ORs and (2) evenly allocating capacity to all elective ORs, thereby creating a virtual emergency team. Previous studies contradict which approach leads to the best performance in OR utilization. Quasi-experimental controlled time-series design with empirical data from 3 university medical centers. Four different time periods were compared with analysis of variance with contrasts. Performance was measured based on 467,522 surgical cases. After closing the dedicated emergency OR, utilization slightly increased; overtime also increased. This was in contrast to earlier simulated results. The 2 control centers, maintaining a dedicated emergency OR, showed a higher increase in utilization and a decrease in overtime, along with a smaller ratio of case cancellations because of emergency surgery. This study shows that in daily practice a dedicated emergency OR is the preferred approach in performance terms regarding utilization, overtime, and case cancellations. Copyright © 2016 Elsevier Inc. All rights reserved.
The SunShot Initiative’s 2030 Goal: 3¢ per Kilowatt Hour for Solar Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In 2011, when solar power comprised less than 0.1% of the U.S. electricity supply, the U.S. Department of Energy (DOE) launched the SunShot Initiative with the goal of making solar electricity cost-competitive with traditionally generated electricity by 2020 without subsidies. At the time, this meant reducing photovoltaic (PV) and concentrating solar power (CSP) prices by approximately 75% across the residential, commercial, and utility-scale sectors. For utility-scale solar, this target is a levelized cost of energy (LCOE) of 6¢ per kilowatt hour (kWh)1. Rapid progress has been made in accelerating achievement of these cost reductions, and DOE’s Solar Energy Technologies Officemore » (SETO) sees clear pathways to meeting the SunShot 2020 cost targets on schedule.2 Enabled by the cost reductions to date, solar-generated electricity has become mainstream. In 2014 and 2015, solar represented about one-third of new electrical generating capacity installed in the United States Halfway through 2016, solar was supplying 1% of U.S. electricity demand and growing with an installed capacity of 30 gigawatts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinaman, Owen
This presentation details the 21st Century Power Partnership's fellowship program accomplishments from 2016. This fellowship brought two fellows from South Africa's power utility, Eskom, to the U.S. Department of Energy's National Renewable Energy Laboratory. The fellows spent two weeks working to improve the fidelity of Eskom's PLEXOS long-term and short-term models, which are used in long-term generation planning exercises and capacity adequacy assessments. The fellows returned to Eksom equipped with a new suite of tools and skills to enhance Eksom's PLEXOS modeling capabilities.
EVALUATION OF EMISSIONS FROM COMBUSTION OF ORIMULSION
The paper discusses the impact of Orimulsion on the environment. Orimulsion, an emulsion formed from Orinoco bitumen, water, and small amounts of additives, is being used as a primary fuel in electric utility boilers representing about 2000 MWe of generating capacity in Canada, D...
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... electrical generation capacity for any one technology category, and the total equivalent MW electrical... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... affected facility proposing to demonstrate an emerging technology may apply to the Administrator for a...
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... electrical generation capacity for any one technology category, and the total equivalent MW electrical... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... affected facility proposing to demonstrate an emerging technology may apply to the Administrator for a...
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... electrical generation capacity for any one technology category, and the total equivalent MW electrical... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... affected facility proposing to demonstrate an emerging technology may apply to the Administrator for a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... turbine-generator that will utilize the base flow required by Article 405 of the project license. With the...,550 kilowatts while the hydraulic capacity will increase from 4,000 cubic feet per second to 4,325...
Electric home heating: Substitution for oil and gas
NASA Astrophysics Data System (ADS)
Burwell, C. C.; Devine, W. D., Jr.; Phung, D. L.
1982-03-01
The objective of the research is to determine the potential for substituting electricity generated with surplus coal and nuclear capacity for gas and oil used for home heating. The relative effectiveness of electric heating was determined by an analysis of the purposes of extra winter sales of electricity to the residential sector compared to a similar analysis for extra winter sales of natural gas. The price of electricity for heating is determined based on utility rate structures for selected utilities (primarily located in the north and south central portions of the country) having surplus coal and nuclear capacity throughout the decade of the 1980s. It is found that, on the average, the overall efficiency of fuel use for heating homes electrically is comparable to the use of combustion systems in the home and that electric heating is substantially less costly than direct heating with oil in regions where coal and uranium are the primary fuels used for power generation.
Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Jeff; Mohler, David; Gibson, Stuart
2015-11-01
Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increasesmore » the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Seel, Joachim; LaCommare, Kristina Hamachi
The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze not just installed project prices, but also operating costs, capacity factors, and power purchase agreement ("PPA") prices from a large sample of utility-scalemore » PV and CSP projects throughout the United States. Highlights from this year's edition include the following: Installation Trends: The use of solar tracking devices dominated 2016 installations, at nearly 80% of all new capacity. In a reflection of the ongoing geographic expansion of the market beyond California and the Southwest, the median long-term average insolation level at newly built project sites declined again in 2016. While new fixed-tilt projects are now seen predominantly in less-sunny regions, tracking projects are increasingly pushing into these same regions. The median inverter loading ratio has stabilized in 2016 at 1.3 for both tracking and fixed-tilt projects. Installed Prices: Median installed PV project prices within a sizable sample have fallen by two-thirds since the 2007-2009 period, to $2.2/WAC (or $1.7/WDC) for projects completed in 2016. The lowest 20th percentile of projects within our 2016 sample were priced at or below $2.0/WAC, with the lowest-priced projects around $1.5/WAC. Overall price dispersion across the entire sample and across geographic regions decreased significantly in 2016. Operation and Maintenance (“O&M”) Costs: What limited empirical O&M cost data are publicly available suggest that PV O&M costs were in the neighborhood of $18/kWAC-year, or $8/MWh, in 2016. These numbers include only those costs incurred to directly operate and maintain the generating plant. Capacity Factors: The cumulative net AC capacity factors of individual PV projects range widely, from 15.4% to 35.5%, with a sample median of 26.3%. This project-level variation is based on a number of factors, including the strength of the solar resource at the project site, whether the array is mounted at a fixed-tilt or on a tracking mechanism, the inverter loading ratio, degradation, and curtailment. Changes in at least the first three of these factors drove mean capacity factors higher from 2010- to 2013-vintage projects, where they’ve remained fairly steady among both 2014- and 2015-vintage projects as an ongoing increase in the prevalence of tracking has been offset by a build-out of lower resource sites. Meanwhile, several of the newer CSP projects in the United States are struggling to match long-term performance expectations. PPA Prices: Driven by lower installed project prices and improving capacity factors, levelized PPA prices for utility-scale PV have fallen dramatically over time. Most recent PPAs in our sample are priced at or below $50/MWh levelized, with a few priced as aggressively as ~$30/MWh. Though impressive in pace and scale, these falling PPA prices have been offset to some degree by declining wholesale market value within high penetration markets like California, where in 2016 a MWh of solar generation was worth just 83% of a MWh of flat, round-the-clock generation. At the end of 2016, there were at least 121.4 GW of utility-scale solar power capacity within the interconnection queues across the nation. The growth within these queues is widely distributed across all regions of the country: California and the Southeast each account for 23% of the 83.3 GW of solar that first entered the queues in 2016, followed by the Northeast (17%), the Southwest (16%), the Central region (12%), Texas (6%) and the Northwest (3%). The widening geographic distribution of solar projects is a clear sign that the utility-scale market is maturing and expanding outside of its traditional high-insolation comfort zones.« less
78 FR 37554 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... that utilize cord blood as a stem cell source. Potential Commercial Applications: Drug delivery to... Stem Cells by Blocking CD47 Receptor Signaling Description of Technology: NIH researchers have... generation of self-renewing cells with a high proliferative capacity. Induced pluripotent stem cells (iPS...
Future contingencies and photovoltaic system worth
NASA Astrophysics Data System (ADS)
Jones, G. J.; Thomas, M. G.; Bonk, G. J.
1982-09-01
The value of dispersed photovoltaic systems connected to the utility grid was calculated using the optimized generation planning program. The 1986 to 2001 time period was used for this study. Photovoltaic systems were dynamically integrated, up to 5% total capacity, into 9 NERC based regions under a range of future fuel and economic contingencies. Value was determined by the change in revenue requirements due to the photovoltaic additions. Displacement of high cost fuel was paramount to value, while capacity displacement was highly variable and dependent upon regional fuel mix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Mather, Barry A; Cho, Gyu-Jung
Capacitor banks have been generally installed and utilized to support distribution voltage during period of higher load or on longer, higher impedance, feeders. Installations of distributed energy resources in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile across a feeder, and therefore when a new capacitor bank is needed analysis of optimal capacity and location of the capacitor bank is required. In this paper, we model a particular distribution system including essential equipment. An optimization method is adopted to determine the best capacitymore » and location sets of the newly installed capacitor banks, in the presence of distributed solar power generation. Finally we analyze the optimal capacitor banks configuration through the optimization and simulation results.« less
Modelling utility-scale wind power plants. Part 1: Economics
NASA Astrophysics Data System (ADS)
Milligan, Michael R.
1999-10-01
As the worldwide use of wind turbine generators continues to increase in utility-scale applications, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry in the United States appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This article is the first of two which address modelling approaches and results obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This first article addresses the basic economic issues associated with electricity production from several generators that include large-scale wind power plants. An important part of this discussion is the role of unit commitment and economic dispatch in production cost models. This paper includes overviews and comparisons of the prevalent production cost modelling methods, including several case studies applied to a variety of electric utilities. The second article discusses various methods of assessing capacity credit and results from several reliability-based studies performed at NREL.
NASA Astrophysics Data System (ADS)
Orans, Ren
1990-10-01
Existing procedures used to develop marginal costs for electric utilities were not designed for applications in an increasingly competitive market for electric power. The utility's value of receiving power, or the costs of selling power, however, depend on the exact location of the buyer or seller, the magnitude of the power and the period of time over which the power is used. Yet no electric utility in the United States has disaggregate marginal costs that reflect differences in costs due to the time, size or location of the load associated with their power or energy transactions. The existing marginal costing methods used by electric utilities were developed in response to the Public Utilities Regulatory Policy Act (PURPA) in 1978. The "ratemaking standards" (Title 1) established by PURPA were primarily concerned with the appropriate segmentation of total revenues to various classes-of-service, designing time-of-use rating periods, and the promotion of efficient long-term resource planning. By design, the methods were very simple and inexpensive to implement. Now, more than a decade later, the costing issues facing electric utilities are becoming increasingly complex, and the benefits of developing more specific marginal costs will outweigh the costs of developing this information in many cases. This research develops a framework for estimating total marginal costs that vary by the size, timing, and the location of changes in loads within an electric distribution system. To complement the existing work at the Electric Power Research Institute (EPRI) and Pacific Gas and Electric Company (PGandE) on estimating disaggregate generation and transmission capacity costs, this dissertation focuses on the estimation of distribution capacity costs. While the costing procedure is suitable for the estimation of total (generation, transmission and distribution) marginal costs, the empirical work focuses on the geographic disaggregation of marginal costs related to electric utility distribution investment. The study makes use of data from an actual distribution planning area, located within PGandE's service territory, to demonstrate the important characteristics of this new costing approach. The most significant result of this empirical work is that geographic differences in the cost of capacity in distribution systems can be as much as four times larger than the current system average utility estimates. Furthermore, lumpy capital investment patterns can lead to significant cost differences over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A; Cole, Wesley J; Sun, Yinong
Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss commonmore » modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges associate with integration of variable generation resources.« less
NASA Technical Reports Server (NTRS)
Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, I. R.
1987-01-01
A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite (M) and illite, to a lesser extent, alter bitumen during dry pyrolysis. M and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of M and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.
Report on Lincoln Electric System gas turbine inlet air cooling. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.
1993-12-01
As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less
DOD fuel cell demonstration program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, F.H.; Binder, M.J.; Taylor, W.R.
The supply of reliable, cost-effective electric power with minimal environmental impact is a constant concern of Department of Defense (DOD) installation energy personnel. Electricity purchased from the local utility is expensive and represents only about 30% of the original energy input at the generating station due to generation and distribution inefficiencies. Because of master metering and large air conditioning loads, the demand portion of the installation`s electric bill can be in excess of 50% of the total bill. While the electric utilities in the United States have a very good record of reliability, there is significant potential for improving themore » security of electrical power supplied by using on-site power generation. On-site, dispersed power generation can reduce power outages due to weather, terrorist activities, or lack of utility generating capacity. In addition, as increased emphasis is placed on global warming, acid rain, and air pollution in general, the development of clean, highly efficient power producing technologies is not only desirable, but mandatory. Since the majority of central heat plants on U.S. military installations are nearing the end of their useful life, there is an opportunity to replace outdated existing equipment with modem technologies.« less
76 FR 3625 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Integration of Variable Renewable Generation. ELECTRIC E-1 RM04-7-009 Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary Services by Public Utilities. E-2 RM10-20-000 Market-Based..., Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC. CERTIFICATES C-1 CP10-496-000 Cameron...
The report gives results of an analysis of the effect of the availability of a flue gas desulfurization system on the ability of an individual power plant to generate electricity at its rated capacity. (The availability of anything is the fraction of time it is capable of service...
The report gives results of an analysis of the effect of the availability of a flue gas desulfurization system on the ability of an individual power plant to generate electricity at its rated capacity. (The availability of anything is the fraction of time it is capable of service...
The First Israeli Hydro-Electric Pumped Storage Power Plant Gilboa PSPP
NASA Astrophysics Data System (ADS)
Maruzewski, P., Dr.; Sautereau, T.; Sapir, Y.; Barak, H.; Hénard, F.; Blaix, J.-C.
2016-11-01
The Israeli Public Utilities Authority, PUA, decided to increase the instantaneous power available on the grid by adding Pumped Storage Power Plants, PSPP, to the existing generation capacity. PSP Investments Ltd. is a private investor that decided to develop the Gilboa PSPP. Its capacity is 300MWe. The project performance has to comply with PUA regulation for PSPP, and with all relevant Israeli laws and IECo standards. This paper itemizes an overview of the Gilboa PSPP through short summaries of units’ components from design step to manufacturing processes.
Use of circulating-fluidized-bed combustors in compressed-air energy storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.
1990-07-01
This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less
A probabilistic approach to photovoltaic generator performance prediction
NASA Astrophysics Data System (ADS)
Khallat, M. A.; Rahman, S.
1986-09-01
A method for predicting the performance of a photovoltaic (PV) generator based on long term climatological data and expected cell performance is described. The equations for cell model formulation are provided. Use of the statistical model for characterizing the insolation level is discussed. The insolation data is fitted to appropriate probability distribution functions (Weibull, beta, normal). The probability distribution functions are utilized to evaluate the capacity factors of PV panels or arrays. An example is presented revealing the applicability of the procedure.
Land-Use Requirements for Solar Power Plants in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, S.; Campbell, C.; Denholm, P.
2013-06-01
This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As ofmore » the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard Stephen
2017-05-22
This presentation is part of US-China Clean Coal project and describes the impact of power plant cycling, techno economic modeling of combined IGCC and CCS, integrated capacity generation decision making for power utilities, and a new decision support tool for integrated assessment of CCUS.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in... efficiencies have been improving, and turbine heights have been rising to altitudes with much stronger winds... configurations that meet the minimum height requirement and are designed to support wind turbine electrical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, F. J.; Cooper, J. F.; Haley, D.
Utility deregulation is occurring throughout the world. Energy storage, peak demand leveling and power quality are becoming increasingly important. New, innovative costeffective methods are critical to the financial success or failure of utility companies in the new free market environment. The implementation of energy storage gives a utility the ability to better utilize existing generating capacity. Energy is stored in the periods of low overall demand and then the stored energy is connected to the power grid during peak demand periods. Storing energy in this manner will lead to significant economic benefits to utilities as well as their customers. Furthermore,more » because the utility's system is operated more efficiently there is a direct reduction in atmospheric pollutants including greenhouse gases.« less
CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System
NASA Astrophysics Data System (ADS)
Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi
We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.
U.S. Refining Capacity Utilization
1995-01-01
This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.
In the aftermath of PURPA: The future of the biomass energy industry in Maine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S.J.; Connors, J.F.
During the 1980`s the biomass power industry in Maine grew to nearly 500 MW of installed capacity in 21 cogeneration and stand alone plants. By 1992 these plants consumed four million tons of woody fuels annually, while providing 25% of the states` electricity supply. Moreover, this new industry supported over 2500 jobs throughout rural Maine, generated substantial local property taxes and provided a critically need management option for forest management and mill waste disposal. All of this capacity was developed by non-utility generators as Qualifying Facilities (QF) under PURPA rules. Most power contracts were fixed price, must take agreements guidedmore » by avoided cost calculations that assumed high future costs for energy alternatives. Circumstances have changed. Historically low oil prices, economic recession, and rising electricity rates have made biomass fueled power plants some of the most expensive sources of electricity on the power grid. Utilities are responding to rising rates, to public and political pressure to control costs and lower rates by seeking to renegotiate or buy out power contracts and closing biomass plants. While there are strong demands to control electricity costs, there are equally strong concerns about losing the benefits that accrue from the use of indigenous renewable resources. This article evaluates the actions of Maine utilities, independent power producers, the Maine Public Utilities Commission, and the Main Legislature related to PURPA contracts and their likely effects on the future of the biomass power industry in Maine. In particular, we will describe Maine`s new Electric Rate Stabilization Program and subsequent efforts of the Executive Branch to mediate a compromise solution in one case of a utility buy out of a biomass power plant.« less
Socialization of Solar Energy Utilization in Ponpes Al Hidayah, Arjasa, Kangean Island, Sumenep
NASA Astrophysics Data System (ADS)
Cahyono, Y.; Setyaningrum, Y.; Sarasechan, A.; Nafsi, R. G.; Setiyono; Salamah, M. D.; Triyuliana, N. A.; Silvia, L.; Subagyo, B. A.; Zainuri, M.; Triwikantoro; Baqiya, M. A.; Endarko; Asrori, M. Z.; Pratapa, S.; Suasmoro; Darminto
2018-03-01
Electricity problem of most small islands in Indonesia has become a serious problem and need to be immediately resolved. In this present paper, Kangean Islands, Sumenep district of Madura, Indonesia, is one of the most suitable islands for an example. In this island, the existing electricity supply is mainly generated by diesel generators. Even though there are also electricity supplies from the government and private companies, it is very limited capacities just a few families. It is clear that the daily electricity requirements in the Kangean Islands are not adequately met. There is no self-supporting from the local residents to meet their daily energy needs. The community service activity helps to improve the understanding and the self-supporting of the Kangean Island community, especially for the young generation, in the field of electrical energy by utilizing renewable energy sources, especially solar cell system technology. Thus, it is expected that natural resources in Kangean Island can be utilized properly and able to increase the productivity. Finally, in this paper, the light intensity and surface temperature effects on the performance of a monocrystal solar cell are discussed.
Power-Gen International offers industry leaders insight for competition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, A.
1996-11-01
Stuck at the crossroads of deregulation, the US power generation market has marked time through 1996 with very little new construction or capacity. Utilities are bandaging existing systems and pinching every penny to build a war chest for the coming competition. Change is in the air, but it has been for several years now, and excess capacities are dwindling as demand continues to creep upward. Executives across the land are searching for an edge and praying for a sign-looking for an indication of when the stagnation will burst forth into a flurry of change.
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
2015-06-11
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Re-powering and site recycling in a competitive environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A.; Kahn, E.P.
1991-03-01
Re-powering and site recycling are strategies designed to expand electric generating capacity by using depreciated assets. The resource base for the these strategies is large. By 1995, over 170,000 MW of fossil-fired capacity will be in excess of thirty years old, and approaching the end of its conventional economic lifetime. This paper explores how these assets might be developed using competitive market forces. While some re-powering is being pursued under traditional ratebase regulation, there are four other generic alternatives. These are: (1) utility investment at fixed prices with regulatory pre-approval, (2) utility investment under competitive bidding, (3) utility leasing formore » private producer development, and (4) utility sale of sites for private producer development. Issues associated with each alternative are explored and illustrated with examples. State regulatory policy will be the critical determinant of whether a market develops for depreciated power plants. Financial incentives will stimulate utilities to re-deploy depreciated assets. This means some form of profit-sharing between customers and shareholders of the grains from asset sales. Different approaches to profit sharing are reviewed. These developments are still in an experimental state, however, and no single approach appears to have emerged as a dominant trend. 36 refs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Bird, L.; Gelman, R.
Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
..., whether or not tapered, and sections thereof. Certain wind towers are designed to support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in excess of... joined with nonsubject merchandise, such as nacelles or rotor blades, and whether or not they have...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
..., whether or not tapered, and sections thereof. Certain wind towers are designed to support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in excess of... part of a wind turbine (i.e., accompanying nacelles and/or rotor blades). Amendment to the Final...
Competitive negotiation: the Virginia SCC's model for procurement of generating capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Virginia SCC, in approving competitive alternatives to avoided costs under PURPA, rejected competitive bidding in favor of competitive negotiation for power sales contracts. The difference is important, and points in the direction of increased discretion for utilities seeking new generating capacity from independents. The distinction between competitive bidding, and competitive negotiation, in a nutshell, is that in a bid, the low price bidder wins. In a negotiation, the offeror of the most-meritorious proposals are ranked, and an attempt to reach agreement on price is made with the high-ranked offeror. Only if there is no agreement on price will themore » most-meritorious bid be rejected, and negotiations with the offeror of the next best proposal begun. The Virginia Public Procurement Act, Sec. II-37, Definitions, Parts 1, 2, and 3.a. is included.« less
Major challenges loom for natural gas industry, study says
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Driscoll, M.
The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching,more » particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.« less
Electric power quarterly: January-March 1988. [Contains glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-22
The Electric Power Quarterly (EPQ) presents information on electric utilities at the plant level. The information provides the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. These data are published to provide meaningful, timely, objective, and accurate energy information for a wide audience including Congress, federal, and state agencies; industry; and the general public. In this report, data regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and qualitymore » of fossil-fuel receipts are presented on a plant-by-plant basis for plants with a combined installed nameplate capacity of 50 megawatts or larger.« less
Renewable energy and sustainable communities: Alaska's wind generator experience.
Konkel, R Steven
2013-01-01
In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, need for comprehensive monitoring and data analysis, and state funding requirements and opportunity costs. The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.
Existing generating assets squeezed as new project starts slow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.B.; Tiffany, E.D.
Most forecasting reports concentrate on political or regulatory events to predict future industry trends. Frequently overlooked are the more empirical performance trends of the principal power generation technologies. Solomon and Associates queried its many power plant performance databases and crunched some numbers to identify those trends. Areas of investigation included reliability, utilization (net output factor and net capacity factor) and cost (operating costs). An in-depth analysis for North America and Europe is presented in this article, by region and by regeneration technology. 4 figs., 2 tabs.
2016-01-01
Achieving an AIDS-free generation will require the adoption and implementation of critical health policy reforms. However, countries with high HIV burden often have low policy development, advocacy, and monitoring capacity. This lack of capacity may be a significant barrier to achieving the AIDS-free generation goals. This manuscript describes the increased focus on policy development and implementation by the United States President’s Emergency Plan for AIDS Relief (PEPFAR). It evaluates the curriculum and learning modalities used for two regional policy capacity building workshops organized around the PEPFAR Partnership Framework agreements and the Road Map for Monitoring and Implementing Policy Reforms. A total of 64 participants representing the U.S. Government, partner country governments, and civil society organizations attended the workshops. On average, participants responded that their policy monitoring skills improved and that they felt they were better prepared to monitor policy reforms three months after the workshop. When followed-up regarding utilization of the Road Map action plan, responses were mixed. Reasons cited for not making progress included an inability to meet or a lack of time, personnel, or governmental support. This lack of progress may point to a need for building policy monitoring systems in high HIV burden countries. Because the success of policy reforms cannot be measured by the mere adoption of written policy documents, monitoring the implementation of policy reforms and evaluating their public health impact is essential. In many high HIV burden countries, policy development and monitoring capacity remains weak. This lack of capacity could hinder efforts to achieve the ambitious AIDS-free generation treatment, care and prevention goals. The Road Map appears to be a useful tool for strengthening these critical capacities. PMID:26914708
Trends in capacity utilization for therapeutic monoclonal antibody production.
Langer, Eric S
2009-01-01
The administration of high doses of therapeutic antibodies requires large-scale, efficient, cost effective manufacturing processes. An understanding of how the industry is using its available production capacity is important for production planning, and facility expansion analysis. Inaccurate production planning for therapeutic antibodies can have serious financial ramifications. In the recent 5(th) Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production, 434 qualified respondents from 39 countries were asked to indicate, among other manufacturing issues, their current trends and future predictions with respect to the production capacity utilization of monoclonal antibodies in mammalian cell culture systems. While overall production of monoclonals has expanded dramatically since 2003, the average capacity utilization for mammalian cell culture systems, has decreased each year since 2003. Biomanufacturers aggressively attempt to avoid unanticipated high production demands that can create a capacity crunch. We summarize trends associated with capacity utilization and capacity constraints which indicate that biopharmaceutical manufacturers are doing a better job planning for capacity. The results have been a smoothing of capacity use shifts and an improved ability to forecast capacity and outsourcing needs. Despite these data, today, the instability and financial constraints caused by the current global economic crisis are likely to create unforeseen shifts in our capacity utilization and capacity expansion trends. These shifts will need to be measured in subsequent studies.
Harvest and utilization of chemical energy in wastes by microbial fuel cells.
Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing
2016-05-21
Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.
Geologic setting and chemical characteristics of hot springs in central and western Alaska
Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace
1973-01-01
The geologic and chemical data are too preliminary to make an estimate of the potential of the hot springs as a geothermal resource. The data suggest, however, that most of the hot springs of central and western Alaska have relatively low subsurface temperatures and limited reservoir capacities in comparison with geothermal areas presently being utilized for electrical power generation.
Wild cricket social networks show stability across generations.
Fisher, David N; Rodríguez-Muñoz, Rolando; Tregenza, Tom
2016-07-27
A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Thermal energy storage and transport
NASA Technical Reports Server (NTRS)
Hausz, W.
1980-01-01
The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey S; Zinaman, Owen R; Littell, David
Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributedmore » generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.« less
Comprehensive evaluation of impacts of distributed generation integration in distribution network
NASA Astrophysics Data System (ADS)
Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu
2018-04-01
All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.
Utility-sized Madaras wind plants
NASA Astrophysics Data System (ADS)
Whitford, D. H.; Minardi, J. E.
1981-01-01
An analysis and technological updating were conducted for the Madaras Rotor Power Plant concept, to determine its ability to compete both technically and economically with horizontal axis wind turbine generators currently under development. The Madaras system uses large cylinders rotating vertically atop each regularly spaced flatcar of a train to propel them, by means of Magnus-effect interaction with the wind, along a circular or oval track. Alternators geared to the wheels of each car generate electrical power, which is transmitted to a power station by a trolley system. The study, consisting of electromechanical design, wind tunnel testing, and performance and cost analyses, shows that utility-sized plants greater than 228 MW in capacity and producing 975,000 kWh/year are feasible. Energy costs for such plants are projected to be between 22% lower and 12% higher than horizontal axis turbine plants of comparable output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balser, S.; Sankar, S.; Miller, R.
In order to more fully integrate renewable resources, such as wind and solar, into the transmission system, additional capacity must be realized in the short term using the installed transmission capacity that exists today. The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory Transmission and Grid Integration Group supported this study to assemble the history of regulations and status of transmission technology to expand existing grid capacity. This report compiles data on various transmission technology methods and upgrades for increased capacity utilization of the existing transmission system and transmission corridors. The report discusses the technical merit ofmore » each method and explains how the method could be applied within the current regulatory structure to increase existing transmission conductor and/or corridor capacity. The history and current state of alternatives to new construction is presented for regulators, legislators, and other policy makers wrestling with issues surrounding integration of variable generation. Current regulations are assessed for opportunities to change them to promote grid expansion. To support consideration of these alternatives for expanding grid capacity, the report lists relevant rules, standards, and policy changes.« less
Faulkner, Guy; McCloy, Cora; Plotnikoff, Ronald C; Bauman, Adrian; Brawley, Larry R; Chad, Karen; Gauvin, Lise; Spence, John C; Tremblay, Mark S
2009-12-09
Evaluation of the original ParticipACTION campaign effects focused on individual awareness, recall, and understanding. Less studied has been the impact such campaigns have had on the broader organizational capacity to mobilize and advocate for physical activity. With the relaunch of ParticipACTION, the purpose of this study was to qualitatively explore baseline organizational capacity to promote physical activity messages, programs, and services within the Canadian context. Using a purposeful sampling strategy, we conducted semi-structured telephone interviews with 49 key informants representing a range of national, provincial, and local organizations with a mandate to promote physical activity. Interview data were analysed using a thematic analytic approach. Key informants painted a generally positive picture of current organizational capacity to promote physical activity messages, programs, and services in Canada. Will and leadership were clear strengths while infrastructure limitations remained the greatest concern. Some specific challenges included: 1) funding issues: the absence of core funding in a climate of shifting funding priorities; 2) the difficulty of working without a national physical activity policy (lack of leadership); 3) inconsistent provincial and educational sector level policies; and 4) a persistent focus on obesity rather than physical inactivity. The data generated here can be utilized to monitor the future impact of ParticipACTION on enhancing and utilizing this organizational capacity. A range of indicators are suggested that could be used to illustrate ParticipACTION's impact on the broad field of physical activity promotion in the future.
Capacity utilization study for aviation security cargo inspection queuing system
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl
2010-04-01
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.
Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number ofmore » cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.« less
Outage maintenance checks on large generator windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nindra, B.; Jeney, S.I.; Slobodinsky, Y.
In the present days of austerity, more constraints and pressures are being brought on the maintenance engineers to certify the generators for their reliability and life extension. The outages are shorter and intervals between the outages are becoming longer. The annual outages were very common when utilities had no regulatory constraints and also had standby capacities. Furthermore, due to lean and mean budgets, outage maintenance programs are being pursued more aggressively, so that longer interval outages can be achieved to ensure peak generator performance. This paper will discuss various visual checks, electrical tests and recommended fixes to achieve the abovemore » mentioned objectives, in case any deficiencies are found.« less
Initial Feasibility Report on Decentralized Small Cogeneration for Navy Shore Bases.
1984-02-01
PURPA ), they generally had stand-alone generating capacity sufficient to meet all the electrical needs of the building A’’ ".w...electric utilties since the enactment of PURPA . An example of a recent small cogeneration application uses the 60-kW Thermo Electron cogeneration...utilities are naturally not enthusias- tic about cogeneration. However, PURPA was enacted to ensure that cogenerators receive just, reasonable, and
New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts
Figueiredo, Bruna Inez Carvalho; Saraiva, Margarete Alice Fontes; de Souza Pimenta, Paloma Patrick; de Souza Testasicca, Miriam Conceição; Sampaio, Geraldo Magela Santos; da Cunha, Aureliano Claret; Afonso, Luis Carlos Crocco; Vieira de Queiroz, Marisa; de Miranda Castro, Ieso
2017-01-01
ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds. PMID:28778887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentle, Jake Paul
2016-12-01
One primary goal of rendering today’s transmission grid “smarter” is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid’s true capacity. With the “Smarter Grid”, new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INLmore » Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation’s energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL’s DLR development supports EERE and The Wind Energy Technology Office’s goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational Fluid Dynamics (CFD) enhanced weather analysis and DLR software, INL’s project offers the potential of safely providing line ampacities up to 40 percent or more above existing SLRs, by using real time information rather than overly conservative SLR.« less
NASA Astrophysics Data System (ADS)
Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.
2017-12-01
Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.
Renewable energy and sustainable communities: Alaska's wind generator experience†
Konkel, R. Steven
2013-01-01
Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated with climate change on human health,progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning,need for comprehensive monitoring and data analysis, andstate funding requirements and opportunity costs. Conclusion The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat. PMID:23971014
NASA Astrophysics Data System (ADS)
Nyangon, Joseph
Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared to the long-term effect estimated at 0.9696% (15-year period). Evidence from the main policy, environmental, and economic indicators for solar and wind-power development such as feed-in tariffs, state renewable portfolio standards, public benefits fund, net metering, interconnection standards, environmental quality, electricity import ratio, per-capita energy-related carbon dioxide emissions, average electricity price, per-capita real gross domestic product, and energy intensity are discussed and evaluated in detail in order to elucidate their effectiveness in supporting the utility industry transformation. The discussion is followed by a consideration of a plausible distributed utility framework that is tailored for major DERs development that has emerged in New York called Reforming the Energy Vision. This framework provides a conceptual base with which to imagine the utility of the future as well as a practical solution to study the potential of DERs in other states. The dissertation finds this grid and market modernization initiative has considerable influence and importance beyond New York in the development of a new market economy in which customer choice and distributed utilities are prominent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-10-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-09-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
Small scale power generation from biomass-technical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepori, W.A.; Cardenas, M.M.; Carney, O.B.
1983-12-01
System and nursery pig performance data for the Winter of 1983 were collected for a 96-pig capacity modified-open-front (MOF) naturally ventilated and a 96-pig capacity mechanically ventilated swine nurseries. Both nurseries utilized active solar collectors to provide in-floor heating at the rear of each pen along with hovers. The mechanically ventilated nursery utilized solar preheated ventilation air. The naturally ventilated nursery had double glazed solar windows to passively heat the interior space. The relative humidity in the naturally ventilated (NV) nursery averaged 20 percentage points higher than the mechanically ventilated (MV) nursery with no significant differences in air temperature. Themore » MV nursery used 50% more energy than the NV nursery and the NV nursery required 1.9 kWh/pig marketed less than that needed for the MV nursery. Pig performance figure were not significantly different between the two buildings. The feed to gain ration were 2.0 + or - 0.35 and 1.96 + or 0.38 for the MV and NV nurseries respectively.« less
The value of residential photovoltaic systems: A comprehensive assessment
NASA Technical Reports Server (NTRS)
Borden, C. S.
1983-01-01
Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.
The value of residential photovoltaic systems: A comprehensive assessment
NASA Astrophysics Data System (ADS)
Borden, C. S.
1983-09-01
Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.
Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid
NASA Astrophysics Data System (ADS)
Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha
2017-03-01
Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.
The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J; Gagnon, Pieter J; Frew, Bethany A
This analysis uses a new method to link the NREL Regional Energy Deployment System (ReEDS) capacity expansion model with the NREL distributed generation market demand model (dGen) to explore the impact that the evolution of retail electricity tariffs can have on the adoption of distributed photovoltaics (DPV). The evolution most notably takes the form of decreased mid-day electricity costs, as low-cost PV reduces the marginal cost of electricity during those hours and the changes are subsequently communicated to electricity consumers through tariffs. We find that even under the low PV prices of the new SunShot targets the financial performance ofmore » DPV under evolved tariffs still motivates behind-the-meter adoption, despite significant reduction in the costs of electricity during afternoon periods driven by deployment of cheap utility-scale PV. The amount of DPV in 2050 in these low-cost futures ranged from 206 GW to 263 GW, a 13-fold and 16-fold increase over 2016 adoption levels respectively. From a utility planner's perspective, the representation of tariff evolution has noteworthy impacts on forecasted DPV adoption in scenarios with widespread time-of-use tariffs. Scenarios that projected adoption under a portfolio of time-of-use tariffs, but did not represent the evolution of those tariffs, predicted up to 36 percent more DPV in 2050, compared to scenarios that did not represent that evolution. Lastly, we find that a reduction in DPV deployment resulting from evolved tariffs had a negligible impact on the total generation from PV - both utility-scale and distributed - in the scenarios we examined. Any reduction in DPV generation was replaced with utility-scale PV generation, to arrive at the quantity that makes up the least-cost portfolio.« less
Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Meg
This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of themore » discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.« less
Wind - Prototypes on the landscape
NASA Astrophysics Data System (ADS)
Smith, M. L.
1981-12-01
Large wind turbines are shown to be attractive to utilities because of the potential for decreasing gas and oil consumption, the relatively low costs for entry into the field, and the wide distribution of wind energy. The total generating capacity can be increased in incremental steps, experience in construction and operation of large turbines have been gained from the NASA Mod O, OA, 1, and 2 models, and advances in manufacturing processes will make the large turbines competitive as replacement power for oil and gas burning utility generators. The 300 ft rotor Mod 2 machines are described, along with designs for the Mod 5A and Mod 5B wind turbines, with 400 and 422 ft, 6.2 and 7.2 MW rotors and outputs, respectively. Current plans for multi-MW windfarms are reviewed, and the option of using the land around large wind turbines for other purposes is stressed.
Yi, Jun; Campbell, Adam L O; Richter-Addo, George B
2016-11-30
Bacteria utilize a heme/non-heme enzyme system to detoxify nitric oxide (NO) to N 2 O. In order to probe the capacity of a single-heme system to mediate this NO-to-N 2 O transformation, various scenarios for addition of electrons, protons, and a second NO molecule to a heme nitrosyl to generate N 2 O were explored by density functional theory calculations. We describe, utilizing this single-heme system, several stepwise intermediates along pathways that enable the critical N-N bond formation step yielding the desired Fe-N 2 O product. We also report a hitherto unreported directional second protonation that results in either productive N 2 O formation with loss of water, or formation of a non-productive hyponitrous acid adduct Fe{HONNOH}. Copyright © 2016 Elsevier Inc. All rights reserved.
CONSOL`s perspective on CCT deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, F.P.; Statnick, R.M.
1997-12-31
The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less
Catley, Christina; McGregor, Carolyn; Percival, Jennifer; Curry, Joanne; James, Andrew
2008-01-01
This paper presents a multi-dimensional approach to knowledge translation, enabling results obtained from a survey evaluating the uptake of Information Technology within Neonatal Intensive Care Units to be translated into knowledge, in the form of health informatics capacity audits. Survey data, having multiple roles, patient care scenarios, levels, and hospitals, is translated using a structured data modeling approach, into patient journey models. The data model is defined such that users can develop queries to generate patient journey models based on a pre-defined Patient Journey Model architecture (PaJMa). PaJMa models are then analyzed to build capacity audits. Capacity audits offer a sophisticated view of health informatics usage, providing not only details of what IT solutions a hospital utilizes, but also answering the questions: when, how and why, by determining when the IT solutions are integrated into the patient journey, how they support the patient information flow, and why they improve the patient journey.
SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Frew, Bethany A.; Gagnon, Pieter J.
In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen modelsmore » project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.« less
Status of Net Metering: Assessing the Potential to Reach Program Caps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Gelman, R.; Bird, L.
2014-09-01
Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.
Hadidi, Laith A; Omer, Mohamed Mahmoud
2017-01-01
Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines
NASA Astrophysics Data System (ADS)
Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman
2017-10-01
Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.
NASA Astrophysics Data System (ADS)
Prabumukti, Grano; Purwanto; Widodo, Wahyu
2018-02-01
Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.
Zhai, Haibo; Ou, Yang; Rubin, Edward S
2015-07-07
This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.
Evaluating the CO 2 emissions reduction potential and cost of power sector re-dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel C.; Bielen, David A.; Townsend, Aaron
Prior studies of the U.S. electricity sector have recognized the potential to reduce carbon dioxide (CO2) emissions by substituting generation from coal-fired units with generation from under-utilized and lower-emitting natural gas-fired units; in fact, this type of 're-dispatch' was invoked as one of the three building blocks used to set the emissions targets under the Environmental Protection Agency's Clean Power Plan. Despite the existence of surplus natural gas capacity in the U.S., power system operational constraints not often considered in power sector policy analyses, such as transmission congestion, generator ramping constraints, minimum generation constraints, planned and unplanned generator outages, andmore » ancillary service requirements, could limit the potential and increase the cost of coal-to-gas re-dispatch. Using a highly detailed power system unit commitment and dispatch model, we estimate the maximum potential for re-dispatch in the Eastern Interconnection, which accounts for the majority of coal capacity and generation in the U.S. Under our reference assumptions, we find that maximizing coal-to-gas re-dispatch yields emissions reductions of 230 million metric tons (Mt), or 13% of power sector emissions in the Eastern Interconnection, with a corresponding average abatement cost of $15-$44 per metric ton of CO2, depending on the assumed supply elasticity of natural gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Andrew D.; Barbose, Galen L.; Seel, Joachim
The rapid growth of distributed solar photovoltaics (DPV) has critical implications for U.S. utility planning processes. This report informs utility planning through a comparative analysis of roughly 30 recent utility integrated resource plans or other generation planning studies, transmission planning studies, and distribution system plans. It reveals a spectrum of approaches to incorporating DPV across nine key planning areas, and it identifies areas where even the best current practices might be enhanced. (1) Forecasting DPV deployment: Because it explicitly captures several predictive factors, customer-adoption modeling is the most comprehensive forecasting approach. It could be combined with other forecasting methods tomore » generate a range of potential futures. (2) Ensuring robustness of decisions to uncertain DPV quantities: using a capacity-expansion model to develop least-cost plans for various scenarios accounts for changes in net load and the generation portfolio; an innovative variation of this approach combines multiple per-scenario plans with trigger events, which indicate when conditions have changed sufficiently from the expected to trigger modifications in resource-acquisition strategy. (3) Characterizing DPV as a resource option: Today's most comprehensive plans account for all of DPV's monetary costs and benefits. An enhanced approach would address non-monetary and societal impacts as well. (4) Incorporating the non-dispatchability of DPV into planning: Rather than having a distinct innovative practice, innovation in this area is represented by evolving methods for capturing this important aspect of DPV. (5) Accounting for DPV's location-specific factors: The innovative propensity-to-adopt method employs several factors to predict future DPV locations. Another emerging utility innovation is locating DPV strategically to enhance its benefits. (6) Estimating DPV's impact on transmission and distribution investments: Innovative practices are being implemented to evaluate system needs, hosting capacities, and system investments needed to accommodate DPV deployment. (7) Estimating avoided losses associated with DPV: A time-differentiated marginal loss rate provides the most comprehensive estimate of avoided losses due to DPV, but no studies appear to use it. (8) Considering changes in DPV's value with higher solar penetration: Innovative methods for addressing the value changes at high solar penetrations are lacking among the studies we evaluate. (9) Integrating DPV in planning across generation, transmission, and distribution: A few states and regions have started to develop more comprehensive processes that link planning forums, but there are still many issues to address.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mill, Andrew; Barbose, Galen; Seel, Joachim
The rapid growth of distributed solar photovoltaics (DPV) has critical implications for U.S. utility planning processes. This report informs utility planning through a comparative analysis of roughly 30 recent utility integrated resource plans or other generation planning studies, transmission planning studies, and distribution system plans. It reveals a spectrum of approaches to incorporating DPV across nine key planning areas, and it identifies areas where even the best current practices might be enhanced. 1) Forecasting DPV deployment: Because it explicitly captures several predictive factors, customer-adoption modeling is the most comprehensive forecasting approach. It could be combined with other forecasting methods tomore » generate a range of potential futures. 2) Ensuring robustness of decisions to uncertain DPV quantities: using a capacity-expansion model to develop least-cost plans for various scenarios accounts for changes in net load and the generation portfolio; an innovative variation of this approach combines multiple per-scenario plans with trigger events, which indicate when conditions have changed sufficiently from the expected to trigger modifications in resource-acquisition strategy. 3) Characterizing DPV as a resource option: Today’s most comprehensive plans account for all of DPV’s monetary costs and benefits. An enhanced approach would address non-monetary and societal impacts as well. 4) Incorporating the non-dispatchability of DPV into planning: Rather than having a distinct innovative practice, innovation in this area is represented by evolving methods for capturing this important aspect of DPV. 5) Accounting for DPV’s location-specific factors: The innovative propensity-to-adopt method employs several factors to predict future DPV locations. Another emerging utility innovation is locating DPV strategically to enhance its benefits. 6) Estimating DPV’s impact on transmission and distribution investments: Innovative practices are being implemented to evaluate system needs, hosting capacities, and system investments needed to accommodate DPV deployment. 7) Estimating avoided losses associated with DPV: A time-differentiated marginal loss rate provides the most comprehensive estimate of avoided losses due to DPV, but no studies appear to use it. 8) Considering changes in DPV’s value with higher solar penetration: Innovative methods for addressing the value changes at high solar penetrations are lacking among the studies we evaluate. 9) Integrating DPV in planning across generation, transmission, and distribution: A few states and regions have started to develop more comprehensive processes that link planning forums, but there are still many issues to address.« less
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
Multi-Megawatt Gas Turbine Power Systems for Lunar Colonies
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2006-01-01
A concept for development of second generation 10 MWe prototype lunar power plant utilizing a gas cooled fission reactor supplying heated helium working fluid to two parallel 5 MWe closed cycle gas turbines is presented. Such a power system is expected to supply the energy needs for an initial lunar colony with a crew of up to 50 persons engaged in mining and manufacturing activities. System performance and mass details were generated by an author developed code (BRMAPS). The proposed pilot power plant can be a model for future plants of the same capacity that could be tied to an evolutionary lunar power grid.
NASA Astrophysics Data System (ADS)
Taniguchi, Haruhito
Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.
State Renewable Energy Requirements and Goals: Update through 2009 (Update) (released in AEO2010)
2010-01-01
To the extent possible,Annual Energy Outlook 2010 (AEO) incorporates the impacts of state laws requiring the addition of renewable generation or capacity by utilities doing business in the states. Currently, 30 states and the District of Columbia have enforceable renewable portfolio standards (RPS) or similar laws). Under such standards, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because the National Energy Modeling System provides electricity market projections for the continental United States only).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luetzow, H.B.v.
1983-08-01
Following an introduction, the paper discusses in section 2 the collection or generation of final geodetic data from conventional surveys, satellite observations, satellite altimetry, the Global Positioning System, and moving base gravity gradiometers. Section 3 covers data utilization and accuracy aspects including gravity programmed inertial positioning and subterraneous mass detection. Section 4 addresses the usefulness and limitation of the collocation method of physical geodesy. Section 5 is concerned with the computation of classical climatological data. In section 6, meteorological data assimilation is considered. Section 7 deals with correlated aspects of initial data generation with emphasis on initial wind field determination,more » parameterized and classical hydrostatic prediction models, non-hydrostatic prediction, computational networks, and computer capacity. The paper concludes that geodetic and meteorological data are expected to become increasingly more diversified and voluminous both regionally and globally, that its general availability will be more or less restricted for some time to come, that its quality and quantity are subject to change, and that meteorological data generation, accuracy and density have to be considered in conjunction with advanced as well as cost-effective numerical weather prediction models and associated computational efforts.« less
Fiber in the Local Loop: The Role of Electric Utilities
NASA Astrophysics Data System (ADS)
Meehan, Charles M.
1990-01-01
Electric utilities are beginning to make heavy use of fiber for a number of applications beyond transmission of voice and data among operating centers and plant facilities which employed fiber on the electric transmission systems. These additional uses include load management and automatic meter reading. Thus, utilities are beginning to place fiber on the electric distribution systems which, in many cases covers the same customer base as the "local loop". This shift to fiber on the distribution system is due to the advantages offered by fiber and because of congestion in the radio bands used for load management. This shift to fiber has been facilitated by a regulatory policy permitting utilities to lease reserve capacity on their fiber systems on an unregulated basis. This, in turn, has interested electric utilities in building fiber to their residential and commercial customers for voice, data and video. This will also provide for sophisticated load management systems and, possibly, generation of revenue.
8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A
Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve load over many years or decades. CEMs can be computationally complex and are often forced to estimate key parameters using simplified methods to achieve acceptable solve times or for other reasons. In this paper, we discuss one of these parameters -- capacity value (CV). We first provide a high-level motivation for and overview of CV. We next describe existing modeling simplifications and an alternate approach for estimating CV that utilizes hourly '8760' data of load and VG resources.more » We then apply this 8760 method to an established CEM, the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be easily implemented in other power sector models when data is available, more accurately captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a flexible modeling framework from which other 8760-based system elements (e.g., demand response, storage, and transmission) can be added to further capture important dynamic interactions, such as curtailment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rescek, F.
1995-03-01
Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less
Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler A; Saxon, Aron R; Keyser, Matthew A
Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions frommore » 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.« less
Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, B.; Hummon, M.; Cochran, J.
2014-04-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minutemore » irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.« less
On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity
NASA Astrophysics Data System (ADS)
Hanum, F.; Hartono, A. P.; Bakhtiar, T.
2018-03-01
This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.
A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs
NASA Astrophysics Data System (ADS)
Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng
2011-12-01
With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.
Ghorbel, L; Coudert, L; Gilbert, Y; Mercier, G; Blais, J F
2016-10-01
This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = -297 mV), no significant amount of sulfide was generated in the aqueous (<0.2 mg/L) or gaseous (<0.15 ppm) phases. Furthermore, the soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.
Freedman, Seth
2016-01-01
Because geographic variation in medical care utilization is jointly determined by both supply and demand, it is difficult to empirically estimate whether capacity itself has a causal impact on utilization in health care. In this paper, I exploit short-term variation in Neonatal Intensive Care Unit (NICU) capacity that is unlikely to be correlated with unobserved demand determinants. I find that available NICU beds have little to no effect on NICU utilization for the sickest infants, but do increase utilization for those in the range of birth weights where admission decisions are likely to be more discretionary. PMID:27942353
Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W; Tsvetkova, Alexandra A
2008-01-01
Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient,more » rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.« less
Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C
2016-01-01
The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing
2018-06-20
Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeley, R.S.
1994-04-01
The wind power industry blows strongly in Holland these days. The Netherlands topped 100 MW capacity at the beginning of this year. Most of this capacity consists of utility-run wind power plants, and a lesser number of small turbines, mainly operated by farmers. An ambitious government program pushes for 1,000 MW installed capacity by the year 2000. By then, 30 to 40 windpower plants, with more than 700 wind turbines, will crank out electricity along the coastal areas and dikes. With limited land space and dense population, planners see maximum room for 1,000 MW, of large turbines, to conserve space.more » For this reason, the market does not favor a wide range of turbine sizes. Currently, the 10 largest wind power plants in the Netherlands turn out 71.5 MW. The largest wind farm, in Noordoostpolder, southwest of Groningen, whips out 15 MW. To bolster wind power development, government subsidies shorten paybacks. Any many Dutch utilities apparently pay a good rate for wind-generated electricity. The rates are said to be better than those in the United States. Under the government plan, utilities will stimulate further development of technology to improve quality, lower costs, and introduce larger turbines. As this progresses, the government subsidy is expected to decrease. The second oil crisis of the late 1970s fanned Holland's wind energy surge. Since then, wind-electricity costs have fallen by half. The current government push is driven by the desire to reduce dependence on gas and oil, and reduce CO[sub 2] and coal emissions by increasing clean energy sources.« less
NASA Astrophysics Data System (ADS)
Creed, I. F.; Poelzer, G.; Noble, B.; Beatty, B.; Belcher, K.; Chung, T.; Loring, P. A.
2017-12-01
The global energy sector is at a crossroads. Efforts to reduce greenhouse gas emissions, volatile fossil fuel prices, the emergence of sustainability markets, and advances in renewable energy technologies are setting the foundation for what could be one of the most significant societal transitions since the industrial revolution. There is a growing movement to "re-energize" Canada, through embracing pathways to facilitate a societal transition a low-carbon future. For example, circumpolar jurisdictions are poised for a transition to renewable energy. There are more than 250 remote, off-grid communities across Canada's North, of which approximately 170 are Indigenous, that rely largely on diesel-fueled generators. Diesel-fueled generation is generally reliable when properly maintained; however, supply is limited, infrastructure is at capacity or in need of major upgrading, and the volatile price of fuel can mean significant social, community and economic opportunity loss. Renewable energy projects offer one possible opportunity to address these challenges. But, given the challenges of human capacity, limited fiscal resources, and regulatory barriers, how can Northern communities participate in the global energy transition and not be left behind? To answer this question, the University of Saskatchewan, together with partners from the circumpolar North, are leading an initiative to develop a cross-sectoral and multi-national consortium of communities, utilities, industries, governments, and academics engaged in renewable energy in the North. This consortium will reimagine energy security in the North by co-creating and brokering the knowledge and understanding to design renewable energy systems that enhance social and economic value. Northern communities and utilities will learn directly from other northern communities and utilities across Canada and internationally about what can be achieved in renewable energy development and the solutions to current and future energy challenges.
18 CFR 294.101 - Shortages of electric energy and capacity.
Code of Federal Regulations, 2011 CFR
2011-04-01
... energy and capacity. 294.101 Section 294.101 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 PROCEDURES FOR SHORTAGES OF ELECTRIC ENERGY AND CAPACITY UNDER SECTION 206 OF THE PUBLIC UTILITY...
18 CFR 294.101 - Shortages of electric energy and capacity.
Code of Federal Regulations, 2013 CFR
2013-04-01
... energy and capacity. 294.101 Section 294.101 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 PROCEDURES FOR SHORTAGES OF ELECTRIC ENERGY AND CAPACITY UNDER SECTION 206 OF THE PUBLIC UTILITY...
The impact of retail electricity tariff evolution on solar photovoltaic deployment
Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany; ...
2017-11-10
Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.
The impact of retail electricity tariff evolution on solar photovoltaic deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany
Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.
Edge enhancement of color images using a digital micromirror device.
Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A
2012-06-01
A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.
Mercury adsorption properties of sulfur-impregnated adsorbents
Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.
2002-01-01
Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.
Estimating the Impacts of Direct Load Control Programs Using GridPIQ, a Web-Based Screening Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Seemita; Thayer, Brandon L.; Barrett, Emily L.
In direct load control (DLC) programs, utilities can curtail the demand of participating loads to contractually agreed-upon levels during periods of critical peak load, thereby reducing stress on the system, generation cost, and required transmission and generation capacity. Participating customers receive financial incentives. The impacts of implementing DLC programs extend well beyond peak shaving. There may be a shift of load proportional to the interrupted load to the times before or after a DLC event, and different load shifts have different consequences. Tools that can quantify the impacts of such programs on load curves, peak demand, emissions, and fossil fuelmore » costs are currently lacking. The Grid Project Impact Quantification (GridPIQ) screening tool includes a Direct Load Control module, which takes into account project-specific inputs as well as the larger system context in order to quantify the impacts of a given DLC program. This allows users (utilities, researchers, etc.) to test and compare different program specifications and their impacts.« less
Ancillary-service costs for 12 US electric utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, B.; Hirst, E.
1996-03-01
Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintainmore » the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.« less
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
Howlett, Jonathon R.; Paulus, Martin P.
2017-01-01
Individual differences in decision-making are important in both normal populations and psychiatric conditions. Variability in decision-making could be mediated by different subjective utilities or by other processes. For example, while traditional economic accounts attribute risk aversion to a concave subjective utility curve, in practice other factors could affect risk behavior. This distinction may have important implications for understanding the biological basis of variability in decision-making and for developing interventions to improve decision-making. Another aspect of decision-making that may vary between individuals is the sensitivity of subjective utility to counterfactual outcomes (outcomes that could have occurred, but did not). We investigated decision-making in relation to hedonic capacity and trait anxiety, two traits that relate to psychiatric conditions but also vary in the general population. Subjects performed a decision-making task, in which they chose between low- and high-risk gambles to win 0, 20, or 40 points on each trial. Subjects then rated satisfaction after each outcome on a visual analog scale, indicating subjective utility. Hedonic capacity was positively associated with the subjective utility of winning 20 points but was not associated with the concavity of the subjective utility curve (constructed using the mean subjective utility of winning 0, 20, or 40 points). Consistent with economic theory, concavity of the subjective utility curve was associated with risk aversion. Hedonic capacity was independently associated with risk seeking (i.e., not mediated by the shape of the subjective utility curve), while trait anxiety was unrelated to risk preferences. Contrary to our expectations, counterfactual sensitivity was unrelated to hedonic capacity and trait anxiety. Nevertheless, trait anxiety was associated with a self-report measure of regret-proneness, suggesting that counterfactual influences may occur via a pathway that is separate from immediate counterfactual processing biases. Taken together, our results show that hedonic capacity but not trait anxiety affects risk-taking through a mechanism that appears independent of the shape of the subjective utility curve, while hedonic capacity and trait anxiety do not affect the influence of counterfactual outcomes on subjective utility. The results have implications for understanding the underlying mechanisms of variable decision-making and for developing interventions to improve decision-making. PMID:28588508
Howlett, Jonathon R; Paulus, Martin P
2017-01-01
Individual differences in decision-making are important in both normal populations and psychiatric conditions. Variability in decision-making could be mediated by different subjective utilities or by other processes. For example, while traditional economic accounts attribute risk aversion to a concave subjective utility curve, in practice other factors could affect risk behavior. This distinction may have important implications for understanding the biological basis of variability in decision-making and for developing interventions to improve decision-making. Another aspect of decision-making that may vary between individuals is the sensitivity of subjective utility to counterfactual outcomes (outcomes that could have occurred, but did not). We investigated decision-making in relation to hedonic capacity and trait anxiety, two traits that relate to psychiatric conditions but also vary in the general population. Subjects performed a decision-making task, in which they chose between low- and high-risk gambles to win 0, 20, or 40 points on each trial. Subjects then rated satisfaction after each outcome on a visual analog scale, indicating subjective utility. Hedonic capacity was positively associated with the subjective utility of winning 20 points but was not associated with the concavity of the subjective utility curve (constructed using the mean subjective utility of winning 0, 20, or 40 points). Consistent with economic theory, concavity of the subjective utility curve was associated with risk aversion. Hedonic capacity was independently associated with risk seeking (i.e., not mediated by the shape of the subjective utility curve), while trait anxiety was unrelated to risk preferences. Contrary to our expectations, counterfactual sensitivity was unrelated to hedonic capacity and trait anxiety. Nevertheless, trait anxiety was associated with a self-report measure of regret-proneness, suggesting that counterfactual influences may occur via a pathway that is separate from immediate counterfactual processing biases. Taken together, our results show that hedonic capacity but not trait anxiety affects risk-taking through a mechanism that appears independent of the shape of the subjective utility curve, while hedonic capacity and trait anxiety do not affect the influence of counterfactual outcomes on subjective utility. The results have implications for understanding the underlying mechanisms of variable decision-making and for developing interventions to improve decision-making.
Utility experience with two demonstration wind turbine generators
NASA Astrophysics Data System (ADS)
Wehrey, M. C.
Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.
Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.
Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie H D
2015-02-03
Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production.
Utility experience with two demonstration wind turbine generators
NASA Technical Reports Server (NTRS)
Wehrey, M. C.
1982-01-01
Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.
Biomass analysis at palm oil factory as an electric power plant
NASA Astrophysics Data System (ADS)
Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris
2018-04-01
Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweitzer, M.
1991-01-01
Integrated resource planning differs from traditional utility planning practices primarily in its increased attention to demand-side management (DSM) programs and its integration of supply- and demand-side resources into a combined resource portfolio. This report details the findings from an Oak Ridge National Laboratory (ORNL) survey of 24 electric utilities that have well-developed integrated planning processes. These utilities account for roughly one-third of total capacity, electricity generation, and DSM-program expenditures nationwide. The ORNL survey was designed to obtain descriptive data on a national sample of utilities and to test a number of hypothesized relationships between selected utility characteristics and the mixmore » of resources selected for the integrated plan, with an emphasis on the use of DSM resources and the processes by which they are chosen. The survey solicited information on each utility's current and projected resource mix, operating environment, procedures used to screen potential DSM resources, techniques used to obtain public input and to integrate supply- and demand-side options into a unified plan, and procedures used in the final selection of resources for the plan.« less
Zhao, Qing; Zhu, Zhiqiang; Chen, Jun
2017-12-01
Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
IpexT: Integrated Planning and Execution for Military Satellite Tele-Communications
NASA Technical Reports Server (NTRS)
Plaunt, Christian; Rajan, Kanna
2004-01-01
The next generation of military communications satellites may be designed as a fast packet-switched constellation of spacecraft able to withstand substantial bandwidth capacity fluctuation in the face of dynamic resource utilization and rapid environmental changes including jamming of communication frequencies and unstable weather phenomena. We are in the process of designing an integrated scheduling and execution tool which will aid in the analysis of the design parameters needed for building such a distributed system for nominal and battlefield communications. This paper discusses the design of such a system based on a temporal constraint posting planner/scheduler and a smart executive which can cope with a dynamic environment to make a more optimal utilization of bandwidth than the current circuit switched based approach.
Solar thermal plant impact analysis and requirements definition
NASA Technical Reports Server (NTRS)
Gupta, Y. P.
1980-01-01
Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.
Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-31
The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary,more » as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.« less
NASA Astrophysics Data System (ADS)
Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.
2016-12-01
The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.
NASA Astrophysics Data System (ADS)
Maitani, Tatsuyuki; Tezuka, Tetsuo
The electric power market of Japan has been locally monopolized for a long time. But, like many countries, Japan is moving forward with the deregulation of its electric power industry so that any power generation company could sell electric power in the market. The power price, however, will fluctuate inevitably to balance the power supply and demand. A new appropriate market design is indispensable when introducing new market mechanisms in the electric power market to avoid undesirable results of the market. The first stage of deregulation will be the competition between an existing large-scaled power utility and a new power generation company. In this paper we have investigated the wholesale market with competition of these two power companies based on a simulation model approach. Under the competitive situation the effects of exogenous disturbance may bring serious results and we estimated the influence on the market when the price of fossil fuel rises. The conclusion of this study is that several types of Nash equilibriums have been found in the market: the larger the new power generation company becomes, the higher the electricity price under the Nash equilibriums rises. Because of the difference in their structure of generation capacity, the existing large-scaled power utility gets more profit while the new power generation company loses its profit when the price of fossil fuel rises.
A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles
NASA Technical Reports Server (NTRS)
DeYoung, Russell J.; Mead, Patricia F.
2004-01-01
This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.
Regulatory Approaches for Adding Capacity to Existing Hydropower Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L.; Curtis, Taylor L.; Kazerooni, Borna
In 2015, hydroelectric generation accounted for more than 6 percent of total net electricity generation in the United States and 46 percent of electricity generation from all renewables. The United States has considerable hydroelectric potential beyond what is already being developed. Nearly 7 GW of this potential is found by adding capacity to existing hydropower facilities. To optimize the value of hydroelectric generation, the U.S. Department of Energy's Hydropower Vision Study highlights the importance of adding capacity to existing facilities. This report provides strategic approaches and considerations for Federal Energy Regulatory Commission licensed and exempt hydropower facilities seeking to increasemore » generation capacity, which may include increases from efficiency upgrades. The regulatory approaches reviewed for this report include capacity and non-capacity amendments, adding capacity during relicensing, and adding capacity when converting a license to a 10-MW exemption.« less
Santhi, B; Dheeptha, B
2016-01-01
The field of telemedicine has gained immense momentum, owing to the need for transmitting patients' information securely. This paper puts forth a unique method for embedding data in medical images. It is based on edge based embedding and XOR coding. The algorithm proposes a novel key generation technique by utilizing the design of a sudoku puzzle to enhance the security of the transmitted message. The edge blocks of the cover image alone, are utilized to embed the payloads. The least significant bit of the pixel values are changed by XOR coding depending on the data to be embedded and the key generated. Hence the distortion in the stego image is minimized and the information is retrieved accurately. Data is embedded in the RGB planes of the cover image, thus increasing its embedding capacity. Several measures including peak signal noise ratio (PSNR), mean square error (MSE), universal image quality index (UIQI) and correlation coefficient (R) are the image quality measures that have been used to analyze the quality of the stego image. It is evident from the results that the proposed technique outperforms the former methodologies.
Microgrids for Service Restoration to Critical Load in a Resilient Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yin; Liu, Chen-Ching; Schneider, Kevin P.
icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. Bymore » introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.« less
Electric plant cost and power production expenses 1989. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-29
This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less
Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler A; Saxon, Aron R; Keyser, Matthew A
Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity andmore » resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.« less
Vingilis, Evelyn; Hartford, Kathleen; Schrecker, Ted; Mitchell, Beth; Lent, Barbara; Bishop, Joan
2003-01-01
Knowledge diffusion and utilization (KDU) have become a key focus in the health research community because of the limited success to date of research findings to inform health policies, programs and services. Yet, evidence indicates that successful KDU is often predicated on the early involvement of potential knowledge users in the conceptualization and conduct of the research and on the development of a "partnership culture". This study describes the integration of KDU theory with practice via a case study analysis of the Consortium for Applied Research and Evaluation in Mental Health (CAREMH). This qualitative study, using a single-case design, included a number of data sources: proposals, meeting minutes, presentations, publications, reports and curricula vitae of CAREMH members. CAREMH has adopted the following operational strategies to increase KDU capacity: 1) viewing research as a means and not as an end; 2) bringing the university and researcher to the community; 3) using participatory research methods; 4) embracing transdisciplinary research and interactions; and 5) using connectors. Examples of the iterative process between researchers and potential knowledge users in their contribution to knowledge generation, diffusion and utilization are provided. This case study supports the importance of early and ongoing involvement of relevant potential knowledge users in research to enhance its utilization potential. It also highlights the need for re-thinking research funding approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Seel, Joachim
2015-09-01
Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MW AC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the nextmore » few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.« less
Assessing the Impacts of Wind Integration in the Western Provinces
NASA Astrophysics Data System (ADS)
Sopinka, Amy
Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.
NASA Astrophysics Data System (ADS)
Han, Pauline; Manthiram, Arumugam
2017-11-01
Lithium-sulfur (Li-S) batteries are regarded as a potential next-generation energy storage system but they are hampered by low active-material utilization, polysulfide shuttling, and rapid capacity fade. We present here the use of lightweight boron- and nitrogen-doped reduced graphene oxide (B-rGO, N-rGO) coated separators to suppress polysulfide diffusion and enhance active material utilization at high sulfur contents. B-rGO and N-rGO are synthesized through a facile modified Hummer's method involving the exfoliation of graphite sheets. Upon reduction, the carbon forms valuable interlayers with dynamic spacings for polysulfide trapping. Freeze-drying is utilized to preserve the structure of the pillow-like carbon, which is then slurry-coated onto a separator and placed against a sulfur cathode. The advantages of boron and nitrogen and their affinity towards polysulfides is compared while noting the lighter carbon coatings with good electrochemical stability. The cells attain a loading of 4.0 mg cm-2 with a high sulfur content of 66.5 ± 0.5 wt % on including the weight of the coatings. After a long cycle life of 400 cycles, N-rGO and B-rGO are still able to maintain a specific capacity of, respectively, 430 mA h g-1 and 367 mA h g-1.
NASA Technical Reports Server (NTRS)
1976-01-01
Additional design and analysis data are provided to supplement the results of the two parallel design study efforts. The key results of the three supplemental tasks investigated are: (1) The velocity duration profile has a significant effect in determining the optimum wind turbine design parameters and the energy generation cost. (2) Modest increases in capacity factor can be achieved with small increases in energy generation costs and capital costs. (3) Reinforced concrete towers that are esthetically attractive can be designed and built at a cost comparable to those for steel truss towers. The approach used, method of analysis, assumptions made, design requirements, and the results for each task are discussed in detail.
Electricity generation and transmission planning in deregulated power markets
NASA Astrophysics Data System (ADS)
He, Yang
This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the transmission network operator depends on the characteristic of the power market and the topology of the transmission network. Also, the second model, which considers interactions between generation and transmission sectors, yields higher social welfare in the electric power market, than the third model where generation firms and transmission network operator make investment decisions separately.
Modeling water resources as a constraint in electricity capacity expansion models
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.
2013-12-01
In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs and availability of freshwater (surface and groundwater) and alternative water resources (municipal wastewater and brackish groundwater). In each region, a new power plant must secure sufficient water rights for operation before being built. Water rights constraints thus influence the type of power plant, cooling system, or location of new generating capacity. Results indicate that the aggregate national generating capacity by fuel type and associated carbon dioxide emissions change marginally with the inclusion of water rights. Water resource withdrawals and consumption, however, can vary considerably. Regional water resource dynamics indicate substantial differences in the location where power plant-cooling system technology combinations are built. These localized impacts highlight the importance of considering water resources as a constraint in the electricity sector when evaluating costs, transmission infrastructure needs, and externalities. Further scenario evaluations include assessments of how climate change could affect the availability of water resources, and thus the development of the electricity sector.
Online estimation of lithium-ion battery capacity using sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani
2015-09-01
Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.
Time-Series Approaches for Forecasting the Number of Hospital Daily Discharged Inpatients.
Ting Zhu; Li Luo; Xinli Zhang; Yingkang Shi; Wenwu Shen
2017-03-01
For hospitals where decisions regarding acceptable rates of elective admissions are made in advance based on expected available bed capacity and emergency requests, accurate predictions of inpatient bed capacity are especially useful for capacity reservation purposes. As given, the remaining unoccupied beds at the end of each day, bed capacity of the next day can be obtained by examining the forecasts of the number of discharged patients during the next day. The features of fluctuations in daily discharges like trend, seasonal cycles, special-day effects, and autocorrelation complicate decision optimizing, while time-series models can capture these features well. This research compares three models: a model combining seasonal regression and ARIMA, a multiplicative seasonal ARIMA (MSARIMA) model, and a combinatorial model based on MSARIMA and weighted Markov Chain models in generating forecasts of daily discharges. The models are applied to three years of discharge data of an entire hospital. Several performance measures like the direction of the symmetry value, normalized mean squared error, and mean absolute percentage error are utilized to capture the under- and overprediction in model selection. The findings indicate that daily discharges can be forecast by using the proposed models. A number of important practical implications are discussed, such as the use of accurate forecasts in discharge planning, admission scheduling, and capacity reservation.
Quantum cryptography with perfect multiphoton entanglement.
Luo, Yuhui; Chan, Kam Tai
2005-05-01
Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.
Comparison of measurement methods for capacitive tactile sensors and their implementation
NASA Astrophysics Data System (ADS)
Tarapata, Grzegorz; Sienkiewicz, Rafał
2015-09-01
This paper presents a review of ideas and implementations of measurement methods utilized for capacity measurements in tactile sensors. The paper describes technical method, charge amplification method, generation and as well integration method. Three selected methods were implemented in dedicated measurement system and utilised for capacitance measurements of ourselves made tactile sensors. The tactile sensors tested in this work were fully fabricated with the inkjet printing technology. The tests result were presented and summarised. The charge amplification method (CDC) was selected as the best method for the measurement of the tactile sensors.
Rajagopalan, Ranjusha; Chen, Bo; Zhang, Zhicheng; Wu, Xing-Long; Du, Yonghua; Huang, Ying; Li, Bing; Zong, Yun; Wang, Jie; Nam, Gwang-Hyeon; Sindoro, Melinda; Dou, Shi Xue; Liu, Hua Kun; Zhang, Hua
2017-03-01
The methodology employed here utilizes the sodium super ion conductor type sodium iron phosphate wrapped with conducting carbon network to generate a stable Fe 3+ /Fe 4+ redox couple, thereby exhibiting higher operating voltage and energy density of sodium-ion batteries. This new class of sodium iron phosphate wrapped by carbon also displays a cycling stability with >96% capacity retention after 200 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Management Analysis and Systems Model of Department of Defense Acquisition Structure and Policy
1988-01-01
Production Cost 253 0 104. Structure for Capacity Utilized Effect on Production Cost 254 105. Actual vs Model GNP (1960-1985) 265 106. Actual vs Model Social...Spending (1960-1985) 266 107. Actual vs Model Defense Spending (1960-1985) 267 108. Actual vs Model Soviet Defense Expenditures 268 109. Comparison of...Actual GNP a. 800 z 0 600 400 " I I 50 60 70 80 90 Year Figure 105. Actual vs Model GNP (1960-1985) fact that the model did not generate real
Pressurized fluidized bed offers promising route to cogeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
STAL-LAVAL has been monitoring the development of pressurized fluidized-bed combustion (PFBC) technology and has decided to apply it as a way to burn coal and satisfy the important criteria of efficiency, low cost, environmental acceptability, low investment cost, and the capacity to use a wide range of coal qualities. The present status of PFBC and co-generation technology is reviewed and examples of industrial as well as utiltiy applications are cited. A successful commercialization of PFBC could contribute to the success of coal-utilization policies. (DCK)
Zhong, Lei; Yang, Kai; Guan, Ruiteng; Wang, Liangbin; Wang, Shuanjin; Han, Dongmei; Xiao, Min; Meng, Yuezhong
2017-12-20
Rechargeable lithium-sulfur (Li-S) batteries have been expected for new-generation electrical energy storages, which are attributed to their high theoretical energy density, cost effectiveness, and eco-friendliness. But Li-S batteries still have some problems for practical application, such as low sulfur utilization and dissatisfactory capacity retention. Herein, we designed and fabricated a foldable and compositionally heterogeneous three-dimensional sulfur cathode with integrated sandwich structure. The electrical conductivity of the cathode is facilitated by three different dimension carbons, in which short-distance and long-distance pathways for electrons are provided by zero-dimensional ketjen black (KB), one-dimensional activated carbon fiber (ACF) and two-dimensional graphene (G). The resultant three-dimensional sulfur cathode (T-AKG/KB@S) with an areal sulfur loading of 2 mg cm -2 exhibits a high initial specific capacity, superior rate performance and a reversible discharge capacity of up to 726 mAh g -1 at 3.6 mA cm -2 with an inappreciable capacity fading rate of 0.0044% per cycle after 500 cycles. Moreover, the cathode with a high areal sulfur loading of 8 mg cm -2 also delivers a reversible discharge capacity of 938 mAh g -1 at 0.71 mA cm -2 with a capacity fading rate of 0.15% per cycle and a Coulombic efficiency of almost 100% after 50 cycles.
NASA Astrophysics Data System (ADS)
Bharadwaj, Anshu
Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (<100 kW) when used for village electrification have a low Plant Load Factor (PLF) that adversely affects their economic viability. Medium Scale units (0.5 MW--5 MW) do not appear attractive because of the costs involved in the biomass transportation. There is thus a merit in considering power plants that use biomass available in large quantities in agro-processing centers such as rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves the voltage profiles. We examine a few innovative policy options for making a rural micro-grid economically viable and also a pricing mechanism for reactive power and wheeling. We next consider co-firing biomass and coal in utility boilers as an attractive option for biomass utilization because of low capital costs; high efficiency of utility boilers; lower CO2 emissions (per kWh) and also lower NOx and SO2. However, efficiency derating of the boilers caused by unburnt carbon in the fly ash is a major concern of the utilities. We develop a computational fluid dynamics (CFD) based model to understand the impact of co-firing on utility boilers. A detailed biomass devolatilization sub-model is also developed to study the importance of intra-particle heat and mass transport. Finally, we conduct an experimental study of the pyrolysis of rice husk. We conducted single particle experiments in a Confocal Scanning Laser Microscope (CSLM) at the Department of Material Science and Engineering, Carnegie Mellon University coupled with Scanning Electron Microscope (SEM) analysis of partially and fully combusted particles. Our results seem to indicate that the role of silica fibers is not merely to act as geometric shields for the carbon atoms. Instead there appears to be a strong and thermally resistant inter-molecular bonding that prevents carbon conversion. Therefore, it may not be possible to achieve full carbon conversion.
Utilization of lean management principles in the ambulatory clinic setting.
Casey, Jessica T; Brinton, Thomas S; Gonzalez, Chris M
2009-03-01
The principles of 'lean management' have permeated many sectors of today's business world, secondary to the success of the Toyota Production System. This management method enables workers to eliminate mistakes, reduce delays, lower costs, and improve the overall quality of the product or service they deliver. These lean management principles can be applied to health care. Their implementation within the ambulatory care setting is predicated on the continuous identification and elimination of waste within the process. The key concepts of flow time, inventory and throughput are utilized to improve the flow of patients through the clinic, and to identify points that slow this process -- so-called bottlenecks. Nonessential activities are shifted away from bottlenecks (i.e. the physician), and extra work capacity is generated from existing resources, rather than being added. The additional work capacity facilitates a more efficient response to variability, which in turn results in cost savings, more time for the physician to interact with patients, and faster completion of patient visits. Finally, application of the lean management principle of 'just-in-time' management can eliminate excess clinic inventory, better synchronize office supply with patient demand, and reduce costs.
Airport Capacity Enhancement Plan.
DOT National Transportation Integrated Search
1986-01-01
The first edition of the Airport Capacity Enhancement Plan has been developed by the Federal Aviation Administration's newly established Airport Capacity Program Office (ACPO). The plan is intended to increase the capacity and efficient utilization o...
Airport Capacity Enhancement Plan
DOT National Transportation Integrated Search
1987-01-01
The first edition of the Airport Capacity Enhancement Plan has been developed by the Federal Aviation Administration's newly established Airport Capacity Program Office (ACPO). The plan is intended to increase the capacity and efficient utilization o...
Cherokee Wind Energy Development - Feasibility and Pre-Construction Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Andy
Cherokee Nation Businesses (CNB) received a grant from the US Department of Energy to explore feasibility and pursue development of a wind power generation facility on Cherokee land in north-central Oklahoma. This project followed several years of initial study exploring the possibility of commercial-scale wind power generation on primarily agricultural land owned by the Cherokee Nation. This project produced detailed analysis of the legal, financial and market viability of such generation facilities, and encompassed a full technical evaluation of the engineering, environmental, and geotechnical aspects of installing this capacity. During the course of this project, information gleaned from this explorationmore » changed CNB’s thinking about the best course of action for Cherokee participation in the development, eventually moving away from an equity-owner model and towards utilization of the land asset as a resource while mitigating Cherokee financial and operational risk.« less
The electrothermal conductance and heat capacity of black phosphorus
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Das, Saptarshi; Shi, Junxia
2018-03-01
We study a thermal gradient induced current (It h ) flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and Ith acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of Ith that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.
The electrothermal conductance and heat capacity of black phosphorus.
Sengupta, Parijat; Das, Saptarshi; Shi, Junxia
2018-03-14
We study a thermal gradient induced current I th flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and I th acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of I th that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyer, James M.; Schoenung, Susan M.
2008-02-01
The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utilitymore » transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.« less
Feasibility of a medium-size central cogenerated energy facility, energy management memorandum
NASA Astrophysics Data System (ADS)
Porter, R. W.
1982-09-01
The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.
Capacity expansion model of wind power generation based on ELCC
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Wu, Shengyu
2018-02-01
Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.
Production and use of estimates for monitoring progress in the health sector: the case of Bangladesh
Ahsan, Karar Zunaid; Tahsina, Tazeen; Iqbal, Afrin; Ali, Nazia Binte; Chowdhury, Suman Kanti; Huda, Tanvir M.; Arifeen, Shams El
2017-01-01
ABSTRACT Background: In order to support the progress towards the post-2015 development agenda for the health sector, the importance of high-quality and timely estimates has become evident both globally and at the country level. Objective and Methods: Based on desk review, key informant interviews and expert panel discussions, the paper critically reviews health estimates from both the local (i.e. nationally generated information by the government and other agencies) and the global sources (which are mostly modeled or interpolated estimates developed by international organizations based on different sources of information), and assesses the country capacity and monitoring strategies to meet the increasing data demand in the coming years. Primarily, this paper provides a situation analysis of Bangladesh in terms of production and use of health estimates for monitoring progress towards the post-2015 development goals for the health sector. Results: The analysis reveals that Bangladesh is data rich, particularly from household surveys and health facility assessments. Practices of data utilization also exist, with wide acceptability of survey results for informing policy, programme review and course corrections. Despite high data availability from multiple sources, the country capacity for providing regular updates of major global health estimates/indicators remains low. Major challenges also include limited human resources, capacity to generate quality data and multiplicity of data sources, where discrepancy and lack of linkages among different data sources (local sources and between local and global estimates) present emerging challenges for interpretation of the resulting estimates. Conclusion: To fulfill the increased data requirement for the post-2015 era, Bangladesh needs to invest more in electronic data capture and routine health information systems. Streamlining of data sources, integration of parallel information systems into a common platform, and capacity building for data generation and analysis are recommended as priority actions for Bangladesh in the coming years. In addition to automation of routine health information systems, establishing an Indicator Reference Group for Bangladesh to analyze data; building country capacity in data quality assessment and triangulation; and feeding into global, inter-agency estimates for better reporting would address a number of mentioned challenges in the short- and long-run. PMID:28532305
Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels
Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD
2015-01-01
Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728
Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan; ...
2017-11-06
We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan
We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgenson, J.; Denholm, P.; Mehos, M.
2014-06-01
Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgenson, J.; Denholm, P.; Mehos, M.
2014-05-01
Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... turbine generating unit with an installed capacity of 1.8 megawatts (MW) and hydraulic capacity of 130... turbine generating unit with an installed capacity of 7.0 MW and hydraulic capacity of 370 cfs. The...
Baltimore Zoo digester project. Final report. [Elephants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, P.W.
The results of a project to produce methane using the manure from zoo animals as a feedstock is presented. Two digesters are in operation, the first (built in 1974) utilizing wastes from the Hippo House and a second (built in 1980) utilizing wastes from the Elephant House. Demonstrations on the utilization of the gas were performed during zoo exhibits. The Elephant House Digester has a capacity of 4200 gallons and a floating gas dome which can retain at least 150 cu ft of gas. Solar energy has been incorporated into the design to maintain digester temperature at 95/sup 0/F. Themore » system produces 50 cu ft per day. After cleaning the gas, it is used to generate electricity to power an electric light, a roof fan, and an air conditioner. The gas is also used to operate a gas range and a gas lamp. During the opening day exhibit, 50 meals were cooked using the bio-gas from just 2 elephants. (DMC)« less
DOT National Transportation Integrated Search
1997-09-01
This paper formulates a new approach for improvement : of air traffic flow management at airports, which leads to : more efficient utilization of existing airport capacity to alleviate : the consequences of congestion. A new model is presented, : whi...
Advanced secondary batteries: Their applications, technological status, market and opportunity
NASA Astrophysics Data System (ADS)
Yao, M.
1989-03-01
Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.
A Sector Capacity Assessment Method Based on Airspace Utilization Efficiency
NASA Astrophysics Data System (ADS)
Zhang, Jianping; Zhang, Ping; Li, Zhen; Zou, Xiang
2018-02-01
Sector capacity is one of the core factors affecting the safety and the efficiency of the air traffic system. Most of previous sector capacity assessment methods only considered the air traffic controller’s (ATCO’s) workload. These methods are not only limited which only concern about the safety, but also not accurate enough. In this paper, we employ the integrated quantitative index system proposed in one of our previous literatures. We use the principal component analysis (PCA) to find out the principal indicators among the indicators so as to calculate the airspace utilization efficiency. In addition, we use a series of fitting functions to test and define the correlation between the dense of air traffic flow and the airspace utilization efficiency. The sector capacity is then decided as the value of the dense of air traffic flow corresponding to the maximum airspace utilization efficiency. We also use the same series of fitting functions to test the correlation between the dese of air traffic flow and the ATCOs’ workload. We examine our method with a large amount of empirical operating data of Chengdu Controlling Center and obtain a reliable sector capacity value. Experiment results also show superiority of our method against those only consider the ATCO’s workload in terms of better correlation between the airspace utilization efficiency and the dense of air traffic flow.
Three-dimensional carbon nanotubes for high capacity lithium-ion batteries
NASA Astrophysics Data System (ADS)
Kang, Chiwon; Patel, Mumukshu; Rangasamy, Baskaran; Jung, Kyu-Nam; Xia, Changlei; Shi, Sheldon; Choi, Wonbong
2015-12-01
Carbon nanotubes (CNTs) have been considered as a potential anode material for next generation Lithium-ion batteries (LIBs) due to their high conductivity, flexibility, surface area, and lithium-ion insertion ability. However, the low mass loading and bulk density of carbon nanomaterials hinder their use in large-scale energy storage because their high specific capacity may not scale up linearly with the thickness of the electrode. To address this issue, a novel three-dimensional (3D) architecture is rationally designed by stacking layers of free-standing CNTs with the increased areal density to 34.9 mg cm-2, which is around three-times higher than that of the state-of-the-art graphitic anodes. Furthermore, a thermal compression process renders the bulk density of the multi-stacked 3D CNTs to be increased by 1.85 g cm-3, which yields an excellent volumetric capacity of 465 mAh cm-3 at 0.5C. Our proposed strategy involving the stacking of 3D CNT based layers and post-thermal compression provides a powerful platform for the utilization of carbon nanomaterials in the advanced LIB technology.
Ramadhan, Kurnia; Huda, Nurul; Ahmad, Ruzita
2014-02-01
Duck meat is less utilized than other meats in processed products because of limitations of its functional properties, including lower water holding capacity, emulsion stability, and higher cooking loss compared with chicken meat. These limitations could be improved using surimi technology, which consists of washing and concentrating myofibrillar protein. In this study, surimi-like materials were made from duck meat using two or three washings with different solutions (tap water, sodium chloride, sodium bicarbonate, and sodium phosphate buffer). Better improvement of the meat's functional properties was obtained with three washings versus two washings. Washing with tap water achieved the highest gel strength; moderate elevation of water holding capacity, pH, lightness, and whiteness; and left a small amount of fat. Washing with sodium bicarbonate solution generated the highest water holding capacity and pH and high lightness and whiteness values, but it resulted in the lowest gel strength. Processing duck meat into surimi-like material improves its functional properties, thereby making it possible to use duck meat in processed products.
NASA Astrophysics Data System (ADS)
Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke
2018-03-01
Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.
Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy
NASA Astrophysics Data System (ADS)
Magee, T. M.; Clement, M. A.; Zagona, E. A.
2012-12-01
Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.
18 CFR 292.303 - Electric utility obligations under this subpart.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric utility obligations under this subpart. 292.303 Section 292.303 Conservation of Power and Water Resources FEDERAL... energy or capacity under this subpart as if the qualifying facility were supplying energy or capacity...
NASA Astrophysics Data System (ADS)
Manzella, A.
2017-07-01
Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.
New Trends of Digital Data Storage in DNA
2016-01-01
With the exponential growth in the capacity of information generated and the emerging need for data to be stored for prolonged period of time, there emerges a need for a storage medium with high capacity, high storage density, and possibility to withstand extreme environmental conditions. DNA emerges as the prospective medium for data storage with its striking features. Diverse encoding models for reading and writing data onto DNA, codes for encrypting data which addresses issues of error generation, and approaches for developing codons and storage styles have been developed over the recent past. DNA has been identified as a potential medium for secret writing, which achieves the way towards DNA cryptography and stenography. DNA utilized as an organic memory device along with big data storage and analytics in DNA has paved the way towards DNA computing for solving computational problems. This paper critically analyzes the various methods used for encoding and encrypting data onto DNA while identifying the advantages and capability of every scheme to overcome the drawbacks identified priorly. Cryptography and stenography techniques have been analyzed in a critical approach while identifying the limitations of each method. This paper also identifies the advantages and limitations of DNA as a memory device and memory applications. PMID:27689089
New Trends of Digital Data Storage in DNA.
De Silva, Pavani Yashodha; Ganegoda, Gamage Upeksha
With the exponential growth in the capacity of information generated and the emerging need for data to be stored for prolonged period of time, there emerges a need for a storage medium with high capacity, high storage density, and possibility to withstand extreme environmental conditions. DNA emerges as the prospective medium for data storage with its striking features. Diverse encoding models for reading and writing data onto DNA, codes for encrypting data which addresses issues of error generation, and approaches for developing codons and storage styles have been developed over the recent past. DNA has been identified as a potential medium for secret writing, which achieves the way towards DNA cryptography and stenography. DNA utilized as an organic memory device along with big data storage and analytics in DNA has paved the way towards DNA computing for solving computational problems. This paper critically analyzes the various methods used for encoding and encrypting data onto DNA while identifying the advantages and capability of every scheme to overcome the drawbacks identified priorly. Cryptography and stenography techniques have been analyzed in a critical approach while identifying the limitations of each method. This paper also identifies the advantages and limitations of DNA as a memory device and memory applications.
Boosting CSP Production with Thermal Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2012-06-01
Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Pandipati, Radha; Ling, Jerri; Miller, Thomas; Jeevarajan, Judith; Halpert, Gerald; Zimmerman, Albert
2005-01-01
The purpose of the GSFC position paper is to identify critical HST milestone dates for continued science studies followed by the attachment of a re-entry module or a robotic servicing mission. The paper examines the viability of the HST with respect to the NiH2 continued battery charge capacity. In the course of the assessment, it was recognized that the HST battery thermal control system has an average heat dissipation limitation of 30 W per bay per orbit cycle. This thermal constraint will continue to govern options for battery capacity maintenance. In addition, the HST usage represents the longest exposure ofNiH2 batteries to Low Earth Orbit (LEO) at the current level of Depth of Discharge (DOD). Finally, the current battery life is at the limit predicted by the manufacturer, Eaglepicher. Therefore, given these factors, the potential exists that the HST battery capacities could radically degrade at any point. Given this caveat on any life extrapolations, the conservative model proposed in the GSFC position paper was viewed by the NESC as having several technical assumptions such as limited utilization of flight battery capacity data, the susceptibility of the proposed prediction method to large variations when supplemented with additional information, and the failure to qualitatively or quantitatively assess life prediction sensitivities. The NESC conducted an independent evaluation of the supporting information and assumptions to generate the predictions for battery capacity loss and practicality of on-orbit battery conditioning.
An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung
The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less
An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures
Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung; ...
2018-05-07
The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less
The application of LDPC code in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao
2018-03-01
The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.
Moore, Kieran M; Edge, Graham; Kurc, Andrew R
2008-11-14
Timeliness is a critical asset to the detection of public health threats when using syndromic surveillance systems. In order for epidemiologists to effectively distinguish which events are indicative of a true outbreak, the ability to utilize specific data streams from generalized data summaries is necessary. Taking advantage of graphical user interfaces and visualization capacities of current surveillance systems makes it easier for users to investigate detected anomalies by generating custom graphs, maps, plots, and temporal-spatial analysis of specific syndromes or data sources.
Moore, Kieran M; Edge, Graham; Kurc, Andrew R
2008-01-01
Timeliness is a critical asset to the detection of public health threats when using syndromic surveillance systems. In order for epidemiologists to effectively distinguish which events are indicative of a true outbreak, the ability to utilize specific data streams from generalized data summaries is necessary. Taking advantage of graphical user interfaces and visualization capacities of current surveillance systems makes it easier for users to investigate detected anomalies by generating custom graphs, maps, plots, and temporal-spatial analysis of specific syndromes or data sources. PMID:19025683
Wind utilization in remote regions: An economic study. [for comparison with diesel engines
NASA Technical Reports Server (NTRS)
Vansant, J. H.
1973-01-01
A wind driven generator was considered as a supplement to a diesel group, for the purpose of economizing fuel when wind power is available. A specific location on Hudson's Bay, Povognituk, was selected. Technical and economic data available for a wind machine of 10-kilowatt nominal capacity and available wind data for that region were used for the study. After subtracting the yearly wind machine costs from savings in fuel costs, a net savings of $1400 per year is realized. These values are approximate, but are though to be highly conservative.
NASA Astrophysics Data System (ADS)
Koo, Bryan Bonsuk
Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.
Hybrid Energy: Combining Nuclear and Other Energy Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Garcia, Humberto E.
2015-02-01
The leading cause of global climate change is generally accepted to be growing emissions of greenhouse gas (GHG) as a result of increased use of fossil fuels [1]. Among various sources of GHG, the global electricity supply sector generates the largest share of GHG emissions (37.5% of total CO2 emissions) [2]. Since the current electricity production heavily relies on fossil fuels, it is envisioned that bolstering generation technologies based on non-emitting energy sources, i.e., nuclear and/or renewables could reduce future GHG emissions. Integrated nuclear-renewable hybrid energy systems HES) are very-low-emitting options, but they are capital-intensive technologies that should operate atmore » full capacities to maximize profits. Hence, electricity generators often pay the grid to take electricity when demand is low, resulting in negative profits for many hours per year. Instead of wasting an excess generation capacity at negative profit during off-peak hours when electricity prices are low, nuclear-renewable HES could result in positive profits by storing and/or utilizing surplus thermal and/or electrical energy to produce useful storable products to meet industrial and transportation demands. Consequently, it is necessary (1) to identify key integrated system options based on specific regions and (2) to propose optimal operating strategy to economically produce products on demand. In prioritizing region-specific HES options, available resources, markets, existing infrastructures, and etc. need to be researched to identify attractive system options. For example, the scarcity of water (market) and the availability of abundant solar radiation make solar energy (resource) a suitable option to mitigate the water deficit the Central-Southern region of the U.S. Thus, a solar energy-driven desalination process would be an attractive option to be integrated into a nuclear power plant to support the production of fresh water in this region. In this work, we introduce a particular HES option proposed for a specific U.S. region and briefly describe our modeling assumptions and procedure utilized for its analysis. Preliminary simulation results are also included addressing several technical characteristics of the proposed nuclear-renewable HES.« less
Deregulation 1993: Be careful what you wish for, you might get it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotto, D.
This article tries to assess the response at the electric industry to deregulation. The industry most probably will consolidate to reduce operating costs and expand access to other transmission grids. In addition, the cheapest power likely will be [open quotes]dedicated[close quotes] to retail customers (namely, those under a franchise obligation), and [open quotes]residual[close quotes] generating capacity will be placed in the wholesale market. Surplus capacity (the most expensive capacity) could be dedicated to the wholesale sector, allowing market forces to decide the future price of incremental generation. The outcome will be influenced heavily by corporate restructuring initiatives, regulatory willingness ormore » opposition, legal victories by large-scale users, and transmission access policies at the state and federal levels. Changes is definitely underway, but [open quotes]what[close quotes] the industry will look like is unclear. The financial consequences of this change are more easily identified. Evidently, internal pricing pressures and the breakdown of regulatory pricing structures (a trend that has been underway for nearly a decade) have combined to produce a more risky industry. To compensate investors, capital markets could demand increases returns and different corporate structures. Many of the financial benefits currently enjoyed by utilities, such as lower earnings/coverage tests and greater debt leverage than other [open quotes]industrial[close quotes] corporations, may have to change. Stepping out from under the protection of the regulatory umbrella will carry certain costs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... reversible pump turbine with a total installed generating capacity of 250 megawatts (MW); (6) a transformer... with a total installed generating capacity of 250 MW; (6) a transformer hall; (7) a lower reservoir; (8... installed generating capacity of 250 MW; (6) a transformer hall; (7) a lower reservoir with a storage...
Zhou, Wenliang; Yang, Xia; Deng, Lianbo
2014-01-01
Not only is the operating plan the basis of organizing marshalling station's operation, but it is also used to analyze in detail the capacity utilization of each facility in marshalling station. In this paper, a long-term operating plan is optimized mainly for capacity utilization analysis. Firstly, a model is developed to minimize railcars' average staying time with the constraints of minimum time intervals, marshalling track capacity, and so forth. Secondly, an algorithm is designed to solve this model based on genetic algorithm (GA) and simulation method. It divides the plan of whole planning horizon into many subplans, and optimizes them with GA one by one in order to obtain a satisfactory plan with less computing time. Finally, some numeric examples are constructed to analyze (1) the convergence of the algorithm, (2) the effect of some algorithm parameters, and (3) the influence of arrival train flow on the algorithm. PMID:25525614
Atawodi, Sunday Ene-Ojo; Pfundstein, Beate; Haubner, Roswitha; Spiegelhalder, Bertold; Bartsch, Helmut; Owen, Robert Wyn
2007-11-28
Varieties of kola nuts (Cola nitida alba, Cola nitida rubra A. Chev, and Cola acuminata Schott & Endl), a group of popular Nigerian and West African stimulants, were analyzed for their content of secondary plant metabolites. The three varieties of the kola nuts contained appreciable levels of (+)-catechin (27-37 g/kg), caffeine (18-24 g/kg), (-)-epicatechin (20-21 g/kg), procyanidin B 1 [epicatechin-(4beta-->8)-catechin] (15-19 g/kg), and procyanidin B2 [epicatechin-(4beta-->8)-epicatechin] (7-10 g/kg). Antioxidant capacity of the extracts and purified metabolites was assessed by two HPLC-based and two colorimetric in vitro assays. Extracts of all varieties exhibited antioxidant capacity with IC 50 values in the range 1.70-2.83 and 2.74-4.08 mg/mL in the hypoxanthine/xanthine oxidase and 2-deoxyguanosine HPLC-based assays, respectively. Utilization of HPLC-based assays designed to reflect in situ generation of free radicals (e.g., HO(*)), as opposed to general assays (DPPH, FRAP) in common use which do not, indicate that, of the major secondary plant metabolites present in kola nut extracts, caffeine is potentially the more effective cancer chemopreventive metabolite in terms of its antioxidant capacity.
Wind Generator & Biomass No-draft Gasification Hybrid
NASA Astrophysics Data System (ADS)
Hein, Matthew R.
The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.
Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin
2017-08-29
For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.
NASA Astrophysics Data System (ADS)
Ramirez Camargo, Luis; Dorner, Wolfgang
2016-04-01
The yearly cumulated technical energy generation potential of grid-connected roof-top photovoltaic power plants is significantly larger than the demand of domestic buildings in sparsely populated municipalities in central Europe. However, an energy balance with cumulated annual values does not deliver the right picture about the actual potential for photovoltaics since these run on a highly variable energy source as solar radiation. The mismatch between the periods of generation and demand creates hard limitations for the deployment of the theoretical energy generation potential of roof-top photovoltaics. The actual penetration of roof-top photovoltaic is restricted by the energy quality requirements of the grid and/or the available storage capacity for the electricity production beyond the coverage of own demands. In this study we evaluate in how far small-scale storage systems can contribute to increment the grid-connected roof-top photovoltaic penetration in domestic buildings at a municipal scale. To accomplish this, we calculate, in a first step, the total technical roof-top photovoltaic energy generation potential of a municipality in a high spatiotemporal resolution using a procedure that relies on geographic information systems. Posteriorly, we constrain the set of potential photovoltaic plants to the ones that would be necessary to cover the total yearly demand of the municipality. We assume that photovoltaic plants with the highest yearly yield are the ones that should be installed. For this sub-set of photovoltaic plants we consider five scenarios: 1) no storage 2) one 7 kWh battery is installed in every building with a roof-top photovoltaic plant 3) one 10 kWh battery is installed in every building with a roof-top photovoltaic plant 4) one 7 kWh battery is installed in every domestic building in the municipality 5) one 10 kWh battery is installed in every domestic building in the municipality. Afterwards we evaluate the energy balance of the municipality using a series of indicators. These indicators include: a) the total photovoltaic installed capacity, b) the total storage installed capacity, c) the output variability, d) the total unfulfilled demand, e) total excess energy, f) total properly supplied energy, g) the loss of power supply probability, h) the amount of hours of supply higher than the highest demand in a year, i) the number of hours, when supply is 1.5. times higher than the highest demand in a year, and j) the additional storage energy capacity and power required to store all excess energy generated by the photovoltaic installations. The comparison of the proposed indicators serves to quantify the contribution that household-sized small-scale storage systems would make to the energy balance of the studied municipality. Increased installed energy storage capacity allows a higher roof-top photovoltaic share and improves energy utilization, variability and reliability indicators. The proposed methodology serves also to determine the amount of storage capacity with the highest positive impact on the local energy balance.
A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves
NASA Astrophysics Data System (ADS)
Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan
2018-05-01
Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.
2014-12-01
The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.
Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galowitz, Stephen
The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven andmore » reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.« less
ERIC Educational Resources Information Center
Hilton, Lara; Libretto, Salvatore
2017-01-01
The need for evaluation capacity building (ECB) in military psychological health is apparent in light of the proliferation of newly developed, yet untested programs coupled with the lack of internal evaluation expertise. This study addresses these deficiencies by utilizing Preskill and Boyle's multidisciplinary ECB model within a post-traumatic…
Daniel W. Uresk; Deborah D. Paulson
1988-01-01
Carrying capacities for cattle competing with black-tailed prairie dogs (Cynomys ludovicianus) were estimated by a linear programming technique for management of cool-season grasses in western South Dakota. Forage utilization was allowed to range from 20% to 80%. Under management for cool-season grasses (western wheatgrass (Agropyron smithii...
NASA Astrophysics Data System (ADS)
Moazami Goodarzi, Hamed; Kazemi, Mohammad Hosein
2018-05-01
Microgrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.
Nuclear power for the future: Implications of some crisis scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, K.H.
1996-12-31
As energy issues have dropped from public awareness, electricity demand growth has remained low, deregulation has destabilized the utility decision process, and least-cost regulation has pointed utilities to gas-fired plants for those additions that are coming on-line, the nuclear power industry has begun to ask the question: What will cause nuclear energy to again compete as an option in new, domestic generating capacity additions? Since virtually all of today`s corporate and societal decisions are driven by short-term factors, the preceding question can be translated into: What crisis might occur that would project nuclear as the solution to an immediately perceivedmore » problem? Thus, an examination of scenarios that would project nuclear power into the country`s immediate consciousness is in order, along with an analysis of the implications for and challenges to the nuclear industry resulting therefrom. This paper undertakes such an analysis.« less
Feasibility of a small central cogenerated energy facility: Energy management memorandum
NASA Astrophysics Data System (ADS)
Porter, R. N.
1982-10-01
The thermal economic feasibility of a small cogenerated energy facility designed to serve several industries in the Stockyards area was investigated. Cogeneration options included two dual fuel diesels and two gas turbines, all with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired boiler cases, also low sulphur coal and municipal refuse. For coal and refuse, the option of steam only without cogeneration was also assessed. The fired boiler cogeneration systems employed back pressure steam turbines. The refuse fired cases utilized electrical capacities, 8500 to 52,400 lbm/hr and 0 to 9.9 MW (e), respectively. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which was displaced was sold to Commonwealth Edison Company under PURPA (Public Utility Regulatory Policies Act). The facility was operated by a mutually owned corporation formed by the cogenerated power users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narang, David; Ayyanar, Raja; Gemin, Paul
APS’s renewable energy portfolio, driven in part by Arizona’s Renewable Energy Standard (RES) currently includes more than 1100 MW of installed capacity, equating to roughly 3000 GWh of annual production. Overall renewable production is expected to grow to 6000 GWh by 2025. It is expected that distributed photovoltaics, driven primarily by lower cost, will contribute to much of this growth and that by 2025, distributed installations will account for half of all renewable production (3000GHW). As solar penetration increases, additional analysis may be required for routine utility processes to ensure continued safe and reliable operation of the electric distribution network.more » Such processes include residential or commercial interconnection requests and load shifting during normal feeder operations. Circuits with existing high solar penetration will also have to be studied and results will need to be evaluated for adherence to utility practices or strategy. Increased distributed PV penetration may offer benefits such as load offsetting, but it also has the potential to adversely impact distribution system operation. These effects may be exacerbated by the rapid variability of PV production. Detailed effects of these phenomena in distributed PV applications continue to be studied. Comprehensive, high-resolution electrical models of the distribution system were developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. Modeling methods were refined by validating against field measurements. To augment the field measurements, methods were developed to synthesize high resolution load and PV generation data to facilitate quasi-static time series simulations. The models were then extended to explore boundary conditions for PV hosting capability of the feeder and to simulate common utility practices such as feeder reconfiguration. The modeling and analysis methodology was implemented using open source tools and a process was developed to aid utility engineers in future interconnection requests. Methods to increase PV hosting capacity were also explored during the course of the study. A 700kVA grid-supportive inverter was deployed on the feeder and each grid support mode was demonstrated. Energy storage was explored through simulation and models were developed to calculate the optimum size and placement needed to increase PV hosting capacity. A tool was developed to aid planners in assigning relative costs and benefits to various strategies for increasing PV hosting capacity beyond current levels. Following the completion of the project, APS intends to use the tools and methods to improve the framework of future PV integration on its system. The tools and methods are also expected to aid other utilities to accelerate distributed PV deployment.« less
Enhancing data utilization through adoption of cloud-based data architectures (Invited Paper 211869)
NASA Astrophysics Data System (ADS)
Kearns, E. J.
2017-12-01
A traditional approach to data distribution and utilization of open government data involves continuously moving those data from a central government location to each potential user, who would then utilize them on their local computer systems. An alternate approach would be to bring those users to the open government data, where users would also have access to computing and analytics capabilities that would support data utilization. NOAA's Big Data Project is exploring such an alternate approach through an experimental collaboration with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Azure, and the Open Commons Consortium. As part of this ongoing experiment, NOAA is providing open data of interest which are freely hosted by the Big Data Project Collaborators, who provide a variety of cloud-based services and capabilities to enable utilization by data users. By the terms of the agreement, the Collaborators may charge for those value-added services and processing capacities to recover their costs to freely host the data and to generate profits if so desired. Initial results have shown sustained increases in data utilization from 2 to over 100 times previously-observed access patterns from traditional approaches. Significantly increased utilization speed as compared to the traditional approach has also been observed by NOAA data users who have volunteered their experiences on these cloud-based systems. The potential for implementing and sustaining the alternate cloud-based approach as part of a change in operational data utilization strategies will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electricmore » sales who initially estimates that the increase in DPV's contribution to total generation could range from 2 to 7.5 percent over the next 15 years could expect total present-value savings of approximately 4 million dollars if they could keep the severity of successive five-year misforecasts within plus or minus 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J; Stoll, Brady; Mai, Trieu T
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost.This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electric salesmore » who initially estimates that the increase in DPV's contribution to total generation could range from 2 percent to 7.5 percent over the next 15 years could expect total present-value savings of approximately $4 million if they could keep the severity of successive five-year misforecasts within +/- 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Matsuda, Mami; Suzuki, Ryosuke; Konishi, Eiji
2017-05-01
The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Richard; LoGrasso, Joseph; Monterosso, Sandra
The objective of this project was to develop Extended Range Electric Vehicle (EREV) advanced propulsion technology and demonstrate a fleet of 146 Volt EREVs to gather data on vehicle performance and infrastructure to understand the impacts on commercialization while also creating or retaining a significant number of jobs in the United States. This objective was achieved by developing and demonstrating EREVs in real world conditions with customers in several diverse locations across the United States and installing, demonstration and testing charging infrastructure while also continuing development on second generation EREV technology. The project completed the development of the Chevrolet Voltmore » and placed the vehicle in the hands of consumers in diverse locations across the United States. This demonstration leveraged the unique telematics platform of OnStar, standard on all Chevrolet Volts, to capture the operating experience that lead to better understanding of customer usage. The project team included utility partners that installed, demonstrated and tested charging infrastructure located in home, workplace and public locations to understand installation issues, customer usage and interaction with the electric grid. Development and demonstration of advanced technologies such as smart charging, fast charging and battery to grid interface were completed. The recipient collected, analyzed and reported the data generated by the demonstration. The recipient also continued to advance the technology of the Chevrolet Volt technology by developing energy storage system enhancements for the next-generation vehicle. Information gathered from the first generation vehicle will be utilized to refine the technology to reduce cost and mass while also increasing energy storage capacity to enhance adoption of the second generation technology into the marketplace. The launch of the first generation Chevrolet Volt will provide additional opportunities to further enhance the RESS (Rechargeable Energy Storage System) with each additional generation. Lessons learned from the launch of the first generation RESS will be demonstrated in the second generation to enhance adoption into the marketplace.« less
Bell, P J; Higgins, V J; Attfield, P V
2001-04-01
To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.
High degree-of-freedom dynamic manipulation
NASA Astrophysics Data System (ADS)
Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.
2012-06-01
The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.
Nunes, Paulo; Muxagata, Sara; Correia, Ana C; Nunes, Fernando M; Cosme, Fernanda; Jordão, António M
2017-11-01
Several studies have reported the influence of diverse winemaking technologies in white wine characteristics. However, the impact of the use of different oak wood barrel capacities and utilization time on the evolution of white wine phenolic content and sensorial characteristics are not usually considered. Thus the aim of this work was to evaluate the effect of oak wood barrel capacity and utilization time on the evolution of phenolic compounds, browning potential index and sensorial profile of an Encruzado white wine. For the 180 aging days considered, the use of new oak wood barrels induced a greater increase in global phenolic composition, including several individual compounds, such as gallic and ellagic acid, independently of the barrel capacity. Tendency for a lesser increase of the browning potential index values was detected for white wines aged in new oak wood barrels. The sensorial profile evolution, showed significant differences only for the aroma descriptors, namely for 'wood aroma' and 'aroma intensity', white wine aged in 225 L new oak wood barrels being the highest scored. The results show that, in general, the use of different capacities and utilization time of oak wood barrels used for white wine aging could play an important role in white wine quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load
NASA Astrophysics Data System (ADS)
Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.
2008-09-01
A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.
ERIC Educational Resources Information Center
Edge, Daniel; Oyefeso, Adenekan; Evans, Carys; Evans, Amber
2016-01-01
Objective: To determine the psychometric properties of the Montreal Cognitive Assessment (MoCA) in patients with a learning disability and examine it's utility for conducting mental capacity assessment. Method: This study was a cross-sectional, instrument validation study in an inpatient hospital setting, located in the East of England. The sample…
Using Operational Analysis to Improve Access to Pulmonary Function Testing.
Ip, Ada; Asamoah-Barnieh, Raymond; Bischak, Diane P; Davidson, Warren J; Flemons, W Ward; Pendharkar, Sachin R
2016-01-01
Background. Timely pulmonary function testing is crucial to improving diagnosis and treatment of pulmonary diseases. Perceptions of poor access at an academic pulmonary function laboratory prompted analysis of system demand and capacity to identify factors contributing to poor access. Methods. Surveys and interviews identified stakeholder perspectives on operational processes and access challenges. Retrospective data on testing demand and resource capacity was analyzed to understand utilization of testing resources. Results. Qualitative analysis demonstrated that stakeholder groups had discrepant views on access and capacity in the laboratory. Mean daily resource utilization was 0.64 (SD 0.15), with monthly average utilization consistently less than 0.75. Reserved testing slots for subspecialty clinics were poorly utilized, leaving many testing slots unfilled. When subspecialty demand exceeded number of reserved slots, there was sufficient capacity in the pulmonary function schedule to accommodate added demand. Findings were shared with stakeholders and influenced scheduling process improvements. Conclusion. This study highlights the importance of operational data to identify causes of poor access, guide system decision-making, and determine effects of improvement initiatives in a variety of healthcare settings. Importantly, simple operational analysis can help to improve efficiency of health systems with little or no added financial investment.
Yilmaz, Vedat; Ince-Yilmaz, Ebru; Yilmazel, Yasemin Dilsad; Duran, Metin
2014-06-01
In this study, biomass samples were obtained from six municipal and nine industrial full-scale anaerobic processes to investigate whether the aceticlastic methanogen population composition is related to acetate utilization capacity and the nature of the wastewater treated, i.e. municipal sludge or industrial wastewater. Batch serum bottle tests were used to determine the specific acetate utilization rate (AUR), and a quantitative real-time polymerase chain reaction protocol was used to enumerate the acetate-utilizing Methanosaeta and Methanosarcina populations in the biomass samples. Methanosaeta was the dominant aceticlastic methanogen in all samples, except for one industrial wastewater-treating anaerobic process. However, Methanosarcina density in industrial biomass samples was higher than the Methanosarcina density in the municipal samples. The average AUR values of municipal and industrial wastewater treatment plant biomass samples were 10.49 and 10.65 mg CH3COO(-)/log(aceticlastic methanogen gene copy).d, respectively. One-way ANOVA test and principle component analysis showed that the acetate utilization capacities and aceticlastic methanogen community composition did not show statistically significant correlation among the municipal digesters and industrial wastewater-treating processes investigated.
Burst switching without guard interval in all-optical software-define star intra-data center network
NASA Astrophysics Data System (ADS)
Ji, Philip N.; Wang, Ting
2014-02-01
Optical switching has been introduced in intra-data center networks (DCNs) to increase capacity and to reduce power consumption. Recently we proposed a star MIMO OFDM-based all-optical DCN with burst switching and software-defined networking. Here, we introduce the control procedure for the star DCN in detail for the first time. The timing, signaling, and operation are described for each step to achieve efficient bandwidth resource utilization. Furthermore, the guidelines for the burst assembling period selection that allows burst switching without guard interval are discussed. The star all-optical DCN offers flexible and efficient control for next-generation data center application.
Impact of ionization equilibrium on electrokinetic flow of weak electrolytes in nanochannels
NASA Astrophysics Data System (ADS)
Ji, Ziwei; Huang, Zhuo; Chen, Bowei; He, Yuhui; Tsutsui, Makusu; Miao, Xiangshui
2018-07-01
Weak electrolyte transport in nanochannels or nanopores has been actively explored in recent experiments. In this paper, we establish a new electrokinetic model where the ionization balance effect of weak electrolytes is outlined, and performed numerical calculations for H3PO4 concentration-biased nanochannel systems. By considering the roles of local chemical equilibrium in phosphorous acid ionization, the simulation results show quantitative agreement with experimental observations. Based on the model, we predict that enhanced energy harvesting capacity could be accomplished by utilizing weak electrolytes compared to the conventional strong electrolyte approaches in a concentration gradient-based power-generating system.
NASA Astrophysics Data System (ADS)
1981-01-01
The critical issues for the electricity sector in California were presented. Adopted level of electricity demand and adopted policies and supply criteria are included. These form the basis for planning and certification of electric generation and transmission facilities by the energy commission. Estimates of the potential contributions of conservation and various conventional and alternative supply sources, critiques of utility supply plans, and determinations of how much new capacity is required are also included. Policy recommendations for directing public and private investments into preferred energy options, for spreading the benefits and costs of these options broadly and fairly among California's citizens, and for removing remaining obstacles to the development of all acceptable energy sources are presented.
Air conditioning system with supplemental ice storing and cooling capacity
Weng, Kuo-Lianq; Weng, Kuo-Liang
1998-01-01
The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.
Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular
Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei
2016-01-01
The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074
Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.
Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei
2016-08-25
The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.
Capacity Reviews for Trades Training in BC
ERIC Educational Resources Information Center
Ministry of Advanced Education, 2007
2007-01-01
This report was commissioned in December 2006 to assess the capacity for trades training in the public post-secondary system with the key objectives to identify current levels of utilization for each of the top trades; identify methods of increasing capacity for top trades; and determine future levels of capacity that can be achieved without…
Weirich, Scott R; Silverstein, Joann; Rajagopalan, Balaji
2011-08-01
There is increasing interest in decentralization of wastewater collection and treatment systems. However, there have been no systematic studies of the performance of small treatment facilities compared with larger plants. A statistical analysis of 4 years of discharge monthly report (DMR) data from 210 operating wastewater treatment facilities was conducted to determine the effect of average flow rate and capacity utilization on effluent biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and fecal coliforms relative to permitted values. Relationships were quantified using generalized linear models (GLMs). Small facilities (40 m³/d) had violation rates greater than 10 times that of the largest facilities (400,000 m³/d) for BOD, TSS, and ammonia. For facilities with average flows less than 40,000 m³/d, increasing capacity utilization was correlated with increased effluent levels of BOD and TSS. Larger facilities tended to operate at flows closer to their design capacity while maintaining treatment suggesting greater efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Locational Sensitivity Investigation on PV Hosting Capacity and Fast Track PV Screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry; Ainsworth, Nathan
A 15% PV penetration threshold is commonly used by utilities to define photovoltaic (PV) screening methods where PV penetration is defined as the ratio of total solar PV capacity on a line section to peak load. However, this method doesn't take into account PV locational impact or feeder characteristics that could strongly change the feeder's capability to host PVs. This paper investigates the impact of PV location and phase connection type on PV hosting capacity, and then proposes a fast-track PV screening approach that leverages various PV hosting capacity metric responding to different PV locations and types. The proposed studymore » could help utilities to evaluate PV interconnection requests and also help increase the PV hosting capacity of distribution feeders without adverse impacts on system voltages.« less
Vazquez, Alexei
2013-01-01
The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a "metabolic cell death by overcrowding" as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0-6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6-8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6-9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.
NASA Astrophysics Data System (ADS)
Ferry Muhrom, Muhammad; Ronny Rahman Nitibaskara, Tb; Herdiansyah, Herdis; Sari, Ravita
2017-10-01
The current development of fossil energy, which is the driving force of the economy in Indonesia, is a non-renewable energy and is in need to know when it will be exhausted so it may be replaced with renewable energy. Many powerplant systems in Indonesia are still using conventional system that utilizes fossil energy as the primary energy in the process of electricity generation. The occurrence of electrical energy crisis is marked by several electricity blackout phenomenon in some areas in South Sumatera province rotately, which is the proof that the installed power capacity has exceeded the capacity of generation power. Interconnection among several islands, namely Java Island, Sumatera Island, and Bali Island which has been interconnected with closed loop system through transmission network has not been able to overcome the electrical energy crisis. This paper aims to create alternative energy potential scenarios in the province of South Sumatera in sequence/ranking by using quantitative methods with sequential explanatory model formulated in the determination of alternative energy strategies then analyzed by using Analitycal Hierarchy Process(AHP) method. The simulation results from this research indicate that geothermal energy potentials get the highest value so that it becomes the priority of alternative energy strategy in South Sumatera Province.
NASA Astrophysics Data System (ADS)
Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott
2015-03-01
A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.
Regional Renewable Energy Cooperatives
NASA Astrophysics Data System (ADS)
Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.
2014-12-01
We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and infrastructure that is highly inefficient due to overall low utilization.
Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine; Stoll, Brady; Mai, Trieu
Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work,more » we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage technologies with lower energy capacities are deployed to support solar deployment, and higher energy capacity technologies support wind. Finally, we identify potential future research and areas of improvement to build on this initial analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blodgett, Douglas; Behnke, Michael; Erdman, William
The National Renewable Energy Laboratory (NREL) and NREL Next-Generation Drivetrain Partners are developing a next-generation drivetrain (NGD) design as part of a Funding Opportunity Announcement award from the U.S. Department of Energy. The proposed NGD includes comprehensive innovations to the gearbox, generator, and power converter that increase the gearbox reliability and drivetrain capacity, while lowering deployment and operation and maintenance costs. A key task within this development effort is the power converter fault control algorithm design and associated computer simulations using an integrated electromechanical model of the drivetrain. The results of this task will be used in generating the embeddedmore » control software to be utilized in the power converter during testing of the NGD in the National Wind Technology Center 2.5-MW dynamometer. A list of issues to be addressed with these algorithms was developed by review of the grid interconnection requirements of various North American transmission system operators, and those requirements that presented the greatest impact to the wind turbine drivetrain design were then selected for mitigation via power converter control algorithms.« less
Pumphrey, Harold L.
1955-01-01
West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13,500 kilowatts of firm power upstream of the Watasheamu site, which has been proposed as the location of a storage reservoir, the principal use of which would be for irrigation and flood control purposes. Substantial storage regulation would be required because of the seasonal variation in flow; and while sufficient storage capacity is available for such regulation, its value for power development is limited because of the lack of concentration of fall below the storage sites where head could be economically developed. The Watasheamu reservoir with a powerplant near the Horseshoe: Bend site could be operated to develop about 5,400 kilowatts of continuous power in a year of average discharge; however, priority to use of water for irrigation purposes would undoubtedly require operation of the Watasheamu reservoir on a schedule unfavorable to the production of firm power. It is estimated that 47 million kilowatt-hours represents the maximum generation capability of a plant at the Horseshoe Bend site in year of average discharge and a large proportion of this amount would be generated during the period of peak irrigation demand and would be seasonal in nature. Installation of about 7,000 kilowatts of capacity in a plant at the Horseshoe Bend site appears feasible. Annual energy generation would probably be less than the maximum represented by streamflow, depending on the magnitude of releases from the Watasheamu reservoir for irrigation and the demand for seasonal power. It is judged, from a general consideration of the probable cost of the required Structures in relation to the benefits which would accrue from the power that could be produced, that development of East and West Forks Carson River for power purposes only would not be feasible.
NASA Astrophysics Data System (ADS)
Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng
2018-01-01
Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.
NASA Astrophysics Data System (ADS)
Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng
2018-06-01
Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.
Annabi, Majid; Kebriaeezadeh, Abbas; Mohammadi, Timor; Marashi Shoshtari, Seyed Nasrolah; Abedin Dorkoosh, Farid; Pourreza, Abolghasem; Heydari, Hassan
2017-01-01
The aim of this study was to measure the potential of production and the capacity used in the pharmaceutical industry. Capacity use is the actual production rate to the potential output, which reflects the gap between actual production and production capacity . Through econometric methods, translog cost function in the short run along with functions of share cost of production factors is estimated through seemingly unrelated repeated regression (SURE) as a multivariate regression analysis provided by zeller. During the study the capacity used is decreasing. The capacity used, which calculated by weighted average, also decreased and the amount during the study period is much less than the simple average of the industry. Average capacity utilization in the industry over five years of study is equal to 57% while the average capacity used calculated by the weighted of industry average is 37%. To enhance the economic potential requires a proper use of resources, creation of favorable economic structure and productivity of the industry. Due to the large amount of unused capacity in the pharmaceutical industry there is no need to invest anymore unless in new grounds and it is obvious that more investment will change using capacity.
Annabi, Majid; Kebriaeezadeh, Abbas; Mohammadi, Timor; Marashi Shoshtari, Seyed Nasrolah; Abedin Dorkoosh, Farid; Pourreza, Abolghasem; Heydari, Hassan
2017-01-01
The aim of this study was to measure the potential of production and the capacity used in the pharmaceutical industry. Capacity use is the actual production rate to the potential output, which reflects the gap between actual production and production capacity. Through econometric methods, translog cost function in the short run along with functions of share cost of production factors is estimated through seemingly unrelated repeated regression (SURE) as a multivariate regression analysis provided by zeller. During the study the capacity used is decreasing. The capacity used, which calculated by weighted average, also decreased and the amount during the study period is much less than the simple average of the industry. Average capacity utilization in the industry over five years of study is equal to 57% while the average capacity used calculated by the weighted of industry average is 37%. To enhance the economic potential requires a proper use of resources, creation of favorable economic structure and productivity of the industry. Due to the large amount of unused capacity in the pharmaceutical industry there is no need to invest anymore unless in new grounds and it is obvious that more investment will change using capacity. PMID:29552074
Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy
NASA Astrophysics Data System (ADS)
Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki
It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.
ERIC Educational Resources Information Center
Lawal, O. I.; Onipede, Omoleye; Oketoobo, E. A.; Famiwole, Remigius O.
2014-01-01
This study sought to identify the competency capacity building needs of teachers of agricultural science in the utilization of school farm for skill acquisition among secondary school students in Ondo State, Nigeria). Four research questions guided the study. The study adopted the survey research design. The population used was 422, made up of…
Light dependence of carboxylation capacity for C3 photosynthesis models
USDA-ARS?s Scientific Manuscript database
Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...
Bender, Andrew R.; Raz, Naftali
2012-01-01
Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging. PMID:22251381
Pedersen, D M; Clark, J A; Johns, R E; White, G L; Hoffman, S
1989-01-01
In this study the authors investigate the percentage of mismatch between job demands and worker physical capacity in Utah National Guard mechanics. This population had demonstrated a higher incidence of low back trouble than other job descriptions reviewed. The authors utilized onsite still and videotape photography and a computerized biomechanical strength prediction model to assess loads on the lumbosacral spine due to various job tasks. Job demands were then compared to the actual physical capacity of the individual workers based on static strength testing in job-related positions. A load cell on the testing apparatus entered the force generated into a computer which averaged the force of the last three seconds of a five-second lift. It was determined that as much as a 38% mismatch existed within this population for some job tasks which these workers were exposed to. Suggestions for preventing job-related low back cumulative trauma disorders are presented, including: engineering redesign, worker selection programs, work hardening, and others.
Environmental and energy implications of plug-in hybrid-electric vehicles.
Stephan, Craig H; Sullivan, John
2008-02-15
We analyze the effect of charging a significant number of plug-in hybrid vehicles (PHEVs) in the United States using presently available night-time spare electric capacity in the shortterm and new base-load capacity in the long term. Nationwide, there is currently ample spare night-time utility capacityto charge even a large fleet of PHEVs. Using the mix of generating plants expected to be used for PHEV charging, we find that, while driving on battery power, PHEVs compared to their conventional hybrid counterparts reduce CO2 emissions by 25% in the short term and as much as 50% in the long term. The shortterm fractional increase in demand for margin fuels such as natural gas is found to be roughly twice the fractional penetration of PHEVs into the nationwide light-duty vehicle fleet. We also compare, on an energy basis, the CO2 savings of replacing coal plants versus replacing conventional vehicles with PHEVs. The result is found to depend critically on the fuel economy of the vehicles displaced by the PHEVs.
NASA Astrophysics Data System (ADS)
Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing
2018-03-01
Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.
Investigating the Nature of and Methods for Managing Metroplex Operations
NASA Technical Reports Server (NTRS)
Atkins, Stephen; Capozzi, Brian; Hinkey, Jim; Idris, Husni; Kaiser, Kent
2011-01-01
A combination of traffic demand growth, Next Generation Air Transportation System (NextGen) technologies and operational concepts, and increased utilization of regional airports is expected to increase the occurrence and severity of coupling between operations at proximate airports. These metroplex phenomena constrain the efficiency and/or capacity of airport operations and, in NextGen, have the potential to reduce safety and prevent environmental benefits. Without understanding the nature of metroplexes and developing solutions that provide efficient coordination of operations between closely-spaced airports, the use of NextGen technologies and distribution of demand to regional airports may provide little increase in the overall metroplex capacity. However, the characteristics and control of metroplex operations have not received significant study. This project advanced the state of knowledge about metroplexes by completing three objectives: 1. developed a foundational understand of the nature of metroplexes; 2. provided a framework for discussing metroplexes; 3. suggested and studied an approach for optimally managing metroplexes that is consistent with other NextGen concepts
Sueishi, Yoshimi; Ishikawa, Misa; Yoshioka, Daisuke; Endoh, Nobuyuki; Oowada, Shigeru; Shimmei, Masashi; Fujii, Hirotada; Kotake, Yashige
2012-01-01
Recently, we proposed an oxygen radical absorbance capacity method that directly quantifies the antioxidant’s scavenging capacity against free radicals and evaluated the radical scavenging abilities for water soluble antioxidant compounds. In this study, we determined the radical scavenging abilities of lipophilic antioxidants which were solubilized by cyclodextrin in water. Commonly employed fluorescence-based method measures the antioxidant’s protection capability for the fluorescent probe, while we directly quantify free-radical level using electron paramagnetic resonance spin trapping technique. In addition, the spin trapping-based method adopted controlled UV-photolysis of azo-initiator for free radical generation, but in fluorescence-based method, thermal decomposition of azo-initiator was utilized. We determined the radical scavenging abilities of seven well-known lipophilic antioxidants (five flavonoids, resveratrol and astaxanthin), using methylated β-cyclodextrin as a solubilizer. The results indicated that the agreement between spin trapping-based and fluorescence-based values was only fair partly because of a large variation in the previous fluorescence-based data. Typical radical scavenging abilities in trolox equivalent unit are: catechin 0.96; epicatechin 0.94; epigallocatechin gallate 1.3; kaempferol 0.37; myricetin 3.2; resveratrol 0.64; and astaxanthin 0.28, indicating that myricetin possesses the highest antioxidant capacity among the compounds tested. We sorted out the possible causes of the deviation between the two methods. PMID:22448093
Sueishi, Yoshimi; Ishikawa, Misa; Yoshioka, Daisuke; Endoh, Nobuyuki; Oowada, Shigeru; Shimmei, Masashi; Fujii, Hirotada; Kotake, Yashige
2012-03-01
Recently, we proposed an oxygen radical absorbance capacity method that directly quantifies the antioxidant's scavenging capacity against free radicals and evaluated the radical scavenging abilities for water soluble antioxidant compounds. In this study, we determined the radical scavenging abilities of lipophilic antioxidants which were solubilized by cyclodextrin in water. Commonly employed fluorescence-based method measures the antioxidant's protection capability for the fluorescent probe, while we directly quantify free-radical level using electron paramagnetic resonance spin trapping technique. In addition, the spin trapping-based method adopted controlled UV-photolysis of azo-initiator for free radical generation, but in fluorescence-based method, thermal decomposition of azo-initiator was utilized. We determined the radical scavenging abilities of seven well-known lipophilic antioxidants (five flavonoids, resveratrol and astaxanthin), using methylated β-cyclodextrin as a solubilizer. The results indicated that the agreement between spin trapping-based and fluorescence-based values was only fair partly because of a large variation in the previous fluorescence-based data. Typical radical scavenging abilities in trolox equivalent unit are: catechin 0.96; epicatechin 0.94; epigallocatechin gallate 1.3; kaempferol 0.37; myricetin 3.2; resveratrol 0.64; and astaxanthin 0.28, indicating that myricetin possesses the highest antioxidant capacity among the compounds tested. We sorted out the possible causes of the deviation between the two methods.
High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria.
Chueh, William C; Falter, Christoph; Abbott, Mandy; Scipio, Danien; Furler, Philipp; Haile, Sossina M; Steinfeld, Aldo
2010-12-24
Because solar energy is available in large excess relative to current rates of energy consumption, effective conversion of this renewable yet intermittent resource into a transportable and dispatchable chemical fuel may ensure the goal of a sustainable energy future. However, low conversion efficiencies, particularly with CO(2) reduction, as well as utilization of precious materials have limited the practical generation of solar fuels. By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO(2) and H(2)O, yielding CO and H(2), respectively. Stable and rapid generation of fuel was demonstrated over 500 cycles. Solar-to-fuel efficiencies of 0.7 to 0.8% were achieved and shown to be largely limited by the system scale and design rather than by chemistry.
NASA Astrophysics Data System (ADS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.
2018-05-01
Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.
Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H
2010-02-01
Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKegg, A.
On February 6, 1987, Westinghouse Industry Services Queensland and Integrated Power Corporation (IPC) of Rockville, Maryland began their joint effort to design, build and install a hybrid photovoltaic/diesel power generation station. Installation began on June 1, 1987 and the system was operational on October 30, 1987. The system combines the quality, reliability and low operating costs of photovoltaics with the lower capital cost, high energy density and high efficiency at full load of diesel generators. The performance of the Coconut Island power system has been an unquestioned success. Power availability has exceeded 99 percent, a level comparable with local utilities.more » Energy capacity has not only met projections, but the system's flexibility has allowed energy output to be increased 40 percent beyond design level to accommodate the Islanders' enthusiastic demand for power. The power describes the design, performance, installation, and acceptance of the hybrid system. A table lists technical applications.« less
Detrimental Effects of “Stretch” Goals in Specialty Substance Use Disorder Treatment Organizations
Lemoine, G. James; Blum, Terry C.; Roman, Paul M.
2016-01-01
Background “Stretch” goals, a rarely examined concept that represents seemingly impossible, highly ambitious organizational goals ostensibly established to fill performance gaps and motivate employees, are examined within a sample of substance use disorder (SUD) treatment centers in the United States in terms of their prevalence and effects on organizational behavior. Stretch goals are defined as “seemingly impossible” goals intended to motivate employees to achieve high performance. In light of the high level of environmental change and unpredictability faced by SUD treatment centers in recent decades, we theorize that stretch goals would be both common and often detrimental (in terms of capacity utilization rate and efficiency) in these settings. Methods In a longitudinal analysis of data from leaders of a representative U. S. national sample of 219 SUD treatment centers characterized by entrepreneurial management structures, we examined the prevalence of stretch goals and their impact on key outcome variables of capacity utilization rate and efficiency. Results Widespread adoption of stretch goals was found, with 43% of our sample falling within the stretch category. Stretch goals had a negative main effect on capacity utilization rate as compared to less ambitious challenging goals. Stretch and prior performance interacted to further predict capacity utilization rate, whereas stretch and slack resource availability interacted to predict center efficiency. Discussion Although stretch goals are frequently used in the SUD treatment industry, we find them mostly detrimental to performance. Stretch goals may enhance the efficiency of treatment centers with prior limited resource availability, but they are negatively associated with capacity utilization, especially in centers with a record of already strong performance. Despite the high prevalence of such goals and positive values centered on aspirational behavior, these results strongly suggest caution in such goal setting in SUD treatment centers. PMID:26976811
Wind resource quality affected by high levels of renewables
Diakov, Victor
2015-06-17
For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less
Rapid Generation of Superheated Steam Using a Water-containing Porous Material
NASA Astrophysics Data System (ADS)
Mori, Shoji; Okuyama, Kunito
Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.
Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials
NASA Astrophysics Data System (ADS)
Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al
2018-05-01
The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.
NASA Astrophysics Data System (ADS)
Ndukwu, M. C.; Bennamoun, L.; Anozie, O.
2018-05-01
Interest in picralima nitida is growing over the years because of its therapeutic application in human and animal medicine. In many countries the dried seed is compounded and sold as drugs but there is limited information on the process variables associated with its thermal processing. The study therefore, is focused on the evolution of physical properties, heat and mass transfer coefficient, specific heat capacity, energy utilization and quality characteristics of the seed during oven and microwave drying. The goal is to generate data using theoretical and empirical steps for process model development that can be applied in dryer design. The results obtained showed that the coefficient of heat and mass transfer varied from 0.0421-1.326 W/m2 K and 1.49 × 10-7 - 8.47 × 10-6 m/s respectively while the specific heat capacity ranged between 1189 and 2531 J/ kg K. The volume of the seed shrank gradually with a non-linear exponential shape for all drying treatments. The intrinsic particle and bulk densities decreased while the porosity of the seed increased with drying period, indicating an increase in internal voids of the seeds. The energy and specific energy utilized for drying peaked after 14 h, 12 h and 7 h of continuous drying at 50, 60 and 70 °C for oven drying treatment. Effective moisture diffusivities for all treatments ranged from 5.37 × 10-10 - 1.45 × 10-7 m/s2 with activation energy of 27.82 kJ/mol and 20 W/g for oven and microwave respectively. Flavonoide was the least stable at high temperature among the screend compound.
Theoretical and simulation analysis of piezoelectric liquid resistance captor filled with pipeline
NASA Astrophysics Data System (ADS)
Zheng, Li; Zhigang, Yang; Junwu, Kan; Lisheng; Bo, Yan; Dan, Lu
2018-03-01
This paper designs a kind of Piezoelectric liquid resistance capture energy device, by using the superposition theory of the sheet deformation, the calculation model of the displacement curve of the circular piezoelectric vibrator and the power generation capacity under the concentrated load is established. The results show that the radius ratio, thickness ratio and Young’s modulus of the circular piezoelectric vibrator have greater influence on the power generation capacity. When the material of piezoelectric oscillator is determined, the best radius ratio and thickness ratio make the power generation capacity the largest. Excessive or small radius ratio and thickness ratio will reduce the generating capacity and even generate zero power. In addition, the electromechanical equivalent model is established. Equivalent analysis is made by changing the circuit impedance. The results are consistent with the theoretical simulation results, indicating that the established circuit model can truly reflect the characteristics of the theoretical model.
PVUSA: The value of photovoltaics in the distribution system. The Kerman Grid-Support Project
NASA Astrophysics Data System (ADS)
Wenger, Howard J.; Hoff, Thomas E.
1995-05-01
As part of the Photovoltaics for Utility Scale Applications Applications (PVUSA) Project Pacific Gas Electric Company (PG&E) built the Kerman 500-kW photovoltaic power plant. Located near the end of a distribution feeder in a rural section of Fresno County, the plant was not built so much to demonstrate PV technology, but to evaluate its interaction with the local distribution grid and quantify available nontraditional grid-support benefits (those other than energy and capacity). As demand for new generation began to languish in the 1980s, and siting and permitting of power plants and transmission lines became more involved, utilities began considering smaller, distributed power sources. Potential benefits include shorter construction lead time, less capital outlay, and better utilization of existing assets. The results of a PG&E study in 1990/1991 of the benefits from a PV system to the distribution grid prompted the PVUSA Project to construct a plant at Kerman. Completed in 1993, the plant is believed to be the first one specifically built to evaluate the multiple benefits to the grid of a strategically sited plant. Each of nine discrete benefits were evaluated in detail by first establishing the technical impact, then translating the results into present economic value. Benefits span the entire system from distribution feeder to the generation fleet. This work breaks new ground in evaluation of distributed resources, and suggests that resource planning practices be expanded to account for these non-traditional benefits.
Effect of Component Failures on Economics of Distributed Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin, Barry T.
2012-02-02
This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focusedmore » on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.« less
A case study predicting environmental impacts of urban transport planning in China.
Chen, Chong; Shao, Li-guo; Xu, Ling; Shang, Jin-cheng
2009-10-01
Predicting environmental impacts is essential when performing an environmental assessment on urban transport planning. System dynamics (SD) is usually used to solve complex nonlinear problems. In this study, we utilized system dynamics (SD) to evaluate the environmental impacts associated with urban transport planning in Jilin City, China with respect to the local economy, society, transport, the environment and resources. To accomplish this, we generated simulation models comprising interrelated subsystems designed to utilize changes in the economy, society, road construction, changes in the number of vehicles, the capacity of the road network capacity, nitrogen oxides emission, traffic noise, land used for road construction and fuel consumption associated with traffic to estimate dynamic trends in the environmental impacts associated with Jilin's transport planning. Two simulation scenarios were then analyzed comparatively. The results of this study indicated that implementation of Jilin transport planning would improve the current urban traffic conditions and boost the local economy and development while benefiting the environment in Jilin City. In addition, comparative analysis of the two scenarios provided additional information that can be used to aid in scientific decision-making regarding which aspects of the transport planning to implement in Jilin City. This study demonstrates that our application of the SD method, which is referred to as the Strategic Environmental Assessment (SEA), is feasible for use in urban transport planning.
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun
2015-01-01
This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512
Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less
Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...
2017-06-30
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less
NASA Astrophysics Data System (ADS)
Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol
2017-10-01
Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim
Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less
Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; ...
2014-12-18
Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less
An analysis of the impact of Renewable Portfolio Standards on residential electricity prices
NASA Astrophysics Data System (ADS)
Larson, Andrew James
A Renewable Portfolio Standard (RPS) has become a popular policy for states seeking to increase the amount of renewable energy generated for consumers of electricity. The success of these state programs has prompted debate about the viability of a national RPS. The impact that these state level policies have had on the price consumers pay for electricity is the subject of some debate. Several federal organizations have conducted studies of the impact that a national RPS would have on electricity prices paid by consumers. NREL and US EIA utilize models that analyze the inputs in electricity generation to examine the future price impact of changes to electricity generation and show marginal increases in prices paid by end users. Other empirical research has produced similar results, showing that the existence of an RPS increases the price of electricity. These studies miss important aspects of RPS policies that may change how we view these price increases from RPS policies. By examining the previous empirical research on RPS policies, this study seeks to identify the controls necessary to build an effective model. These controls are utilized in a fixed effects model that seeks to show how the controls and variables of interest impact electricity prices paid by residential consumers of electricity. This study utilizes a panel data set from 1990 to 2014 to analyze the impact of these policies controlling for generating capacity, the regulatory status of utilities in each state, demographic characteristics of the states, and fuel prices. The results of the regressions indicate that prices are likely to be higher in states that have an RPS compared to states that do not have such a policy. Several of the characteristics mentioned above have price impacts, and so discussing RPS policies in the context of other factors that contribute to electricity prices is essential. In particular, the regulatory status of utilities in each state is an important determinate of price as well as the amount of renewable energy generated in each state. There are several implications of this analysis that are relevant for policy makers who seek to gain the environmental benefits of these policies, but who are also concerned with the costs those polices may impose on consumers of electricity. First, allowing utilities as much time as possible to comply with the mandates of the RPS will mitigate the price increases associated with implementation of and compliance with the policy. Secondly, policy makers need not fear imposing high targets for their RPS as this is not associated with higher electricity prices. Finally, policy makers should be concerned with the bindingness of the policies they impose. States with non-binding policies tend to have higher electricity prices, likely due to the costs of early compliance. As such imposing interim targets may raise rates more than simply allowing compliance at a pace utilities can bear without substantially increasing prices.
Oscillatory dynamics of investment and capacity utilization
NASA Astrophysics Data System (ADS)
Greenblatt, R. E.
2017-01-01
Capitalist economic systems display a wide variety of oscillatory phenomena whose underlying causes are often not well understood. In this paper, I consider a very simple model of the reciprocal interaction between investment, capacity utilization, and their time derivatives. The model, which gives rise periodic oscillations, predicts qualitatively the phase relations between these variables. These predictions are observed to be consistent in a statistical sense with econometric data from the US economy.
NASA Astrophysics Data System (ADS)
Sierczynska, Agnieszka; Lota, Katarzyna; Lota, Grzegorz
Nickel hydroxide is used as an active material in positive electrodes of rechargeable alkaline batteries. The capacity of nickel-metal hydride (Ni-MH) batteries depends on the specific capacity of the positive electrode and utilization of the active material because of the Ni(OH) 2/NiOOH electrode capacity limitation. The practical capacity of the positive nickel electrode depends on the efficiency of the conductive network connecting the Ni(OH) 2 particle with the current collector. As β-Ni(OH) 2 is a kind of semiconductor, the additives are necessary to improve the conductivity between the active material and the current collector. In this study the effect of adding different carbon materials (flake graphite, multi-walled carbon nanotubes (MWNT)) on the electrochemical performance of pasted nickel-foam electrode was established. A method of production of MWNT special type of catalysts had an influence on the performance of the nickel electrodes. The electrochemical tests showed that the electrode with added MWNT (110-170 nm diameter) exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage and cycling stability. The nickel electrodes with MWNT addition (110-170 nm diameter) have exhibited a specific capacity close to 280 mAh g -1 of Ni(OH) 2, and the degree of active material utilization was ∼96%.
Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping
2015-05-04
Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.
Photovoltaics as a terrestrial energy source. Volume 2: System value
NASA Technical Reports Server (NTRS)
Smith, J. L.
1980-01-01
Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogh, B.; Chow, J.H.; Javid, H.S.
1983-05-01
A multi-stage formulation of the problem of scheduling generation, load shedding and short term transmission capacity for the alleviation of a viability emergency is presented. The formulation includes generation rate of change constraints, a linear network solution, and a model of the short term thermal overload capacity of transmission lines. The concept of rotating transmission line overloads for emergency state control is developed. The ideas are illustrated by a numerical example.
Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams
NASA Astrophysics Data System (ADS)
Kern, J.; Characklis, G. W.
2012-12-01
Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.
Inexpensive health care reform: the mathematics of medicine.
Forsyth, Roger A
2010-02-01
There is data to support the hypothesis that US healthcare reform will require systemic changes in their delivery system rather than a segment-by-segment approach to improving individual components such as administrative or pharmaceutical costs or illness-by-illness programs such as comparative effectiveness or disease management. Mathematically, personnel costs provide the largest potential for savings. These costs are reflected in utilization rates. However, when governments or insurers try to control utilization, shortages or dissatisfaction ensue. Therefore, reform should be structured to encourage individually initiated reductions in utilization. This can be facilitated by changing from employer-paid comprehensive group policies of variable coverage to a three-part, standardized, individually purchased, group policy with a targeted deductible and co-pays that provide disincentives to over-utilization and incentives (refunds on unused contributions) to reduce utilization. There will be a public health policy (maternal, infant, and immunizations) that will be very inexpensive and not subject to any disincentives, a catastrophic policy with a deductible and enhanced but diminishing co-pays, and a Health Savings Account that pre-positions funds to cover the deductible and co-pays. These changes will lead to a reduction in administrative costs. The excess capacity created will provide care for the currently uninsured. Savings will be refunded to individuals thereby generating taxes that can pay for needed subsidies. Reform can be inexpensive if it puts the mathematics before the politics.
Implementing PURPA : Renewable Resource Development in the Pacific Northwest : Executive Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington State Energy Office.
The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities (QFs) and purchase electricity at a rate based upon their full avoided cost of providing both capacity and energy. Facilities that qualify for PURPA benefits include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. The mandate of PURPA, coupled with the electrical energy deficits projected to occur in the Pacific Northwest by the mid 1980s, led to resurgence of interest in the development ofmore » small, decentralized, non-utility owned and operated generating stations. A variety of would-be developers conducted feasibility studies and initiated environmental permitting and power marketing discussions with appropriate authorities. While many proposed PURPA projects fill by the wayside, others were successfully brought on-line. A variety of public and private sector developers, including cities, counties, irrigation districts, utilities, ranchers, timber companies, and food processing plants, successfully negotiated PURPA-based, or share-the-savings'' power purchase contracts. Other developers run their meter backwards'' or provide energy to their local utilities at the same rate that would otherwise be paid to Bonneville. This document provides a summary resource development of these renewable projects in the Pacific Northwest.« less
The development and performance of smud grid-connected photovoltaic projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, D.E.; Collier, D.E.
1995-11-01
The utility grid-connected market has been identified as a key market to be developed to accelerate the commercialization of photovoltaics. The Sacramento Municipal Utility District (SMUD) has completed the first two years of a continuing commercialization effort based on two years of a continuing commercialization effort based on the sustained, orderly development of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system and to stimulate the collaborative processes needed to accelerate the cost reductions necessary for PV to be cost-effective in these applications bymore » the year 2000. In the first two years, SMUD has installed over 240 residential and commercial building, grid-connected, rooftop, {open_quotes}PV Pioneer{close_quotes} systems totaling over 1MW of capacity and four substation sited, grid-support PV systems totaling 600 kW bringing the SMUD distributed PV power systems to over 3.7 MW. The 1995 SMUD PV Program will add another approximately 800 kW of PV systems to the District`s distributed PV power system. SMUD also established a partnership with its customers through the PV Pioneer {open_quotes}green pricing{close_quotes} program to advance PV commercialization.« less
Development of a Greek solar map based on solar model estimations
NASA Astrophysics Data System (ADS)
Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.
2016-05-01
The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.
Optimal control, investment and utilization schemes for energy storage under uncertainty
NASA Astrophysics Data System (ADS)
Mirhosseini, Niloufar Sadat
Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency operations; (ii) optimal market strategy of buy and sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time intervals.
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda; ...
2018-03-27
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira
2018-04-18
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.
Flexible reserve markets for wind integration
NASA Astrophysics Data System (ADS)
Fernandez, Alisha R.
The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.
Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.
Cheng, Rui; Chrostowski, Lukas
2018-03-01
Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625 GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.
Eggert, Corinne; Moselle, Kenneth; Protti, Denis; Sanders, Dale
2017-01-01
Closed Loop Analytics© is receiving growing interest in healthcare as a term referring to information technology, local data and clinical analytics working together to generate evidence for improvement. The Closed Loop Analytics model consists of three loops corresponding to the decision-making levels of an organization and the associated data within each loop - Patients, Protocols, and Populations. The authors propose that each of these levels should utilize the same ecosystem of electronic health record (EHR) and enterprise data warehouse (EDW) enabled data, in a closed-loop fashion, with that data being repackaged and delivered to suit the analytic and decision support needs of each level, in support of better outcomes.
DockoMatic: automated peptide analog creation for high throughput virtual screening.
Jacob, Reed B; Bullock, Casey W; Andersen, Tim; McDougal, Owen M
2011-10-01
The purpose of this manuscript is threefold: (1) to describe an update to DockoMatic that allows the user to generate cyclic peptide analog structure files based on protein database (pdb) files, (2) to test the accuracy of the peptide analog structure generation utility, and (3) to evaluate the high throughput capacity of DockoMatic. The DockoMatic graphical user interface interfaces with the software program Treepack to create user defined peptide analogs. To validate this approach, DockoMatic produced cyclic peptide analogs were tested for three-dimensional structure consistency and binding affinity against four experimentally determined peptide structure files available in the Research Collaboratory for Structural Bioinformatics database. The peptides used to evaluate this new functionality were alpha-conotoxins ImI, PnIA, and their published analogs. Peptide analogs were generated by DockoMatic and tested for their ability to bind to X-ray crystal structure models of the acetylcholine binding protein originating from Aplysia californica. The results, consisting of more than 300 simulations, demonstrate that DockoMatic predicts the binding energy of peptide structures to within 3.5 kcal mol(-1), and the orientation of bound ligand compares to within 1.8 Å root mean square deviation for ligand structures as compared to experimental data. Evaluation of high throughput virtual screening capacity demonstrated that Dockomatic can collect, evaluate, and summarize the output of 10,000 AutoDock jobs in less than 2 hours of computational time, while 100,000 jobs requires approximately 15 hours and 1,000,000 jobs is estimated to take up to a week. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The preliminary design of a solar central receiver repowered gas/oil fired steam-Rankine cycle electric power generation plant was completed. The design is based on a central receiver technology using molten salt (60% NaNO/sub 3/, 40% KNO/sub 3/, by weight) for the heat transport and thermal storage fluid. Unit One of APS's Saguaro power plant located 43 km (27 mi) northwest of Tucson, AZ, is to be repowered. The selection of both the site and the molten salt central receiver promotes a near-term feasibility demonstration and cost-effective power production from an advanced solar thermal technology. The recommended system concept is tomore » repower the existing electric power generating system at the minimum useful level (66 MW/sub e/ gross) using a field of 4850 Martin Marietta second-generation (58.5 m/sup 2/) heliostats and a storage capacity of 4.0 hours. The storage capacity will be used to optimize dispatch of power to the utility system. The preliminary design was based on the use of the systems approach to design where the overall project was divided into systems, each of which is clearly bounded, and performs specific functions. The total project construction cost was estimated to be 213 million in 1983 dollars. The plant will be capable of displacing fossil energy equivalent to 2.4 million barrels of No. 6 oil in its first 10 years of operation.« less
Crane, Monique Frances; Brouwers, Sue; Wiggins, Mark William; Loveday, Thomas; Forrest, Kirsty; Tan, Suyin Giselle Marianne; Cyna, Allan Michael
2018-04-01
This research examined whether negative and positive arousal emotions modify the relationship between experience level and cue utilization among anesthetists. The capacity of a practitioner to form precise associations between clusters of features (e.g., symptoms) and events (e.g., diagnosis) and then act on them is known as cue utilization. A common assumption is that practice experience allows opportunities for cue acquisition and cue utilization. However, this relationship is often not borne out in research findings. This study investigates the role of emotional state in this relationship. An online tool (EXPERTise 2.0) was used to assess practitioner cue utilization for tasks relevant to anesthesia. The experience of positive and negative arousal emotions in the previous three days was measured, and emotion clusters were generated. Experience was measured as the composite of practice years and hours of practice experience. The moderating role of emotion on the relationship between experience and cue utilization was examined. Data on 125 anesthetists (36% female) were included in the analysis. The predicted interaction between arousal emotions and the experience level emerged. In particular, post hoc analyses revealed that anxiety-related emotions facilitated the likelihood of high cue utilization in less experienced practitioners. The findings suggest a role for emotions in cue use and suggest a functional role for normal range anxiety emotions in a simulated work-relevant task. This research illustrates the importance of understanding the potentially functional effects common negative arousal emotions may have on clinical performance, particularly for those with less experience.
McIntosh Unit 4 PCFB demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, A.M.; Dryden, R.J.; Morehead, H.T.
1997-12-31
The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less
Coal-fired power generaion, new air quality regulations, and future U.S. coal production
Attanasi, E.D.; Root, D.H.
1999-01-01
Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.
Modelling and simulation of fuel cell dynamics for electrical energy usage of Hercules airplanes.
Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G B; Fathi, S H
2014-01-01
Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane.
Modelling and Simulation of Fuel Cell Dynamics for Electrical Energy Usage of Hercules Airplanes
Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G. B.; Fathi, S. H.
2014-01-01
Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane. PMID:24782664
NASA Technical Reports Server (NTRS)
Bartle, John R.; Bowen, Brent D.; Gogos, George; Hinton, David W.; Holmes, Bruce J.; Lehrer, Henry R.; Moussavi, Massoum; Reed, B. J.; Schaaf, Michaela M.; Smith, Russell L.
2000-01-01
NASA, the U.S. Department of Transportation/Federal Aviation Administration, industry stakeholders, and academia have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to improve air access and bring next-generation technologies to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, SATS stakeholders must plan, coordinate, and implement a comprehensive upgrade of public infrastructure within the framework of the national air transportation system. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the under-utilized airspace and general aviation facilities. The SATS investments, which begin in FY 2001, are designed to support the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.
Utility Sector Impacts of Reduced Electricity Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Katie
2014-12-01
This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes tomore » capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.« less
Municipal GIS incorporates database from pipe lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
League City, a coastal area community of about 35,000 population in Galveston County, Texas, has developed an impressive municipal GIS program. The system represents a textbook example of what a municipal GIS can represent and produce. In 1987, the city engineer was authorized to begin developing the area information system. City survey personnel used state-of-the-art Global Positioning System (GPS) technology to establish a first order monumentation program with a grid of 78 monuments set over 54 sq mi. Street, subdivision, survey, utilities, taxing criteria, hydrology, topography, environmental and other concerns were layered into the municipal GIS database program. Today, areamore » developers submit all layout, design, and land use plan data to the city in digital format without hard copy. Multi-color maps with high resolution graphics can be quickly generate for cross-referenced queries sensitive to political, environmental, engineering, taxing, and/or utility capacity jurisdictions. The design of both the GIS and data base system are described.« less
Overview of psychiatric ethics V: utilitarianism and the ethics of duty.
Robertson, Michael; Morris, Kirsty; Walter, Garry
2007-10-01
The aim of this paper is to describe the ethical theories of utilitarianism and the ethics of duty (Kant's ethics) and to evaluate their value as theoretical bases of psychiatric ethics. Utilitarianism is a well-established moral philosophy and has significant instrumental value in dealing with common ethical problems faced by psychiatrists. Despite its capacity to generate solutions to ethical problems, utilitarianism requires a process of what Rawls described as 'reflective equilibrium' to avoid morally repugnant choices, based on utility. The criticisms of utilitarianism, such as the problems of quantifying utility and the responsibility for consequences, are very relevant for psychiatry. Singer's model of utilitarian thinking is particularly problematic for our profession. Kant's ethics provides the pretext for duty bound codes of ethics for psychiatrists, but suffers from problems of flawed claims to the universalizability prescribed by Kant's 'categorical imperative'. Kant's valorization of reason as the core of the autonomy of persons is a valuable insight in understanding psychiatrists' ethical obligations to their patients.
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Sanz, Santiago; León, Andrés; Fraser, Jim; Neumann, Holger
2017-12-01
Superconducting generators (SCG) show the potential to reduce the head mass of large offshore wind turbines. By evaluating the availability and required cooling capacity in the temperatures range around 20 K, a Gifford-McMahon (GM) cryocooler among all the candidates was selected. The cold head of GM cryocooler is supposed to rotate together with the rotating superconducting coil. However, the scroll compressor of the GM cryocooler must stay stationary due to lubricating oil. As a consequence, a rotary helium union (RHU) utilizing Ferrofluidic® sealing technology was successfully developed to transfer helium gas between the rotating cold head and stationary helium compressor at ambient temperatures. It contains a high-pressure and low-pressure helium path with multiple ports, respectively. Besides the helium line, slip rings with optical fiber channels are also integrated into this RHU to transfer current and measurement signals. With promising preliminary test results, the RHU will be installed in a demonstrator of SCG and further performance investigation will be performed.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1981-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
de Chantal, Pier-Luc; Markovits, Henry
2017-02-01
There is little consensus about the nature of logical reasoning and, equally important, about how it develops. To address this, we looked at the early origins of deductive reasoning in preschool children. We examined the contribution of two factors to the reasoning ability of very young children: inhibitory capacity and the capacity to generate alternative ideas. In a first study, a total of 32 preschool children were all given generation, inhibition, and logical reasoning measures. Logical reasoning was measured using knowledge-based premises such as "All dogs have legs," and two different inferences: modus ponens and affirmation of the consequent. Results revealed that correctly reasoning with both inferences is not related to the measure of inhibition, but is rather related to the capacity to generate alternative ideas. In a second study, 32 preschool children were given either the generation or the inhibition task before the logical reasoning measure. Results showed that receiving the generation task beforehand significantly improved logical reasoning compared to the inhibition task given beforehand. Overall, these results provide evidence for the greater importance of idea generation in the early development of logical reasoning.
Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y.
2013-01-01
Background When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. Methods This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Results Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. Conclusions When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs. PMID:23717590
Augmenting transport versus increasing cold storage to improve vaccine supply chains.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macknick, Jordan; Zhou, Ella; O'Connell, Matthew
The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impactsmore » on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.« less
Probandari, Ari; Arcita, Akhda; Kothijah, Kothijah; Pamungkasari, Eti Poncorini
2017-08-07
Maternal health remains a persisting public health challenge in Indonesia. Postnatal complications, in particular, are considered as maternal health problems priority that should be addressed. Conducting adequate care for postnatal complications will improve the quality of life of mothers and babies. With the universal health coverage implementation, the Indonesian government provides free maternal and child health services close to clients at the village level, which include postnatal care. Our study aimed to explore barriers to utilization of postnatal care at the village level in Klaten district, Central Java Province, Indonesia. A qualitative study was conducted in March 2015 - June 2016 in Klaten district, Central Java, Indonesia. We selected a total of 19 study participants, including eight mothers with postnatal complications, six family members, and five village midwives for in-depth interviews. We conducted a content analysis technique on verbatim transcripts of the interviews using open code software. This study found three categories of barriers to postnatal care utilization in villages: mother and family members' health literacy on postnatal care, sociocultural beliefs and practices, and health service responses. Most mothers did not have adequate knowledge and skills regarding postnatal care that reflected how they lacked awareness and practice of postnatal care. Inter-generational norms and myths hindered mothers from utilizing postnatal care and from having adequate nutritional intake during the postnatal period. Mothers and family members conducted unsafe self-treatment to address perceived minor postnatal complication. Furthermore, social power from extended family influenced the postnatal care health literacy for mother and family members. Postnatal care in the village lacked patient-centered care practices. Additionally, midwives' workloads and capacities to conduct postnatal information, education and counseling were also issues. Despite the government's efforts to provide free postnatal care closer to mothers' homes, other barriers to postnatal care utilization remained. Specifically, among mothers, community, and health services. An innovative approach to increase the health literacy on postnatal care is required. In particular, improving the capacity of midwives to conduct patient-centered care. In addition, village midwives' tasks should be evaluated and reoriented.
Can industry`s `fourth` fossil fuel establish presence in US?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armor, A.F.; Dene, C.E.
1996-09-01
After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion nowmore » fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.« less
Gecko-inspired bidirectional double-sided adhesives.
Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping
2014-05-14
A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.
Cairo, Sarah B; Kalisya, Luc Malemo; Bigabwa, Richard; Rothstein, David H
2018-03-01
Characterize pediatric surgical capacity in the eastern Democratic Republic of Congo (DRC) to identify areas of potential improvement. The Pediatric Personnel, Infrastructure, Procedures, Equipment, and Supplies (PediPIPES) survey was used in two representative eastern DRC provinces to assess existing surgical infrastructure and capacity. We compared our results to previously published reports from other sub-Saharan African countries. Fourteen hospitals in the eastern DRC and 37 in 19 sub-Saharan African (SSA) countries were compared. The average PediPIPES index for the DRC was 7.7 compared to 13.5 for SSAs. The greatest disparities existed in the areas of personnel and infrastructure. Running water was reportedly available to 57.1% of the hospitals in the DRC, and the majority of hospitals (78.6%) were dependent on generators and solar panels for electricity. Only two hospitals in the DRC (14.3%) reported a pediatric surgeon equivalent on staff, compared to 86.5% of facilities sampled in SSA reporting ≥ 1 pediatric surgeon. Significant barriers in personnel, infrastructure, procedures, equipment, and supplies impede the provision of adequate surgical care to children. Further work is needed to assess allocation and utilization of existing resources, and to enhance training of personnel with specific attention to pediatric surgery.
Building Evaluation Capacity in Local Programs for Multisite Nutrition Education Interventions
ERIC Educational Resources Information Center
Fourney, Andrew; Gregson, Jennifer; Sugerman, Sharon; Bellow, Andrew
2011-01-01
From 2004-2008, capacity to conduct program evaluation was built among the "Network for a Healthy California's" 48 largest local partners. Capacity building was done within a framework of Empowerment Evaluation and Utility-Focused evaluation. Tools included: a Scope of Work template, a handbook, a compendium of surveys, an evaluation…
Van Bebber, Stephanie L; Trosman, Julia R; Liang, Su-Ying; Wang, Grace; Marshall, Deborah A; Knight, Sara; Phillips, Kathryn A
2011-01-01
This article focuses on the overarching question: how can we use existing data to develop the capacity to improve the evidence base on personalized medicine technologies and particularly regarding their utilization and clinical utility? We focus on data from health payers who are key stakeholders in capacity building, as they need data to guide decisions and they develop data as part of operations. Broadly defined, health payers include insurance carriers, third party payers, health-plan sponsors and organized delivery systems. Data from health payers have not yet been widely used to assess personalized medicine. Now, with an increasing number of personalized technologies covered and reimbursed by health payers, and an increasing number of emerging technologies that will require policy decisions, there is a great opportunity to develop the evidence base using payer data and by engaging with these stakeholders. Here, we describe data that are available from, and are being developed by, health payers and assess how these data can be further developed to increase the capacity for future research, using three examples. The examples suggest that payer data can be used to examine clinical utility and approaches can be developed that simultaneously address the characteristics of personalized medicine, real world data and organizations. These examples can now help us to elucidate how to best examine clinical utility in actual practice and build evaluation approaches that can be applied to future technologies. PMID:21857867
Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew; ...
2018-04-05
The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew
The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less
Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators
Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok
2015-01-01
The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204
Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.
Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok
2015-07-03
The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.
2013-01-01
Background The bacterium Escherichia coli can be grown employing various carbohydrates as sole carbon and energy source. Among them, glucose affords the highest growth rate. This sugar is nowadays widely employed as raw material in industrial fermentations. When E. coli grows in a medium containing non-limiting concentrations of glucose, a metabolic imbalance occurs whose main consequence is acetate secretion. The production of this toxic organic acid reduces strain productivity and viability. Solutions to this problem include reducing glucose concentration by substrate feeding strategies or the generation of mutant strains with impaired glucose import capacity. In this work, a collection of E. coli strains with inactive genes encoding proteins involved in glucose transport where generated to determine the effects of reduced glucose import capacity on growth rate, biomass yield, acetate and production of an experimental plasmid DNA vaccine (pHN). Results A group of 15 isogenic derivatives of E. coli W3110 were generated with single and multiple deletions of genes encoding glucose, mannose, beta-glucoside, maltose and N-acetylglucosamine components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), as well as the galactose symporter and the Mgl galactose/glucose ABC transporter. These strains were characterized by growing them in mineral salts medium supplemented with 2.5 g/L glucose. Maximum specific rates of glucose consumption (qs) spanning from 1.33 to 0.32 g/g h were displayed by the group of mutants and W3110, which resulted in specific growth rates ranging from 0.65-0.18 h-1. Acetate accumulation was reduced or abolished in cultures with all mutant strains. W3110 and five selected mutant derivatives were transformed with pHN. A 3.2-fold increase in pHN yield on biomass was observed in cultures of a mutant strain with deletion of genes encoding the glucose and mannose PTS components, as well as Mgl. Conclusions The group of E. coli mutants generated in this study displayed a reduction or elimination of overflow metabolism and a linear correlation between qs and the maximum specific growth rate as well as the acetate production rate. By comparing DNA vaccine production parameters among some of these mutants, it was possible to identify a near-optimal glucose import rate value for this particular application. The strains employed in this study should be a useful resource for studying the effects of different predefined qs values on production capacity for various biotechnological products. PMID:23638701
Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)
NASA Astrophysics Data System (ADS)
Arsali, Mohammad H.
1998-12-01
The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.
Urayama, Shiro
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth and fifth leading cause of cancer death for each gender in developed countries. With lack of effective treatment and screening scheme available for the general population, the mortality rate is expected to increase over the next several decades in contrast to the other major malignancies such as lung, breast, prostate and colorectal cancers. Endoscopic ultrasound, with its highest level of detection capacity of smaller pancreatic lesions, is the commonly employed and preferred clinical imaging-based PDAC detection method. Various molecular biomarkers have been investigated for characterization of the disease, but none are shown to be useful or validated for clinical utilization for early detection. As seen from studies of a small subset of familial or genetically high-risk PDAC groups, the higher yield and utility of imaging-based screening methods are demonstrated for these groups. Multiple recent studies on the unique cancer metabolism including PDAC, demonstrate the potential for utility of the metabolites as the discriminant markers for this disease. In order to generate an early PDAC detection screening strategy available for a wider population, we propose to expand the population of higher risk PDAC group with combination clinical and metabolomics parameters. PMID:25684935
Manatee lays groundwork for commercial use of Orimulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makansi, J.
1994-09-01
This article describes the conversion of an oil fired plant to Orimulsion described as a fourth fossil fuel, Orimulsion will replace oil at FP and L's Manatee station. The project involves unique business arrangements as well as important combustion, emissions control, and fuel handling system modifications. Florida Power and Light Co (FP and L) spent several years investigating the use of Orimulsion, including a full-scale five-months demonstration at its Sanford Station Unit 4. Now, the utility has taken the next giant leap; it has committed to convert the Manatee station for full-scale use of this unique fuel. The resulting projectmore » breaks new ground in the electric-generating business in several ways, including these: It represents the first long-term commercial contract for use of Orimulsion in the US, and the largest commitment world-wide. It involves unique business arrangements--not the least of which is the second major contract at an electric-utility station for a third-party-owned and operated flue-gas desulfurization (FGD) system. It indicates risk-taking on the part of utilities--with two 800-MW units, Manatee embodies a substantial amount of FP and L's total and incremental capacity base.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... 945-kW turbine-generator units for a total installed capacity of 1,890 kW; (9) a 14.5-foot-long... a 600-kW turbine-generator unit and a 1,200-kW turbine-generator unit for a total installed capacity...-wide concrete-brick powerhouse containing a 600-kW turbine-generator unit and a 700-kW turbine...
Game-theoretic equilibrium analysis applications to deregulated electricity markets
NASA Astrophysics Data System (ADS)
Joung, Manho
This dissertation examines game-theoretic equilibrium analysis applications to deregulated electricity markets. In particular, three specific applications are discussed: analyzing the competitive effects of ownership of financial transmission rights, developing a dynamic game model considering the ramp rate constraints of generators, and analyzing strategic behavior in electricity capacity markets. In the financial transmission right application, an investigation is made of how generators' ownership of financial transmission rights may influence the effects of the transmission lines on competition. In the second application, the ramp rate constraints of generators are explicitly modeled using a dynamic game framework, and the equilibrium is characterized as the Markov perfect equilibrium. Finally, the strategic behavior of market participants in electricity capacity markets is analyzed and it is shown that the market participants may exaggerate their available capacity in a Nash equilibrium. It is also shown that the more conservative the independent system operator's capacity procurement, the higher the risk of exaggerated capacity offers.
NASA Astrophysics Data System (ADS)
Wang, Jie; Ran, Ran; Tade, Moses O.; Shao, Zongping
2014-05-01
Mesoporous three-dimensional (3D) TiO2/carbon nanotube conductive hybrid nanostructures can be successfully developed using polyethylene oxide (PEO) to modify the surfaces of carbon nanotubes (CNTs). During the synthesis process, PEO acts as not only "bridges" to connect the TiO2 nanoparticles to the CNT surfaces but also as "hosts" to accommodate and stabilize the in situ generated TiO2 particles. As the electrodes for lithium-ion batteries, such mesoporous 3D TiO2/CNT hybrids, demonstrate high Li storage capacity, superior rate performance and excellent long-term cycling stability. They exhibit a reversible specific capacity of 203 mA h g-1 at 100 mA g-1 and a stable capacity retention of 91 mA h g-1 at 8000 mA g-1 (47.6 C) over 100 cycles; they also retain approximately 90% (71 mA h g-1) of their initial discharge capacity after 900 cycles at an extremely high rate of 15,000 mA g-1 (89 C). This facile synthetic strategy to construct mesoporous 3D TiO2/CNT conductive hybrids provides a convenient route that efficiently assembles various inorganic oxide components on the CNTs' surfaces and enables the formation of heterogeneous nanostructures with novel functionalities. In particular, utilizing a conductive 3D CNT network can serve as a promising strategy for developing high-performance electrodes for Li secondary batteries and supercapacitors.
Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Puleo, Bernadette J.
2008-01-01
An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.
Jiang, Zhou; Jin, Peizhen; Mishra, Nishikant; Song, Malin
2017-09-01
The problems with China's regional industrial overcapacity are often influenced by local governments. This study constructs a framework that includes the resource and environmental costs to analyze overcapacity using the non-radial direction distance function and the price method to measure industrial capacity utilization and market segmentation in 29 provinces in China from 2002 to 2014. The empirical analysis of the spatial panel econometric model shows that (1) the industrial capacity utilization in China's provinces has a ladder-type distribution with a gradual decrease from east to west and there is a severe overcapacity in the traditional heavy industry areas; (2) local government intervention has serious negative effects on regional industry utilization and factor market segmentation more significantly inhibits the utilization rate of regional industry than commodity market segmentation; (3) economic openness improves the utilization rate of industrial capacity while the internet penetration rate and regional environmental management investment have no significant impact; and(4) a higher degree of openness and active private economic development have a positive spatial spillover effect, while there is a significant negative spatial spillover effect from local government intervention and industrial structure sophistication. This paper includes the impact of resources and the environment in overcapacity evaluations, which should guide sustainable development in emerging economies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waliyo
Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less
Public Utility Commission manual for Section 210 of PURPA for Vermont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Public Utility Regulatory Policies Act of 1978 (PURPA) places obligations on both electric utilities and state regulatory commissions. PURPA requires every electric utility to purchase all energy and capacity made available to it, by a qualifying facility, and to sell energy and capacity to a qualifying facility upon the qualifying facility's request. State regulatory commissions must implement and administer these utility obligations and other requirements that were implemented by the Federal Energy Regulatory Commission's (FERC) final rules, which became effective March 20, 1981, and must set fair rates for electric power purchases and sales between utilities and small powermore » producers. This manual provides a concise, annotated explanation of the final FERC rules, a description of federal and state statutory authorizations, court challenges to these authorizations, analysis of the relationship between federal and state laws, analysis of Vermont's implementation of section 210 of PURPA and for comparison, annotations of selected state regulatory authority decisions.« less
Public Utility Commission manual for Section 210 of PURPA for Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Public Utility Regulatory Policies Act of 1978 (PURPA) places obligations on both electric utilities and state regulatory commissions. PURPA requires every electric utility to purchase all energy and capacity made available to it, by a qualifying facility, and to sell energy and capacity to a qualifying facility upon the qualifying facility's request. State regulatory commissions must implement and administer these utility obligations and other requirements that were implemented by the Federal Energy Regulatory Commission's (FERC) final rules, which became effective March 20, 1981; and must set fair rates for electric power purchases and sales between utilities and small powermore » producers. This manual provides a concise, annotated explanation of the final FERC rules, a description of federal and state statutory authorizations, court challenges to these authorizations analysis of the relationship between federal and state laws, analysis of Montana's implementation of section 210 of PURPA and for comparison, annotations of selected state regulatory authority decisions.« less
Public Utility Commission manual for Section 210 of PURPA for Arkansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Public Utility Regulatory Policies Act of 1978 (PURPA) places obligations on both electric utilities and state regulatory commissions. PURPA requires every electric utility to purchase all energy and capacity made available to it, by a qualifying facility, and to sell energy and capacity to a qualifying facility upon the qualifying facility's request. State regulatory commissions must implement and administer these utility obligations and other requirements that were implemented by the Federal Energy Regulatory Commission's (FERC) final rules, which became effective March 20, 1981; and must set fair rates for electric power purchases and sales between utilities and small powermore » producers. This manual provides a concise, annotated explanation of the final FERC rules, a description of federal and state statutory authorizations, court challenges to these authorizations, analysis of the relationship between federal and state laws, analysis of Arkansas' implementation of section 210 of PURPA and for comparison, annotations of selected state regulatory authority decisions.« less
NASA Astrophysics Data System (ADS)
Flores, Robert Joseph
Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.
Power system and market integration of renewable electricity
NASA Astrophysics Data System (ADS)
Erdmann, Georg
2017-07-01
This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the "Merit order effect of renewables". According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.
The feasibility of applying geopressured-geothermal resources to direct uses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunis, B.C.; Negus-de Wys, J.; Plum, M.M.
1991-09-01
This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods rangingmore » from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.« less
The feasibility of applying geopressured-geothermal resources to direct uses
NASA Astrophysics Data System (ADS)
Lunis, Ben C.; Dewys, Jane Negus; Plum, Martin M.; Lienau, Paul J.; Spencer, F. J.; Nitschke, George F.
1991-09-01
This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combinations of direct uses received economic evaluation that resulted in 15 percent discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation; thus power utilities have been selling power for less than two cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.
SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS
Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.
2007-01-01
Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656
China and the United States - A Comparison of Green Energy Programs and Policies
2010-06-14
China to add an average of 53 gigawatts (GW) of electric capacity each year over the last ten years to its power generation capabilities. China...power capacity has gone from 0.567 GW in 2003 to 12.2 GW in 2008. Plans already exist to grow China’s wind power capacity to 100 GW by 2020. A similar...goal exists for the solar photovoltaic power sector which China intends to increase generating capacity from 0.14 GW as of 2009 to over 1.8 GW by
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
Kanerva's sparse distributed memory with multiple hamming thresholds
NASA Technical Reports Server (NTRS)
Pohja, Seppo; Kaski, Kimmo
1992-01-01
If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.
Criterion 2: Maintenance of productive capacity of forest ecosystems
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
People rely on forests, directly and indirectly, for a wide range of goods and services. Measures of forest productive capacity are indicators of the ability of forests to sustainably supply goods and services over time. An ongoing emphasis on maintaining productive capacity of forests can help ensure that utilization of forest resources does not impair long term...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM04-7-006] Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary Services by Public Utilities... to Order No. 697- C.\\1\\ \\1\\ Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and...
Arfa, Chokri; Leleu, Hervé; Goaïed, Mohamed; van Mosseveld, Cornelis
2017-01-01
Background: Public district hospitals (PDHs) in Tunisia are not operating at full plant capacity and underutilize their operating budget. Methods: Individual PDHs capacity utilization (CU) is measured for 2000 and 2010 using dual data envelopment analysis (DEA) approach with shadow prices input and output restrictions. The CU is estimated for 101 of 105 PDH in 2000 and 94 of 105 PDH in 2010. Results: In average, unused capacity is estimated at 18% in 2010 vs. 13% in 2000. Of PDHs 26% underutilize their operating budget in 2010 vs. 21% in 2000. Conclusion: Inadequate supply, health quality and the lack of operating budget should be tackled to reduce unmet user’s needs and the bypassing of the PDHs and, thus to increase their CU. Social health insurance should be turned into a direct purchaser of curative and preventive care for the PDHs. PMID:28005538
The impact of a large penetration of intermittent sources on the power system operation and planning
NASA Astrophysics Data System (ADS)
Ausin, Juan Carlos
This research investigated the impact on the power system of a large penetration of intermittent renewable sources, mainly wind and photovoltaic generation. Currently, electrical utilities deal with wind and PV plants as if they were sources of negative demand, that is to say, they have no control over the power output produced. In this way, the grid absorbs all the power fluctuation as if it were coming from a common load. With the level of wind penetration growing so quickly, there is growing concern amongst the utilities and the grid operators, as they will have to deal with a much higher level of fluctuation. In the same way, the potential cost reduction of PV technologies suggests that a similar development may be expected for solar production in the mid term. The first part of the research was focused on the issues that affect utility planning and reinforcement decision making. Although DG is located mainly on the distribution network, a large penetration may alter the flows, not only on the distribution lines, but also on the transmission system and through the transmission - distribution interfaces. The optimal capacity and production costs for the UK transmission network have been calculated for several combinations of load profiles and typical wind/PV output scenarios. A full economic analysis is developed, showing the benefits and disadvantages that a large penetration of these distributed generators may have on transmission system operator reinforcement strategies. Closely related to planning factors are institutional, revelatory, and economic considerations, such as transmission pricing, which may hamper the integration of renewable energy technologies into the electric utility industry. The second part of the research related to the impact of intermittent renewable energy technologies on the second by second, minute by minute, and half-hour by half-hour operations of power systems. If a large integration of these new generators partially replaces the conventional rotating machines the aggregate fluctuation starts to become an important factor, and should be taken into account for the calculation of the balancing requirements. Additional balancing requirements would increase the total balancing cost and this could stop the future development of the intermittent sources.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
...-kilowatt (kW) turbine/generator unit; and (2) an approximately 1,290-foot-long, 26-inch-diameter high...); (2) an existing structure which will house a single turbine/generator with an installed capacity of... structure which will house a single turbine/generator unit with an installed capacity of 50 kW; (3) a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... bank of the canal; (4) two turbine-generator units providing a combined installed capacity of 2 MW; (5... powerhouse located on the bank of the Muskingum River opposite the existing lock; (3) two turbine-generator... opposite the existing lock; (3) two turbine-generator units providing a combined installed capacity of 4 MW...
Research culture and capacity in community health services: results of a structured survey of staff.
Friesen, Emma L; Comino, Elizabeth J
2017-05-01
Developing research capacity is recognised as an important endeavour. However, little is known about the current research culture, capacity and supports for staff working in community-based health settings. A structured survey of Division of Community Health staff was conducted using the research capacity tool. The survey was disseminated by email and in paper format. Quantitative data were analysed using descriptive statistics. Qualitative data were analysed thematically. In total, 109 usable responses were received, giving a response rate of 26%. Respondents were predominately nurses (n=71, 65.7%), with ~50% reporting post-graduate vocational qualifications. The highest levels of skills or organisational success were in using evidence to plan, promote and guide clinical practice. Most participants were unsure of organisational and team level skills and success at generating research. Few reported recent experience in research-generating activities. Barriers to undertaking research included lack of skills, time and access to external support and funding. Lack of skills and success in accessing external funding and resources to protect research time or to 'buy-in' technical expertise appeared to exacerbate these barriers. Community health staff have limited capacity to generate research with current levels of skill, funding and time. Strategies to increase research capacity should be informed by knowledge of clinicians' research experience and interests, and target development of skills to generate research. Resources and funding are needed at the organisational and team levels to overcome the significant barriers to research generation reported.
Design and Control of a Pneumatically Actuated Transtibial Prosthesis.
Zheng, Hao; Shen, Xiangrong
2015-04-01
This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided by this highly competitive actuator. In this paper, the design details of the prosthesis are described, including the determination of performance specifications, the layout of the actuation mechanism, and the calculation of the torque capacity. Through the authors' design calculation, the prosthesis is able to provide sufficient range of motion and torque capacity to support the locomotion of a 75 kg individual. The controller design is also described, including the underlying biomechanical analysis and the formulation of the finite-state impedance controller. Finally, the human subject testing results are presented, with the data indicating that the prosthesis is able to generate a natural walking gait and sufficient power output for its amputee user.
A new method of testing pile using dynamic P-S-curve made by amplitude of wave train
NASA Astrophysics Data System (ADS)
Hu, Yi-Li; Xu, Jun; Duan, Yong-Kong; Xu, Zhao-Yong; Yang, Run-Hai; Zhao, Jin-Ming
2004-11-01
A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibration graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is discussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P( Q)- S curve.
Demmig-Adams, Barbara; Stewart, Jared J.; Adams, William W.
2014-01-01
This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source–sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges. PMID:24591724
NASA Astrophysics Data System (ADS)
Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu
2017-12-01
Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.
Design and Control of a Pneumatically Actuated Transtibial Prosthesis
Zheng, Hao; Shen, Xiangrong
2015-01-01
This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided by this highly competitive actuator. In this paper, the design details of the prosthesis are described, including the determination of performance specifications, the layout of the actuation mechanism, and the calculation of the torque capacity. Through the authors’ design calculation, the prosthesis is able to provide sufficient range of motion and torque capacity to support the locomotion of a 75 kg individual. The controller design is also described, including the underlying biomechanical analysis and the formulation of the finite-state impedance controller. Finally, the human subject testing results are presented, with the data indicating that the prosthesis is able to generate a natural walking gait and sufficient power output for its amputee user. PMID:26146497
Surface modified CF x cathode material for ultrafast discharge and high energy density
Dai, Yang; Zhu, Yimei; Cai, Sendan; ...
2014-11-10
Li/CF x primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CF x, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CF x. The modified CF x, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yieldingmore » a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less
Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K
2015-01-01
The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.
Li, Xiaomeng; Yang, Zhuo
2017-01-01
As a sustainable transportation mode, high-speed railway (HSR) has become an efficient way to meet the huge travel demand. However, due to the high acquisition and maintenance cost, it is impossible to build enough infrastructure and purchase enough train-sets. Great efforts are required to improve the transport capability of HSR. The utilization efficiency of train-sets (carrying tools of HSR) is one of the most important factors of the transport capacity of HSR. In order to enhance the utilization efficiency of the train-sets, this paper proposed a train-set circulation optimization model to minimize the total connection time. An innovative two-stage approach which contains segments generation and segments combination was designed to solve this model. In order to verify the feasibility of the proposed approach, an experiment was carried out in the Beijing-Tianjin passenger dedicated line, to fulfill a 174 trips train diagram. The model results showed that compared with the traditional Ant Colony Algorithm (ACA), the utilization efficiency of train-sets can be increased from 43.4% (ACA) to 46.9% (Two-Stage), and 1 train-set can be saved up to fulfill the same transportation tasks. The approach proposed in the study is faster and more stable than the traditional ones, by using which, the HSR staff can draw up the train-sets circulation plan more quickly and the utilization efficiency of the HSR system is also improved. PMID:28489933
Organizational capacity needs of consumer-run organizations.
Wituk, Scott; Vu, Chi C; Brown, Louis D; Meissen, Greg
2008-05-01
Consumer-run organizations (CROs) are self-help oriented organizations that are run entirely by consumers (people who use or have used mental health services). The current study utilizes an organizational capacity framework to explore the needs of operating CROs. This framework includes four core capacity areas: (1) technical, (2) management, (3) leadership, and (4) adaptive capacity. An analysis reveals that the greatest organizational needs are related to technical and management capacities. Implications are discussed in terms of strategies and activities that CRO leaders and mental health professionals and administrators can use to strengthen the organizational capacity of CROs in their community.
An integrated approach to evaluate food antioxidant capacity.
Sun, T; Tanumihardjo, S A
2007-11-01
Many methods are available for determining food antioxidant capacity, which is an important topic in food and nutrition research and marketing. However, the results and inferences from different methods may vary substantially because each complex chemical reaction generates unique values. To get a complete and dynamic picture of the ranking of food antioxidant capacity, relative antioxidant capacity index (RACI), a hypothetical concept, is created from the perspective of statistics by integrating the antioxidant capacity values generated from different in vitro methods. RACI is the mean value of standard scores transformed from the initial data generated with different methods for each food item. By comparing the antioxidant capacity of 20 commonly consumed vegetables in the U.S. market that were measured with 7 chemical methods, we demonstrated that the RACI correlated strongly with each method. The significant correlation of RACI with an independent data set further confirmed that RACI is a valid tool to assess food antioxidant capacity. The key advantage of this integrated approach is that RACI is in a numerical scale with no units and has consistent agreement with chemical methods. Although it is a relative index and may not represent a specific antioxidant property of different food items, RACI provides a reasonably accurate rank of antioxidant capacity among foods. Therefore, it can be used as an integrated approach to evaluate food antioxidant capacity.
Feng, Yuan Z; Nikolić, Nataša; Bakke, Siril S; Boekschoten, Mark V; Kersten, Sander; Kase, Eili T; Rustan, Arild C; Thoresen, G Hege
2014-02-01
The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
... submersible turbine/generator unit in the hydro canal bank and provide for seasonal fluctuations of head pond... generating unit would have an installed capacity of 534 kW and an estimated hydraulic capacity of 280 cfs...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoffield, Don R; Smart, John; Salisbury, Shawn
2015-03-01
As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles andmore » utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan
Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less
Wen, Bohua; Khalifah, Peter G.; Liu, Jue; ...
2016-04-12
The structure of the novel compound Li 3Mo 4P 5O 24 has been solved from single crystal X-ray diffraction data. The Mo cations in Li 3Mo 4P 5O 24 are present in four distinct types of MoO 6 octahedra, each of which has one open vertex at the corner participating in a Mo=O double bond and whose other five corners are shared with PO 4 tetrahedra. On the basis of a bond valence sum difference map (BVS-DM) analysis, this framework is predicted to support the facile diffusion of Li + ions, a hypothesis that is confirmed by electrochemical testing data,more » which show that Li 3Mo 4P 5O 24 can be utilized as a rechargeable battery cathode material. It is found that Li can both be removed from and inserted into Li 3Mo 4P 5O 24. The involvement of multiple redox processes occurring at the same Mo site is reflected in electrochemical plateaus around 3.8 V associated with the Mo 6+/Mo 5+ redox couple and 2.2 V associated with the Mo 5+/Mo 4+ redox couple. The two-electron redox properties of Mo cations in this structure lead to a theoretical capacity of 198 mAh/g. When cycled between 2.0 and 4.3 V versus Li +/Li, an initial capacity of 113 mAh/g is observed with 80% of this capacity retained over the first 20 cycles. Lastly, this compound therefore represents a rare example of a solid state cathode able to support two-electron redox capacity and provides important general insights about pathways for designing next-generation cathodes with enhanced specific capacities.« less
DOT National Transportation Integrated Search
2015-06-01
The objective of this study is to re-evaluate the adoption, with the objective of potentially extending the utilization of Fy = 50 ksi for : the structural capacity of steel H-piles (AISC HP sections) for bridge foundations. Specific consideration is...
Integration of permanent magnet synchronous generator wind turbines into power grid
NASA Astrophysics Data System (ADS)
Abedini, Asghar
The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.
Phosphoric acid fuel cell platinum use study
NASA Technical Reports Server (NTRS)
Lundblad, H. L.
1983-01-01
The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.
Dissemination: Bringing Translational Research to Completion
Park, Daniel J.; Burke, Janice P.
2013-01-01
Despite the availability of innovative health care research, a gap exists between research-generated knowledge and the utilization of that knowledge in real-world practice settings. This article examines the transition from research to implementation in the context of the dissemination of A. Jean Ayres’ sensory integration procedures and of the challenges currently facing the University of Southern California Well Elderly Studies research team. Drawing from the emerging field of implementation science, this article discusses how researchers can develop an implementation plan to more easily translate evidence into practice. Such plans should address the intervention’s reach (i.e., its capacity to penetrate into the intended target population), the settings for which it is applicable, the leaders who will encourage practitioner uptake, stakeholder groups, and challenges to dissemination. By taking action to ensure the more effective dissemination of research-generated knowledge, researchers can increase the likelihood that their interventions will lead to improvements in practice and more effective care for consumers. PMID:23433273
Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti
2017-05-23
Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.
Neti, Venkata S.; Das, Sadananda; Brown, Suree; ...
2017-08-29
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
World wide matching of registration metrology tools of various generations
NASA Astrophysics Data System (ADS)
Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.
2008-10-01
Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.
A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry Battiest
2012-11-30
The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through themore » decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.« less
Building biochips: a protein production pipeline
NASA Astrophysics Data System (ADS)
de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.
2004-06-01
Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.
Roxworthy, Brian J; Toussaint, Kimani C
2012-04-23
Using Au bowtie nanoantennas arrays (BNAs), we demonstrate that the performance and capability of plasmonic nanotweezers is strongly influenced by both the material comprising the thin adhesion layer used to fix Au to a glass substrate and the nanostructure orientation with respect to incident illumination. We find that a Ti adhesion layer provides up to 30% larger trap stiffness and efficiency compared to a Cr layer of equal thickness. Orientation causes the BNAs to operate as either (1) a 2D optical trap capable of efficient trapping and manipulation of particles as small as 300 nm in diameter, or (2) a quasi-3D trap, with the additional capacity for size-dependent particle sorting utilizing axial Rayleigh-Bénard convection currents caused by heat generation. We show that heat generation is not necessarily deleterious to plasmonic nanotweezers and achieve dexterous manipulation of nanoparticles with non-resonant illumination of BNAs. © 2012 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Venkata S.; Das, Sadananda; Brown, Suree
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Venkata S.; Das, Sadananda; Brown, Suree
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screeningmore » tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
Phosphoric acid fuel cell platinum use study
NASA Astrophysics Data System (ADS)
Lundblad, H. L.
1983-05-01
The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.
Research on agricultural ecology and environment analysis and modeling based on RS and GIS
NASA Astrophysics Data System (ADS)
Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng
2009-07-01
Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.
Virginia SCC approves competitive negotiation as a replacement for avoided costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Virginia State Corporation Commission has issued an order approving the replacement of PURPA avoided-cost-based contracting with competitive, all-source solicitations for new generating capacity by Virginia Utilities. This order has practical importance in the context of the current Virginia Power solicitation, but also has aspects pertaining to the concept of competitive negotiation which should produce experiential value for other jurisdictions feeling their way along in the brave new world of independent power. The order itself is fairly cogent. The substantive parts of the discussion are excerpted here. The full Order may be obtained through the State Corporation Commission, by requestingmore » the Final Order in Case PUE870080, issued January 29, 1988.« less
Development and application of transgenic technologies in cassava.
Taylor, Nigel; Chavarriaga, Paul; Raemakers, Krit; Siritunga, Dimuth; Zhang, Peng
2004-11-01
The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava have improved significantly over the past 5 years and are assessed and compared in this review. Programs are underway to develop cassava with enhanced resistance to viral diseases and insects pests, improved nutritional content, modified and increased starch metabolism and reduced cyanogenic content of processed roots. Each of these is described individually for the underlying biology the molecular strategies being employed and progress achieved towards the desired product. Important advances have occurred, with transgenic plants from several laboratories being prepared for field trails.
Managing Scarce Water Resources in China's Coal Power Industry.
Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan
2016-06-01
Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.
Managing Scarce Water Resources in China's Coal Power Industry
NASA Astrophysics Data System (ADS)
Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan
2016-06-01
Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.
Online Treatment and Virtual Therapists in Child and Adolescent Psychiatry
Schueller, Stephen M.; Stiles-Shields, Colleen; Yarosh, Lana
2016-01-01
Summary Online and virtual therapies are a well-studied and efficacious treatment option for various mental and behavioral health conditions among children and adolescents. That said, many interventions have not concerned the unique affordances offered by technologies that might align with the capacities and interests of youth users. In this article, we discuss learnings from child-computer interaction that can inform future generations of interventions and guide developers, practitioners, and researchers how to best utilize new technologies for youth populations. We highlight issues related to usability and user experience including challenge and feedback, social interaction, and storytelling. We conclude with innovative examples illustrating future potentials of online and virtual therapies such as gaming and social networking. PMID:27837935
The impact of short-term stochastic variability in solar irradiance on optimal microgrid design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schittekatte, Tim; Stadler, Michael; Cardoso, Gonçalo
2016-07-01
This paper proposes a new methodology to capture the impact of fast moving clouds on utility power demand charges observed in microgrids with photovoltaic (PV) arrays, generators, and electrochemical energy storage. It consists of a statistical approach to introduce sub-hourly events in the hourly economic accounting process. The methodology is implemented in the Distributed Energy Resources Customer Adoption Model (DER-CAM), a state of the art mixed integer linear model used to optimally size DER in decentralized energy systems. Results suggest that previous iterations of DER-CAM could undersize battery capacities. The improved model depicts more accurately the economic value of PVmore » as well as the synergistic benefits of pairing PV with storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Barbose, Galen L.; Stoll, Brady
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-ordermore » estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung
2011-01-01
The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less
Estimating sawmill processing capacity for tongass timber: 2007 and 2008 update
Susan J. Alexander; Daniel J. Parrent
2010-01-01
In spring and summer of 2008 and 2009, sawmill production capacity and utilization information was collected from major wood manufacturers in southeast Alaska. The estimated mill capacity in southeast Alaska for calendar year 2007 was 292,350 thousand board feet (mbf) (log scale), and for calendar year 2008 was 282,350 mbf (log scale). Mill production in calendar year...
Estimating sawmill processing capacity for Tongass timber: 2009 and 2010 Update
Susan J. Alexander; Daniel J. Parrent
2012-01-01
In spring and summer of 2010 and 2011, sawmill production capacity and wood utilization information was collected from major wood manufacturers in southeast Alaska. The estimated mill capacity in southeast Alaska for calendar year (CY) 2009 was 249,350 thousand board feet (mbf) (log scale), and for CY 2010 was 155,850 mbf (log scale), including idle sawmills. Mill...
Estimating sawmill processing capacity for Tongass timber.
Kenneth A. Kilborn; Daniel J. Parrent; Robert D. Housley
2004-01-01
In spring 2001 and 2003, sawmill capacity and utilization information was collected directly from 20 producers (usually the largest and most active) in southeast Alaska. The estimated mill capacity in southeast Alaska for calendar year (CY) 2000 was 501,850 thousand board feet (MBF) (log scale) and for CY 2002 was 453,850 MBF (log scale). The actual production by these...
Estimating sawmill processing capacity for Tongass timber: 2005 and 2006 update
Allen M. Brackley; Lisa K. Crone
2009-01-01
In spring 2006 and 2007, sawmill capacity and wood utilization information was collected for selected mills in southeast Alaska. The collected information is required to prepare information for compliance with Section 705(a) of the Tongass Timber Reform Act. The total estimated design capacity in the region (active and inactive mills) was 289,850 thousand board feet (...
Estimating sawmill processing capacity for Tongass timber: 2003 and 2004 update.
Allen M. Brackley; Daniel J. Parrent; Thomas D. Rojas
2006-01-01
In spring 2004 and 2005, sawmill capacity and wood utilization information was collected for selected mills in southeast Alaska. The collected information is required to prepare information for compliance with Section 705(a) of the Tongass Timber Reform Act. The total capacity in the region (active and inactive mills) was 370,350 thousand board feet (mbf) Scribner log...
NASA Astrophysics Data System (ADS)
Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.
As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
... shaft Kaplan turbine-generating unit with a total installed capacity of 0.84 MW; (5) a new 135-foot-long... outlet works; (4) a minimum flow turbine generator and a new 2,000-square-foot powerhouse containing one or two submersible or tubular-type turbine generators with a total installed capacity of 0.36 MW; (5...
Code of Federal Regulations, 2010 CFR
2010-04-01
... obtaining exempt wholesale generator and foreign utility company status. 366.7 Section 366.7 Conservation of... THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT BOOKS AND... Procedures for obtaining exempt wholesale generator and foreign utility company status. (a) Self...
RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.M. Bragg-Sitton; R. Boardman
2014-12-01
The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.« less
Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections.
Wenisch, C; Parschalk, B; Hasenhündl, M; Wiesinger, E; Graninger, W
1995-01-01
Thirty patients with severe bacterial infections were treated with 50 mg of cefodizime per kg of body weight once daily or 50 mg of ceftriaxone per kg once daily for 10 +/- 3 days. The effect of cefodizime and ceftriaxone on the phagocytic capacity and generation of reactive oxygen intermediates after phagocytosis by granulocytes was assessed prior to, during, and after therapy. Flow cytometry was used to study phagocytic capacity by measuring the uptake of fluorescein-labeled bacteria. The generation of reactive oxygen intermediates after phagocytosis was estimated by the quantification of the intracellular conversion of dihydrorhodamine 123 to rhodamine 123. Prior to therapy, patients in both groups exhibited a decreased capacity to phagocytize Escherichia coli and subsequently to generate reactive oxygen intermediates. Granulocyte function increased after the initiation of therapy and normalized within 7 days for the ceftriaxone-treated patients and within 3 days for the cefodizime group (P < 0.05). In the cefodizime group, an enhancement of phagocytic capacity was observed 14 days after the initiation of therapy (P < 0.05). Prior to therapy, phagocytic capacity was significantly correlated with the generation of reactive oxygen products (r = 0.674 and P < 0.005). PMID:7793871
Feasibility Study for the Ivano-Frankivsk District Heating Repowering: Analysis of Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, L.; Popelka, A.; Laskarevsky, V.
2002-03-20
Part of the U.S. Initiative on Joint Implementation with the Ukraine Inter-Ministerial Commission on Climate Change, financed by the US Department of Energy. The project was implemented by a team consisting of the US company SenTech, Inc. and the Ukrainian company Esco-West. The main objective of the effort was to assess available alternatives of Ivano-Frankivsk (I-F) District Heating repowering and provide information for I-F's investment decision process. This study provides information on positive and negative technical and economic aspects of available options. Three options were analyzed for technical merit and economic performance: 1. Installation of cogeneration system based on Gasmore » Turbine (GT) and Heat Recovery Heat Exchanger with thermal capacity of 30 MW and electrical capacity of 13.5 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. Equipment in this Option was sized for longest operating hours, about 8000 based on the available summer baseload. 2. Installation of Gas Turbine Combined Cycle (GTCC) and Heat Recovery Steam Generator (HRSG) with thermal capacity 45 MW and electrical capacity of 58.7 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. The equipment was sized for medium, shoulder season thermal load, and some cooling was assumed during the summer operation for extension of operating hours for electricity production. 3. Retrofit of six existing boilers (NGB) with total thermal capacity of 255.9 MW by installation of modern control system and minor upgrades. This option assumes only heat production with minimum investment. The best economic performance and the largest investment cost would result from alternative GTCC. This alternative has positive Net Present Value (NPV) with discount rate lower than about 12%, and has IRR slightly above 12%. The lowest economic results, and the lowest required investment, would result from alternative NGB. This Option's NPV is negative even at 0% discount rate, and would not become positive even by improving some parameters within a reasonable range. The Option with Gas Turbine displays relatively modest results and the NPV is positive for low discount rate, higher price of sold electricity and lower cost of natural gas. The IRR of this alternative is 9.75%, which is not very attractive. The largest influences on the investment are from the cost of electricity sold to the grid, the heat tariff, and the cost of natural gas. Assuming the implementation of the GTCC alternative, the benefit of the project is also reflected in lower Green House Emissions.« less
Wen, Hefei; Hockenberry, Jason M; Borders, Tyrone F; Druss, Benjamin G
2017-04-01
Buprenorphine has been proven effective in treating opioid use disorder. However, the high cost of buprenorphine and the limited prescribing capacity may restrict access to this effective medication-assisted treatment for opioid use disorder. To examine whether Medicaid expansion and physician prescribing capacity may have impacted buprenorphine utilization covered by Medicaid. We used a quasi experimental difference-in-differences design to compare the pre-post changes in Medicaid-covered buprenorphine prescriptions and buprenorphine spending between the 26 states that implemented Medicaid expansions under the Affordable Care Act in 2014 and those that did not. All Medicaid enrollees in the expansion states and the nonexpansion and late-expansion states. Quarterly Medicaid prescriptions for buprenorphine and spending on buprenorphine from the Centers for Medicare and Medicaid Services Medicaid Drug Utilization files 2011 to 2014. State implementation of Medicaid expansions in 2014 was associated with a 70% increase (P<0.05) in Medicaid-covered buprenorphine prescriptions and a 50% increase (P<0.05) in buprenorphine spending. Physician prescribing capacity was also associated with increased buprenorphine utilization. Medicaid expansion has the potential to reduce the financial barriers to buprenorphine utilization and improve access to medication-assisted treatment of opioid use disorder. Active physician participation in the provision of buprenorphine is needed for ensuring that Medicaid expansion achieves its full potential in improving treatment access.
Utilization of recycled materials in Illinois highway construction
DOT National Transportation Integrated Search
2002-05-01
According to the Illinois Environmental Protection Agency's 2000 Annual Landfill Capacity Report "as of Jan. 1, 2001, 53 landfills reported having a combined remaining capacity of 743.4 million gate cubic yards, or 49.3 million gate cubic yards less ...
Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M
2011-12-15
Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.
Guntur, Anyonya R; Gerencser, Akos A; Le, Phuong T; DeMambro, Victoria E; Bornstein, Sheila A; Mookerjee, Shona A; Maridas, David E; Clemmons, David E; Brand, Martin D; Rosen, Clifford J
2018-06-01
Mesenchymal stromal cells (MSCs) are early progenitors that can differentiate into osteoblasts, chondrocytes, and adipocytes. We hypothesized that osteoblasts and adipocytes utilize distinct bioenergetic pathways during MSC differentiation. To test this hypothesis, we compared the bioenergetic profiles of preosteoblast MC3T3-E1 cells and calvarial osteoblasts with preadipocyte 3T3L1 cells, before and after differentiation. Differentiated MC3T3-E1 osteoblasts met adenosine triphosphate (ATP) demand mainly by glycolysis with minimal reserve glycolytic capacity, whereas nondifferentiated cells generated ATP through oxidative phosphorylation. A marked Crabtree effect (acute suppression of respiration by addition of glucose, observed in both MC3T3-E1 and calvarial osteoblasts) and smaller mitochondrial membrane potential in the differentiated osteoblasts, particularly those incubated at high glucose concentrations, indicated a suppression of oxidative phosphorylation compared with nondifferentiated osteoblasts. In contrast, both nondifferentiated and differentiated 3T3-L1 adipocytes met ATP demand primarily by oxidative phosphorylation despite a large unused reserve glycolytic capacity. In sum, we show that nondifferentiated precursor cells prefer to use oxidative phosphorylation to generate ATP; when they differentiate to osteoblasts, they gain a strong preference for glycolytic ATP generation, but when they differentiate to adipocytes, they retain the strong preference for oxidative phosphorylation. Unique metabolic programming in mesenchymal progenitor cells may influence cell fate and ultimately determine the degree of bone formation and/or the development of marrow adiposity. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
Cost and performance of coal-based energy in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temchin, J.; DeLallo, M.R.
1998-07-01
As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less
Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses.
Bizzell, Erica; Sia, Jonathan Kevin; Quezada, Melanie; Enriquez, Ana; Georgieva, Maria; Rengarajan, Jyothi
2018-04-01
Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge. ©2017 Society for Leukocyte Biology.
Increasing Capacity Exploitation in Food Supply Chains Using Grid Concepts
NASA Astrophysics Data System (ADS)
Volk, Eugen; Müller, Marcus; Jacob, Ansger; Racz, Peter; Waldburger, Martin
Food supply chains today are characterized by fixed trade relations with long term contracts established between heterogeneous supply chain companies. Production and logistics capacities of these companies are often utilized in an economically inefficient manner only. In addition, increased consumer awareness in food safety issues renders supply chain management even more challenging, since integrated tracking and tracing along the whole food supply chain is needed. Facing these issues of supply chain management complexity and completely documented product quality, this paper proposes a full lifecycle solution for dynamic capacity markets based on concepts used in the field of Grid [1], like management of Virtual Organization (VO) combined with Service Level Agreement (SLA). The solution enables the cost-efficient utilization of real world capacities (e.g., production capacities or logistics facilities) by using a simple, browser-based portal. Users are able to enter into product-specific negotiations with buyers and suppliers of a food supply chain, and to obtain real-time access to product information including SLA evaluation reports. Thus, business opportunities in wider market access, process innovation, and trustworthy food products are offered for participating supply chain companies.
National General Aviation Roadmap for a Small Aircraft Transportation System (SATS)
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
2000-01-01
The National Aeronautics and Space Administration (NASA), Federal Aviation Administration, as well as state, industry, and academia partners have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This long-term strategic undertaking has a goal to bring next-generation technologies and improve air access to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing a new generation of single-pilot light planes for personal and business transportation between the nation's 5,400 public use general aviation airports. Current NASA investments in aircraft technologies are enabling industry to bring affordable, safe, and easy-to-use features to the marketplace, including "Highway in the Sky" glass cockpit operating capabilities, affordable crash worthy composite airframes, more efficient IFR flight training, and revolutionary engines. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. State partnerships are proposed to coordinate research support in key public infrastructure areas. Ultimately, SATS may permit more than tripling aviation system throughput capacity by tapping the under-utilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.
NASA Astrophysics Data System (ADS)
Kempton, Willett; Tomić, Jasna
Vehicle-to-grid power (V2G) uses electric-drive vehicles (battery, fuel cell, or hybrid) to provide power for specific electric markets. This article examines the systems and processes needed to tap energy in vehicles and implement V2G. It quantitatively compares today's light vehicle fleet with the electric power system. The vehicle fleet has 20 times the power capacity, less than one-tenth the utilization, and one-tenth the capital cost per prime mover kW. Conversely, utility generators have 10-50 times longer operating life and lower operating costs per kWh. To tap V2G is to synergistically use these complementary strengths and to reconcile the complementary needs of the driver and grid manager. This article suggests strategies and business models for doing so, and the steps necessary for the implementation of V2G. After the initial high-value, V2G markets saturate and production costs drop, V2G can provide storage for renewable energy generation. Our calculations suggest that V2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet dedicated to regulation for wind, plus 8-38% of the fleet providing operating reserves or storage for wind. Jurisdictions more likely to take the lead in adopting V2G are identified.
Assessment Parameters and Matching between the Sites and Wind Turbines
NASA Astrophysics Data System (ADS)
Chermitti, A.; Bencherif, M.; Nakoul, Z.; Bibitriki, N.; Benyoucef, B.
The objective of this paper is to introduce the assessment parameters of the wind energy production of sites and pairing between the sites and wind turbines. The exploration is made with the wind data gathered at 10 m high is based on the atlas of the wind of Algeria established by the National office of the Meteorology runs 37 stations of measures. The data is used for a feasibility analysis of optimum future utilization of Wind generator potentiality in five promising sites covering a part of landscape types and regions in Algeria. Detailed technical assessment for the ten most promising potential wind sites was made using the capacity factor and the site effectiveness approach. The investigation was performed assuming several models of small, medium and big size wind machines representing different ranges of characteristic speeds and rated power suitable for water pumping and electric supply. The results show that small wind turbines could be installed in some coast region and medium wind turbines could be installed in the high plateau and some desert regions and utilized for water supply and electrical power generation, the sites having an important wind deposit, in high plateau we find Tiaret site's but in the desert there is some sites for example Adrar, Timimoun and In Amenas, in these sites could be installed a medium and big size wind turbines.
Concentrating Solar Power Projects - Solana Generating Station |
(APS). The thermal energy storage system provides up to 6 hours of generating capacity after sunset cooling Fossil Backup Type: Natural gas Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 6 hours Thermal Storage Description: Molten salts
The Next Generation of Personal Computers.
ERIC Educational Resources Information Center
Crecine, John P.
1986-01-01
Discusses factors converging to create high-capacity, low-cost nature of next generation of microcomputers: a coherent vision of what graphics workstation and future computing environment should be like; hardware developments leading to greater storage capacity at lower costs; and development of software and expertise to exploit computing power…
NASA Technical Reports Server (NTRS)
1989-01-01
When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.
Modeling of urban solid waste management system: The case of Dhaka city
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sufian, M.A.; Bala, B.K.
2007-07-01
This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less
Erwin, Cathleen O; Dias, Ashley M
2016-01-01
The study employs a dialogic public relations framework to explore the utilization of the Internet for fundraising by nonprofit health care organizations-specifically, NCI-designated cancer centers. Cancer centers have been noted for effective websites and for being highly engaged in fundraising, which is characterized as relationship marketing. Results indicate all but one cancer center use websites and social media for fundraising but are limited in capacity for two-way symmetrical dialogue. Results are discussed and recommendations are made for future research.
18 CFR 292.302 - Availability of electric utility system cost data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... electric utility, in any calendar year, if the total sales of electric energy by such utility for purposes... electric energy for purposes other than resale of less than one billion kilowatt-hours during any calendar... which is legally obligated to obtain all its requirements for electric energy and capacity from another...
Potential for electricity generation from biomass residues in Cuba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lora, E.S.
The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase inmore » the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.« less
NASA Astrophysics Data System (ADS)
Srinath, Srikar; Poyneer, Lisa A.; Rudy, Alexander R.; Ammons, S. M.
2014-08-01
The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.
Electricity market design for generator revenue sufficiency with increased variable generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Todd; Botterud, Audun
Here, we present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, and hourly unit commitment and dispatch in a power system. The impact of increasing wind power capacity on the optimal generation mix and generator profitability is analyzed for a test case that approximates the electricity market in Texas (ERCOT). We analyze three market policies that may support resource adequacy: Operating Reserve Demand Curves (ORDC), Fixed Reserve Scarcity Prices (FRSP) and fixed capacity payments (CP). Optimal expansion plans are comparable between the ORDC and FRSP implementations, while capacity payments may result in additional new capacity. Themore » FRSP policy leads to frequent reserves scarcity events and corresponding price spikes, while the ORDC implementation results in more continuous energy prices. Average energy prices decrease with increasing wind penetration under all policies, as do revenues for baseload and wind generators. Intermediate and peak load plants benefit from higher reserve prices and are less exposed to reduced energy prices. All else equal, an ORDC approach may be preferred to FRSP as it results in similar expansion and revenues with less extreme energy prices. A fixed CP leads to additional new flexible NGCT units, but lower profits for other technologies.« less
Electricity market design for generator revenue sufficiency with increased variable generation
Levin, Todd; Botterud, Audun
2015-10-01
Here, we present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, and hourly unit commitment and dispatch in a power system. The impact of increasing wind power capacity on the optimal generation mix and generator profitability is analyzed for a test case that approximates the electricity market in Texas (ERCOT). We analyze three market policies that may support resource adequacy: Operating Reserve Demand Curves (ORDC), Fixed Reserve Scarcity Prices (FRSP) and fixed capacity payments (CP). Optimal expansion plans are comparable between the ORDC and FRSP implementations, while capacity payments may result in additional new capacity. Themore » FRSP policy leads to frequent reserves scarcity events and corresponding price spikes, while the ORDC implementation results in more continuous energy prices. Average energy prices decrease with increasing wind penetration under all policies, as do revenues for baseload and wind generators. Intermediate and peak load plants benefit from higher reserve prices and are less exposed to reduced energy prices. All else equal, an ORDC approach may be preferred to FRSP as it results in similar expansion and revenues with less extreme energy prices. A fixed CP leads to additional new flexible NGCT units, but lower profits for other technologies.« less
Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diakov, Victor; Cole, Wesley; Sullivan, Patrick
2015-11-01
Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validitymore » of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.« less
Operational Benefits of Meeting California's Energy Storage Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Josh; Denholm, Paul; Jorgenson, Jennie
In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014more » version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation reserve, as the added storage could provide about 75% of the regulation up requirement for all of California, which would likely greatly reduce regulation prices and potential revenue. The addition of storage in California decreases renewable curtailment, particularly in the 40% RPS case. Following previous analysis, storage has a mixed impact on emissions, generally reducing emissions, but also creating additional incentives for increased emissions from out-of-state coal generations. Overall, storage shows significant system cost savings, but analysis also points to additional challenges associated with full valuation of energy storage, including capturing the operational benefits calculated here, but also recovering additional benefits associated avoided generation, transmission, and distribution capacity, and avoided losses.« less
NASA Astrophysics Data System (ADS)
Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.
2018-02-01
In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.
Sulfur oxide adsorbents and emissions control
Li, Liyu [Richland, WA; King, David L [Richland, WA
2006-12-26
High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.
DOT National Transportation Integrated Search
2012-08-06
We study multi-item inventory problems that explicitly account for realistic : transportation cost structures and constraints, including a per-truck capacity and per-truck cost. : We analyze shipment consolidation and coordination policies under thes...
25 CFR 167.6 - Carrying capacities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Grazing Committee, and the Navajo Tribal Council for review and recommendations prior to presentation to...; recommendations for future adjustments to the established carrying capacities shall be made by Range Technicians based on the best information available through annual utilization studies and range condition studies...
25 CFR 167.6 - Carrying capacities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Grazing Committee, and the Navajo Tribal Council for review and recommendations prior to presentation to...; recommendations for future adjustments to the established carrying capacities shall be made by Range Technicians based on the best information available through annual utilization studies and range condition studies...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, A.A.
1994-12-01
This presentation examines the development of the power generation and transmission capacity of the power system of Oman. The topics of the presentation include economic development of Oman; growth of the electricity sector including capacity generation, transmission and distribution and load characteristics; involvement of the private sector; power interconnections and exchanges; privatization; and training.
Analysis on Voltage Profile of Distribution Network with Distributed Generation
NASA Astrophysics Data System (ADS)
Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua
2018-02-01
Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.
NASA Astrophysics Data System (ADS)
Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten
2015-11-01
The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing ;standard; conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.
He, Jiarui; Luo, Liu; Chen, Yuanfu; Manthiram, Arumugam
2017-09-01
Owing to the high theoretical specific capacity (1675 mA h g -1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe 3 O 4 (YSC@Fe 3 O 4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe 3 O 4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe 3 O 4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe 3 O 4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm -2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods
NASA Astrophysics Data System (ADS)
Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.
2016-09-01
This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.
Heger, A; Janisch, S; Pock, K; Römisch, J
2016-10-01
The solvent/detergent treatment enables effective and robust inactivation of all lipid-enveloped viruses, but also inactivates partly sensitive plasma proteins such as protein S. The aim of this study was to investigate the thrombin generation capacity of octaplasLG ® , in particular focusing on the function of protein S in thrombin generation assay and the impact of assay settings. Sixteen octaplasLG ® batches and 32 units of single donor fresh frozen plasma (FFP) were investigated. For protein S, both functional activity and free antigen levels were measured. Thrombin generation assay was performed using two fluorogenic tests with different triggers. Finally, rotational thromboelastometry was performed. Mean protein S levels were lower in octaplasLG ® , but a wider range of values was found for FFP. Clotting parameters and thrombin generation capacities overlapped between the two plasma groups as demonstrated using both thrombin generation assays and different triggers. Spiking studies with protein S-depleted plasma, human purified protein S or antibodies against protein S confirmed a correlation between protein S and thrombin generation capacity under specific assay conditions, especially in an assay with low tissue factor concentration. Correlation between protein S and thrombin generation capacity was demonstrated in the TGA. Due to higher variability in protein S content in the FFP group, overlapping haemostatic potentials of the two plasma groups were found. © 2016 International Society of Blood Transfusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliersmore » must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.« less
German-Báez, L J; Valdez-Flores, M A; Félix-Medina, J V; Norzagaray-Valenzuela, C D; Santos-Ballardo, D U; Reyes-Moreno, C; Shelton, L M; Valdez-Ortiz, A
2017-12-01
The production of photosynthetic biofuels using microalgae is a promising strategy to combat the use of non-renewable energy sources. The microalgae residual biomass is a waste by-product of biofuel production; however, it could prove to have utility in the development of sustainable nutraceuticals and functional foods. In this study, a comprehensive characterisation of the under-utilised Phaeodactylum tricornutum microalgae residual biomass is presented. Proximal composition, antioxidant capacity (using three different antioxidant assays; oxygen radical absorbance capacity; radical cation activity, ABTS; and radical scavenging activity, DPPH), and total phenolic content of free and bound polyphenols were determined. Additionally, the physicochemical properties of water activity, pH, water absorption index, water solubility index, and dispersibility were evaluated. Results revealed that P. tricornutum microalgae residual biomass exhibits a relatively high protein and carbohydrate content, with values of 36.67% and 46.78%, respectively; and most carbohydrates were found as total dietary fibre (45.57%), of which insoluble dietary fibre was the most predominant (43.54%). Antioxidant capacity values for total phytochemicals of 106.22, 67.93, 9.54 µM TE g -1 dw were determined by oxygen radical absorbance capacity, ABTS, and DPPH assays, respectively. Total phenolic content was found to be 2.90 mg GAE g -1 dw. Interestingly, antioxidant capacity and total phenolic content were higher in bound than in free phytochemical extracts. The physicochemical analysis showed P. tricornutum microalgae residual biomass to have suitable properties for the generation of a beverage with Aw, pH, water absorption index, water solubility index, and dispersibility values of 0.45, 7.12, 3.40 g gel g -1 dw, 2.5 g solids 100 g -1 dw, and 90%, respectively. Hence, P. tricornutum microalgae residual biomass could be considered a potential source of bioactive compounds suitable for the production of functional food exhibiting antioxidant capacity and high dietary fibre content.
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
Qin, Hejie; Li, Jinxiang; Yang, Hongyi; Pan, Bingcai; Zhang, Weiming; Guan, Xiaohong
2017-05-02
Although the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition. Due to the application of 1.0 mM Fe(II), the ES of ZVI was increased from 3.2-3.6% to 6.2-6.8% and the UR of ZVI was improved by 5.0-19.4% under aerobic conditions, which resulted in a 100-180% increase in the Se(VI) removal capacity by ZVI. Se(VI) reduction by Fe 0 was a heterogeneous redox reaction, and the enrichment of Se(VI) on ZVI surface was the first step of electron transfer from Fe 0 core to Se(VI). Oxygen promoted the generation of iron (hydr)oxides, which facilitated the enrichment of Se(VI) on the ZVI particle surface. Therefore, the high oxygen fraction (25-50%) in the purging gas resulted in only a slight decrease in the ES of ZVI. Fe(II) addition resulted in a pH drop and promoted the generation of lepidocrocite and magnetite, which benefited Se(VI) adsorption and the following electron transfer from underlying Fe 0 to surface-located Se(VI).
Wu, C B; Huang, G H; Liu, Z P; Zhen, J L; Yin, J G
2017-03-01
In this study, an inexact multistage stochastic mixed-integer programming (IMSMP) method was developed for supporting regional-scale energy system planning (EPS) associated with multiple uncertainties presented as discrete intervals, probability distributions and their combinations. An IMSMP-based energy system planning (IMSMP-ESP) model was formulated for Qingdao to demonstrate its applicability. Solutions which can provide optimal patterns of energy resources generation, conversion, transmission, allocation and facility capacity expansion schemes have been obtained. The results can help local decision makers generate cost-effective energy system management schemes and gain a comprehensive tradeoff between economic objectives and environmental requirements. Moreover, taking the CO 2 emissions scenarios mentioned in Part I into consideration, the anti-driving effect of carbon emissions on energy structure adjustment was studied based on the developed model and scenario analysis. Several suggestions can be concluded from the results: (a) to ensure the smooth realization of low-carbon and sustainable development, appropriate price control and fiscal subsidy on high-cost energy resources should be considered by the decision-makers; (b) compared with coal, natural gas utilization should be strongly encouraged in order to insure that Qingdao could reach the carbon discharges peak value in 2020; (c) to guarantee Qingdao's power supply security in the future, the construction of new power plants should be emphasised instead of enhancing the transmission capacity of grid infrastructure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multifunctional Silicon Optoelectronics Integrated with Plasmonic Scattering Color.
Wen, Long; Chen, Qin; Hu, Xin; Wang, Huacun; Jin, Lin; Su, Qiang
2016-12-27
Plasmonic scattering from metallic nanoparticles has been used for centuries to create the colorful appearance of stained glass. Besides their use as passive spectral filtering components, multifunctional optoelectronic applications can be achieved by integrating the nanoscatters with semiconductors that generate electricity using the complementary spectral components of plasmonic colors. To suppress the usual degradation of both efficiency and the gamut of plasmonic scattering coloration in highly asymmetric index configurations like a silicon host, aluminum nanodisks on indium tin oxide (ITO) coated silicon were experimentally studied and demonstrated color sorting in the full visible range along with photocurrent generation. Interestingly, the photocurrents were found to be comparable to the reference devices with only antireflection coatings in spite of the power loss for coloration. Detailed investigation shows that ITO serves as both the impedance matching layer for promoting the backward scattering and schottky contact with silicon, and moreover, plasmonic nanoscatters efficiently harvest the complement spectrum components for charge generation. The present approach combines the capacities of nanoscale color sorting and photoelectric converting at a negligible cost of efficiency, thus providing a broad flexibility of being utilized in various optoelectronic applications including self-powered display, filter-free imaging, and colorful photovoltaics.
Estimation of future outflows of e-waste in India.
Dwivedy, Maheshwar; Mittal, R K
2010-03-01
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated. Copyright 2009 Elsevier Ltd. All rights reserved.
Estimation of future outflows of e-waste in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedy, Maheshwar, E-mail: dwivedy_m@bits-pilani.ac.i; Mittal, R.K.
2010-03-15
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planningmore » for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.« less
Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.
Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B
2013-01-01
A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.
NASA Astrophysics Data System (ADS)
Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam
2017-05-01
The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.
Healthcare Utilization Monitoring System in Korea
Shin, Hyun Chul; Lee, Youn Tae; Jo, Emmanuel C.
2015-01-01
Objectives It is important to monitor the healthcare utilization of patients at the national level to make evidence-based policy decisions and manage the nation's healthcare sector. The Health Insurance Review & Assessment Service (HIRA) has run a Healthcare Utilization Monitoring System (HUMS) since 2008. The objective of this paper is to introduce HIRA's HUMS. Methods This study described the HUMS's system structure, capacity, functionalities, and output formats run by HIRA in the Republic of Korea. Regarding output formats, this study extracted diabetes related health insurance claims through the HUMS from August 1, 2014 to May 31, 2015. Results The HUMS has kept records of health insurance claim data for 4 years. It has a 14-terabyte hardware capacity and employs several easy-to-use programs for maintenance of the system, such as MSTR, SAS, etc. Regarding functionalities, users should input diseases codes, target periods, facility types, and types of attributes, such as the number of healthcare utilizations or healthcare costs. It also has a functionality to predict healthcare utilization and costs. When this study extracted diabetes related data, it was found that the trend of healthcare costs for the treatment of diabetes and the number of patients with diabetes were increasing. Conclusions HIRA's HUMS works well to monitor healthcare utilization of patients at the national level. The HUMS has a high-capacity hardware infrastructure and several operational programs that allows easy access to summaries as well as details to identify contributing factors for abnormality, but it has a limitation in that there is often a time lag between the provision of healthcare to patients and the filing of health claims. PMID:26279955
Power supply expansion and the nuclear option in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marnay, C.; Pickle, S.
Poland is in the process of liberalizing and modernizing its electric power system. Given its heavy reliance on coal and a consequent history of often severe environmental externalities associated with power production, the nature of capacity expansion in Poland has important environmental and social implications. To better understand capacity expansion in Poland, we constructed a data set of the Polish power sector for use with the Elfin capacity expansion planning model. Using Elfin, we derived four scenarios and several sensitivities for new generating capacity construction. These scenarios simulate choices among several generic generating technologies made to achieve the lowest overallmore » net present cost of operating the power system through 2015. We find that natural gas is a highly desirable fuel for future power generation in Poland, but primarily as a peaking resource. As the current system is inflexible and peaking capacity appears to be the most pressing need, this result is not surprising. However, when nuclear power is included as a generation option, natural gas is less desirable than the Polish Power Grid Company (PPGCo) has suggested, and, despite the PPGCo`s claims to the contrary, nuclear power cannot be ruled out in Poland on economic grounds alone. In the unconstrained Elfin scenarios, using PPGCo assumptions, nuclear power is attractive, especially after 2010. The attractiveness of nuclear generation proves sensitive to certain input variables, however, notably fixed operating and maintenance cost, and possible carbon taxes. Moreover, we find that the effectiveness of conservation efforts designed to reduce airborne emissions is limited under scenarios in which nuclear generation is adopted. 23 refs., 11 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Chaianong, A.; Bangviwat, A.; Menke, C.
2017-07-01
Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.
Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton
2013-10-15
Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.
Planning Tool for Strategic Evaluation of Facility Plans - 13570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magoulas, Virginia; Cercy, Michael; Hall, Irin
2013-07-01
Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility wasmore » needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)« less
Solar thermal electricity generation
NASA Astrophysics Data System (ADS)
Gasemagha, Khairy Ramadan
1993-01-01
This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.
PREFERENTIAL PARTITIONING OF PAHS AND PCBS TO COAL FLY ASH
It has long been known that fly ash has a significant capacity for the adsorption of several classes of anthropogenic pollutants, including toxic metals, nutrients and organic compounds. This adsorption capacity has been utilized by wastewater treatment plants for the removal of ...
Developments in abatement technology for MOCVD processing
NASA Astrophysics Data System (ADS)
Sweeney, Joseph; Marganski, Paul; Olander, Karl; Watanabe, Tadaharu; Tomita, Nobuyasu; Orlando, Gary; Torres, Robert
2004-12-01
A newly developed technical solution has been developed for hydride gas abatement that utilizes a new material. The ULTIMA-Sorb™ material provides high capacity but low heat of reaction with the hydride gases. The new technology results in a low cost of ownership (COO) with stable operation and also reduces the cost and quantity of waste disposal. This can be significant benefit for device manufacturers since it provides a viable and cost effective solution without any risk of arsenic leakage that is a primary concern with wet chemical scrubber systems. The contents of this paper will discuss the technical and economic benefits of the newly developed material in comparison to conventional abatement materials and systems. The capacity of the dry abatement materials significantly influences both COO relating to cash outflow and the cost of lost production. High capacity materials enable significant savings in cost of lost production in cases of low and high factory utilization conditions. Capacity of the abatement material appears to be the largest single factor to reduce COO of dry abatement systems.
Merten, Julianna A.; Shapiro, Jamie F.; Gulbis, Alison M.; Rao, Kamakshi V.; Bubalo, Joseph; Lanum, Scott; Engemann, Ashley Morris; Shayani, Sepideh; Williams, Casey; Leather, Helen; Walsh-Chocolaad, Tracey
2013-01-01
Survival following hematopoietic stem cell transplantation (HSCT) has improved and the number of allogeneic HSCTs performed annually in the United States is expected to reach 10,000 by 2015. The National Marrow Donor Program created the System Capacity Initiative to formulate mechanisms to care for the growing number of HSCT recipients. One proposed method to increase capacity is utilization of pharmacists to manage drug therapy via collaborative practice agreements (CPAs). Pharmacists have managed drug therapy in oncology patients with CPAs for decades; however, there are limited HSCT centers that employ this practice. Engaging in collaborative practice and billing agreements with credentialed pharmacists to manage therapeutic drug monitoring, chronic medical conditions and supportive care in HSCT recipients may be cost-effective and enable physicians to spend more time on new or more complex patients. The goal of this paper is to provide a framework for implementation of a CPA and address how it may improve HSCT program capacity. PMID:23419976
Network design analysis for special needs student services.
DOT National Transportation Integrated Search
2010-06-01
Population growth can lead to public school capacity issues, as well as increased school bus utilization. This increased utilization, in turn, can result in longer school bus transport times for both regular and special needs/medically fragile studen...
Mangenah, Collin; Mavhu, Webster; Hatzold, Karin; Biddle, Andrea K; Madidi, Ngonidzashe; Ncube, Getrude; Mugurungi, Owen; Ticklay, Ismail; Cowan, Frances M; Thirumurthy, Harsha
2015-08-15
Safe and cost-effective programs for implementing early infant male circumcision (EIMC) in Africa need to be piloted. We present results on a relative cost analysis within a randomized noninferiority trial of EIMC comparing the AccuCirc device with Mogen clamp in Zimbabwe. Between January and June 2013, male infants who met inclusion criteria were randomized to EIMC through either AccuCirc or Mogen clamp conducted by a doctor, using a 2:1 allocation ratio. We evaluated the overall unit cost plus the key cost drivers of EIMC using both AccuCirc and Mogen clamp. Direct costs included consumable and nonconsumable supplies, device, personnel, associated staff training, and environmental costs. Indirect costs comprised capital and support personnel costs. In 1-way sensitivity analyses, we assessed potential changes in unit costs due to variations in main parameters, one at a time, holding all other values constant. The unit costs of EIMC using AccuCirc and Mogen clamp were $49.53 and $55.93, respectively. Key cost drivers were consumable supplies, capacity utilization, personnel costs, and device price. Unit prices are likely to be lowest at full capacity utilization and increase as capacity utilization decreases. Unit prices also fall with lower personnel salaries and increase with higher device prices. EIMC has a lower unit cost when using AccuCirc compared with Mogen clamp. To minimize unit costs, countries planning to scale-up EIMC using AccuCirc need to control costs of consumables and personnel. There is also need to negotiate a reasonable device price and maximize capacity utilization.
Model based adaptive control of a continuous capture process for monoclonal antibodies production.
Steinebach, Fabian; Angarita, Monica; Karst, Daniel J; Müller-Späth, Thomas; Morbidelli, Massimo
2016-04-29
A two-column capture process for continuous processing of cell-culture supernatant is presented. Similar to other multicolumn processes, this process uses sequential countercurrent loading of the target compound in order maximize resin utilization and productivity for a given product yield. The process was designed using a novel mechanistic model for affinity capture, which takes both specific adsorption as well as transport through the resin beads into account. Simulations as well as experimental results for the capture of an IgG antibody are discussed. The model was able to predict the process performance in terms of yield, productivity and capacity utilization. Compared to continuous capture with two columns operated batch wise in parallel, a 2.5-fold higher capacity utilization was obtained for the same productivity and yield. This results in an equal improvement in product concentration and reduction of buffer consumption. The developed model was used not only for the process design and optimization but also for its online control. In particular, the unit operating conditions are changed in order to maintain high product yield while optimizing the process performance in terms of capacity utilization and buffer consumption also in the presence of changing upstream conditions and resin aging. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Djuwansyah, M. R.
2018-02-01
This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.
Superenhancers: novel opportunities for nanowire optoelectronics.
Khudiyev, Tural; Bayindir, Mehmet
2014-12-16
Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.
Fuel Cell Thermal Management Through Conductive Cooling Plates
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Burke, Kenneth A.
2008-01-01
An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.
A Miniature Electromechanical Generator Design Utilizing Human Motion
2010-09-01
Inductance Operating Range In the previous chapter, it was mentioned that the EMF induced from the generator was related to a time-changing magnetic...ELECTROMECHANICAL GENERATOR DESIGN UTILIZING HUMAN MOTION by Nicholas G. Hoffman September 2010 Thesis Co-Advisors: Alexander L. Julian...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE A Miniature Electromechanical Generator Design Utilizing Human Motion 5. FUNDING NUMBERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galowitz, Stephen
The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven andmore » reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.« less
Academic Health Systems Management: The Rationale Behind Capitated Contracts
Taheri, Paul A.; Butz, David A.; Greenfield, Lazar J.
2000-01-01
Objective To determine why hospitals enter into “capitated” contracts, which often generate accounting losses. The authors’ hypothesis is that hospitals coordinate contracts to keep beds full and that in principal, capitated contracts reflect sound capacity management. Summary Background Data In high-overhead industries, different consumers pay different prices for similar services (e.g., full-fare vs. advanced-purchase plane tickets, full tuition vs. financial aid). Some consumers gain access by paying less than total cost. Hospitals, like other high-overhead business enterprises, must optimize the use of their capacity, amortizing overhead over as many patients as possible. This necessity for enhanced throughput forces hospitals and health systems to discount empty beds, sometimes to the point where they incur accounting losses serving some payors. Methods The authors analyzed the cost accounting system at their university teaching hospital to compare hospital and intensive care unit (ICU) lengths of stay (LOS), variable direct costs (VDC), overhead of capitated patients, and reimbursement versus other payors for all hospital discharges (n = 29,036) in fiscal year 1998. The data were analyzed by diagnosis-related groups (DRGs), length of stay (LOS), insurance carrier, proximity to hospital, and discharge disposition. Patients were then distinguished across payor categories based on their resource utilization, proximity to the hospital, DRG, LOS, and discharge status. Results The mean cost for capitated patients was $4,887, less than half of the mean cost of $10,394 for the entire hospitalized population. The mean capitated reimbursement was $928/day, exceeding the mean daily VDC of $616 but not the total cost of $1,445/day. Moreover, the mean total cost per patient day of treating a capitated patient was $400 less than the mean total cost per day for noncapitated patients. The hospital’s capitated health maintenance organization (HMO) patients made up 16.0% of the total admissions but only 9.4% of the total patient days. Both the mean LOS of 3.4 days and the mean ICU LOS of 0.3 days were significantly different from the overall values of 5.8 days and 1 day, respectively, for the noncapitated population. For patients classified with a DRG with complication who traveled from more than 60 miles away, the mean LOS was 10.7 days and the mean total cost was $21,658. This is in contrast to all patients who traveled greater than 60 miles, who had an LOS of 7.2 days and a mean total cost of $12,569. Conclusion The capitated payor directed the bulk of its subscribers to one hospital (other payors transferred their sicker patients). This was reflected in the capitated group’s lower costs and LOS. This stable stream of relatively low-acuity patients enhanced capacity utilization. For capitated patients, the hospital still benefits by recovering the incremental cost (VDC) of treating these patients, and only a portion of the assigned overhead. Thus, in the short run, capitated patients provide a positive economic benefit. Other payors’ higher-acuity patients arrive more randomly, place greater strains on capacity, and generate higher overhead costs. This results in differential reimbursement to cover this incremental overhead. Having a portfolio of contracts allows the hospital to optimize capacity both in terms of patient flows and acuity. One risk of operating near capacity is that capitated patients could displace other higher-paying patients. PMID:10816628
Academic health systems management: the rationale behind capitated contracts.
Taheri, P A; Butz, D A; Greenfield, L J
2000-06-01
To determine why hospitals enter into "capitated" contracts, which often generate accounting losses. The authors' hypothesis is that hospitals coordinate contracts to keep beds full and that in principal, capitated contracts reflect sound capacity management. In high-overhead industries, different consumers pay different prices for similar services (e.g., full-fare vs. advanced-purchase plane tickets, full tuition vs. financial aid). Some consumers gain access by paying less than total cost. Hospitals, like other high-overhead business enterprises, must optimize the use of their capacity, amortizing overhead over as many patients as possible. This necessity for enhanced throughput forces hospitals and health systems to discount empty beds, sometimes to the point where they incur accounting losses serving some payors. The authors analyzed the cost accounting system at their university teaching hospital to compare hospital and intensive care unit (ICU) lengths of stay (LOS), variable direct costs (VDC), overhead of capitated patients, and reimbursement versus other payors for all hospital discharges (n = 29,036) in fiscal year 1998. The data were analyzed by diagnosis-related groups (DRGs), length of stay (LOS), insurance carrier, proximity to hospital, and discharge disposition. Patients were then distinguished across payor categories based on their resource utilization, proximity to the hospital, DRG, LOS, and discharge status. The mean cost for capitated patients was $4,887, less than half of the mean cost of $10,394 for the entire hospitalized population. The mean capitated reimbursement was $928/day, exceeding the mean daily VDC of $616 but not the total cost of $1,445/day. Moreover, the mean total cost per patient day of treating a capitated patient was $400 less than the mean total cost per day for noncapitated patients. The hospital's capitated health maintenance organization (HMO) patients made up 16. 0% of the total admissions but only 9.4% of the total patient days. Both the mean LOS of 3.4 days and the mean ICU LOS of 0.3 days were significantly different from the overall values of 5.8 days and 1 day, respectively, for the noncapitated population. For patients classified with a DRG with complication who traveled from more than 60 miles away, the mean LOS was 10.7 days and the mean total cost was $21,658. This is in contrast to all patients who traveled greater than 60 miles, who had an LOS of 7.2 days and a mean total cost of $12,569. The capitated payor directed the bulk of its subscribers to one hospital (other payors transferred their sicker patients). This was reflected in the capitated group's lower costs and LOS. This stable stream of relatively low-acuity patients enhanced capacity utilization. For capitated patients, the hospital still benefits by recovering the incremental cost (VDC) of treating these patients, and only a portion of the assigned overhead. Thus, in the short run, capitated patients provide a positive economic benefit. Other payors' higher-acuity patients arrive more randomly, place greater strains on capacity, and generate higher overhead costs. This results in differential reimbursement to cover this incremental overhead. Having a portfolio of contracts allows the hospital to optimize capacity both in terms of patient flows and acuity. One risk of operating near capacity is that capitated patients could displace other higher-paying patients.