Tanaka-Tsuno, Fumiko; Mizukami-Murata, Satomi; Murata, Yoshinori; Nakamura, Toshihide; Ando, Akira; Takagi, Hiroshi; Shima, Jun
2007-10-01
In the modern baking industry, high-sucrose-tolerant (HS) and maltose-utilizing (LS) yeast were developed using breeding techniques and are now used commercially. Sugar utilization and high-sucrose tolerance differ significantly between HS and LS yeasts. We analysed the gene expression profiles of HS and LS yeasts under different sucrose conditions in order to determine their basic physiology. Two-way hierarchical clustering was performed to obtain the overall patterns of gene expression. The clustering clearly showed that the gene expression patterns of LS yeast differed from those of HS yeast. Quality threshold clustering was used to identify the gene clusters containing upregulated genes (cluster 1) and downregulated genes (cluster 2) under high-sucrose conditions. Clusters 1 and 2 contained numerous genes involved in carbon and nitrogen metabolism, respectively. The expression level of the genes involved in the metabolism of glycerol and trehalose, which are known to be osmoprotectants, in LS yeast was higher than that in HS yeast under sucrose concentrations of 5-40%. No clear correlation was found between the expression level of the genes involved in the biosynthesis of the osmoprotectants and the intracellular contents of the osmoprotectants. The present gene expression data were compared with data previously reported in a comprehensive analysis of a gene deletion strain collection. Welch's t-test for this comparison showed that the relative growth rates of the deletion strains whose deletion occurred in genes belonging to cluster 1 were significantly higher than the average growth rates of all deletion strains. Copyright 2007 John Wiley & Sons, Ltd.
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P
2015-04-14
Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.
Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.
Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin
2005-01-01
DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.
Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet
USDA-ARS?s Scientific Manuscript database
Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....
Banelli, Barbara; Brigati, Claudio; Di Vinci, Angela; Casciano, Ida; Forlani, Alessandra; Borzì, Luana; Allemanni, Giorgio; Romani, Massimo
2012-03-01
Epigenetic alterations are hallmarks of cancer and powerful biomarkers, whose clinical utilization is made difficult by the absence of standardization and of common methods of data interpretation. The coordinate methylation of many loci in cancer is defined as 'CpG island methylator phenotype' (CIMP) and identifies clinically distinct groups of patients. In neuroblastoma (NB), CIMP is defined by a methylation signature, which includes different loci, but its predictive power on outcome is entirely recapitulated by the PCDHB cluster only. We have developed a robust and cost-effective pyrosequencing-based assay that could facilitate the clinical application of CIMP in NB. This assay permits the unbiased simultaneous amplification and sequencing of 17 out of 19 genes of the PCDHB cluster for quantitative methylation analysis, taking into account all the sequence variations. As some of these variations were at CpG doublets, we bypassed the data interpretation conducted by the methylation analysis software to assign the corrected methylation value at these sites. The final result of the assay is the mean methylation level of 17 gene fragments in the protocadherin B cluster (PCDHB) cluster. We have utilized this assay to compare the methylation levels of the PCDHB cluster between high-risk and very low-risk NB patients, confirming the predictive value of CIMP. Our results demonstrate that the pyrosequencing-based assay herein described is a powerful instrument for the analysis of this gene cluster that may simplify the data comparison between different laboratories and, in perspective, could facilitate its clinical application. Furthermore, our results demonstrate that, in principle, pyrosequencing can be efficiently utilized for the methylation analysis of gene clusters with high internal homologies.
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.
2015-01-01
ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372
Utility and Limitations of Using Gene Expression Data to Identify Functional Associations
Peng, Cheng; Shiu, Shin-Han
2016-01-01
Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets. PMID:27935950
Spectral gene set enrichment (SGSE).
Frost, H Robert; Li, Zhigang; Moore, Jason H
2015-03-03
Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Unsupervised gene set testing can provide important information about the biological signal held in high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data most likely to represent noise.
O'Connell, Kerry Joan; Motherway, Mary O'Connell; Liedtke, Andrea; Fitzgerald, Gerald F; Paul Ross, R; Stanton, Catherine; Zomer, Aldert; van Sinderen, Douwe
2014-06-01
Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control.
Obando S, Tobias A; Babykin, Michael M; Zinchenko, Vladislav V
2018-05-21
The unicellular freshwater cyanobacterium Synechocystis sp. PCC 6803 is capable of using dihydroxamate xenosiderophores, either ferric schizokinen (FeSK) or a siderophore of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 (SAV), as the sole source of iron in the TonB-dependent manner. The fecCDEB1-schT gene cluster encoding a siderophore transport system that is involved in the utilization of FeSK and SAV in Synechocystis sp. PCC 6803 was identified. The gene schT encodes TonB-dependent outer membrane transporter, whereas the remaining four genes encode the ABC-type transporter FecB1CDE formed by the periplasmic binding protein FecB1, the transmembrane permease proteins FecC and FecD, and the ATPase FecE. Inactivation of any of these genes resulted in the inability of cells to utilize FeSK and SAV. Our data strongly suggest that Synechocystis sp. PCC 6803 can readily internalize Fe-siderophores via the classic TonB-dependent transport system.
Cellodextrin utilization by bifidobacterium breve UCC2003.
Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; Macsharry, John; Fitzgerald, Gerald F; van Sinderen, Douwe
2011-03-01
Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldR(His) (produced by the incorporation of a His(12)-encoding sequence into the 3' end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldR(His), which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins.
O'Connell, Kerry Joan; O'Connell Motherway, Mary; Liedtke, Andrea; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; Zomer, Aldert
2014-01-01
Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control. PMID:24705323
Wood, Gwendolyn E.; Haydock, Andrew K.; Leigh, John A.
2003-01-01
Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene sets arose from duplication events within the methanococcal lineage. The first gene cluster encodes homologs of formate dehydrogenase α (FdhA) and β (FdhB) subunits and a putative formate transporter (FdhC) as well as a carbonic anhydrase analog. The second gene cluster encodes only FdhA and FdhB homologs. Mutants lacking either fdhA gene exhibited a partial growth defect on formate, whereas a double mutant was completely unable to grow on formate as a sole methanogenic substrate. Investigation of fdh gene expression revealed that transcription of both gene clusters is controlled by the presence of H2 and not by the presence of formate. PMID:12670979
Sela, D. A.; Chapman, J.; Adeuya, A.; Kim, J. H.; Chen, F.; Whitehead, T. R.; Lapidus, A.; Rokhsar, D. S.; Lebrilla, C. B.; German, J. B.; Price, N. P.; Richardson, P. M.; Mills, D. A.
2008-01-01
Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype. PMID:19033196
Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.
Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin
2017-02-17
The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.
The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6
Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval
1999-01-01
A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer. PMID:10368143
Cellodextrin Utilization by Bifidobacterium breve UCC2003▿ †
Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; MacSharry, John; Fitzgerald, Gerald F.; van Sinderen, Douwe
2011-01-01
Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldRHis (produced by the incorporation of a His12-encoding sequence into the 3′ end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldRHis, which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins. PMID:21216899
Garrido, Daniel; Ruiz-Moyano, Santiago; Kirmiz, Nina; Davis, Jasmine C.; Totten, Sarah M.; Lemay, Danielle G.; Ugalde, Juan A.; German, J. Bruce; Lebrilla, Carlito B.; Mills, David A.
2016-01-01
The infant intestinal microbiota is often colonized by two subspecies of Bifidobacterium longum: subsp. infantis (B. infantis) and subsp. longum (B. longum). Competitive growth of B. infantis in the neonate intestine has been linked to the utilization of human milk oligosaccharides (HMO). However, little is known how B. longum consumes HMO. In this study, infant-borne B. longum strains exhibited varying HMO growth phenotypes. While all strains efficiently utilized lacto-N-tetraose, certain strains additionally metabolized fucosylated HMO. B. longum SC596 grew vigorously on HMO, and glycoprofiling revealed a preference for consumption of fucosylated HMO. Transcriptomes of SC596 during early-stage growth on HMO were more similar to growth on fucosyllactose, transiting later to a pattern similar to growth on neutral HMO. B. longum SC596 contains a novel gene cluster devoted to the utilization of fucosylated HMO, including genes for import of fucosylated molecules, fucose metabolism and two α-fucosidases. This cluster showed a modular induction during early growth on HMO and fucosyllactose. This work clarifies the genomic and physiological variation of infant-borne B. longum to HMO consumption, which resembles B. infantis. The capability to preferentially consume fucosylated HMO suggests a competitive advantage for these unique B. longum strains in the breast-fed infant gut. PMID:27756904
Garrido, Daniel; Ruiz-Moyano, Santiago; Kirmiz, Nina; Davis, Jasmine C; Totten, Sarah M; Lemay, Danielle G; Ugalde, Juan A; German, J Bruce; Lebrilla, Carlito B; Mills, David A
2016-10-19
The infant intestinal microbiota is often colonized by two subspecies of Bifidobacterium longum: subsp. infantis (B. infantis) and subsp. longum (B. longum). Competitive growth of B. infantis in the neonate intestine has been linked to the utilization of human milk oligosaccharides (HMO). However, little is known how B. longum consumes HMO. In this study, infant-borne B. longum strains exhibited varying HMO growth phenotypes. While all strains efficiently utilized lacto-N-tetraose, certain strains additionally metabolized fucosylated HMO. B. longum SC596 grew vigorously on HMO, and glycoprofiling revealed a preference for consumption of fucosylated HMO. Transcriptomes of SC596 during early-stage growth on HMO were more similar to growth on fucosyllactose, transiting later to a pattern similar to growth on neutral HMO. B. longum SC596 contains a novel gene cluster devoted to the utilization of fucosylated HMO, including genes for import of fucosylated molecules, fucose metabolism and two α-fucosidases. This cluster showed a modular induction during early growth on HMO and fucosyllactose. This work clarifies the genomic and physiological variation of infant-borne B. longum to HMO consumption, which resembles B. infantis. The capability to preferentially consume fucosylated HMO suggests a competitive advantage for these unique B. longum strains in the breast-fed infant gut.
Förster-Fromme, Karin; Höschle, Birgit; Mack, Christina; Bott, Michael; Armbruster, Wolfgang; Jendrossek, Dieter
2006-01-01
Geranyl-coenzyme A (CoA)-carboxylase (GCase; AtuC/AtuF) and methylcrotonyl-CoA-carboxylase (MCase; LiuB/LiuD) are characteristic enzymes of the catabolic pathway of acyclic terpenes (citronellol and geraniol) and of saturated methyl-branched compounds, such as leucine or isovalerate, respectively. Proteins encoded by two gene clusters (atuABCDEFGH and liuRABCDE) of Pseudomonas aeruginosa PAO1 were essential for acyclic terpene utilization (Atu) and for leucine and isovalerate utilization (Liu), respectively, as revealed by phenotype analysis of 10 insertion mutants, two-dimensional gel electrophoresis, determination of GCase and MCase activities, and Western blot analysis of wild-type and mutant strains. Analysis of the genome sequences of other pseudomonads (P. putida KT2440 and P. fluorescens Pf-5) revealed candidate genes for Liu proteins for both species and candidate genes for Atu proteins in P. fluorescens. This result concurred with the finding that P. fluorescens, but not P. putida, could grow on acyclic terpenes (citronellol and citronellate), while both species were able to utilize leucine and isovalerate. A regulatory gene, atuR, was identified upstream of atuABCDEFGH and negatively regulated expression of the atu gene cluster. PMID:16820476
Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.
Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C
2015-01-01
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo
2017-05-31
Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem clusters of pikromycin biosynthetic gene clusters. The 60 kb pikromycin biosynthetic gene cluster was isolated in a single integration pSBAC vector. Introduction of the pikromycin biosynthetic gene cluster into the pikromycin non-producing strains resulted in higher pikromycin production. The utility of the pSBAC system as a precise cloning tool for large-sized biosynthetic gene clusters was verified through heterologous expression of the pikromycin biosynthetic gene cluster. Moreover, this pSBAC-driven heterologous expression strategy was confirmed to be an ideal approach for production of low and inconsistent natural products such as pikromycin in S. venezuelae, implying that this strategy could be employed for development of a custom overexpression scheme of natural product biosynthetic gene clusters in actinomycetes.
Clustering gene expression data based on predicted differential effects of GV interaction.
Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu
2005-02-01
Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.
Suzuki, Kuta; Tanaka, Mizuki; Konno, Yui; Ichikawa, Takanori; Ichinose, Sakurako; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya
2015-02-01
The production of amylolytic enzymes in Aspergillus oryzae is induced in the presence of starch or maltose, and two Zn2Cys6-type transcription factors, AmyR and MalR, are involved in this regulation. AmyR directly regulates the expression of amylase genes, and MalR controls the expression of maltose-utilizing (MAL) cluster genes. Deletion of malR gene resulted in poor growth on starch medium and reduction in α-amylase production level. To elucidate the activation mechanisms of these two transcription factors in amylase production, the expression profiles of amylases and MAL cluster genes under carbon catabolite derepression condition and subcellular localization of these transcription factors fused with a green fluorescent protein (GFP) were examined. Glucose, maltose, and isomaltose induced the expression of amylase genes, and GFP-AmyR was translocated from the cytoplasm to nucleus after the addition of these sugars. Rapid induction of amylase gene expression and nuclear localization of GFP-AmyR by isomaltose suggested that this sugar was the strongest inducer for AmyR activation. In contrast, GFP-MalR was constitutively localized in the nucleus and the expression of MAL cluster genes was induced by maltose, but not by glucose or isomaltose. In the presence of maltose, the expression of amylase genes was preceded by MAL cluster gene expression. Furthermore, deletion of the malR gene resulted in a significant decrease in the α-amylase activity induced by maltose, but had apparently no effect on the expression of α-amylase genes in the presence of isomaltose. These results suggested that activation of AmyR and MalR is regulated in a different manner, and the preceding activation of MalR is essential for the utilization of maltose as an inducer for AmyR activation.
Mei, Yan-Zhen; Wan, Yong-Min; He, Bing-Fang; Ying, Han-Jie; Ouyang, Ping-Kai
2009-12-01
The thermophile Bacillus fordii MH602 was screened for stereospecifically hydrolyzing DL-5-substituted hydantoins to L-alpha-amino acids. Since the reaction at higher temperature, the advantageous for enhancement of substrate solubility and for racemization of DL-5-substituted hydantoins during the conversion were achieved. The hydantoin metabolism gene cluster from thermophile was firstly reported in this paper. The genes involved in hydantoin utilization (hyu) were isolated on an 8.2 kb DNA fragment by Restriction Site-dependent PCR, and six ORFs were identified by DNA sequence analysis. The hyu gene cluster contained four genes with novel cluster organization characteristics: the hydantoinase gene hyuH, putative transport protein hyuP, hyperprotein hyuHP, and L-carbamoylase gene hyuC. The hyuH and hyuC genes were heterogeneously expressed in E. coli. The results indicated that hyuH and hyuC are involved in the conversion of DL-5-substituted hydantoins to an N-carbamyl intermediate that is subsequently converted to L-alpha-amino acids. Hydantoinase and carbamoylase from B. fordii MH602 comparing respectively with reported hydantoinase and carbamoylase showed the highest identities of 71% and 39%. The novel cluster organization characteristics and the difference of the key enzymes between thermopile B. fordii MH602 and other mesophiles were presumed to be related to the evolutionary origins of concerned metabolism.
Pérez-Ramos, Adrian; Werning, Maria L.; Prieto, Alicia; Russo, Pasquale; Spano, Giuseppe; Mohedano, Mari L.; López, Paloma
2017-01-01
Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i) P. parvulus 2.6 is able to metabolize sorbitol, (ii) sorbitol utilization is repressed in the presence of glucose and (iii) sorbitol supports the synthesis of 2-substituted (1,3)-β-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (Pgut) and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of Pgut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for Pgut functionality. This demonstrates that: (i) Pgut is required for expression of the gut cluster, (ii) Pgut is subjected to catabolic repression in lactobacilli, (iii) GutR is an activator, and (iv) in the presence of sorbitol, trans-complementation for activation of Pgut exists in L. plantarum but not in L. casei. PMID:29259592
Nong, Guang; Rice, John D; Chow, Virginia; Preston, James F
2009-07-01
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from decaying sweet gum wood, secretes a multimodular glycohydrolase family GH10 endoxylanase (XynA1) anchored to the cell surface. The gene encoding XynA1 is part of a xylan utilization regulon that includes an aldouronate utilization gene cluster with genes encoding a GH67 alpha-glucuronidase (AguA), a GH10 endoxylanase (XynA2), and a GH43 arabinofuranosidase/beta-xylosidase (XynB). Here we show that this Paenibacillus sp. strain is able to utilize methylglucuronoxylose (MeGAX(1)), an aldobiuronate product that accumulates during acid pretreatment of lignocellulosic biomass, and methylglucuronoxylotriose (MeGAX(3)), the product of the extracellular XynA1 acting on methylglucuronoxylan (MeGAX(n)). The average rates of utilization of MeGAX(n), MeGAX(1), and MeGAX(3) were 149.8, 59.4, and 54.3 microg xylose equivalents.ml(-1).h(-1), respectively, and were proportional to the specific growth rates on the substrates. AguA was active with MeGAX(1) and MeGAX(3), releasing 4-O-methyl-d-glucuronate alpha-1,2 linked to a nonreducing terminal xylose residue. XynA2 converted xylotriose, generated by the action of AguA on MeGAX(3), to xylose and xylobiose. The ability to utilize MeGAX(1) provides a novel metabolic potential for bioconversion of acid hydrolysates of lignocellulosics. The 2.8-fold-greater rate of utilization of polymeric MeGAX(n) than that of MeGAX(3) indicates that there is coupling of extracellular depolymerization, assimilation, and intracellular metabolism, allowing utilization of lignocellulosics with minimal pretreatment. Along with adjacent genes encoding transcriptional regulators and ABC transporter proteins, the aguA and xynA2 genes in the cluster described above contribute to the efficient utilization of aldouronates derived from dilute acid and/or enzyme pretreatment protocols applied to the conversion of hemicellulose to biofuels and chemicals.
Egan, Muireann; O'Connell Motherway, Mary; van Sinderen, Douwe
2015-02-01
Bifidobacterium breve strains are numerically prevalent among the gut microbiota of healthy, breast-fed infants. The metabolism of sialic acid, a ubiquitous monosaccharide in the infant and adult gut, by B. breve UCC2003 is dependent on a large gene cluster, designated the nan/nag cluster. This study describes the transcriptional regulation of the nan/nag cluster and thus sialic acid metabolism in B. breve UCC2003. Insertion mutagenesis and transcriptome analysis revealed that the nan/nag cluster is regulated by a GntR family transcriptional repressor, designated NanR. Crude cell extract of Escherichia coli EC101 in which the nanR gene had been cloned and overexpressed was shown to bind to two promoter regions within this cluster, each of which containing an imperfect inverted repeat that is believed to act as the NanR operator sequence. Formation of the DNA-NanR complex is prevented in the presence of sialic acid, which we had previously shown to induce transcription of this gene cluster. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mutations in iron-sulfur cluster proteins that improve xylose utilization
Froehlich, Allan; Henningsen, Brooks; Covalla, Sean; Zelle, Rintze M.
2018-03-20
There is provided an engineered host cells comprising (a) one or more mutations in one or more endogenous genes encoding a protein associated with iron metabolism; and (b) at least one gene encoding a polypeptide having xylose isomerase activity, and methods of their use thereof.
Arboleya, Silvia; Bottacini, Francesca; O'Connell-Motherway, Mary; Ryan, C Anthony; Ross, R Paul; van Sinderen, Douwe; Stanton, Catherine
2018-01-08
Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach. We analysed their pan-genome and their phylogenetic relatedness. All strains clustered in the B. longum ssp. longum phylogenetic subgroup, except for one individual strain which was found to cluster in the B. longum ssp. suis phylogenetic group. The examined strains exhibit genomic diversity, while they also varied in their sugar utilization profiles. This allowed us to perform a gene-trait matching exercise enabling the identification of five gene clusters involved in the utilization of xylo-oligosaccharides, arabinan, arabinoxylan, galactan and fucosyllactose, the latter of which is an abundant human milk oligosaccharide (HMO). The results showed high diversity in terms of genes and predicted glycosyl-hydrolases, as well as the ability to metabolize a large range of sugars. Moreover, we corroborate the capability of B. longum ssp. longum to metabolise HMOs. Ultimately, their intraspecific genomic diversity and the ability to consume a wide assortment of carbohydrates, ranging from plant-derived carbohydrates to HMOs, may provide an explanation for the competitive advantage and persistence of B. longum in the human gut microbiome.
Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki
2011-01-01
The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847
Aguilar, J A; Zavala, A N; Díaz-Pérez, C; Cervantes, C; Díaz-Pérez, A L; Campos-García, J
2006-03-01
Evidence suggests that the Pseudomonas aeruginosa PAO1 gnyRDBHAL cluster, which is involved in acyclic isoprenoid degradation (A. L. Díaz-Pérez, N. A. Zavala-Hernández, C. Cervantes, and J. Campos-García, Appl. Environ. Microbiol. 70:5102-5110, 2004), corresponds to the liuRABCDE cluster (B. Hoschle, V. Gnau, and D. Jendrossek, Microbiology 151:3649-3656, 2005). A liu (leucine and isovalerate utilization) homolog cluster was found in the PAO1 genome and is related to the catabolism of acyclic monoterpenes of the citronellol family (AMTC); it was named the atu cluster (acyclic terpene utilization), consisting of the atuCDEF genes and lacking the hydroxymethyl-glutaryl-coenzyme A (CoA) lyase (HMG-CoA lyase) homolog. Mutagenesis of the atu and liu clusters showed that both are involved in AMTC and leucine catabolism by encoding the enzymes related to the geranyl-CoA and the 3-methylcrotonyl-CoA pathways, respectively. Intermediary metabolites of the acyclic monoterpene pathway, citronellic and geranic acids, were accumulated, and leucine degradation rates were affected in both atuF and liuD mutants. The alpha subunit of geranyl-CoA carboxylase and the alpha subunit of 3-methylcrotonyl-CoA carboxylase (alpha-MCCase), encoded by the atuF and liuD genes, respectively, were both induced by citronellol, whereas only the alpha-MCCase subunit was induced by leucine. Both citronellol and leucine also induced a LacZ transcriptional fusion at the liuB gene. The liuE gene encodes a probable hydroxy-acyl-CoA lyase (probably HMG-CoA lyase), an enzyme with bifunctional activity that is essential for both AMTC and leucine degradation. P. aeruginosa PAO1 products encoded by the liuABCD cluster showed a higher sequence similarity (77.2 to 79.5%) with the probable products of liu clusters from several Pseudomonas species than with the atuCDEF cluster from PAO1 (41.5%). Phylogenetic studies suggest that the atu cluster from P. aeruginosa could be the result of horizontal transfer from Alphaproteobacteria. Our results suggest that the atu and liu clusters are bifunctional operons involved in both the AMTC and leucine catabolic pathways.
Identification of a Gene Cluster Enabling Lactobacillus casei BL23 To Utilize myo-Inositol▿ †
Yebra, María Jesús; Zúñiga, Manuel; Beaufils, Sophie; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente
2007-01-01
Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23. PMID:17449687
Mashruwala, Ameya A.; Pang, Yun Y.; Rosario-Cruz, Zuelay; Chahal, Harsimranjit K.; Benson, Meredith A.; Anzaldi-Mike, Laura L.; Skaar, Eric P.; Torres, Victor J.; Nauseef, William M.; Boyd, Jeffrey M.
2015-01-01
Summary The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron-sulfur (Fe-S) clusters, which are required for functional Fe-S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe-S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe-S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as a Fe-S cluster carrier, which aids in the maturation of Fe-S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non-incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe-S cluster metabolism as an attractive antimicrobial target. PMID:25388433
OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes
Li, Li; Stoeckert, Christian J.; Roos, David S.
2003-01-01
The identification of orthologous groups is useful for genome annotation, studies on gene/protein evolution, comparative genomics, and the identification of taxonomically restricted sequences. Methods successfully exploited for prokaryotic genome analysis have proved difficult to apply to eukaryotes, however, as larger genomes may contain multiple paralogous genes, and sequence information is often incomplete. OrthoMCL provides a scalable method for constructing orthologous groups across multiple eukaryotic taxa, using a Markov Cluster algorithm to group (putative) orthologs and paralogs. This method performs similarly to the INPARANOID algorithm when applied to two genomes, but can be extended to cluster orthologs from multiple species. OrthoMCL clusters are coherent with groups identified by EGO, but improved recognition of “recent” paralogs permits overlapping EGO groups representing the same gene to be merged. Comparison with previously assigned EC annotations suggests a high degree of reliability, implying utility for automated eukaryotic genome annotation. OrthoMCL has been applied to the proteome data set from seven publicly available genomes (human, fly, worm, yeast, Arabidopsis, the malaria parasite Plasmodium falciparum, and Escherichia coli). A Web interface allows queries based on individual genes or user-defined phylogenetic patterns (http://www.cbil.upenn.edu/gene-family). Analysis of clusters incorporating P. falciparum genes identifies numerous enzymes that were incompletely annotated in first-pass annotation of the parasite genome. PMID:12952885
Identifying conserved gene clusters in the presence of homology families.
He, Xin; Goldwasser, Michael H
2005-01-01
The study of conserved gene clusters is important for understanding the forces behind genome organization and evolution, as well as the function of individual genes or gene groups. In this paper, we present a new model and algorithm for identifying conserved gene clusters from pairwise genome comparison. This generalizes a recent model called "gene teams." A gene team is a set of genes that appear homologously in two or more species, possibly in a different order yet with the distance of adjacent genes in the team for each chromosome always no more than a certain threshold. We remove the constraint in the original model that each gene must have a unique occurrence in each chromosome and thus allow the analysis on complex prokaryotic or eukaryotic genomes with extensive paralogs. Our algorithm analyzes a pair of chromosomes in O(mn) time and uses O(m+n) space, where m and n are the number of genes in the respective chromosomes. We demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match predicted operons, previously suggested by computational techniques. Our implementation and data are publicly available at euler.slu.edu/ approximately goldwasser/homologyteams/.
Su, Yuhua; Nielsen, Dahlia; Zhu, Lei; Richards, Kristy; Suter, Steven; Breen, Matthew; Motsinger-Reif, Alison; Osborne, Jason
2013-01-05
: A bivariate mixture model utilizing information across two species was proposed to solve the fundamental problem of identifying differentially expressed genes in microarray experiments. The model utility was illustrated using a dog and human lymphoma data set prepared by a group of scientists in the College of Veterinary Medicine at North Carolina State University. A small number of genes were identified as being differentially expressed in both species and the human genes in this cluster serve as a good predictor for classifying diffuse large-B-cell lymphoma (DLBCL) patients into two subgroups, the germinal center B-cell-like diffuse large B-cell lymphoma and the activated B-cell-like diffuse large B-cell lymphoma. The number of human genes that were observed to be significantly differentially expressed (21) from the two-species analysis was very small compared to the number of human genes (190) identified with only one-species analysis (human data). The genes may be clinically relevant/important, as this small set achieved low misclassification rates of DLBCL subtypes. Additionally, the two subgroups defined by this cluster of human genes had significantly different survival functions, indicating that the stratification based on gene-expression profiling using the proposed mixture model provided improved insight into the clinical differences between the two cancer subtypes.
Song, Yajian; Xue, Yanfen; Ma, Yanhe
2013-01-01
The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578
Nong, Guang; Rice, John D.; Chow, Virginia; Preston, James F.
2009-01-01
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from decaying sweet gum wood, secretes a multimodular glycohydrolase family GH10 endoxylanase (XynA1) anchored to the cell surface. The gene encoding XynA1 is part of a xylan utilization regulon that includes an aldouronate utilization gene cluster with genes encoding a GH67 α-glucuronidase (AguA), a GH10 endoxylanase (XynA2), and a GH43 arabinofuranosidase/β-xylosidase (XynB). Here we show that this Paenibacillus sp. strain is able to utilize methylglucuronoxylose (MeGAX1), an aldobiuronate product that accumulates during acid pretreatment of lignocellulosic biomass, and methylglucuronoxylotriose (MeGAX3), the product of the extracellular XynA1 acting on methylglucuronoxylan (MeGAXn). The average rates of utilization of MeGAXn, MeGAX1, and MeGAX3 were 149.8, 59.4, and 54.3 μg xylose equivalents·ml−1·h−1, respectively, and were proportional to the specific growth rates on the substrates. AguA was active with MeGAX1 and MeGAX3, releasing 4-O-methyl-d-glucuronate α-1,2 linked to a nonreducing terminal xylose residue. XynA2 converted xylotriose, generated by the action of AguA on MeGAX3, to xylose and xylobiose. The ability to utilize MeGAX1 provides a novel metabolic potential for bioconversion of acid hydrolysates of lignocellulosics. The 2.8-fold-greater rate of utilization of polymeric MeGAXn than that of MeGAX3 indicates that there is coupling of extracellular depolymerization, assimilation, and intracellular metabolism, allowing utilization of lignocellulosics with minimal pretreatment. Along with adjacent genes encoding transcriptional regulators and ABC transporter proteins, the aguA and xynA2 genes in the cluster described above contribute to the efficient utilization of aldouronates derived from dilute acid and/or enzyme pretreatment protocols applied to the conversion of hemicellulose to biofuels and chemicals. PMID:19395566
Cadherin genes and evolutionary novelties in the octopus.
Wang, Z Yan; Ragsdale, Clifton W
2017-09-01
All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sawhney, Neha
2014-01-01
Methylglucuronoarabinoxylan (MeGAXn) from agricultural residues and energy crops is a significant yet underutilized biomass resource for production of biofuels and chemicals. Mild thermochemical pretreatment of bagasse yields MeGAXn requiring saccharifying enzymes for conversion to fermentable sugars. A xylanolytic bacterium, Paenibacillus sp. strain JDR-2, produces an extracellular cell-associated GH10 endoxylanse (XynA1) which efficiently depolymerizes methylglucuronoxylan (MeGXn) from hardwoods coupled with assimilation of oligosaccharides for further processing by intracellular GH67 α-glucuronidase, GH10 endoxylanase, and GH43 β-xylosidase. This process has been ascribed to genes that comprise a xylan utilization regulon that encodes XynA1 and includes a gene cluster encoding transcriptional regulators, ABC transporters, and intracellular enzymes that convert assimilated oligosaccharides to fermentable sugars. Here we show that Paenibacillus sp. JDR-2 utilized MeGAXn without accumulation of oligosaccharides in the medium. The Paenibacillus sp. JDR-2 growth rate on MeGAXn was 3.1-fold greater than that on oligosaccharides generated from MeGAXn by XynA1. Candidate genes encoding GH51 arabinofuranosidases with potential roles were identified. Following growth on MeGAXn, quantitative reverse transcription-PCR identified a cluster of genes encoding a GH51 arabinofuranosidase (AbfB) and transcriptional regulators which were coordinately expressed along with the genes comprising the xylan utilization regulon. The action of XynA1 on MeGAXn generated arabinoxylobiose, arabinoxylotriose, xylobiose, xylotriose, and methylglucuronoxylotriose. Recombinant AbfB processed arabinoxylooligosaccharides to xylooligosaccharides and arabinose. MeGAXn processing by Paenibacillus sp. JDR-2 may be achieved by extracellular depolymerization by XynA1 coupled to assimilation of oligosaccharides and further processing by intracellular enzymes, including AbfB. Paenibacillus sp. JDR-2 provides a GH10/GH67 system complemented with genes encoding intracellular GH51 arabinofuranosidases for efficient utilization of MeGAXn. PMID:25063665
Min, Jun; Zhang, Jun-Jie
2014-01-01
Burkholderia sp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) or para-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of the pnp genes in the pnpABA1CDEF cluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activity in vitro in the conversion of 2C4NP to CBQ. Genetic analyses indicated that pnpA plays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels. PMID:25085488
Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii
Zeng, Lin; Martino, Nicole C.
2012-01-01
Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715
2010-01-01
Background The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. Results The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr), hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd) as well as tungsten-type (fwd) formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. Conclusions The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens. PMID:20178638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, Jeanette M.; Klotz, Martin G; Stein, Lisa Y
2008-01-01
The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presencemore » of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.« less
Brozyna, Jeremy R; Sheldon, Jessica R; Heinrichs, David E
2014-01-01
Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus,S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureusSA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis. PMID:24515974
Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors
NASA Astrophysics Data System (ADS)
Ng, Quinn Kwan Tai
Gene transfer or gene delivery is described as the process in which foreign DNA is introduced into cells. Over the years, gene delivery has gained the attention of many researchers and has been developed as powerful tools for use in biotechnology and medicine. With the completion of the Human Genome Project, such advances in technology allowed for the identification of diseases ranging from hereditary disorders to acquired ones (cancer) which were thought to be incurable. Gene therapy provides the means necessary to treat or eliminate genetic diseases from its origin, unlike traditional medicine which only treat symptoms. With ongoing clinical trials for gene therapy increasing, the greatest difficulty still lies in developing safe systems which can target cells of interest to provide efficient delivery. Nature, over millions of years of evolution, has provided an example of one of the most efficient delivery systems: viruses. Although the use of viruses for gene delivery has been well studied, the safety issues involving immunogenicity, insertional mutagenesis, high cost, and poor reproducibility has provided problems for their clinical application. From understanding viruses, we gain insight to designing new systems for non-viral gene delivery. One of these techniques utilized by adenoviruses is the clustering of ligands on its surface through the use of a protein called a penton base. Through the use of nanotechnology we can mimic this basic concept in non-viral gene delivery systems. This dissertation research is focused on developing and applying a novel system for displaying the integrin binding ligand (RGD) in a constrained manner to form a clustered integrin ligand binding platform to be used to enhance the targeting and efficiency of non-viral gene delivery vectors. Peptide mixed monolayer protected gold nanoparticles provides a suitable surface for ligand clustering. A relationship between the peptide ratios in the reaction solution used to form these ligand clusters compared to the reacted amounts on the surface of the particle was studied. This provided us the ability to control the size of the clusters formed and the spacing between the integrins for gold nanoparticles of various sizes. We then applied the clustered ligand binding system for targeting of DNA/PEI polyplexes and demonstrated that the use of RGD nanoclusters enhances gene transfer up to 35-fold which was dependent on the density of alphavbeta3 integrins on the cell surface. Cell integrin sensitivity was shown in which cells with higher alpha vbeta3 densities resulting in higher luciferase transgene expression. The targeting of RGD nanoclusters for DNA/PEI polyplexes was further shown in vivo using PET/CT technology which displayed improved targeting towards high level alphavbeta3 integrin expression (U87MG) tumors over medium level alphavbeta 3 integrin expression (HeLa). In addition to studying the clustered integrin binding system, the current non-viral vectors used suffer from stability and toxicity issues in vitro and in vivo. We have applied a new chemistry for synthesizing nanogels utilizing a Traut's reagent initiated Michael addition reaction for modification of diamine containing crosslikers which will allow for the development of stable and cell demanded release of oligonucleotides. We have shown bulk gels made were capable of encapsulating and holding DNA within the gel and were able to synthesize them into nanogels. The combined research shown here using clustered integrin ligands and a new type of nanogel synthesis provides an ideal system for gene delivery in the future.
Metabolism of Four α-Glycosidic Linkage-Containing Oligosaccharides by Bifidobacterium breve UCC2003
O'Connell, Kerry Joan; O'Connell Motherway, Mary; O'Callaghan, John; Fitzgerald, Gerald F.; Ross, R. Paul; Ventura, Marco; Stanton, Catherine
2013-01-01
Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate. PMID:23913435
O'Connell, Kerry Joan; O'Connell Motherway, Mary; O'Callaghan, John; Fitzgerald, Gerald F; Ross, R Paul; Ventura, Marco; Stanton, Catherine; van Sinderen, Douwe
2013-10-01
Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate.
Clustering-based spot segmentation of cDNA microarray images.
Uslan, Volkan; Bucak, Ihsan Ömür
2010-01-01
Microarrays are utilized as that they provide useful information about thousands of gene expressions simultaneously. In this study segmentation step of microarray image processing has been implemented. Clustering-based methods, fuzzy c-means and k-means, have been applied for the segmentation step that separates the spots from the background. The experiments show that fuzzy c-means have segmented spots of the microarray image more accurately than the k-means.
Vuilleumier, Stéphane; Chistoserdova, Ludmila; Lee, Ming-Chun; Bringel, Françoise; Lajus, Aurélie; Zhou, Yang; Gourion, Benjamin; Barbe, Valérie; Chang, Jean; Cruveiller, Stéphane; Dossat, Carole; Gillett, Will; Gruffaz, Christelle; Haugen, Eric; Hourcade, Edith; Levy, Ruth; Mangenot, Sophie; Muller, Emilie; Nadalig, Thierry; Pagni, Marco; Penny, Christian; Peyraud, Rémi; Robinson, David G; Roche, David; Rouy, Zoé; Saenampechek, Channakhone; Salvignol, Grégory; Vallenet, David; Wu, Zaining; Marx, Christopher J; Vorholt, Julia A; Olson, Maynard V; Kaul, Rajinder; Weissenbach, Jean; Médigue, Claudine; Lidstrom, Mary E
2009-01-01
Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name "island integration determinant" (iid). These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.
A large-scale benchmark of gene prioritization methods.
Guala, Dimitri; Sonnhammer, Erik L L
2017-04-21
In order to maximize the use of results from high-throughput experimental studies, e.g. GWAS, for identification and diagnostics of new disease-associated genes, it is important to have properly analyzed and benchmarked gene prioritization tools. While prospective benchmarks are underpowered to provide statistically significant results in their attempt to differentiate the performance of gene prioritization tools, a strategy for retrospective benchmarking has been missing, and new tools usually only provide internal validations. The Gene Ontology(GO) contains genes clustered around annotation terms. This intrinsic property of GO can be utilized in construction of robust benchmarks, objective to the problem domain. We demonstrate how this can be achieved for network-based gene prioritization tools, utilizing the FunCoup network. We use cross-validation and a set of appropriate performance measures to compare state-of-the-art gene prioritization algorithms: three based on network diffusion, NetRank and two implementations of Random Walk with Restart, and MaxLink that utilizes network neighborhood. Our benchmark suite provides a systematic and objective way to compare the multitude of available and future gene prioritization tools, enabling researchers to select the best gene prioritization tool for the task at hand, and helping to guide the development of more accurate methods.
Zhao, Y; Kumar, M; Caspers, M P M; Nierop Groot, M N; van der Vossen, J M B M; Abee, T
2018-02-01
Thermophilic bacilli such as Anoxybacillus and Geobacillus are important contaminants in dairy powder products. Remarkably, one of the common contaminants, Geobacillus thermoglucosidans, showed poor growth in skim milk, whereas significant growth of G. thermoglucosidans was observed in the presence of an Anoxybacillus flavithermus dairy isolate. In the present study, we investigated the underlying reason for this growth dependence of G. thermoglucosidans. Whole-genome sequences of 4 A. flavithermus strains and 4 G. thermoglucosidans strains were acquired, with special attention given to carbohydrate utilization clusters and proteolytic enzymes. Focusing on traits relevant for dairy environments, comparative genomic analysis revealed that all G. thermoglucosidans strains lacked the genes necessary for lactose transport and metabolism, showed poor growth in skim milk, and produced white colonies on X-gal plates, indicating the lack of β-galactosidase activity. The A. flavithermus isolates scored positive in these tests, consistent with the presence of a putative lactose utilization gene cluster. All tested isolates from both species showed proteolytic activity on milk plate count agar plates. Adding glucose or galactose to liquid skim milk supported growth of G. thermoglucosidans isolates, in line with the presence of the respective monosaccharide utilization gene clusters in the genomes. Analysis by HPLC of A. flavithermus TNO-09.006 culture filtrate indicated that the previously described growth dependence of G. thermoglucosidans in skim milk was based on the supply of glucose and galactose by A. flavithermus TNO-09.006. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿
Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi
2007-01-01
In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, M; Craft, D
Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchicalmore » clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve cancer classification using biological pathways. Patients are classified with greater specificity and physiological relevance as compared to current gene-specific approaches. Focus now moves to utilizing PICS for pan-cancer patient-specific treatment response prediction.« less
Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer
Zaravinos, Apostolos; Lambrou, George I.; Boulalas, Ioannis; Delakas, Dimitris; Spandidos, Demetrios A.
2011-01-01
Background Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. Purpose Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. Methodology/Principal Findings BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFκB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. Conclusions/Significance The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers. PMID:21483740
Genetic analysis of biodegradation of tetralin by a Sphingomonas strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernaez, M.J.; Santero, E.; Reineke, W.
Tetralin (1,2,3,4-tetrahydronaphthalene) is produced for industrial purposes from naphthalene by catalytic hydrogenation or from anthracene by cracking. A strain designated TFA which very efficiently utilizes tetralin has been isolated from the Rhine river. The strain has been identified as Sphingomonas macrogoltabidus, based on 16S rDNA sequence similarity. Genetic analysis of tetralin biodegradation has been performed by insertion mutagenesis and by physical analysis and analysis of complementation between the mutants. The genes involved in tetralin utilization are clustered in a region of 9 kb, comprising at least five genes grouped in two divergently transcribed operons.
Nogellova, Veronika; Morel, Bertrand; Krell, Tino
2016-01-01
Summary Infections due to multidrug‐resistant bacteria represent a major global health challenge. To combat this problem, new antibiotics are urgently needed and some plant‐associated bacteria are a promising source. The rhizobacterium Serratia plymuthica A153 produces several bioactive secondary metabolites, including the anti‐oomycete and antifungal haterumalide, oocydin A and the broad spectrum polyamine antibiotic, zeamine. In this study, we show that A153 produces a second broad spectrum antibiotic, andrimid. Using genome sequencing, comparative genomics and mutagenesis, we defined new genes involved in andrimid (adm) biosynthesis. Both the expression of the adm gene cluster and regulation of andrimid synthesis were investigated. The biosynthetic cluster is operonic and its expression is modulated by various environmental cues, including temperature and carbon source. Analysis of the genome context of the adm operon revealed a gene encoding a predicted LysR‐type regulator, AdmX, apparently unique to Serratia strains. Mutagenesis and gene expression assays demonstrated that AdmX is a transcriptional activator of the adm gene cluster. At the post‐transcriptional level, the expression of the adm cluster is positively regulated by the RNA chaperone, Hfq, in an RpoS‐independent manner. Our results highlight the complexity of andrimid biosynthesis – an antibiotic with potential clinical and agricultural utility. PMID:26914969
Lambert, Jolanda; van Limpt, Kees; Wels, Michiel; Smokvina, Tamara; Knol, Jan; Kleerebezem, Michiel
2015-01-01
Lactobacillus rhamnosus is a bacterial species commonly colonizing the gastrointestinal (GI) tract of humans and also frequently used in food products. While some strains have been studied extensively, physiological variability among isolates of the species found in healthy humans or their diet is largely unexplored. The aim of this study was to characterize the diversity of carbohydrate utilization capabilities of human isolates and food-derived strains of L. rhamnosus in relation to their niche of isolation and genotype. We investigated the genotypic and phenotypic diversity of 25 out of 65 L. rhamnosus strains from various niches, mainly human feces and fermented dairy products. Genetic fingerprinting of the strains by amplified fragment length polymorphism (AFLP) identified 11 distinct subgroups at 70% similarity and suggested niche enrichment within particular genetic clades. High-resolution carbohydrate utilization profiling (OmniLog) identified 14 carbon sources that could be used by all of the strains tested for growth, while the utilization of 58 carbon sources differed significantly between strains, enabling the stratification of L. rhamnosus strains into three metabolic clusters that partially correlate with the genotypic clades but appear uncorrelated with the strain's origin of isolation. Draft genome sequences of 8 strains were generated and employed in a gene-trait matching (GTM) analysis together with the publicly available genomes of L. rhamnosus GG (ATCC 53103) and HN001 for several carbohydrates that were distinct for the different metabolic clusters: l-rhamnose, cellobiose, l-sorbose, and α-methyl-d-glucoside. From the analysis, candidate genes were identified that correlate with l-sorbose and α-methyl-d-glucoside utilization, and the proposed function of these genes could be confirmed by heterologous expression in a strain lacking the genes. This study expands our insight into the phenotypic and genotypic diversity of the species L. rhamnosus and explores the relationships between specific carbohydrate utilization capacities and genotype and/or niche adaptation of this species. PMID:26048937
Chee, S Y
2015-05-25
The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene analysis placed both genera in the same cluster. Therefore, in the case of the Neritidae, the ATPS-α gene is a better barcoding gene than the COI gene.
Analytical workflow profiling gene expression in murine macrophages
Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.
2015-01-01
Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305
Martin, Natalia; Patel, Satyakam; Segre, Julia A.
2004-01-01
Mammalian epidermis provides a permeability barrier between an organism and its environment. Under homeostatic conditions, epidermal cells produce structural proteins, which are cross-linked in an orderly fashion to form a cornified envelope (CE). However, under genetic or environmental stress, specific genes are induced to rapidly build a temporary barrier. Small proline-rich (SPRR) proteins are the primary constituents of the CE. Under stress the entire family of 14 Sprr genes is upregulated. The Sprr genes are clustered within the larger epidermal differentiation complex on mouse chromosome 3, human chromosome 1q21. The clustering of the Sprr genes and their upregulation under stress suggest that these genes may be coordinately regulated. To identify enhancer elements that regulate this stress response activation of the Sprr locus, we utilized bioinformatic tools and classical biochemical dissection. Long-range comparative sequence analysis identified conserved noncoding sequences (CNSs). Clusters of epidermal-specific DNaseI-hypersensitive sites (HSs) mapped to specific CNSs. Increased prevalence of these HSs in barrier-deficient epidermis provides in vivo evidence of the regulation of the Sprr locus by these conserved sequences. Individual components of these HSs were cloned, and one was shown to have strong enhancer activity specific to conditions when the Sprr genes are coordinately upregulated. PMID:15574822
Gérecová, Gabriela; Neboháčová, Martina; Zeman, Igor; Pryszcz, Leszek P; Tomáška, Ľubomír; Gabaldón, Toni; Nosek, Jozef
2015-05-01
The pathogenic yeast Candida albicans utilizes hydroxyderivatives of benzene via the catechol and hydroxyhydroquinone branches of the 3-oxoadipate pathway. The genetic basis and evolutionary origin of this catabolic pathway in yeasts are unknown. In this study, we identified C. albicans genes encoding the enzymes involved in the degradation of hydroxybenzenes. We found that the genes coding for core components of the 3-oxoadipate pathway are arranged into two metabolic gene clusters. Our results demonstrate that C. albicans cells cultivated in media containing hydroxybenzene substrates highly induce the transcription of these genes as well as the corresponding enzymatic activities. We also found that C. albicans cells assimilating hydroxybenzenes cope with the oxidative stress by upregulation of cellular antioxidant systems such as alternative oxidase and catalase. Moreover, we investigated the evolution of the enzymes encoded by these clusters and found that most of them share a particularly sparse phylogenetic distribution among Saccharomycotina, which is likely to have been caused by extensive gene loss. We exploited this fact to find co-evolving proteins that are suitable candidates for the missing enzymes of the pathway. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2011-01-01
Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628
COGNAT: a web server for comparative analysis of genomic neighborhoods.
Klimchuk, Olesya I; Konovalov, Kirill A; Perekhvatov, Vadim V; Skulachev, Konstantin V; Dibrova, Daria V; Mulkidjanian, Armen Y
2017-11-22
In prokaryotic genomes, functionally coupled genes can be organized in conserved gene clusters enabling their coordinated regulation. Such clusters could contain one or several operons, which are groups of co-transcribed genes. Those genes that evolved from a common ancestral gene by speciation (i.e. orthologs) are expected to have similar genomic neighborhoods in different organisms, whereas those copies of the gene that are responsible for dissimilar functions (i.e. paralogs) could be found in dissimilar genomic contexts. Comparative analysis of genomic neighborhoods facilitates the prediction of co-regulated genes and helps to discern different functions in large protein families. We intended, building on the attribution of gene sequences to the clusters of orthologous groups of proteins (COGs), to provide a method for visualization and comparative analysis of genomic neighborhoods of evolutionary related genes, as well as a respective web server. Here we introduce the COmparative Gene Neighborhoods Analysis Tool (COGNAT), a web server for comparative analysis of genomic neighborhoods. The tool is based on the COG database, as well as the Pfam protein families database. As an example, we show the utility of COGNAT in identifying a new type of membrane protein complex that is formed by paralog(s) of one of the membrane subunits of the NADH:quinone oxidoreductase of type 1 (COG1009) and a cytoplasmic protein of unknown function (COG3002). This article was reviewed by Drs. Igor Zhulin, Uri Gophna and Igor Rogozin.
Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source.
Jones, Lauren B; Ghosh, Pallab; Lee, Jung-Hyun; Chou, Chia-Ni; Kunz, Daniel A
2018-05-21
A genetic linkage between a conserved gene cluster (Nit1C) and the ability of bacteria to utilize cyanide as the sole nitrogen source was demonstrated for nine different bacterial species. These included three strains whose cyanide nutritional ability has formerly been documented (Pseudomonas fluorescens Pf11764, Pseudomonas putida BCN3 and Klebsiella pneumoniae BCN33), and six not previously known to have this ability [Burkholderia (Paraburkholderia) xenovorans LB400, Paraburkholderia phymatum STM815, Paraburkholderia phytofirmans PsJN, Cupriavidus (Ralstonia) eutropha H16, Gluconoacetobacter diazotrophicus PA1 5 and Methylobacterium extorquens AM1]. For all bacteria, growth on or exposure to cyanide led to the induction of the canonical nitrilase (NitC) linked to the gene cluster, and in the case of Pf11764 in particular, transcript levels of cluster genes (nitBCDEFGH) were raised, and a nitC knock-out mutant failed to grow. Further studies demonstrated that the highly conserved nitB gene product was also significantly elevated. Collectively, these findings provide strong evidence for a genetic linkage between Nit1C and bacterial growth on cyanide, supporting use of the term cyanotrophy in describing what may represent a new nutritional paradigm in microbiology. A broader search of Nit1C genes in presently available genomes revealed its presence in 270 different bacteria, all contained within the domain Bacteria, including Gram-positive Firmicutes and Actinobacteria, and Gram-negative Proteobacteria and Cyanobacteria. Absence of the cluster in the Archaea is congruent with events that may have led to the inception of Nit1C occurring coincidentally with the first appearance of cyanogenic species on Earth, dating back 400-500 million years.
KinFin: Software for Taxon-Aware Analysis of Clustered Protein Sequences.
Laetsch, Dominik R; Blaxter, Mark L
2017-10-05
The field of comparative genomics is concerned with the study of similarities and differences between the information encoded in the genomes of organisms. A common approach is to define gene families by clustering protein sequences based on sequence similarity, and analyze protein cluster presence and absence in different species groups as a guide to biology. Due to the high dimensionality of these data, downstream analysis of protein clusters inferred from large numbers of species, or species with many genes, is nontrivial, and few solutions exist for transparent, reproducible, and customizable analyses. We present KinFin, a streamlined software solution capable of integrating data from common file formats and delivering aggregative annotation of protein clusters. KinFin delivers analyses based on systematic taxonomy of the species analyzed, or on user-defined, groupings of taxa, for example, sets based on attributes such as life history traits, organismal phenotypes, or competing phylogenetic hypotheses. Results are reported through graphical and detailed text output files. We illustrate the utility of the KinFin pipeline by addressing questions regarding the biology of filarial nematodes, which include parasites of veterinary and medical importance. We resolve the phylogenetic relationships between the species and explore functional annotation of proteins in clusters in key lineages and between custom taxon sets, identifying gene families of interest. KinFin can easily be integrated into existing comparative genomic workflows, and promotes transparent and reproducible analysis of clustered protein data. Copyright © 2017 Laetsch and Blaxter.
Consensus properties and their large-scale applications for the gene duplication problem.
Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver
2016-06-01
Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.
Azad, Ariful; Ouzounis, Christos A; Kyrpides, Nikos C; Buluç, Aydin
2018-01-01
Abstract Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license. PMID:29315405
Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.; ...
2018-01-05
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less
Kozák, László; Szilágyi, Zoltán; Vágó, Barbara; Kakuk, Annamária; Tóth, László; Molnár, István; Pócsi, István
2018-04-01
The hypocrealean fungus Claviceps paspali is a parasite of wild grasses. This fungus is widely utilized in the pharmaceutical industry for the manufacture of ergot alkaloids, but also produces tremorgenic and neurotoxic indole-diterpene (IDT) secondary metabolites such as paspalitrems A and B. IDTs cause significant losses in agriculture and represent health hazards that threaten food security. Conversely, IDTs may also be utilized as lead compounds for pharmaceutical drug discovery. Current protoplast-mediated transformation protocols of C. paspali are inadequate as they suffer from inefficiencies in protoplast regeneration, a low frequency of DNA integration, and a low mitotic stability of the nascent transformants. We adapted and optimized Agrobacterium tumefaciens-mediated transformation (ATMT) for C. paspali and validated this method with the straightforward creation of a mutant strain of this fungus featuring a targeted replacement of key genes in the putative IDT biosynthetic gene cluster. Complete abrogation of IDT production in isolates of the mutant strain proved the predicted involvement of the target genes in the biosynthesis of IDTs. The mutant isolates continued to produce ergot alkaloids undisturbed, indicating that equivalent mutants generated in industrial ergot producers may have a better safety profile as they are devoid of IDT-type mycotoxins. Meanwhile, ATMT optimized for Claviceps spp. may open the door for the facile genetic engineering of these industrially and ecologically important organisms.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.
Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...
2015-04-30
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H 2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate undermore » anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less
Using Public Data for Comparative Proteome Analysis in Precision Medicine Programs.
Hughes, Christopher S; Morin, Gregg B
2018-03-01
Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Jia; Che, Jiaqian; You, Zhengying; Ye, Xiaogang; Li, Jisheng; Ye, Lupeng; Zhang, Yuyu; Qian, Qiujie; Zhong, Boxiong
2016-12-01
To probe the general phenomena of gene mutations, Bombyx mori, the lepidopterous model organism, was chosen as the experimental model. To easily detect phenotypic variations, the piggyBac system was utilized to introduce two marker genes into the silkworm, and 23.4% transposition efficiency aided in easily breeding a new strain for the entire experiment. Then, the clustered regularly interspaced short palindromic repeats/an associated protein (Cas9) system was utilized. The results showed that the Cas9 system can induce efficient gene mutations and the base changes could be detected since the G 0 individuals in B. mori; and that the mutation rates on different target sites were diverse. Next, the gRNA2-targeted site that generated higher mutation rate was chosen, and the experimental results were enumerated. First, the mutation proportion in G 1 generation was 30.1%, and some gene mutations were not inherited from the G 0 generation; second, occasionally, base substitutions did not lead to variation in the amino-acid sequence, which decreased the efficiency of phenotypic changes compared with that of genotypic changes. These results laid the foundation for better use of the Cas9 system in silkworm gene editing. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; ...
2016-01-29
In this study, carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na +/H + antiporter module. This complex oxidizes CO, evolves CO 2 and H 2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein wemore » used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100° C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H 2 at 80° C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.« less
Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach
Caceres, Isaura; El Khoury, Rhoda; Medina, Ángel; Lippi, Yannick; Naylies, Claire; Atoui, Ali; El Khoury, André; Oswald, Isabelle P.; Bailly, Jean-Denis; Puel, Olivier
2016-01-01
Produced by several species of Aspergillus, Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential oils, has been identified as an anti-aflatoxin molecule. However, its precise mechanism of action has yet to be clarified. The production of AFB1 is associated with the expression of a 70 kB cluster, and not less than 21 enzymatic reactions are necessary for its production. Based on former empirical data, a molecular tool composed of 60 genes targeting 27 genes of aflatoxin B1 cluster and 33 genes encoding the main regulatory factors potentially involved in its production, was developed. We showed that AFB1 inhibition in Aspergillus flavus following eugenol addition at 0.5 mM in a Malt Extract Agar (MEA) medium resulted in a complete inhibition of the expression of all but one gene of the AFB1 biosynthesis cluster. This transcriptomic effect followed a down-regulation of the complex composed by the two internal regulatory factors, AflR and AflS. This phenomenon was also influenced by an over-expression of veA and mtfA, two genes that are directly linked to AFB1 cluster regulation. PMID:27128940
Lee, Ming-Chun; Bringel, Françoise; Lajus, Aurélie; Zhou, Yang; Gourion, Benjamin; Barbe, Valérie; Chang, Jean; Cruveiller, Stéphane; Dossat, Carole; Gillett, Will; Gruffaz, Christelle; Haugen, Eric; Hourcade, Edith; Levy, Ruth; Mangenot, Sophie; Muller, Emilie; Nadalig, Thierry; Pagni, Marco; Penny, Christian; Peyraud, Rémi; Robinson, David G.; Roche, David; Rouy, Zoé; Saenampechek, Channakhone; Salvignol, Grégory; Vallenet, David; Wu, Zaining; Marx, Christopher J.; Vorholt, Julia A.; Olson, Maynard V.; Kaul, Rajinder; Weissenbach, Jean; Médigue, Claudine; Lidstrom, Mary E.
2009-01-01
Background Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid). Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles. PMID:19440302
Discovering semantic features in the literature: a foundation for building functional associations
Chagoyen, Monica; Carmona-Saez, Pedro; Shatkay, Hagit; Carazo, Jose M; Pascual-Montano, Alberto
2006-01-01
Background Experimental techniques such as DNA microarray, serial analysis of gene expression (SAGE) and mass spectrometry proteomics, among others, are generating large amounts of data related to genes and proteins at different levels. As in any other experimental approach, it is necessary to analyze these data in the context of previously known information about the biological entities under study. The literature is a particularly valuable source of information for experiment validation and interpretation. Therefore, the development of automated text mining tools to assist in such interpretation is one of the main challenges in current bioinformatics research. Results We present a method to create literature profiles for large sets of genes or proteins based on common semantic features extracted from a corpus of relevant documents. These profiles can be used to establish pair-wise similarities among genes, utilized in gene/protein classification or can be even combined with experimental measurements. Semantic features can be used by researchers to facilitate the understanding of the commonalities indicated by experimental results. Our approach is based on non-negative matrix factorization (NMF), a machine-learning algorithm for data analysis, capable of identifying local patterns that characterize a subset of the data. The literature is thus used to establish putative relationships among subsets of genes or proteins and to provide coherent justification for this clustering into subsets. We demonstrate the utility of the method by applying it to two independent and vastly different sets of genes. Conclusion The presented method can create literature profiles from documents relevant to sets of genes. The representation of genes as additive linear combinations of semantic features allows for the exploration of functional associations as well as for clustering, suggesting a valuable methodology for the validation and interpretation of high-throughput experimental data. PMID:16438716
Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi
2015-01-01
Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path.
Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi
2015-01-01
Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path. PMID:26544851
DePianto, Daryle J; Chandriani, Sanjay; Abbas, Alexander R; Jia, Guiquan; N'Diaye, Elsa N; Caplazi, Patrick; Kauder, Steven E; Biswas, Sabyasachi; Karnik, Satyajit K; Ha, Connie; Modrusan, Zora; Matthay, Michael A; Kukreja, Jasleen; Collard, Harold R; Egen, Jackson G; Wolters, Paul J; Arron, Joseph R
2015-01-01
There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A cluster of culture positive gonococcal infections but with false negative cppB gene based PCR.
Lum, G; Freeman, K; Nguyen, N L; Limnios, E A; Tabrizi, S N; Carter, I; Chambers, I W; Whiley, D M; Sloots, T P; Garland, S M; Tapsall, J W
2005-10-01
To describe the prevalence and characteristics of isolates of Neisseria gonorrhoeae grown from urine samples that produced negative results with nucleic acid amplification assays (NAA) targeting the cppB gene. An initial cluster of culture positive, but cppB gene based NAA negative, gonococcal infections was recognised. Urine samples and suspensions of gonococci isolated over 9 months in the Northern Territory of Australia were examined using cppB gene based and other non-cppB gene based NAA. The gonococcal isolates were phenotyped by determining the auxotype/serovar (A/S) class and genotyped by pulsed field gel electrophoresis (PFGE). 14 (9.8%) of 143 gonococci isolated were of A/S class Pro(-/)Brpyut, indistinguishable on PFGE and negative in cppB gene based, but not other, NAA. This cluster represents a temporal and geographic expansion of a gonococcal subtype lacking the cppB gene with consequent loss of sensitivity of NAA dependent on amplification of this target. Gonococci lacking the cppB gene have in the past been more commonly associated with the PAU-/PCU- auxotype, a gonococcal subtype hitherto infrequently encountered in Australia. NAA based on the cppB gene as a target may produce false positive as well as false negative NAA. This suggests that unless there is continuing comparison with culture to show their utility, cppB gene based NAA should be regarded as suboptimal for use either as a diagnostic or supplemental assay for diagnosis of gonorrhoea, and NAA with alternative amplification targets should be substituted.
Woodall, C.A.; Warner, K.L.; Oremland, R.S.; Murrell, J.C.; McDonald, I.R.
2001-01-01
Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif and an N-terminal methyl-transferase motif. However, cmuB, identified in M. chloromethanicum and H. chloromethanicum, was not detected in IMB-1.
Shahdoust, Maryam; Hajizadeh, Ebrahim; Mozdarani, Hossein; Chehrei, Ali
2013-01-01
Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells. Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously. The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10. This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now recommended to determine relations between the genes ABHD2 and ADH7 and smoking.
Throckmorton, Kurt; Wiemann, Philipp; Keller, Nancy P.
2015-01-01
Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi. PMID:26378577
Goettel, Wolfgang; Ramirez, Martha; Upchurch, Robert G; An, Yong-Qiang Charles
2016-08-01
Identification and characterization of a 254-kb genomic deletion on a duplicated chromosome segment that resulted in a low level of palmitic acid in soybean seeds using transcriptome sequencing. A large number of soybean genotypes varying in seed oil composition and content have been identified. Understanding the molecular mechanisms underlying these variations is important for breeders to effectively utilize them as a genetic resource. Through design and application of a bioinformatics approach, we identified nine co-regulated gene clusters by comparing seed transcriptomes of nine soybean genotypes varying in oil composition and content. We demonstrated that four gene clusters in the genotypes M23, Jack and N0304-303-3 coincided with large-scale genome rearrangements. The co-regulated gene clusters in M23 and Jack mapped to a previously described 164-kb deletion and a copy number amplification of the Rhg1 locus, respectively. The coordinately down-regulated gene clusters in N0304-303-3 were caused by a 254-kb deletion containing 19 genes including a fatty acyl-ACP thioesterase B gene (FATB1a). This deletion was associated with reduced palmitic acid content in seeds and was the molecular cause of a previously reported nonfunctional FATB1a allele, fap nc . The M23 and N0304-304-3 deletions were located in duplicated genome segments retained from the Glycine-specific whole genome duplication that occurred 13 million years ago. The homoeologous genes in these duplicated regions shared a strong similarity in both their encoded protein sequences and transcript accumulation levels, suggesting that they may have conserved and important functions in seeds. The functional conservation of homoeologous genes may result in genetic redundancy and gene dosage effects for their associated seed traits, explaining why the large deletion did not cause lethal effects or completely eliminate palmitic acid in N0304-303-3.
Clustering cancer gene expression data by projective clustering ensemble
Yu, Xianxue; Yu, Guoxian
2017-01-01
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920
Zhang, Peng; Wang, Xiuna; Fan, Aili; Zheng, Yanjing; Liu, Xingzhong; Wang, Shihua; Zou, Huixi; Oakley, Berl R; Keller, Nancy P; Yin, Wen-Bing
2017-08-01
Spore pigmentation is very common in the fungal kingdom. The best studied pigment in fungi is melanin which coats the surface of single cell spores. What and how pigments function in a fungal species with multiple cell conidia is poorly understood. Here, we identified and deleted a polyketide synthase (PKS) gene PfmaE and showed that it is essential for multicellular conidial pigmentation and development in a plant endophytic fungus, Pestalotiopsis fici. To further characterize the melanin pathway, we utilized an advanced Aspergillus nidulans heterologous system for the expression of the PKS PfmaE and the Pfma gene cluster. By structural elucidation of the pathway metabolite scytalone in A. nidulans, we provided chemical evidence that the Pfma cluster synthesizes DHN melanin. Combining genetic deletion and combinatorial gene expression of Pfma cluster genes, we determined that the putative reductase PfmaG and the PKS are sufficient for the synthesis of scytalone. Feeding scytalone back to the P. fici ΔPfmaE mutant restored pigmentation and multicellular adherence of the conidia. These results cement a growing understanding that pigments are essential not simply for protection of spores from biotic and abiotic stresses but also for spore structural development. © 2017 John Wiley & Sons Ltd.
Olovnikov, Ivan; Abramov, Yuri; Kalmykova, Alla
2014-01-01
The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA–mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences. These piRNAs launch a cycle of TE and piRNA cluster transcript cleavages resulting in the amplification of piRNA and TE silencing. Using genome-wide comparison of TE insertions and ovarian small RNA libraries from two Drosophila strains, we found that individual TEs inserted into euchromatic loci form novel dual-stranded piRNA clusters. Formation of the piRNA-generating loci by active individual TEs provides a more potent silencing response to the TE expansion. Like all piRNA clusters, individual TEs are also capable of triggering the production of endogenous small interfering (endo-si) RNAs. Small RNA production by individual TEs spreads into the flanking genomic regions including coding cellular genes. We show that formation of TE-associated small RNA clusters can down-regulate expression of nearby genes in ovaries. Integration of TEs into the 3′ untranslated region of actively transcribed genes induces piRNA production towards the 3′-end of transcripts, causing the appearance of genic piRNA clusters, a phenomenon that has been reported in different organisms. These data suggest a significant role of TE-associated small RNAs in the evolution of regulatory networks in the germline. PMID:24516406
Bräuer, Suzanna L; Yashiro, Erika; Ueno, Norikiyo G; Yavitt, Joseph B; Zinder, Stephen H
2006-08-01
Two methanogenic cultures were enriched from acidic peat soil using a growth medium buffered to c. pH 5. One culture, 6A, was obtained from peat after incubation with H(2)/CO(2), whereas culture NTA was derived from a 10(-4) dilution of untreated peat into a modified medium. 16S rRNA gene clone libraries from each culture contained one methanogen and two bacterial sequences. The methanogen 16S rRNA gene sequences were 99% identical with each other and belonged to the novel "R-10/Fen cluster" family of the Methanomicrobiales, whereas their mcrA sequences were 96% identical. One bacterial 16S rRNA gene sequence from culture 6A belonged to the Bacteroidetes and showed 99% identity with sequences from methanogenic enrichments from German and Russian bogs. The other sequence belonged to the Firmicutes and was identical to a thick rod-shaped citrate-utilizing organism isolated from culture 6A, the numbers of which decreased when the Ti (III) chelator was switched from citrate to nitrilotriacetate. Bacterial clones from the NTA culture clustered in the Delta- and Betaproteobacteria. Both cultures contained thin rods, presumably the methanogens, as the predominant morphotype, and represent a significant advance in characterization of the novel acidiphilic R-10 family methanogens.
Bushel, Pierre R; Wolfinger, Russell D; Gibson, Greg
2007-01-01
Background Commonly employed clustering methods for analysis of gene expression data do not directly incorporate phenotypic data about the samples. Furthermore, clustering of samples with known phenotypes is typically performed in an informal fashion. The inability of clustering algorithms to incorporate biological data in the grouping process can limit proper interpretation of the data and its underlying biology. Results We present a more formal approach, the modk-prototypes algorithm, for clustering biological samples based on simultaneously considering microarray gene expression data and classes of known phenotypic variables such as clinical chemistry evaluations and histopathologic observations. The strategy involves constructing an objective function with the sum of the squared Euclidean distances for numeric microarray and clinical chemistry data and simple matching for histopathology categorical values in order to measure dissimilarity of the samples. Separate weighting terms are used for microarray, clinical chemistry and histopathology measurements to control the influence of each data domain on the clustering of the samples. The dynamic validity index for numeric data was modified with a category utility measure for determining the number of clusters in the data sets. A cluster's prototype, formed from the mean of the values for numeric features and the mode of the categorical values of all the samples in the group, is representative of the phenotype of the cluster members. The approach is shown to work well with a simulated mixed data set and two real data examples containing numeric and categorical data types. One from a heart disease study and another from acetaminophen (an analgesic) exposure in rat liver that causes centrilobular necrosis. Conclusion The modk-prototypes algorithm partitioned the simulated data into clusters with samples in their respective class group and the heart disease samples into two groups (sick and buff denoting samples having pain type representative of angina and non-angina respectively) with an accuracy of 79%. This is on par with, or better than, the assignment accuracy of the heart disease samples by several well-known and successful clustering algorithms. Following modk-prototypes clustering of the acetaminophen-exposed samples, informative genes from the cluster prototypes were identified that are descriptive of, and phenotypically anchored to, levels of necrosis of the centrilobular region of the rat liver. The biological processes cell growth and/or maintenance, amine metabolism, and stress response were shown to discern between no and moderate levels of acetaminophen-induced centrilobular necrosis. The use of well-known and traditional measurements directly in the clustering provides some guarantee that the resulting clusters will be meaningfully interpretable. PMID:17408499
Detecting false positive sequence homology: a machine learning approach.
Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M
2016-02-24
Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.
Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko
2012-07-15
Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Xiaojie; Lu, Chenyang; Bai, Linquan
2017-09-01
An ideal surrogate host for heterologous production of various natural products is expected to have efficient nutrient utilization, fast growth, abundant precursors and energy supply, and a pronounced gene expression. Streptomyces albus BK3-25 is a high-yield industrial strain producing type-I polyketide salinomycin, with a unique ability of bean oil utilization. Its potential of being a surrogate host for heterologous production of PKS was engineered and evaluated herein. Firstly, introduction of a three-gene cassette for the biosynthesis of ethylmalonyl-CoA resulted in accumulation of ethylmalonyl-CoA precursor and salinomycin, and subsequent deletion of the salinomycin biosynthetic gene cluster resulted in a host with rich supplies of common polyketide precursors, including malonyl-CoA, methylmalonyl-CoA, and ethylmalonyl-CoA. Secondly, the energy and reducing force were measured, and the improved accumulation of ATP and NADPH was observed in the mutant. Furthermore, the strength of a series of selected endogenous promoters based on microarray data was assessed at different growth phases, and a strong constitutive promoter was identified, providing a useful tool for further engineered gene expression. Finally, the potential of the BK3-25 derived host ZXJ-6 was evaluated with the introduction of the actinorhodin biosynthetic gene cluster from Streptomyces coelicolor, and the heterologous production of actinorhodin was obtained. This work clearly indicated the potential of the high-yield salinomycin producer as a surrogate host for heterologous production of polyketides, although more genetic manipulation should be conducted to streamline its performance.
Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A.
2002-01-01
The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon. PMID:15803652
Entropy-based consensus clustering for patient stratification.
Liu, Hongfu; Zhao, Rui; Fang, Hongsheng; Cheng, Feixiong; Fu, Yun; Liu, Yang-Yu
2017-09-01
Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. Many clustering methods have been employed to tackle this problem in a purely data-driven manner. Yet, existing methods leveraging high-throughput molecular data often suffers from various limitations, e.g. noise, data heterogeneity, high dimensionality or poor interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) method that overcomes those limitations all together. Our ECC method employs an entropy-based utility function to fuse many basic partitions to a consensus one that agrees with the basic ones as much as possible. Maximizing the utility function in ECC has a much more meaningful interpretation than any other consensus clustering methods. Moreover, we exactly map the complex utility maximization problem to the classic K -means clustering problem, which can then be efficiently solved with linear time and space complexity. Our ECC method can also naturally integrate multiple molecular data types measured from the same set of subjects, and easily handle missing values without any imputation. We applied ECC to 110 synthetic and 48 real datasets, including 35 cancer gene expression benchmark datasets and 13 cancer types with four molecular data types from The Cancer Genome Atlas. We found that ECC shows superior performance against existing clustering methods. Our results clearly demonstrate the power of ECC in clinically relevant patient stratification. The Matlab package is available at http://scholar.harvard.edu/yyl/ecc . yunfu@ece.neu.edu or yyl@channing.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
A highly efficient multi-core algorithm for clustering extremely large datasets
2010-01-01
Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922
Dimitrakopoulou, Konstantina; Vrahatis, Aristidis G; Wilk, Esther; Tsakalidis, Athanasios K; Bezerianos, Anastasios
2013-09-01
The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them (e.g. cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web (http://biosignal.med.upatras.gr/wordpress/biosignal/). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Tomkova, Veronika; Korenkova, Vlasta; Langerova, Lucie; Simonova, Ekaterina; Zjablovskaja, Polina; Alberich-Jorda, Meritxell; Neuzil, Jiri; Truksa, Jaroslav
2017-01-01
The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy. PMID:28031527
Jani, Mehul; Mathee, Kalai; Azad, Rajeev K.
2016-01-01
Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as “genomic islands (GIs).” To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, “GEMINI.” GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa. PMID:27536294
Finding gene clusters for a replicated time course study
2014-01-01
Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression models method, takes into account the specific design of the microarray study and bases the clustering on how genes are related to sample covariates. It can find useful gene clusters for studies from complicated study designs such as replicated time course studies. Findings In this paper, we applied the clustering of regression models method to data from a time course study of yeast on two genotypes, wild type and YOX1 mutant, each with two technical replicates, and compared the clustering results with K-means clustering. We identified gene clusters that have similar expression patterns in wild type yeast, two of which were missed by K-means clustering. We further identified gene clusters whose expression patterns were changed in YOX1 mutant yeast compared to wild type yeast. Conclusions The clustering of regression models method can be a valuable tool for identifying genes that are coordinately transcribed by a common mechanism. PMID:24460656
Ebert, Matthias; Laaß, Sebastian; Thürmer, Andrea; Roselius, Louisa; Eckweiler, Denitsa; Daniel, Rolf; Härtig, Elisabeth; Jahn, Dieter
2017-01-01
The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated. PMID:28473807
Berenger, Byron M; Berry, Chrystal; Peterson, Trevor; Fach, Patrick; Delannoy, Sabine; Li, Vincent; Tschetter, Lorelee; Nadon, Celine; Honish, Lance; Louie, Marie; Chui, Linda
2015-01-01
A standardised method for determining Escherichia coli O157:H7 strain relatedness using whole genome sequencing or virulence gene profiling is not yet established. We sought to assess the capacity of either high-throughput polymerase chain reaction (PCR) of 49 virulence genes, core-genome single nt variants (SNVs) or k-mer clustering to discriminate between outbreak-associated and sporadic E. coli O157:H7 isolates. Three outbreaks and multiple sporadic isolates from the province of Alberta, Canada were included in the study. Two of the outbreaks occurred concurrently in 2014 and one occurred in 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem repeat analysis (MLVA) were employed as comparator typing methods. The virulence gene profiles of isolates from the 2012 and 2014 Alberta outbreak events and contemporary sporadic isolates were mostly identical; therefore the set of virulence genes chosen in this study were not discriminatory enough to distinguish between outbreak clusters. Concordant with PFGE and MLVA results, core genome SNV and k-mer phylogenies clustered isolates from the 2012 and 2014 outbreaks as distinct events. k-mer phylogenies demonstrated increased discriminatory power compared with core SNV phylogenies. Prior to the widespread implementation of whole genome sequencing for routine public health use, issues surrounding cost, technical expertise, software standardisation, and data sharing/comparisons must be addressed.
Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.
2015-01-01
With the continuously accelerating genome sequencing from diverse groups of archaea and bacteria, accurate identification of gene orthology and availability of readily expandable clusters of orthologous genes are essential for the functional annotation of new genomes. We report an update of the collection of archaeal Clusters of Orthologous Genes (arCOGs) to cover, on average, 91% of the protein-coding genes in 168 archaeal genomes. The new arCOGs were constructed using refined algorithms for orthology identification combined with extensive manual curation, including incorporation of the results of several completed and ongoing research projects in archaeal genomics. A new level of classification is introduced, superclusters that unit two or more arCOGs and more completely reflect gene family evolution than individual, disconnected arCOGs. Assessment of the current archaeal genome annotation in public databases indicates that consistent use of arCOGs can significantly improve the annotation quality. In addition to their utility for genome annotation, arCOGs also are a platform for phylogenomic analysis. We explore this aspect of arCOGs by performing a phylogenomic study of the Thermococci that are traditionally viewed as the basal branch of the Euryarchaeota. The results of phylogenomic analysis that involved both comparison of multiple phylogenetic trees and a search for putative derived shared characters by using phyletic patterns extracted from the arCOGs reveal a likely evolutionary relationship between the Thermococci, Methanococci, and Methanobacteria. The arCOGs are expected to be instrumental for a comprehensive phylogenomic study of the archaea. PMID:25764277
Deshpande, Kaivalya; Vyas, Arpita; Balakrishnan, Archana; Vyas, Dinesh
2015-12-01
As a novel technology that utilizes the endogenous immune defense system in bacteria, CRISPR/Cas9 has transcended DNA engineering into a more pragmatic and clinically efficacious field. Using programmable sgRNA sequences and nucleases, the system effectively introduces double strand breaks in target genes within an entire organism. The applications of CRISPR range from biomedicine to drug development and epigenetic modification. Studies have demonstrated CRISPR mediated targeting of various tumorigenic genes and effector proteins known to be involved in colon carcinomas. This technology significantly expands the scope of gene manipulation and allows for an enhanced modeling of colon cancers, as well as various other malignancies.
Multiconstrained gene clustering based on generalized projections
2010-01-01
Background Gene clustering for annotating gene functions is one of the fundamental issues in bioinformatics. The best clustering solution is often regularized by multiple constraints such as gene expressions, Gene Ontology (GO) annotations and gene network structures. How to integrate multiple pieces of constraints for an optimal clustering solution still remains an unsolved problem. Results We propose a novel multiconstrained gene clustering (MGC) method within the generalized projection onto convex sets (POCS) framework used widely in image reconstruction. Each constraint is formulated as a corresponding set. The generalized projector iteratively projects the clustering solution onto these sets in order to find a consistent solution included in the intersection set that satisfies all constraints. Compared with previous MGC methods, POCS can integrate multiple constraints from different nature without distorting the original constraints. To evaluate the clustering solution, we also propose a new performance measure referred to as Gene Log Likelihood (GLL) that considers genes having more than one function and hence in more than one cluster. Comparative experimental results show that our POCS-based gene clustering method outperforms current state-of-the-art MGC methods. Conclusions The POCS-based MGC method can successfully combine multiple constraints from different nature for gene clustering. Also, the proposed GLL is an effective performance measure for the soft clustering solutions. PMID:20356386
Takeda, Itaru; Umemura, Myco; Koike, Hideaki; Asai, Kiyoshi; Machida, Masayuki
2014-08-01
Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Bertin, Yolande; Girardeau, J P; Chaucheyras-Durand, F; Lyan, Bernard; Pujos-Guillot, Estelle; Harel, Josée; Martin, Christine
2011-02-01
The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.
Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.
Slot, Jason C; Rokas, Antonis
2011-01-25
Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK: Copyright © 2011 Elsevier Ltd. All rights reserved.
Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F.; Shaw, Peter
2017-01-01
Abstract Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. PMID:28175342
Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping
2013-01-01
Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520
Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping
2013-01-01
Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.
Constrained clusters of gene expression profiles with pathological features.
Sese, Jun; Kurokawa, Yukinori; Monden, Morito; Kato, Kikuya; Morishita, Shinichi
2004-11-22
Gene expression profiles should be useful in distinguishing variations in disease, since they reflect accurately the status of cells. The primary clustering of gene expression reveals the genotypes that are responsible for the proximity of members within each cluster, while further clustering elucidates the pathological features of the individual members of each cluster. However, since the first clustering process and the second classification step, in which the features are associated with clusters, are performed independently, the initial set of clusters may omit genes that are associated with pathologically meaningful features. Therefore, it is important to devise a way of identifying gene expression clusters that are associated with pathological features. We present the novel technique of 'itemset constrained clustering' (IC-Clustering), which computes the optimal cluster that maximizes the interclass variance of gene expression between groups, which are divided according to the restriction that only divisions that can be expressed using common features are allowed. This constraint automatically labels each cluster with a set of pathological features which characterize that cluster. When applied to liver cancer datasets, IC-Clustering revealed informative gene expression clusters, which could be annotated with various pathological features, such as 'tumor' and 'man', or 'except tumor' and 'normal liver function'. In contrast, the k-means method overlooked these clusters.
Mi, Shuofu; Jia, Xiaojing; Wang, Jinzhi; Qiao, Weibo; Peng, Xiaowei; Han, Yejun
2014-01-01
The xylanolytic extremely thermophilic bacterium Caldicellulosiruptor owensensis provides a promising platform for xylan utilization. In the present study, two novel xylanolytic enzymes, GH10 endo-β-1,4-xylanase (Coxyn A) and GH39 β-1,4-xylosidase (Coxyl A) encoded in one gene cluster of C.owensensis were heterogeneously expressed and biochemically characterized. The optimum temperature of the two xylanlytic enzymes was 75°C, and the respective optimum pH for Coxyn A and Coxyl A was 7.0 and 5.0. The difference of Coxyn A and Coxyl A in solution was existing as monomer and homodimer respectively, it was also observed in predicted secondary structure. Under optimum condition, the catalytic efficiency (kcat/Km) of Coxyn A was 366 mg ml(-1) s(-1) on beechwood xylan, and the catalytic efficiency (kcat/Km) of Coxyl A was 2253 mM(-1) s(-1) on pNP-β-D-xylopyranoside. Coxyn A degraded xylan to oligosaccharides, which were converted to monomer by Coxyl A. The two intracellular enzymes might be responsible for xylooligosaccharides utilization in C.owensensis, also provide a potential way for xylan degradation in vitro.
Diametrical clustering for identifying anti-correlated gene clusters.
Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman
2003-09-01
Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.
Breakup of a homeobox cluster after genome duplication in teleosts
Mulley, John F.; Chiu, Chi-hua; Holland, Peter W. H.
2006-01-01
Several families of homeobox genes are arranged in genomic clusters in metazoan genomes, including the Hox, ParaHox, NK, Rhox, and Iroquois gene clusters. The selective pressures responsible for maintenance of these gene clusters are poorly understood. The ParaHox gene cluster is evolutionarily conserved between amphioxus and human but is fragmented in teleost fishes. We show that two basal ray-finned fish, Polypterus and Amia, each possess an intact ParaHox cluster; this implies that the selective pressure maintaining clustering was lost after whole-genome duplication in teleosts. Cluster breakup is because of gene loss, not transposition or inversion, and the total number of ParaHox genes is the same in teleosts, human, mouse, and frog. We propose that this homeobox gene cluster is held together in chordates by the existence of interdigitated control regions that could be separated after locus duplication in the teleost fish. PMID:16801555
Charles, J. P.; Chihara, C.; Nejad, S.; Riddiford, L. M.
1997-01-01
A 36-kb genomic DNA segment of the Drosophila melanogaster genome containing 12 clustered cuticle genes has been mapped and partially sequenced. The cluster maps at 65A 5-6 on the left arm of the third chromosome, in agreement with the previously determined location of a putative cluster encompassing the genes for the third instar larval cuticle proteins LCP5, LCP6 and LCP8. This cluster is the largest cuticle gene cluster discovered to date and shows a number of surprising features that explain in part the genetic complexity of the LCP5, LCP6 and LCP8 loci. The genes encoding LCP5 and LCP8 are multiple copy genes and the presence of extensive similarity in their coding regions gives the first evidence for gene conversion in cuticle genes. In addition, five genes in the cluster are intronless. Four of these five have arisen by retroposition. The other genes in the cluster have a single intron located at an unusual location for insect cuticle genes. PMID:9383064
Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li
2016-01-01
The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus ), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus , and Sulfolobus tokodaii , which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO 2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a specific genomic site in some strains and lost in other strains during the course of evolution. The versatility in nitrogen and sulfur metabolism may represent adaptation of Sulfolobus to thriving in different habitats.
Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li
2016-01-01
The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a specific genomic site in some strains and lost in other strains during the course of evolution. The versatility in nitrogen and sulfur metabolism may represent adaptation of Sulfolobus to thriving in different habitats. PMID:27965637
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-04-16
The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-01-01
Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983
Doroghazi, J. R.; Ju, K.-S.; Metcalf, W. W.
2014-01-01
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T. PMID:24277863
Identification of lethal cluster of genes in the yeast transcription network
NASA Astrophysics Data System (ADS)
Rho, K.; Jeong, H.; Kahng, B.
2006-05-01
Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We construct a gene transcription network based on the microarray expression level. Links are added one by one in the descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that the lethal cluster has the largest mean degree.
Kane, Aunica L; Brutinel, Evan D; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M; Kotloski, Nicholas J; Gralnick, Jeffrey A
2016-04-01
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.
2016-01-01
ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. PMID:26883823
Crnovčić, Ivana; Rückert, Christian; Semsary, Siamak; Lang, Manuel; Kalinowski, Jörn; Keller, Ullrich
2017-01-01
Sequencing the actinomycin (acm) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S. antibioticus. PMID:28435299
Crnovčić, Ivana; Rückert, Christian; Semsary, Siamak; Lang, Manuel; Kalinowski, Jörn; Keller, Ullrich
2017-01-01
Sequencing the actinomycin ( acm ) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN , encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S. antibioticus .
Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo
2013-07-01
A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
Cary, J. W.; Han, Z.; Yin, Y.; Lohmar, J. M.; Shantappa, S.; Harris-Coward, P. Y.; Mack, B.; Ehrlich, K. C.; Wei, Q.; Arroyo-Manzanares, N.; Uka, V.; Vanhaecke, L.; Bhatnagar, D.; Yu, J.; Nierman, W. C.; Johns, M. A.; Sorensen, D.; Shen, H.; De Saeger, S.; Diana Di Mavungu, J.
2015-01-01
The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin. PMID:26209694
A tripartite clustering analysis on microRNA, gene and disease model.
Shen, Chengcheng; Liu, Ying
2012-02-01
Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.
From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants.
Chu, Hoi Yee; Wegel, Eva; Osbourn, Anne
2011-04-01
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Zhong, Xingyu; Tian, Yuqing; Niu, Guoqing; Tan, Huarong
2013-07-01
A draft genome sequence of Streptomyces ansochromogenes 7100 was generated using 454 sequencing technology. In combination with local BLAST searches and gap filling techniques, a comprehensive antiSMASH-based method was adopted to assemble the secondary metabolite biosynthetic gene clusters in the draft genome of S. ansochromogenes. A total of at least 35 putative gene clusters were identified and assembled. Transcriptional analysis showed that 20 of the 35 gene clusters were expressed in either or all of the three different media tested, whereas the other 15 gene clusters were silent in all three different media. This study provides a comprehensive method to identify and assemble secondary metabolite biosynthetic gene clusters in draft genomes of Streptomyces, and will significantly promote functional studies of these secondary metabolite biosynthetic gene clusters.
Supervised group Lasso with applications to microarray data analysis
Ma, Shuangge; Song, Xiao; Huang, Jian
2007-01-01
Background A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure. Results We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data. Conclusion We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods. PMID:17316436
Mugford, Sam T.; Louveau, Thomas; Melton, Rachel; Qi, Xiaoquan; Bakht, Saleha; Hill, Lionel; Tsurushima, Tetsu; Honkanen, Suvi; Rosser, Susan J.; Lomonossoff, George P.; Osbourn, Anne
2013-01-01
Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis. PMID:23532069
Garrido, Daniel; Ruiz-Moyano, Santiago; Lemay, Danielle G.; Sela, David A.; German, J. Bruce; Mills, David A.
2015-01-01
Breast milk enhances the predominance of Bifidobacterium species in the infant gut, probably due to its large concentration of human milk oligosaccharides (HMO). Here we screened infant-gut isolates of Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum using individual HMO, and compared the global transcriptomes of representative isolates on major HMO by RNA-seq. While B. infantis displayed homogeneous HMO-utilization patterns, B. bifidum were more diverse and some strains did not use fucosyllactose (FL) or sialyllactose (SL). Transcriptomes of B. bifidum SC555 and B. infantis ATCC 15697 showed that utilization of pooled HMO is similar to neutral HMO, while transcriptomes for growth on FL were more similar to lactose than HMO in B. bifidum. Genes linked to HMO-utilization were upregulated by neutral HMO and SL, but not by FL in both species. In contrast, FL induced the expression of alternative gene clusters in B. infantis. Results also suggest that B. bifidum SC555 does not utilize fucose or sialic acid from HMO. Surprisingly, expression of orthologous genes differed between both bifidobacteria even when grown on identical substrates. This study highlights two major strategies found in Bifidobacterium species to process HMO, and presents detailed information on the close relationship between HMO and infant-gut bifidobacteria. PMID:26337101
Fuse, Haruka; Fukamachi, Haruka; Inoue, Mitsuko; Igarashi, Takeshi
2013-02-25
Fructanase enzymes hydrolyze the β-2,6 and β-2,1 linkages of levan and inulin fructans, respectively. We analyzed the influence of fructan on the growth of Prevotella intermedia. The growth of P. intermedia was enhanced by addition of inulin, implying that P. intermedia could also use inulin. Based on this finding, we identified and analyzed the genes encoding a putative fructanase (FruA), sugar transporter (FruB), and fructokinase (FruK) in the genome of strain ATCC25611. Transcript analysis by RT-PCR showed that the fruABK genes were co-transcribed as a single mRNA and semi-quantitative analysis confirmed that the fruA gene was induced in response to fructose and inulin. Recombinant FruA and FruK were purified and characterized biochemically. FruA strongly hydrolyzed inulin, with slight degradation of levan via an exo-type mechanism, revealing that FruA is an exo-β-d-fructanase. FruK converted fructose to fructose-6-phosphate in the presence of ATP, confirming that FruK is an ATP-dependent fructokinase. These results suggest that P. intermedia can utilize fructan as a carbon source for growth, and that the fructanase, sugar transporter, and fructokinase proteins we identified are involved in this fructan utilization. Copyright © 2012 Elsevier B.V. All rights reserved.
Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510
Kaneko, Takakazu; Minamisawa, Kiwamu; Isawa, Tsuyoshi; Nakatsukasa, Hiroki; Mitsui, Hisayuki; Kawaharada, Yasuyuki; Nakamura, Yasukazu; Watanabe, Akiko; Kawashima, Kumiko; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Sato, Shusei
2010-01-01
We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant. PMID:20047946
Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology
Fischbach, Michael; Voigt, Christopher A.
2014-01-01
Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668
GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.
Schulz, Tizian; Stoye, Jens; Doerr, Daniel
2018-05-08
Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.
Finding approximate gene clusters with Gecko 3.
Winter, Sascha; Jahn, Katharina; Wehner, Stefanie; Kuchenbecker, Leon; Marz, Manja; Stoye, Jens; Böcker, Sebastian
2016-11-16
Gene-order-based comparison of multiple genomes provides signals for functional analysis of genes and the evolutionary process of genome organization. Gene clusters are regions of co-localized genes on genomes of different species. The rapid increase in sequenced genomes necessitates bioinformatics tools for finding gene clusters in hundreds of genomes. Existing tools are often restricted to few (in many cases, only two) genomes, and often make restrictive assumptions such as short perfect conservation, conserved gene order or monophyletic gene clusters. We present Gecko 3, an open-source software for finding gene clusters in hundreds of bacterial genomes, that comes with an easy-to-use graphical user interface. The underlying gene cluster model is intuitive, can cope with low degrees of conservation as well as misannotations and is complemented by a sound statistical evaluation. To evaluate the biological benefit of Gecko 3 and to exemplify our method, we search for gene clusters in a dataset of 678 bacterial genomes using Synechocystis sp. PCC 6803 as a reference. We confirm detected gene clusters reviewing the literature and comparing them to a database of operons; we detect two novel clusters, which were confirmed by publicly available experimental RNA-Seq data. The computational analysis is carried out on a laptop computer in <40 min. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Comparing the Performance of Blue Gene/Q with Leading Cray XE6 and InfiniBand Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerbyson, Darren J.; Barker, Kevin J.; Vishnu, Abhinav
2013-01-21
Abstract—Three types of systems dominate the current High Performance Computing landscape: the Cray XE6, the IBM Blue Gene, and commodity clusters using InfiniBand. These systems have quite different characteristics making the choice for a particular deployment difficult. The XE6 uses Cray’s proprietary Gemini 3-D torus interconnect with two nodes at each network endpoint. The latest IBM Blue Gene/Q uses a single socket integrating processor and communication in a 5-D torus network. InfiniBand provides the flexibility of using nodes from many vendors connected in many possible topologies. The performance characteristics of each vary vastly along with their utilization model. In thismore » work we compare the performance of these three systems using a combination of micro-benchmarks and a set of production applications. In particular we discuss the causes of variability in performance across the systems and also quantify where performance is lost using a combination of measurements and models. Our results show that significant performance can be lost in normal production operation of the Cray XT6 and InfiniBand Clusters in comparison to Blue Gene/Q.« less
Functional clustering of time series gene expression data by Granger causality
2012-01-01
Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425
Swaminathan, Sivakumar; Morrone, Dana; Wang, Qiang; Fulton, D. Bruce; Peters, Reuben J.
2009-01-01
Biosynthetic gene clusters are common in microbial organisms, but rare in plants, raising questions regarding the evolutionary forces that drive their assembly in multicellular eukaryotes. Here, we characterize the biochemical function of a rice (Oryza sativa) cytochrome P450 monooxygenase, CYP76M7, which seems to act in the production of antifungal phytocassanes and defines a second diterpenoid biosynthetic gene cluster in rice. This cluster is uniquely multifunctional, containing enzymatic genes involved in the production of two distinct sets of phytoalexins, the antifungal phytocassanes and antibacterial oryzalides/oryzadiones, with the corresponding genes being subject to distinct transcriptional regulation. The lack of uniform coregulation of the genes within this multifunctional cluster suggests that this was not a primary driving force in its assembly. However, the cluster is dedicated to specialized metabolism, as all genes in the cluster are involved in phytoalexin metabolism. We hypothesize that this dedication to specialized metabolism led to the assembly of the corresponding biosynthetic gene cluster. Consistent with this hypothesis, molecular phylogenetic comparison demonstrates that the two rice diterpenoid biosynthetic gene clusters have undergone independent elaboration to their present-day forms, indicating continued evolutionary pressure for coclustering of enzymatic genes encoding components of related biosynthetic pathways. PMID:19825834
Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.
Azevedo, Analice C; Bento, Cláudia B P; Ruiz, Jeronimo C; Queiroz, Marisa V; Mantovani, Hilário C
2015-10-01
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Datta, Shreya
2011-01-01
Vibrio vulnificus, the cause of septicemia and serious wound infection in humans and fishes, require iron for its pathogenesis. Hemin uptake through the outer membrane receptor, HupA, is one of its many mechanisms by which it acquires iron. We report here the identification of an additional TonB-dependent hemin receptor HvtA, that is needed in conjunction with the HupA protein for optimal hemin utilization. The HvtA protein is significantly homologous to other outer membrane hemin receptors and its expression in trans restored the uptake of hemin and hemoglobin, the latter to a weaker extent, in a mutant strain that was defective in both receptors. Quantitative RT-PCR suggested that transcription of the hvtA gene was iron regulated. The operon containing the hvtA gene is homologous to the operon in V. cholerae containing the hemin receptor gene hutR suggesting a vertical transmission of the hvtA cluster from V. cholerae to V. vulnificus. PMID:22015545
Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang
2016-06-25
A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R² > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains.
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species
Lind, Abigail L.; Wisecaver, Jennifer H.; Lameiras, Catarina; Wiemann, Philipp; Palmer, Jonathan M.; Keller, Nancy P.; Rodrigues, Fernando; Goldman, Gustavo H.
2017-01-01
Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns. PMID:29149178
Liu, Ying; Ciliax, Brian J; Borges, Karin; Dasigi, Venu; Ram, Ashwin; Navathe, Shamkant B; Dingledine, Ray
2004-01-01
One of the key challenges of microarray studies is to derive biological insights from the unprecedented quatities of data on gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the nature of the functional links among genes within the derived clusters. However, the quality of the keyword lists extracted from biomedical literature for each gene significantly affects the clustering results. We extracted keywords from MEDLINE that describes the most prominent functions of the genes, and used the resulting weights of the keywords as feature vectors for gene clustering. By analyzing the resulting cluster quality, we compared two keyword weighting schemes: normalized z-score and term frequency-inverse document frequency (TFIDF). The best combination of background comparison set, stop list and stemming algorithm was selected based on precision and recall metrics. In a test set of four known gene groups, a hierarchical algorithm correctly assigned 25 of 26 genes to the appropriate clusters based on keywords extracted by the TDFIDF weighting scheme, but only 23 og 26 with the z-score method. To evaluate the effectiveness of the weighting schemes for keyword extraction for gene clusters from microarray profiles, 44 yeast genes that are differentially expressed during the cell cycle were used as a second test set. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords had higher purity, lower entropy, and higher mutual information than those produced from normalized z-score weighted keywords. The optimized algorithms should be useful for sorting genes from microarray lists into functionally discrete clusters.
Isolation of Notl sites from chromosome 22q11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ten Hoeve, J.; Groffen, J.; Heisterkamp, N.
1993-12-01
Chromosome 22q11 contains a large number of interesting loci, including genes associated with cancer and developmental defects. The region is also the site of the lambda immunoglobulin variable and constants regions and the BCR, [gamma]-glutamyl transpeptidase, and GGT-like activity multigene families. Because of the complexities associated with mapping highly related gene families, the authors have examined the utility of mapping large areas of DNA using a defined approach. A total of 21 complete NotI sites from band q11 were cloned and ordered into six noncontiguous clusters of sites using a combination of somatic cell hybrid panels, NotI jumping and linkingmore » libraries, and fluorescence in situ hybridization. The largest cluster spanned an estimated 2 Mb of NotI fragments, the smallest 115 kb. Approximately 3.5 Mb of band q11 could be examined for rearrangements in NotI restriction enzyme fragments. A number of conserved sequences, two genes, and a minimum of two families of related sequences were identified adjacent to NotI sites. 51 refs., 5 figs., 4 tabs.« less
2010-01-01
Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is preferable, in particular if the gene selection is successful. However, this is an area that needs to be studied further in order to draw any general conclusions. Conclusions The choice of cluster analysis, and in particular gene selection, has a large impact on the ability to cluster individuals correctly based on expression profiles. Normalization has a positive effect, but the relative performance of different normalizations is an area that needs more research. In summary, although clustering, gene selection and normalization are considered standard methods in bioinformatics, our comprehensive analysis shows that selecting the right methods, and the right combinations of methods, is far from trivial and that much is still unexplored in what is considered to be the most basic analysis of genomic data. PMID:20937082
Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.
Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha
2014-01-01
Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.
Ortholog-based screening and identification of genes related to intracellular survival.
Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin
2018-04-20
Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.
Nowrousian, Minou
2009-04-01
During fungal fruiting body development, hyphae aggregate to form multicellular structures that protect and disperse the sexual spores. Analysis of microarray data revealed a gene cluster strongly upregulated during fruiting body development in the ascomycete Sordaria macrospora. Real time PCR analysis showed that the genes from the orthologous cluster in Neurospora crassa are also upregulated during development. The cluster encodes putative polyketide biosynthesis enzymes, including a reducing polyketide synthase. Analysis of knockout strains of a predicted dehydrogenase gene from the cluster showed that mutants in N. crassa and S. macrospora are delayed in fruiting body formation. In addition to the upregulated cluster, the N. crassa genome comprises another cluster containing a polyketide synthase gene, and five additional reducing polyketide synthase (rpks) genes that are not part of clusters. To study the role of these genes in sexual development, expression of the predicted rpks genes in S. macrospora (five genes) and N. crassa (six genes) was analyzed; all but one are upregulated during sexual development. Analysis of knockout strains for the N. crassa rpks genes showed that one of them is essential for fruiting body formation. These data indicate that polyketides produced by RPKSs are involved in sexual development in filamentous ascomycetes.
Poole, William; Leinonen, Kalle; Shmulevich, Ilya
2017-01-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390
Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady
2017-02-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.
Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003.
Egan, Muireann; Jiang, Hao; O'Connell Motherway, Mary; Oscarson, Stefan; van Sinderen, Douwe
2016-11-15
Bifidobacteria constitute a specific group of commensal bacteria typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breastfed infants. In the present study, we investigated glycosulfatase activity in a bacterial isolate from a nursling stool sample, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support the growth of B. breve UCC2003, while N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate, and N-acetylgalactosamine-6-sulfate did not support appreciable growth. By using a combination of transcriptomic and functional genomic approaches, a gene cluster designated ats2 was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a repressor open reading frame kinase (ROK) family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant- and host-derived carbohydrates that allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely, the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of the ability of this species to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant gut and adult gut. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003
Egan, Muireann; Jiang, Hao; O'Connell Motherway, Mary; Oscarson, Stefan
2016-01-01
ABSTRACT Bifidobacteria constitute a specific group of commensal bacteria typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breastfed infants. In the present study, we investigated glycosulfatase activity in a bacterial isolate from a nursling stool sample, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support the growth of B. breve UCC2003, while N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate, and N-acetylgalactosamine-6-sulfate did not support appreciable growth. By using a combination of transcriptomic and functional genomic approaches, a gene cluster designated ats2 was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a repressor open reading frame kinase (ROK) family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. IMPORTANCE Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant- and host-derived carbohydrates that allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely, the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of the ability of this species to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant gut and adult gut. PMID:27590817
Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama
2014-01-01
Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for future large scale association studies in naturally exposed sheep populations. PMID:24533078
Analysis of multiplex gene expression maps obtained by voxelation.
An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios
2009-04-29
Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.
Chen, Chen; Zhao, Guozhong
2015-01-01
Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882
Hirakawa, Hideki; Shirasawa, Kenta; Miyatake, Koji; Nunome, Tsukasa; Negoro, Satomi; Ohyama, Akio; Yamaguchi, Hirotaka; Sato, Shusei; Isobe, Sachiko; Tabata, Satoshi; Fukuoka, Hiroyuki
2014-01-01
Unlike other important Solanaceae crops such as tomato, potato, chili pepper, and tobacco, all of which originated in South America and are cultivated worldwide, eggplant (Solanum melongena L.) is indigenous to the Old World and in this respect it is phylogenetically unique. To broaden our knowledge of the genomic nature of solanaceous plants further, we dissected the eggplant genome and built a draft genome dataset with 33,873 scaffolds termed SME_r2.5.1 that covers 833.1 Mb, ca. 74% of the eggplant genome. Approximately 90% of the gene space was estimated to be covered by SME_r2.5.1 and 85,446 genes were predicted in the genome. Clustering analysis of the predicted genes of eggplant along with the genes of three other solanaceous plants as well as Arabidopsis thaliana revealed that, of the 35,000 clusters generated, 4,018 were exclusively composed of eggplant genes that would perhaps confer eggplant-specific traits. Between eggplant and tomato, 16,573 pairs of genes were deduced to be orthologous, and 9,489 eggplant scaffolds could be mapped onto the tomato genome. Furthermore, 56 conserved synteny blocks were identified between the two species. The detailed comparative analysis of the eggplant and tomato genomes will facilitate our understanding of the genomic architecture of solanaceous plants, which will contribute to cultivation and further utilization of these crops. PMID:25233906
Phosphite Utilization by the Globally Important Marine Diazotroph Trichodesmium
NASA Astrophysics Data System (ADS)
Polyviou, D.; Hitchcock, A.; Baylay, A. J.; Moore, C. M.; Bibby, T. S.
2016-02-01
The marine cyanobacterium Trichodesmium is responsible for a significant fraction of oceanic nitrogen fixation and plays a key role in biogeochemical processes in the contemporary ocean. It has recently been shown that it also contributes to an emerging oceanic phosphorus (P) redox cycle. This is of interest as the availability of P constrains the growth of Trichodesmium in large expanses of the tropical and subtropical oceans. A four-gene cluster (ptxABCD) encodes a putative ABC transporter (ptxABC) and NAD-dependent dehydrogenase (ptxD) and is suggested to be involved in utilisation of the reduced inorganic compound phosphite. The gene cluster is identified in the Trichodesmium erythraeum IMS101 genome (Tery_0365-0368). Here, we report the occurrence of these genes in available in-situ metagenomic and metatranscriptomic datasets confirming the presence and expression of ptxABCD in diverse Trichodesmium species in the field. We also demonstrate that T.erythraeum IMS101 in culture can grow on phosphite as its sole source of P. The current lack of an established system for genetic manipulation of this organism inhibits direct functional characterisation of ptxABCD. To circumvent this we exploit the model cyanobacteria Synechocystis PCC6803 as a vehicle for the heterologous expression of the Trichodesmium genes. We demonstrate that only combined expression of both the transporter and the dehydrogenase enables Synechocystis to utilize phosphite, confirming the function of Tery_0365-0367 as a phosphite uptake system (PtxABC) and Tery_0368 as a phosphite dehydrogenase (PtxD). Our findings suggest that previously reported uptake of phosphite by Trichodesmium consortia in the field likely reflects an active biological process by Trichodesmium itself. These results highlight the diversity of phosphorus sources available to Trichodesmium in a resource-limited ocean and also the power of using heterologous gene expression to determine the function of genes identified in marine microbes.
Haarmann, Thomas; Machado, Caroline; Lübbe, Yvonne; Correia, Telmo; Schardl, Christopher L; Panaccione, Daniel G; Tudzynski, Paul
2005-06-01
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., Hölter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.
Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M
2008-07-25
Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
CORM: An R Package Implementing the Clustering of Regression Models Method for Gene Clustering
Shi, Jiejun; Qin, Li-Xuan
2014-01-01
We report a new R package implementing the clustering of regression models (CORM) method for clustering genes using gene expression data and provide data examples illustrating each clustering function in the package. The CORM package is freely available at CRAN from http://cran.r-project.org. PMID:25452684
Clustering approaches to identifying gene expression patterns from DNA microarray data.
Do, Jin Hwan; Choi, Dong-Kug
2008-04-30
The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.
Conditions for the Evolution of Gene Clusters in Bacterial Genomes
Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.
2010-01-01
Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992
Sakai, Kanae; Komaki, Hisayuki; Gonoi, Tohru
2015-01-01
Nocardithiocin is a thiopeptide compound isolated from the opportunistic pathogen Nocardia pseudobrasiliensis. It shows a strong activity against acid-fast bacteria and is also active against rifampicin-resistant Mycobacterium tuberculosis. Here, we report the identification of the nocardithiocin gene cluster in N. pseudobrasiliensis IFM 0761 based on conserved thiopeptide biosynthesis gene sequence and the whole genome sequence. The predicted gene cluster was confirmed by gene disruption and complementation. As expected, strains containing the disrupted gene did not produce nocardithiocin while gene complementation restored nocardithiocin production in these strains. The predicted cluster was further analyzed using RNA-seq which showed that the nocardithiocin gene cluster contains 12 genes within a 15.2-kb region. This finding will promote the improvement of nocardithiocin productivity and its derivatives production. PMID:26588225
Dam, Phuongan; Kataeva, Irina; Yang, Sung-Jae; Zhou, Fengfeng; Yin, Yanbin; Chou, Wenchi; Poole, Farris L.; Westpheling, Janet; Hettich, Robert; Giannone, Richard; Lewis, Derrick L.; Kelly, Robert; Gilbert, Harry J.; Henrissat, Bernard; Xu, Ying; Adams, Michael W. W.
2011-01-01
Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments. PMID:21227922
USDA-ARS?s Scientific Manuscript database
Background: In many bacteria including E. coli, genes encoding O-antigens are clustered in the chromosome, with a 39-bp JUMPstart sequence and gnd gene located upstream and downstream of the cluster, respectively. For determining the DNA sequence of the E. coli O-antigen gene cluster, one set of P...
Ou, Wenjun; Mao, Xiang; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Wu, Chunlai; Xia, Zhiqiang; Wang, Wenquan; Zhou, Shiyi; Li, Kaimian; Hu, Wei
2018-01-01
KT/HAK/KUP (KUP) family is responsible for potassium ion (K + ) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava ( Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes ( MeKUPs ) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H 2 O 2 , and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP -mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.
Ko, Yi-An; Mukherjee, Bhramar; Smith, Jennifer A; Kardia, Sharon L R; Allison, Matthew; Diez Roux, Ana V
2016-11-01
There has been an increased interest in identifying gene-environment interaction (G × E) in the context of multiple environmental exposures. Most G × E studies analyze one exposure at a time, but we are exposed to multiple exposures in reality. Efficient analysis strategies for complex G × E with multiple environmental factors in a single model are still lacking. Using the data from the Multiethnic Study of Atherosclerosis, we illustrate a two-step approach for modeling G × E with multiple environmental factors. First, we utilize common clustering and classification strategies (e.g., k-means, latent class analysis, classification and regression trees, Bayesian clustering using Dirichlet Process) to define subgroups corresponding to distinct environmental exposure profiles. Second, we illustrate the use of an additive main effects and multiplicative interaction model, instead of the conventional saturated interaction model using product terms of factors, to study G × E with the data-driven exposure subgroups defined in the first step. We demonstrate useful analytical approaches to translate multiple environmental exposures into one summary class. These tools not only allow researchers to consider several environmental exposures in G × E analysis but also provide some insight into how genes modify the effect of a comprehensive exposure profile instead of examining effect modification for each exposure in isolation.
Nykyri, Johanna; Mattinen, Laura; Niemi, Outi; Adhikari, Satish; Kõiv, Viia; Somervuo, Panu; Fang, Xin; Auvinen, Petri; Mäe, Andres; Palva, E. Tapio; Pirhonen, Minna
2013-01-01
In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers. PMID:24040039
Nykyri, Johanna; Mattinen, Laura; Niemi, Outi; Adhikari, Satish; Kõiv, Viia; Somervuo, Panu; Fang, Xin; Auvinen, Petri; Mäe, Andres; Palva, E Tapio; Pirhonen, Minna
2013-01-01
In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.
An effective fuzzy kernel clustering analysis approach for gene expression data.
Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao
2015-01-01
Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.
Li, Yaqian; Du, Xilin; Lu, Zhi John; Wu, Daqiang; Zhao, Yilei; Ren, Bin; Huang, Jiaofang; Huang, Xianqing; Xu, Yuhong; Xu, Yuquan
2011-01-01
Background Phenazines are important compounds produced by pseudomonads and other bacteria. Two phz gene clusters called phzA1-G1 and phzA2-G2, respectively, were found in the genome of Pseudomonas sp. M18, an effective biocontrol agent, which is highly homologous to the opportunistic human pathogen P. aeruginosa PAO1, however little is known about the correlation between the expressions of two phz gene clusters. Methodology/Principal Findings Two chromosomal insertion inactivated mutants for the two gene clusters were constructed respectively and the correlation between the expressions of two phz gene clusters was investigated in strain M18. Phenazine-1-carboxylic acid (PCA) molecules produced from phzA2-G2 gene cluster are able to auto-regulate expression itself and activate the expression of phzA1-G1 gene cluster in a circulated amplification pattern. However, the post-transcriptional expression of phzA1-G1 transcript was blocked principally through 5′-untranslated region (UTR). In contrast, the phzA2-G2 gene cluster was transcribed to a lesser extent and translated efficiently and was negatively regulated by the GacA signal transduction pathway, mainly at a post-transcriptional level. Conclusions/Significance A single molecule, PCA, produced in different quantities by the two phz gene clusters acted as the functional mediator and the two phz gene clusters developed a specific regulatory mechanism which acts through 5′-UTR to transfer a single, but complex bacterial signaling event in Pseudomonas sp. strain M18. PMID:21559370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ying; Bai, Silei; Liu, Jingjing
Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-framemore » gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. - Highlights: • Cloning of the aureothricin biosynthetic gene cluster from Streptomyces thioluteus DSM 40027. • Identification of the aureothricin gene cluster by heterologous expression and in-frame gene deletion. • The heterogenetic thioesterase HlmK significantly improved dithiolopyrrolones production of the aureothricin gene cluster. • Identification of HlmK as an unusual type II thioesterase.« less
Osborne, Peter W; Benoit, Gérard; Laudet, Vincent; Schubert, Michael; Ferrier, David E K
2009-03-01
The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.
A Stationary Wavelet Entropy-Based Clustering Approach Accurately Predicts Gene Expression
Nguyen, Nha; Vo, An; Choi, Inchan
2015-01-01
Abstract Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation. PMID:25383910
de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Vilchez-Vargas, Ramiro; Pieper, Dietmar H
2016-01-01
Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.
Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun
2012-01-01
Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene ontology (GO) annotation, promoter identification, gene expression (co-expression), and evolutionary analysis. This database not only provides a way to define lineage-specific and species-specific gene clusters but also facilitates future studies on gene co-regulation, epigenetic control of gene expression (DNA methylation and histone marks), and chromosomal structures in a context of gene clusters and species evolution. LCGbase is freely available at http://lcgbase.big.ac.cn/LCGbase.
Analysis of bHLH coding genes using gene co-expression network approach.
Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok
2016-07-01
Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-01-01
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis. PMID:18305825
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-12-30
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis.
Singh, Dadabhai T; Trehan, Rahul; Schmidt, Bertil; Bretschneider, Timo
2008-01-01
Preparedness for a possible global pandemic caused by viruses such as the highly pathogenic influenza A subtype H5N1 has become a global priority. In particular, it is critical to monitor the appearance of any new emerging subtypes. Comparative phyloinformatics can be used to monitor, analyze, and possibly predict the evolution of viruses. However, in order to utilize the full functionality of available analysis packages for large-scale phyloinformatics studies, a team of computer scientists, biostatisticians and virologists is needed--a requirement which cannot be fulfilled in many cases. Furthermore, the time complexities of many algorithms involved leads to prohibitive runtimes on sequential computer platforms. This has so far hindered the use of comparative phyloinformatics as a commonly applied tool in this area. In this paper the graphical-oriented workflow design system called Quascade and its efficient usage for comparative phyloinformatics are presented. In particular, we focus on how this task can be effectively performed in a distributed computing environment. As a proof of concept, the designed workflows are used for the phylogenetic analysis of neuraminidase of H5N1 isolates (micro level) and influenza viruses (macro level). The results of this paper are hence twofold. Firstly, this paper demonstrates the usefulness of a graphical user interface system to design and execute complex distributed workflows for large-scale phyloinformatics studies of virus genes. Secondly, the analysis of neuraminidase on different levels of complexity provides valuable insights of this virus's tendency for geographical based clustering in the phylogenetic tree and also shows the importance of glycan sites in its molecular evolution. The current study demonstrates the efficiency and utility of workflow systems providing a biologist friendly approach to complex biological dataset analysis using high performance computing. In particular, the utility of the platform Quascade for deploying distributed and parallelized versions of a variety of computationally intensive phylogenetic algorithms has been shown. Secondly, the analysis of the utilized H5N1 neuraminidase datasets at macro and micro levels has clearly indicated a pattern of spatial clustering of the H5N1 viral isolates based on geographical distribution rather than temporal or host range based clustering.
A cluster merging method for time series microarray with production values.
Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio
2014-09-01
A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.
Liu, Ying; Navathe, Shamkant B; Pivoshenko, Alex; Dasigi, Venu G; Dingledine, Ray; Ciliax, Brian J
2006-01-01
One of the key challenges of microarray studies is to derive biological insights from the gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the functional links among genes. However, the quality of the keyword lists significantly affects the clustering results. We compared two keyword weighting schemes: normalised z-score and term frequency-inverse document frequency (TFIDF). Two gene sets were tested to evaluate the effectiveness of the weighting schemes for keyword extraction for gene clustering. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords outperformed those produced from normalised z-score weighted keywords. The optimised algorithms should be useful for partitioning genes from microarray lists into functionally discrete clusters.
Zhang, Xiujun; Alemany, Lawrence B.; Fiedler, Hans-Peter; Goodfellow, Michael; Parry, Ronald J.
2008-01-01
The antibiotics lactonamycin and lactonamycin Z provide attractive leads for antibacterial drug development. Both antibiotics contain a novel aglycone core called lactonamycinone. To gain insight into lactonamycinone biosynthesis, cloning and precursor incorporation experiments were undertaken. The lactonamycin gene cluster was initially cloned from Streptomyces rishiriensis. Sequencing of ca. 61 kb of S. rishiriensis DNA revealed the presence of 57 open reading frames. These included genes coding for the biosynthesis of l-rhodinose, the sugar found in lactonamycin, and genes similar to those in the tetracenomycin biosynthetic gene cluster. Since lactonamycin production by S. rishiriensis could not be sustained, additional proof for the identity of the S. rishiriensis cluster was obtained by cloning the lactonamycin Z gene cluster from Streptomyces sanglieri. Partial sequencing of the S. sanglieri cluster revealed 15 genes that exhibited a very high degree of similarity to genes within the lactonamycin cluster, as well as an identical organization. Double-crossover disruption of one gene in the S. sanglieri cluster abolished lactonamycin Z production, and production was restored by complementation. These results confirm the identity of the genetic locus cloned from S. sanglieri and indicate that the highly similar locus in S. rishiriensis encodes lactonamycin biosynthetic genes. Precursor incorporation experiments with S. sanglieri revealed that lactonamycinone is biosynthesized in an unusual manner whereby glycine or a glycine derivative serves as a starter unit that is extended by nine acetate units. Analysis of the gene clusters and of the precursor incorporation data suggested a hypothetical scheme for lactonamycinone biosynthesis. PMID:18070976
Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina
2017-01-01
The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus. PMID:28379186
Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina
2017-04-05
The PKS-NRPS-derived tetramic acid equisetin and its N -desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus . The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum , a species distantly related to the notorious rice pathogen Fusarium fujikuroi . Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi . Bioinformatic analysis revealed that this cluster does not contain the equisetin N -methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi . Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22 , led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23 , encoding a second Zn(II)₂Cys₆ TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T . TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.
Computational gene expression profiling under salt stress reveals patterns of co-expression
Sanchita; Sharma, Ashok
2016-01-01
Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411
Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A
2009-03-30
Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of these gene clusters in dinoflagellates, the cause of human mortalities and significant financial loss to the tourism and shellfish industries.
Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A
2009-01-01
Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of these gene clusters in dinoflagellates, the cause of human mortalities and significant financial loss to the tourism and shellfish industries. PMID:19331657
Mining subspace clusters from DNA microarray data using large itemset techniques.
Chang, Ye-In; Chen, Jiun-Rung; Tsai, Yueh-Chi
2009-05-01
Mining subspace clusters from the DNA microarrays could help researchers identify those genes which commonly contribute to a disease, where a subspace cluster indicates a subset of genes whose expression levels are similar under a subset of conditions. Since in a DNA microarray, the number of genes is far larger than the number of conditions, those previous proposed algorithms which compute the maximum dimension sets (MDSs) for any two genes will take a long time to mine subspace clusters. In this article, we propose the Large Itemset-Based Clustering (LISC) algorithm for mining subspace clusters. Instead of constructing MDSs for any two genes, we construct only MDSs for any two conditions. Then, we transform the task of finding the maximal possible gene sets into the problem of mining large itemsets from the condition-pair MDSs. Since we are only interested in those subspace clusters with gene sets as large as possible, it is desirable to pay attention to those gene sets which have reasonable large support values in the condition-pair MDSs. From our simulation results, we show that the proposed algorithm needs shorter processing time than those previous proposed algorithms which need to construct gene-pair MDSs.
Patel, Vidushi S; Cooper, Steven JB; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer AM
2008-01-01
Background Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages. PMID:18657265
Histidine Kinase-Mediated Production and Autoassembly of Porphyromonas gingivalis Fimbriae▿ †
Nishikawa, Kiyoshi; Duncan, Margaret J.
2010-01-01
Porphyromonas gingivalis, a Gram-negative oral anaerobe, is strongly associated with chronic adult periodontitis, and it utilizes FimA fimbriae to persistently colonize and evade host defenses in the periodontal crevice. The FimA-related gene cluster (the fim gene cluster) is positively regulated by the FimS-FimR two-component system. In this study, comparative analyses between fimbriate type strain ATCC 33277 and fimbria-deficient strain W83 revealed differences in their fimS loci, which encode FimS histidine kinase. Using a reciprocal gene exchange system, we established that FimS from W83 is malfunctional. Complementation analysis with chimeric fimS constructs revealed that W83 FimS has a defective kinase domain due to a truncated conserved G3 box motif that provides an ATP-binding pocket. The introduction of the functional fimS from 33277 restored the production, but not polymerization, of endogenous FimA subunits in W83. Further analyses with a fimA-exchanged W83 isogenic strain showed that even the fimbria-deficient W83 retains the ability to polymerize FimA from 33277, indicating the assembly of mature FimA by a primary structure-dependent mechanism. It also was shown that the substantial expression of 33277-type FimA fimbriae in the W83 derivative requires the introduction and expression of the functional 33277 fimS. These findings indicate that FimSR is the unique and universal regulatory system that activates the fim gene cluster in a fimA genotype-independent manner. PMID:20118268
Adamek, Martina; Alanjary, Mohammad; Sales-Ortells, Helena; Goodfellow, Michael; Bull, Alan T; Winkler, Anika; Wibberg, Daniel; Kalinowski, Jörn; Ziemert, Nadine
2018-06-01
Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds.
Jadhav, Rohit R; Ye, Zhenqing; Huang, Rui-Lan; Liu, Joseph; Hsu, Pei-Yin; Huang, Yi-Wen; Rangel, Leticia B; Lai, Hung-Cheng; Roa, Juan Carlos; Kirma, Nameer B; Huang, Tim Hui-Ming; Jin, Victor X
2015-01-01
Recent genome-wide analysis has shown that DNA methylation spans long stretches of chromosome regions consisting of clusters of contiguous CpG islands or gene families. Hypermethylation of various gene clusters has been reported in many types of cancer. In this study, we conducted methyl-binding domain capture (MBDCap) sequencing (MBD-seq) analysis on a breast cancer cohort consisting of 77 patients and 10 normal controls, as well as a panel of 38 breast cancer cell lines. Bioinformatics analysis determined seven gene clusters with a significant difference in overall survival (OS) and further revealed a distinct feature that the conservation of a large gene cluster (approximately 70 kb) metallothionein-1 (MT1) among 45 species is much lower than the average of all RefSeq genes. Furthermore, we found that DNA methylation is an important epigenetic regulator contributing to gene repression of MT1 gene cluster in both ERα positive (ERα+) and ERα negative (ERα-) breast tumors. In silico analysis revealed much lower gene expression of this cluster in The Cancer Genome Atlas (TCGA) cohort for ERα + tumors. To further investigate the role of estrogen, we conducted 17β-estradiol (E2) and demethylating agent 5-aza-2'-deoxycytidine (DAC) treatment in various breast cancer cell types. Cell proliferation and invasion assays suggested MT1F and MT1M may play an anti-oncogenic role in breast cancer. Our data suggests that DNA methylation in large contiguous gene clusters can be potential prognostic markers of breast cancer. Further investigation of these clusters revealed that estrogen mediates epigenetic repression of MT1 cluster in ERα + breast cancer cell lines. In all, our studies identify thousands of breast tumor hypermethylated regions for the first time, in particular, discovering seven large contiguous hypermethylated gene clusters.
Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette
2014-08-01
To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.
Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg
2014-01-01
To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals. PMID:24837377
WordCluster: detecting clusters of DNA words and genomic elements
2011-01-01
Background Many k-mers (or DNA words) and genomic elements are known to be spatially clustered in the genome. Well established examples are the genes, TFBSs, CpG dinucleotides, microRNA genes and ultra-conserved non-coding regions. Currently, no algorithm exists to find these clusters in a statistically comprehensible way. The detection of clustering often relies on densities and sliding-window approaches or arbitrarily chosen distance thresholds. Results We introduce here an algorithm to detect clusters of DNA words (k-mers), or any other genomic element, based on the distance between consecutive copies and an assigned statistical significance. We implemented the method into a web server connected to a MySQL backend, which also determines the co-localization with gene annotations. We demonstrate the usefulness of this approach by detecting the clusters of CAG/CTG (cytosine contexts that can be methylated in undifferentiated cells), showing that the degree of methylation vary drastically between inside and outside of the clusters. As another example, we used WordCluster to search for statistically significant clusters of olfactory receptor (OR) genes in the human genome. Conclusions WordCluster seems to predict biological meaningful clusters of DNA words (k-mers) and genomic entities. The implementation of the method into a web server is available at http://bioinfo2.ugr.es/wordCluster/wordCluster.php including additional features like the detection of co-localization with gene regions or the annotation enrichment tool for functional analysis of overlapped genes. PMID:21261981
Mitsui, Ryoji; Katayama, Hiroko; Tanaka, Mitsuo
2015-07-01
The facultative methylotrophic bacterium Acidomonas methanolica MB58 can utilize C1 compounds via the ribulose monophosphate pathway. A large gene cluster comprising three components related to C1 metabolism was found in the genome. From upstream, the first was an mxa cluster encoding proteins for oxidation of methanol to formaldehyde; the second was the rmp cluster encoding enzymes for formaldehyde fixation; and the third was the cbb gene cluster encoding proteins for carbon dioxide (CO2) fixation. Examination of CO2 requirements for growth of A. methanolica MB58 cells demonstrated that it did not grow on any carbon source under CO2-free conditions. Measurement of ribulose-1,5-bisphosphate carboxylase activity and RT-PCR analysis demonstrated enzymatic activity was detected in A. methanolica MB58 at growth phase, regardless of carbon sources. However, methanol dehydrogenase and 3-hexlose-6-phosphate synthase expression was regulated by methanol or formaldehyde; it were detected during growth and apparently differed from ribulose-1,5-bisphosphate carboxylase expression. These results suggested that A. methanolica MB58 may be initially dependent on autotrophic growth and that carbon assimilation was subsequently coupled with the ribulose monophosphate pathway at early- to mid-log phases during methylotrophic growth. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Large clusters of co-expressed genes in the Drosophila genome.
Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I
2002-12-12
Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.
Unusual Gene Order and Organization of the Sea Urchin Hox Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R A; Rowen, L; Nesbitt, R
2005-10-11
The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is :more » 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.« less
Unusual Gene Order and Organization of the Sea Urchin HoxCluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew
2005-05-10
The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is :more » 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.« less
Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants
Schläpfer, Pascal; Zhang, Peifen; Wang, Chuan; ...
2017-04-01
Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we will need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can bemore » used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters.« less
Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN
Zhang, Peifen; Kim, Taehyong; Banf, Michael; Chavali, Arvind K.; Nilo-Poyanco, Ricardo; Bernard, Thomas
2017-01-01
Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. PMID:28228535
Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schläpfer, Pascal; Zhang, Peifen; Wang, Chuan
Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we will need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can bemore » used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters.« less
Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants.
Schläpfer, Pascal; Zhang, Peifen; Wang, Chuan; Kim, Taehyong; Banf, Michael; Chae, Lee; Dreher, Kate; Chavali, Arvind K; Nilo-Poyanco, Ricardo; Bernard, Thomas; Kahn, Daniel; Rhee, Seung Y
2017-04-01
Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. © 2017 American Society of Plant Biologists. All Rights Reserved.
Liu, L L; Liu, M J; Ma, M
2015-09-28
The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.
Chen, Y M; Zhu, Y; Lin, E C
1987-12-01
In Escherichia coli the six known genes specifying the utilization of L-fucose as carbon and energy source cluster at 60.2 min and constitute a regulon. These genes include fucP (encoding L-fucose permease), fucI (encoding L-fucose isomerase), fucK (encoding L-fuculose kinase), fucA (encoding L-fuculose 1-phosphate aldolase), fucO (encoding L-1,2-propanediol oxidoreductase), and fucR (encoding the regulatory protein). In this study the fuc genes were cloned and their positions on the chromosome were established by restriction endonuclease and complementation analyses. Clockwise, the gene order is: fucO-fucA-fucP-fucI-fucK-fucR. The operons comprising the structural genes and the direction of transcription were determined by complementation analysis and Southern blot hybridization. The fucPIK and fucA operons are transcribed clockwise. The fucO operon is transcribed counterclockwise. The fucR gene product activates the three structural operons in trans.
Zhao, Chen; Huang, Ying; Guo, Chao; Yang, Bolei; Zhang, Yan; Lan, Zhou; Guan, Xiong; Song, Yuan; Zhang, Xiaolin
2017-01-01
Spinosyns are a group of macrolide insecticides produced by Saccharopolyspora spinosa. Although S. spinosa can be used for industrial-scale production of spinosyns, this might suffer from several limitations, mainly related to its long growth cycle, low fermentation biomass, and inefficient utilization of starch. It is crucial to generate a robust strain for further spinosyn production and the development of spinosyn derivatives. A BAC vector, containing the whole biosynthetic gene cluster for spinosyn (74 kb) and the elements required for conjugal transfer and site-specific integration, was introduced into different Streptomyces hosts in order to obtain heterologous spinosyn-producing strains. The exconjugants of different Streptomyces strains did not show spinosyn production unless the rhamnose biosynthesis genes from S. spinosa genomic DNA were present and expressed under the control of a strong constitutive ermE*p promoter. Using this heterologous expression system resulted in yields of 1 μg/mL and 1.5 μg/mL spinosyns in Streptomyces coelicolor and Streptomyces lividans, respectively. This report demonstrates spinosyn production in 2 Streptomyces strains and stresses the essential role of rhamnose in this process. This work also provides a potential alternative route for producing spinosyn analogs by means of genetic manipulation in the heterologous hosts. © 2017 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Peterson, K. J.; Irvine, S. Q.; Cameron, R. A.; Davidson, E. H.
2000-01-01
A prediction from the set-aside theory of bilaterian origins is that pattern formation processes such as those controlled by the Hox cluster genes are required specifically for adult body plan formation. This prediction can be tested in animals that use maximal indirect development, in which the embryonic formation of the larva and the postembryonic formation of the adult body plan are temporally and spatially distinct. To this end, we quantitatively measured the amount of transcripts for five Hox genes in embryos of a lophotrochozoan, the polychaete annelid Chaetopterus sp. The polychaete Hox complex is shown not to be expressed during embryogenesis, but transcripts of all measured Hox complex genes are detected at significant levels during the initial stages of adult body plan formation. Temporal colinearity in the sequence of their activation is observed, so that activation follows the 3'-5' arrangement of the genes. Moreover, Hox gene expression is spatially localized to the region of teloblastic set-aside cells of the later-stage embryos. This study shows that an indirectly developing lophotrochozoan shares with an indirectly developing deuterostome, the sea urchin, a common mode of Hox complex utilization: construction of the larva, whether a trochophore or dipleurula, does not involve Hox cluster expression, but in both forms the complex is expressed in the set-aside cells from which the adult body plan derives.
De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.
Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min
2013-02-01
Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.
Differential Retention of Gene Functions in a Secondary Metabolite Cluster.
Reynolds, Hannah T; Slot, Jason C; Divon, Hege H; Lysøe, Erik; Proctor, Robert H; Brown, Daren W
2017-08-01
In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.
Regulation of Multiple Carbon Monoxide Consumption Pathways in Anaerobic Bacteria
Techtmann, Stephen M.; Colman, Albert S.; Murphy, Michael B.; Schackwitz, Wendy S.; Goodwin, Lynne A.; Robb, Frank T.
2011-01-01
Carbon monoxide (CO), well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH), the protein complex that enables anaerobic CO-utilization, has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extraordinarily resistant to high CO concentrations, thriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: one clade (CooA-1) is found in the majority of CooA-containing bacteria, whereas the other clade (CooA-2) is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of concentrations. PMID:21808633
Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
2008-05-12
The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less
Mallik, Saurav; Zhao, Zhongming
2017-12-28
For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures-weighted rank-based Jaccard and Cosine measures-and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s) through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm-RANWAR-was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.
Stevenson, G; Andrianopoulos, K; Hobbs, M; Reeves, P R
1996-01-01
Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell. PMID:8759852
Ficklin, Stephen P.; Luo, Feng; Feltus, F. Alex
2010-01-01
Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes. PMID:20668062
Ficklin, Stephen P; Luo, Feng; Feltus, F Alex
2010-09-01
Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.
The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans.
Gardiner, Donald M; Cozijnsen, Anton J; Wilson, Leanne M; Pedras, M Soledade C; Howlett, Barbara J
2004-09-01
Sirodesmin PL is a phytotoxin produced by the fungus Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus). This phytotoxin belongs to the epipolythiodioxopiperazine (ETP) class of toxins produced by fungi including mammalian and plant pathogens. We report the cloning of a cluster of genes with predicted roles in the biosynthesis of sirodesmin PL and show via gene disruption that one of these genes (encoding a two-module non-ribosomal peptide synthetase) is essential for sirodesmin PL biosynthesis. Of the nine genes in the cluster tested, all are co-regulated with the production of sirodesmin PL in culture. A similar cluster is present in the genome of the opportunistic human pathogen Aspergillus fumigatus and is most likely responsible for the production of gliotoxin, which is also an ETP. Homologues of the genes in the cluster were also identified in expressed sequence tags of the ETP producing fungus Chaetomium globosum. Two other fungi with publicly available genome sequences, Magnaporthe grisea and Fusarium graminearum, had similar gene clusters. A comparative analysis of all four clusters is presented. This is the first report of the genes responsible for the biosynthesis of an ETP. Copyright 2004 Blackwell Publishing Ltd
Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters
WANG, JIACHEN; DASGUPTA, INDRANI; FOX, GEORGE E.
2009-01-01
The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such. PMID:19478915
Allcock, Richard J N; Barrow, Alexander D; Forbes, Simon; Beck, Stephan; Trowsdale, John
2003-02-01
We have characterized a cluster of single immunoglobulin variable (IgV) domain receptors centromeric of the major histocompatibility complex (MHC) on human chromosome 6. In addition to triggering receptor expressed on myeloid cells (TREM)-1 and TREM2, the cluster contains NKp44, a triggering receptor whose expression is limited to NK cells. We identified three new related genes and two gene fragments within a cluster of approximately 200 kb. Two of the three new genes lack charged residues in their transmembrane domain tails. Further, one of the genes contains two potential immunotyrosine Inhibitory motifs in its cytoplasmic tail, suggesting that it delivers inhibitory signals. The human and mouse TREM clusters appear to have diverged such that there are unique sequences in each species. Finally, each gene in the TREM cluster was expressed in a different range of cell types.
Clustering change patterns using Fourier transformation with time-course gene expression data.
Kim, Jaehee
2011-01-01
To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a period of time because biologically related gene groups can share the same change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. This work is aimed at discovering gene groups with similar change patterns which share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. We applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns.
Dover, Nir; Barash, Jason R.; Burke, Julianne N.; ...
2014-05-22
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ 70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less
Direct Capture Technologies for Genomics-Guided Discovery of Natural Products.
Chan, Andrew N; Santa Maria, Kevin C; Li, Bo
2016-01-01
Microbes are important producers of natural products, which have played key roles in understanding biology and treating disease. However, the full potential of microbes to produce natural products has yet to be realized; the overwhelming majority of natural product gene clusters encoded in microbial genomes remain "cryptic", and have not been expressed or characterized. In contrast to the fast-growing number of genomic sequences and bioinformatic tools, methods to connect these genes to natural product molecules are still limited, creating a bottleneck in genome-mining efforts to discover novel natural products. Here we review developing technologies that leverage the power of homologous recombination to directly capture natural product gene clusters and express them in model hosts for isolation and structural characterization. Although direct capture is still in its early stages of development, it has been successfully utilized in several different classes of natural products. These early successes will be reviewed, and the methods will be compared and contrasted with existing traditional technologies. Lastly, we will discuss the opportunities for the development of direct capture in other organisms, and possibilities to integrate direct capture with emerging genome-editing techniques to accelerate future study of natural products.
Susca, Antonia; Proctor, Robert H; Butchko, Robert A E; Haidukowski, Miriam; Stea, Gaetano; Logrieco, Antonio; Moretti, Antonio
2014-12-01
The ability to produce fumonisin mycotoxins varies among members of the black aspergilli. Previously, analyses of selected genes in the fumonisin biosynthetic gene (fum) cluster in black aspergilli from California grapes indicated that fumonisin-nonproducing isolates of Aspergillus welwitschiae lack six fum genes, but nonproducing isolates of Aspergillus niger do not. In the current study, analyses of black aspergilli from grapes from the Mediterranean Basin indicate that the genomic context of the fum cluster is the same in isolates of A. niger and A. welwitschiae regardless of fumonisin-production ability and that full-length clusters occur in producing isolates of both species and nonproducing isolates of A. niger. In contrast, the cluster has undergone an eight-gene deletion in fumonisin-nonproducing isolates of A. welwitschiae. Phylogenetic analyses suggest each species consists of a mixed population of fumonisin-producing and nonproducing individuals, and that existence of both production phenotypes may provide a selective advantage to these species. Differences in gene content of fum cluster homologues and phylogenetic relationships of fum genes suggest that the mutation(s) responsible for the nonproduction phenotype differs, and therefore arose independently, in the two species. Partial fum cluster homologues were also identified in genome sequences of four other black Aspergillus species. Gene content of these partial clusters and phylogenetic relationships of fum sequences indicate that non-random partial deletion of the cluster has occurred multiple times among the species. This in turn suggests that an intact cluster and fumonisin production were once more widespread among black aspergilli. Copyright © 2014 Elsevier Inc. All rights reserved.
Mazmouz, Rabia; Pickford, Russell; Puranik, Pravin R.
2016-01-01
ABSTRACT The mycosporine-like amino acids (MAAs) are a group of small molecules with a diverse ecological distribution among microorganisms. MAAs have a range of physiological functions, including protection against UV radiation, making them important from a biotechnological perspective. In the present study, we identified a putative MAA (mys) gene cluster in two New Zealand isolates of Scytonema cf. crispum (UCFS10 and UCFS15). Homology to “Anabaena-type” mys clusters suggested that this cluster was likely to be involved in shinorine biosynthesis. Surprisingly, high-performance liquid chromatography analysis of S. cf. crispum cell extracts revealed a complex MAA profile, including shinorine, palythine-serine, and their hexose-bound variants. It was hypothesized that a short-chain dehydrogenase (UCFS15_00405) encoded by a gene adjacent to the S. cf. crispum mys cluster was responsible for the conversion of shinorine to palythine-serine. Heterologous expression of MysABCE and UCFS15_00405 in Escherichia coli resulted in the exclusive production of the parent compound shinorine. Taken together, these results suggest that shinorine biosynthesis in S. cf. crispum proceeds via an Anabaena-type mechanism and that the genes responsible for the production of other MAA analogues, including palythine-serine and glycosylated analogues, may be located elsewhere in the genome. IMPORTANCE Recently, New Zealand isolates of S. cf. crispum were linked to the production of paralytic shellfish toxins for the first time, but no other natural products from this species have been reported. Thus, the species was screened for important natural product biosynthesis. The mycosporine-like amino acids (MAAs) are among the strongest absorbers of UV radiation produced in nature. The identification of novel MAAs is important from a biotechnology perspective, as these molecules are able to be utilized as sunscreens. This study has identified two novel MAAs that have provided several new avenues of future research related to MAA genetics and biosynthesis. Further, we have revealed that the genetic basis of MAA biosynthesis may not be clustered on the genome. The identification of the genes responsible for MAA biosynthesis is vital for future genetic engineering. PMID:27474710
Miyamoto, Kiyoko T.; Komatsu, Mamoru
2014-01-01
Mycosporines and mycosporine-like amino acids (MAAs), including shinorine (mycosporine-glycine-serine) and porphyra-334 (mycosporine-glycine-threonine), are UV-absorbing compounds produced by cyanobacteria, fungi, and marine micro- and macroalgae. These MAAs have the ability to protect these organisms from damage by environmental UV radiation. Although no reports have described the production of MAAs and the corresponding genes involved in MAA biosynthesis from Gram-positive bacteria to date, genome mining of the Gram-positive bacterial database revealed that two microorganisms belonging to the order Actinomycetales, Actinosynnema mirum DSM 43827 and Pseudonocardia sp. strain P1, possess a gene cluster homologous to the biosynthetic gene clusters identified from cyanobacteria. When the two strains were grown in liquid culture, Pseudonocardia sp. accumulated a very small amount of MAA-like compound in a medium-dependent manner, whereas A. mirum did not produce MAAs under any culture conditions, indicating that the biosynthetic gene cluster of A. mirum was in a cryptic state in this microorganism. In order to characterize these biosynthetic gene clusters, each biosynthetic gene cluster was heterologously expressed in an engineered host, Streptomyces avermitilis SUKA22. Since the resultant transformants carrying the entire biosynthetic gene cluster controlled by an alternative promoter produced mainly shinorine, this is the first confirmation of a biosynthetic gene cluster for MAA from Gram-positive bacteria. Furthermore, S. avermitilis SUKA22 transformants carrying the biosynthetic gene cluster for MAA of A. mirum accumulated not only shinorine and porphyra-334 but also a novel MAA. Structure elucidation revealed that the novel MAA is mycosporine-glycine-alanine, which substitutes l-alanine for the l-serine of shinorine. PMID:24907338
Miyamoto, Kiyoko T; Komatsu, Mamoru; Ikeda, Haruo
2014-08-01
Mycosporines and mycosporine-like amino acids (MAAs), including shinorine (mycosporine-glycine-serine) and porphyra-334 (mycosporine-glycine-threonine), are UV-absorbing compounds produced by cyanobacteria, fungi, and marine micro- and macroalgae. These MAAs have the ability to protect these organisms from damage by environmental UV radiation. Although no reports have described the production of MAAs and the corresponding genes involved in MAA biosynthesis from Gram-positive bacteria to date, genome mining of the Gram-positive bacterial database revealed that two microorganisms belonging to the order Actinomycetales, Actinosynnema mirum DSM 43827 and Pseudonocardia sp. strain P1, possess a gene cluster homologous to the biosynthetic gene clusters identified from cyanobacteria. When the two strains were grown in liquid culture, Pseudonocardia sp. accumulated a very small amount of MAA-like compound in a medium-dependent manner, whereas A. mirum did not produce MAAs under any culture conditions, indicating that the biosynthetic gene cluster of A. mirum was in a cryptic state in this microorganism. In order to characterize these biosynthetic gene clusters, each biosynthetic gene cluster was heterologously expressed in an engineered host, Streptomyces avermitilis SUKA22. Since the resultant transformants carrying the entire biosynthetic gene cluster controlled by an alternative promoter produced mainly shinorine, this is the first confirmation of a biosynthetic gene cluster for MAA from Gram-positive bacteria. Furthermore, S. avermitilis SUKA22 transformants carrying the biosynthetic gene cluster for MAA of A. mirum accumulated not only shinorine and porphyra-334 but also a novel MAA. Structure elucidation revealed that the novel MAA is mycosporine-glycine-alanine, which substitutes l-alanine for the l-serine of shinorine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Cardoza, R. E.; Malmierca, M. G.; Hermosa, M. R.; Alexander, N. J.; McCormick, S. P.; Proctor, R. H.; Tijerino, A. M.; Rumbero, A.; Monte, E.; Gutiérrez, S.
2011-01-01
Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function. PMID:21642405
USDA-ARS?s Scientific Manuscript database
Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...
Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan
2014-01-01
Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.
Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan
2014-01-01
Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417
Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi
2017-01-01
Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci . Nevertheless, some features are shared in Hox gene components and gene arrangement on the chromosomes, suggesting that Hox gene cluster disintegration in ascidians involved early events common to tunicates as well as later ascidian lineage-specific events.
Ehrlich, Kenneth C; Mack, Brian M
2014-06-23
Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.
Ehrlich, Kenneth C.; Mack, Brian M.
2014-01-01
Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201
Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.
Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.
2012-01-01
Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343
[Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong
2015-11-01
The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.
Gwiazda, Kamila S; Grier, Alexandra E; Sahni, Jaya; Burleigh, Stephen M; Martin, Unja; Yang, Julia G; Popp, Nicholas A; Krutein, Michelle C; Khan, Iram F; Jacoby, Kyle; Jensen, Michael C; Rawlings, David J; Scharenberg, Andrew M
2016-09-29
Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.
Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture
NASA Technical Reports Server (NTRS)
Johanson, Kelly; Allen, Patricia L.; Lewis, Fawn; Cubano, Luis A.; Hyman, Linda E.; Hammond, Timothy G.
2002-01-01
This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.
Summerfield, Taryn L.; Yu, Lianbo; Gulati, Parul; Zhang, Jie; Huang, Kun; Romero, Roberto; Kniss, Douglas A.
2011-01-01
A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals. PMID:21655103
Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin
2017-07-01
Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.
Holland, Peter W H
2013-01-01
Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well-known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non-clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic-reduced sticklebacks. WIREs Dev Biol 2013, 2:31-45. doi: 10.1002/wdev.78 For further resources related to this article, please visit the WIREs website. The author declares that he has no conflicts of interest. Copyright © 2012 Wiley Periodicals, Inc.
Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis
Koh, Esther G. L.; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V.; Brenner, Sydney; Venkatesh, Byrappa
2003-01-01
The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes. PMID:12547909
Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis.
Koh, Esther G L; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V; Brenner, Sydney; Venkatesh, Byrappa
2003-02-04
The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.
Lee, Sunhee; Reth, Alexander; Meletzus, Dietmar; Sevilla, Myrna; Kennedy, Christina
2000-01-01
A major 30.5-kb cluster of nif and associated genes of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus), a nitrogen-fixing endophyte of sugarcane, was sequenced and analyzed. This cluster represents the largest assembly of contiguous nif-fix and associated genes so far characterized in any diazotrophic bacterial species. Northern blots and promoter sequence analysis indicated that the genes are organized into eight transcriptional units. The overall arrangement of genes is most like that of the nif-fix cluster in Azospirillum brasilense, while the individual gene products are more similar to those in species of Rhizobiaceae or in Rhodobacter capsulatus. PMID:11092875
Athey, Taryn B T; Vaillancourt, Katy; Frenette, Michel; Fittipaldi, Nahuel; Gottschalk, Marcelo; Grenier, Daniel
2016-01-01
Recently, we reported the purification and characterization of three distinct lantibiotics (named suicin 90-1330, suicin 3908, and suicin 65) produced by Streptococcus suis . In this study, we investigated the distribution of the three suicin lantibiotic gene clusters among serotype 2 S. suis strains belonging to sequence type (ST) 25 and ST28, the two dominant STs identified in North America. The genomes of 102 strains were interrogated for the presence of suicin gene clusters encoding suicins 90-1330, 3908, and 65. The gene cluster encoding suicin 65 was the most prevalent and mainly found among ST25 strains. In contrast, none of the genes related to suicin 90-1330 production were identified in 51 ST25 strains nor in 35/51 ST28 strains. However, the complete suicin 90-1330 gene cluster was found in ten ST28 strains, although some genes in the cluster were truncated in three of these isolates. The vast majority (101/102) of S. suis strains did not possess any of the genes encoding suicin 3908. In conclusion, this study indicates heterogeneous distribution of suicin genes in S. suis .
The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN
Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda
2016-01-01
Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666
Pepke, Shirley; Ver Steeg, Greg
2017-03-15
De novo inference of clinically relevant gene function relationships from tumor RNA-seq remains a challenging task. Current methods typically either partition patient samples into a few subtypes or rely upon analysis of pairwise gene correlations that will miss some groups in noisy data. Leveraging higher dimensional information can be expected to increase the power to discern targetable pathways, but this is commonly thought to be an intractable computational problem. In this work we adapt a recently developed machine learning algorithm for sensitive detection of complex gene relationships. The algorithm, CorEx, efficiently optimizes over multivariate mutual information and can be iteratively applied to generate a hierarchy of relatively independent latent factors. The learned latent factors are used to stratify patients for survival analysis with respect to both single factors and combinations. These analyses are performed and interpreted in the context of biological function annotations and protein network interactions that might be utilized to match patients to multiple therapies. Analysis of ovarian tumor RNA-seq samples demonstrates the algorithm's power to infer well over one hundred biologically interpretable gene cohorts, several times more than standard methods such as hierarchical clustering and k-means. The CorEx factor hierarchy is also informative, with related but distinct gene clusters grouped by upper nodes. Some latent factors correlate with patient survival, including one for a pathway connected with the epithelial-mesenchymal transition in breast cancer that is regulated by a microRNA that modulates epigenetics. Further, combinations of factors lead to a synergistic survival advantage in some cases. In contrast to studies that attempt to partition patients into a small number of subtypes (typically 4 or fewer) for treatment purposes, our approach utilizes subgroup information for combinatoric transcriptional phenotyping. Considering only the 66 gene expression groups that are found to both have significant Gene Ontology enrichment and are small enough to indicate specific drug targets implies a computational phenotype for ovarian cancer that allows for 3 66 possible patient profiles, enabling truly personalized treatment. The findings here demonstrate a new technique that sheds light on the complexity of gene expression dependencies in tumors and could eventually enable the use of patient RNA-seq profiles for selection of personalized and effective cancer treatments.
Mihali, Troco K.; Carmichael, Wayne W.; Neilan, Brett A.
2011-01-01
Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds. PMID:21347365
Genome-wide survey and expression analysis of F-box genes in chickpea.
Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata
2015-02-13
The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.
A cross-species bi-clustering approach to identifying conserved co-regulated genes.
Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo
2016-06-15
A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on synthetic data and compared to the two-step method and several recent joint clustering methods. We then applied this approach to two real world datasets of gene expression during the pre-implantation embryonic development of the human and mouse. Co-regulated genes consistent between the human and mouse were identified, offering insights into conserved functions, as well as similarities and differences in genome activation timing between the human and mouse embryos. The R package containing the implementation of the proposed method in C ++ is available at: https://github.com/JavonSun/mvbc.git and also at the R platform https://www.r-project.org/ jinbo@engr.uconn.edu. © The Author 2016. Published by Oxford University Press.
Wu, Mengmeng; Huang, Haidong; Li, Guoqiang; Ren, Yi; Shi, Zhong; Li, Xiaoyan; Dai, Xiaohui; Gao, Ge; Ren, Mengnan; Ma, Ting
2017-04-21
Although clustering of genes from the same metabolic pathway is a widespread phenomenon, the evolution of the polysaccharide biosynthetic gene cluster remains poorly understood. To determine the evolution of this pathway, we identified a scattered production pathway of the polysaccharide sanxan by Sphingomonas sanxanigenens NX02, and compared the distribution of genes between sphingan-producing and other Sphingomonadaceae strains. This allowed us to determine how the scattered sanxan pathway developed, and how the polysaccharide gene cluster evolved. Our findings suggested that the evolution of microbial polysaccharide biosynthesis gene clusters is a lengthy cyclic process comprising cluster 1 → scatter → cluster 2. The sanxan biosynthetic pathway proved the existence of a dispersive process. We also report the complete genome sequence of NX02, in which we identified many unstable genetic elements and powerful secretion systems. Furthermore, nine enzymes for the formation of activated precursors, four glycosyltransferases, four acyltransferases, and four polymerization and export proteins were identified. These genes were scattered in the NX02 genome, and the positive regulator SpnA of sphingans synthesis could not regulate sanxan production. Finally, we concluded that the evolution of the sanxan pathway was independent. NX02 evolved naturally as a polysaccharide producing strain over a long-time evolution involving gene acquisitions and adaptive mutations.
Roelen, Bernard A J; de Graaff, Wim; Forlani, Sylvie; Deschamps, Jacqueline
2002-11-01
The molecular mechanism underlying the 3' to 5' polarity of induction of mouse Hox genes is still elusive. While relief from a cluster-encompassing repression was shown to lead to all Hoxd genes being expressed like the 3'most of them, Hoxd1 (Kondo and Duboule, 1999), the molecular basis of initial activation of this 3'most gene, is not understood yet. We show that, already before primitive streak formation, prior to initial expression of the first Hox gene, a dramatic transcriptional stimulation of the 3'most genes, Hoxb1 and Hoxb2, is observed upon a short pulse of exogenous retinoic acid (RA), whereas it is not in the case for more 5', cluster-internal, RA-responsive Hoxb genes. In contrast, the RA-responding Hoxb1lacZ transgene that faithfully mimics the endogenous gene (Marshall et al., 1994) did not exhibit the sensitivity of Hoxb1 to precocious activation. We conclude that polarity in initial activation of Hoxb genes reflects a greater availability of 3'Hox genes for transcription, suggesting a pre-existing (susceptibility to) opening of the chromatin structure at the 3' extremity of the cluster. We discuss the data in the context of prevailing models involving differential chromatin opening in the directionality of clustered Hox gene transcription, and regarding the importance of the cluster context for correct timing of initial Hox gene expression.Interestingly, Cdx1 manifested the same early transcriptional availability as Hoxb1. Copyright 2002 Elsevier Science Ireland Ltd.
Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor.
DuBuc, Timothy Q; Ryan, Joseph F; Shinzato, Chuya; Satoh, Nori; Martindale, Mark Q
2012-12-01
The key developmental role of the Hox cluster of genes was established prior to the last common ancestor of protostomes and deuterostomes and the subsequent evolution of this cluster has played a major role in the morphological diversity exhibited in extant bilaterians. Despite 20 years of research into cnidarian Hox genes, the nature of the cnidarian-bilaterian ancestral Hox cluster remains unclear. In an attempt to further elucidate this critical phylogenetic node, we have characterized the Hox cluster of the recently sequenced Acropora digitifera genome. The A. digitifera genome contains two anterior Hox genes (PG1 and PG2) linked to an Eve homeobox gene and an Anthox1A gene, which is thought to be either a posterior or posterior/central Hox gene. These data show that the Hox cluster of the cnidarian-bilaterian ancestor was more extensive than previously thought. The results are congruent with the existence of an ancient set of constraints on the Hox cluster and reinforce the importance of incorporating a wide range of animal species to reconstruct critical ancestral nodes.
Broad spectrum antibiotic compounds and use thereof
Koglin, Alexander; Strieker, Matthias
2016-07-05
The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.
A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data.
Nishiyama, Takeshi; Takahashi, Kunihiko; Tango, Toshiro; Pinto, Dalila; Scherer, Stephen W; Takami, Satoshi; Kishino, Hirohisa
2011-05-26
Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.
Haakensen, Vilde D; Lingjaerde, Ole Christian; Lüders, Torben; Riis, Margit; Prat, Aleix; Troester, Melissa A; Holmen, Marit M; Frantzen, Jan Ole; Romundstad, Linda; Navjord, Dina; Bukholm, Ida K; Johannesen, Tom B; Perou, Charles M; Ursin, Giske; Kristensen, Vessela N; Børresen-Dale, Anne-Lise; Helland, Aslaug
2011-11-01
Increased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk. Gene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets. Unsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions. This is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast cancer.
Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster.
Jagusztyn-Krynicka, E K; Hansen, J B; Crow, V L; Thomas, T D; Honeyman, A L; Curtiss, R
1992-01-01
DNA cloned into Escherichia coli K-12 from a serotype c strain of Streptococcus mutans encodes three enzyme activities for galactose utilization via the tagatose 6-phosphate pathway: galactose 6-phosphate isomerase, tagatose 6-phosphate kinase, and tagatose-1,6-bisphosphate aldolase. The genes coding for the tagatose 6-phosphate pathway were located on a 3.28-kb HindIII DNA fragment. Analysis of the tagatose proteins expressed by recombinant plasmids in minicells was used to determine the sizes of the various gene products. Mutagenesis of these plasmids with transposon Tn5 was used to determine the order of the tagatose genes. Tagatose 6-phosphate isomerase appears to be composed of 14- and 19-kDa subunits. The sizes of the kinase and aldolase were found to be 34 and 36 kDa, respectively. These values correspond to those reported previously for the tagatose pathway enzymes in Staphylococcus aureus and Lactococcus lactis. Images PMID:1328153
Mutagenesis and phenotyping resources in zebrafish for studying development and human disease
Varshney, Gaurav Kumar
2014-01-01
The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064
Siegel, Nicol; Hoegg, Simone; Salzburger, Walter; Braasch, Ingo; Meyer, Axel
2007-01-01
Background The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. Results We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. Conclusion There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular – but possibly clusters of genes more generally – might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters. PMID:17822543
Clustering Algorithms: Their Application to Gene Expression Data
Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel
2016-01-01
Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867
Genomic analyses of bacterial porin-cytochrome gene clusters
Shi, Liang; Fredrickson, James K.; Zachara, John M.
2014-11-26
In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less
Uhong Lü, Yuhong; Liu, Xiaoli; Wang, Miao; Li, Yuanyuan; Liu, Ning; Bao, Yuxin; Liu, Minghao; Li, Xiaoqian; Wang, Yinyin; Qian, Shenyan; Yue, Changwu; Huang, Ying
2016-09-01
In order to obtain the natural products synthesized by the three putative xiamycin biosynthesis gene clusters which were predicted via antiSMASH during the genome mining of marine Streptomyces sp. FXJ 7.388, Streptomyces sp. FXJ 8.012, and Streptomyces olivaceus FXJ 7.023. Sixteen genes involved in xiamycin assembly, modification, and regulation with higher identity than the newest reported xiamycin biosynthetic gene cluster from marine Streptomyces sp. SCSIO 02999, Streptomyces sp. HKI0576, and Streptomyces sp. FXJ 7.388 were discovered via gene cluster comparative analysis. A ribosome engineering strategy was adopted to activate such cryptic gene clusters with different final concentrations antibiotics that act on the ribosome, and two indolosesquiterpenes were isolated from idlethaldose streptomycin-resistant Streptomyces sp. FXJ 7.388 strains. However, no such product was detected in Streptomyces sp. FXJ 8.012 and Streptomyces olivaceus FXJ 7.023 under the same treatment. This result suggested that these genes might hold the least gene content for xiamycin biosynthesis.
Defining objective clusters for rabies virus sequences using affinity propagation clustering
Fischer, Susanne; Freuling, Conrad M.; Pfaff, Florian; Bodenhofer, Ulrich; Höper, Dirk; Fischer, Mareike; Marston, Denise A.; Fooks, Anthony R.; Mettenleiter, Thomas C.; Conraths, Franz J.; Homeier-Bachmann, Timo
2018-01-01
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. PMID:29357361
Genes encoding cuticular proteins are components of the Nimrod gene cluster in Drosophila.
Cinege, Gyöngyi; Zsámboki, János; Vidal-Quadras, Maite; Uv, Anne; Csordás, Gábor; Honti, Viktor; Gábor, Erika; Hegedűs, Zoltán; Varga, Gergely I B; Kovács, Attila L; Juhász, Gábor; Williams, Michael J; Andó, István; Kurucz, Éva
2017-08-01
The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma.
Yan, Xiting; Chu, Jen-Hwa; Gomez, Jose; Koenigs, Maria; Holm, Carole; He, Xiaoxuan; Perez, Mario F; Zhao, Hongyu; Mane, Shrikant; Martinez, Fernando D; Ober, Carole; Nicolae, Dan L; Barnes, Kathleen C; London, Stephanie J; Gilliland, Frank; Weiss, Scott T; Raby, Benjamin A; Cohn, Lauren; Chupp, Geoffrey L
2015-05-15
The airway transcriptome includes genes that contribute to the pathophysiologic heterogeneity seen in individuals with asthma. We analyzed sputum gene expression for transcriptomic endotypes of asthma (TEA), gene signatures that discriminate phenotypes of disease. Gene expression in the sputum and blood of patients with asthma was measured using Affymetrix microarrays. Unsupervised clustering analysis based on pathways from the Kyoto Encyclopedia of Genes and Genomes was used to identify TEA clusters. Logistic regression analysis of matched blood samples defined an expression profile in the circulation to determine the TEA cluster assignment in a cohort of children with asthma to replicate clinical phenotypes. Three TEA clusters were identified. TEA cluster 1 had the most subjects with a history of intubation (P = 0.05), a lower prebronchodilator FEV1 (P = 0.006), a higher bronchodilator response (P = 0.03), and higher exhaled nitric oxide levels (P = 0.04) compared with the other TEA clusters. TEA cluster 2, the smallest cluster, had the most subjects that were hospitalized for asthma (P = 0.04). TEA cluster 3, the largest cluster, had normal lung function, low exhaled nitric oxide levels, and lower inhaled steroid requirements. Evaluation of TEA clusters in children confirmed that TEA clusters 1 and 2 are associated with a history of intubation (P = 5.58 × 10(-6)) and hospitalization (P = 0.01), respectively. There are common patterns of gene expression in the sputum and blood of children and adults that are associated with near-fatal, severe, and milder asthma.
Noninvasive Analysis of the Sputum Transcriptome Discriminates Clinical Phenotypes of Asthma
Yan, Xiting; Chu, Jen-Hwa; Gomez, Jose; Koenigs, Maria; Holm, Carole; He, Xiaoxuan; Perez, Mario F.; Zhao, Hongyu; Mane, Shrikant; Martinez, Fernando D.; Ober, Carole; Nicolae, Dan L.; Barnes, Kathleen C.; London, Stephanie J.; Gilliland, Frank; Weiss, Scott T.; Raby, Benjamin A.; Cohn, Lauren
2015-01-01
Rationale: The airway transcriptome includes genes that contribute to the pathophysiologic heterogeneity seen in individuals with asthma. Objectives: We analyzed sputum gene expression for transcriptomic endotypes of asthma (TEA), gene signatures that discriminate phenotypes of disease. Methods: Gene expression in the sputum and blood of patients with asthma was measured using Affymetrix microarrays. Unsupervised clustering analysis based on pathways from the Kyoto Encyclopedia of Genes and Genomes was used to identify TEA clusters. Logistic regression analysis of matched blood samples defined an expression profile in the circulation to determine the TEA cluster assignment in a cohort of children with asthma to replicate clinical phenotypes. Measurements and Main Results: Three TEA clusters were identified. TEA cluster 1 had the most subjects with a history of intubation (P = 0.05), a lower prebronchodilator FEV1 (P = 0.006), a higher bronchodilator response (P = 0.03), and higher exhaled nitric oxide levels (P = 0.04) compared with the other TEA clusters. TEA cluster 2, the smallest cluster, had the most subjects that were hospitalized for asthma (P = 0.04). TEA cluster 3, the largest cluster, had normal lung function, low exhaled nitric oxide levels, and lower inhaled steroid requirements. Evaluation of TEA clusters in children confirmed that TEA clusters 1 and 2 are associated with a history of intubation (P = 5.58 × 10−6) and hospitalization (P = 0.01), respectively. Conclusions: There are common patterns of gene expression in the sputum and blood of children and adults that are associated with near-fatal, severe, and milder asthma. PMID:25763605
DiMeglio, Laura M.; Yu, Hongrun; Davis, Thomas M.
2014-01-01
The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae. PMID:25078607
Fang, Jie; Zhang, Yiping; Huang, Lijuan; Jia, Xinying; Zhang, Qi; Zhang, Xu; Tang, Gongli; Liu, Wen
2008-01-01
Tetrocarcin A (TCA), produced by Micromonospora chalcea NRRL 11289, is a spirotetronate antibiotic with potent antitumor activity and versatile modes of action. In this study, the biosynthetic gene cluster of TCA was cloned and localized to a 108-kb contiguous DNA region. In silico sequence analysis revealed 36 putative genes that constitute this cluster (including 11 for unusual sugar biosynthesis, 13 for aglycone formation, and 4 for glycosylations) and allowed us to propose the biosynthetic pathway of TCA. The formation of d-tetronitrose, l-amicetose, and l-digitoxose may begin with d-glucose-1-phosphate, share early enzymatic steps, and branch into different pathways by competitive actions of specific enzymes. Tetronolide biosynthesis involves the incorporation of a 3-C unit with a polyketide intermediate to form the characteristic spirotetronate moiety and trans-decalin system. Further substitution of tetronolide with five deoxysugars (one being a deoxynitrosugar) was likely due to the activities of four glycosyltransferases. In vitro characterization of the first enzymatic step by utilization of 1,3-biphosphoglycerate as the substrate and in vivo cross-complementation of the bifunctional fused gene tcaD3 (with the functions of chlD3 and chlD4) to ΔchlD3 and ΔchlD4 in chlorothricin biosynthesis supported the highly conserved tetronate biosynthetic strategy in the spirotetronate family. Deletion of a large DNA fragment encoding polyketide synthases resulted in a non-TCA-producing strain, providing a clear background for the identification of novel analogs. These findings provide insights into spirotetronate biosynthesis and demonstrate that combinatorial-biosynthesis methods can be applied to the TCA biosynthetic machinery to generate structural diversity. PMID:18586939
Analysis of genetic association using hierarchical clustering and cluster validation indices.
Pagnuco, Inti A; Pastore, Juan I; Abras, Guillermo; Brun, Marcel; Ballarin, Virginia L
2017-10-01
It is usually assumed that co-expressed genes suggest co-regulation in the underlying regulatory network. Determining sets of co-expressed genes is an important task, based on some criteria of similarity. This task is usually performed by clustering algorithms, where the genes are clustered into meaningful groups based on their expression values in a set of experiment. In this work, we propose a method to find sets of co-expressed genes, based on cluster validation indices as a measure of similarity for individual gene groups, and a combination of variants of hierarchical clustering to generate the candidate groups. We evaluated its ability to retrieve significant sets on simulated correlated and real genomics data, where the performance is measured based on its detection ability of co-regulated sets against a full search. Additionally, we analyzed the quality of the best ranked groups using an online bioinformatics tool that provides network information for the selected genes. Copyright © 2017 Elsevier Inc. All rights reserved.
Morata, Jordi; Puigdomènech, Pere
2017-02-08
Cucurbitaceae species contain a significantly lower number of genes coding for proteins with similarity to plant resistance genes belonging to the NBS-LRR family than other plant species of similar genome size. A large proportion of these genes are organized in clusters that appear to be hotspots of variability. The genomes of the Cucurbitaceae species measured until now are intermediate in size (between 350 and 450 Mb) and they apparently have not undergone any genome duplications beside those at the origin of eudicots. The cluster containing the largest number of NBS-LRR genes has previously been analyzed in melon and related species and showed a high degree of interspecific and intraspecific variability. It was of interest to study whether similar behavior occurred in other cluster of the same family of genes. The cluster of NBS-LRR genes located in melon chromosome 9 was analyzed and compared with the syntenic regions in other cucurbit genomes. This is the second cluster in number within this species and it contains nine sequences with a NBS-LRR annotation including two genes, Fom1 and Prv, providing resistance against Fusarium and Ppapaya ring-spot virus (PRSV). The variability within the melon species appears to consist essentially of single nucleotide polymorphisms. Clusters of similar genes are present in the syntenic regions of the two species of Cucurbitaceae that were sequenced, cucumber and watermelon. Most of the genes in the syntenic clusters can be aligned between species and a hypothesis of generation of the cluster is proposed. The number of genes in the watermelon cluster is similar to that in melon while a higher number of genes (12) is present in cucumber, a species with a smaller genome than melon. After comparing genome resequencing data of 115 cucumber varieties, deletion of a group of genes is observed in a group of varieties of Indian origin. Clusters of genes coding for NBS-LRR proteins in cucurbits appear to have specific variability in different regions of the genome and between different species. This observation is in favour of considering that the adaptation of plant species to changing environments is based upon the variability that may occur at any location in the genome and that has been produced by specific mechanisms of sequence variation acting on plant genomes. This information could be useful both to understand the evolution of species and for plant breeding.
Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita
2016-04-01
Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-throughput platform for the discovery of elicitors of silent bacterial gene clusters.
Seyedsayamdost, Mohammad R
2014-05-20
Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as "cryptic" or "silent" to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria.
A conserved gene cluster as a putative functional unit in insect innate immunity.
Somogyi, Kálmán; Sipos, Botond; Pénzes, Zsolt; Andó, István
2010-11-05
The Nimrod gene superfamily is an important component of the innate immune response. The majority of its member genes are located in close proximity within the Drosophila melanogaster genome and they lie in a larger conserved cluster ("Nimrod cluster"), made up of non-related groups (families, superfamilies) of genes. This cluster has been a part of the Arthropod genomes for about 300-350 million years. The available data suggest that the Nimrod cluster is a functional module of the insect innate immune response. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Zhang, Xiujun; Parry, Ronald J.
2007-01-01
The pyrrolomycins are a family of polyketide antibiotics, some of which contain a nitro group. To gain insight into the nitration mechanism associated with the formation of these antibiotics, the pyrrolomycin biosynthetic gene cluster from Actinosporangium vitaminophilum was cloned. Sequencing of ca. 56 kb of A. vitaminophilum DNA revealed 35 open reading frames (ORFs). Sequence analysis revealed a clear relationship between some of these ORFs and the biosynthetic gene cluster for pyoluteorin, a structurally related antibiotic. Since a gene transfer system could not be devised for A. vitaminophilum, additional proof for the identity of the cloned gene cluster was sought by cloning the pyrrolomycin gene cluster from Streptomyces sp. strain UC 11065, a transformable pyrrolomycin producer. Sequencing of ca. 26 kb of UC 11065 DNA revealed the presence of 17 ORFs, 15 of which exhibit strong similarity to ORFs in the A. vitaminophilum cluster as well as a nearly identical organization. Single-crossover disruption of two genes in the UC 11065 cluster abolished pyrrolomycin production in both cases. These results confirm that the genetic locus cloned from UC 11065 is essential for pyrrolomycin production, and they also confirm that the highly similar locus in A. vitaminophilum encodes pyrrolomycin biosynthetic genes. Sequence analysis revealed that both clusters contain genes encoding the two components of an assimilatory nitrate reductase. This finding suggests that nitrite is required for the formation of the nitrated pyrrolomycins. However, sequence analysis did not provide additional insights into the nitration process, suggesting the operation of a novel nitration mechanism. PMID:17158935
Cao, Huojun; Amendt, Brad A
2016-11-01
Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016. Published by Elsevier B.V.
Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites
Yue, Qun; Chen, Li; Zhang, Xiaoling; Li, Kuan; Sun, Jingzu; Liu, Xingzhong
2015-01-01
The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities. PMID:26024901
Clusters of antibiotic resistance genes enriched together stay together in swine agriculture
Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; ...
2016-04-12
Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. In addition, as governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.« less
Clusters of antibiotic resistance genes enriched together stay together in swine agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong
Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. In addition, as governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.« less
Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.
Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M
2016-04-12
Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically. Copyright © 2016 Johnson et al.
Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun
2017-12-01
Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
ORGANIZATION OF THE nif GENES OF THE NONHETEROCYSTOUS CYANOBACTERIUM TRICHODESMIUM SP. IMS101.
Dominic, Benny; Zani, Sabino; Chen, Yi-Bu; Mellon, Mark T; Zehr, Jonathan P
2000-08-26
An approximately 16-kb fragment of the Trichodesmium sp. IMS101 (a nonheterocystous filamentous cyanobacterium) "conventional"nif gene cluster was cloned and sequenced. The gene organization of the Trichodesmium and Anabaena variabilis vegetative (nif 2) nitrogenase gene clusters spanning the region from nif B to nif W are similar except for the absence of two open reading frames (ORF3 and ORF1) in Trichodesmium. The Trichodesmium nif EN genes encode a fused Nif EN polypeptide that does not appear to be processed into individual Nif E and Nif N polypeptides. Fused nif EN genes were previously found in the A. variabilis nif 2 genes, but we have found that fused nif EN genes are widespread in the nonheterocystous cyanobacteria. Although the gene organization of the nonheterocystous filamentous Trichodesmium nif gene cluster is very similar to that of the A. variabilis vegetative nif 2 gene cluster, phylogenetic analysis of nif sequences do not support close relatedness of Trichodesmium and A. variabilis vegetative (nif 2) nitrogenase genes.
A mixture model-based approach to the clustering of microarray expression data.
McLachlan, G J; Bean, R W; Peel, D
2002-03-01
This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/
Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters.
Zhang, Huixian; Ravi, Vydianathan; Tay, Boon-Hui; Tohari, Sumanty; Pillai, Nisha E; Prasad, Aravind; Lin, Qiang; Brenner, Sydney; Venkatesh, Byrappa
2017-08-22
ParaHox genes ( Gsx , Pdx , and Cdx ) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes ( Gsxα , Pdxα , Cdxα , Gsxβ , and Cdxβ ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.
Li, Jun; Tai, Cui; Deng, Zixin; Zhong, Weihong; He, Yongqun; Ou, Hong-Yu
2017-01-10
VRprofile is a Web server that facilitates rapid investigation of virulence and antibiotic resistance genes, as well as extends these trait transfer-related genetic contexts, in newly sequenced pathogenic bacterial genomes. The used backend database MobilomeDB was firstly built on sets of known gene cluster loci of bacterial type III/IV/VI/VII secretion systems and mobile genetic elements, including integrative and conjugative elements, prophages, class I integrons, IS elements and pathogenicity/antibiotic resistance islands. VRprofile is thus able to co-localize the homologs of these conserved gene clusters using HMMer or BLASTp searches. With the integration of the homologous gene cluster search module with a sequence composition module, VRprofile has exhibited better performance for island-like region predictions than the other widely used methods. In addition, VRprofile also provides an integrated Web interface for aligning and visualizing identified gene clusters with MobilomeDB-archived gene clusters, or a variety set of bacterial genomes. VRprofile might contribute to meet the increasing demands of re-annotations of bacterial variable regions, and aid in the real-time definitions of disease-relevant gene clusters in pathogenic bacteria of interest. VRprofile is freely available at http://bioinfo-mml.sjtu.edu.cn/VRprofile. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fragmentation of an aflatoxin-like gene cluster in a forest pathogen
USDA-ARS?s Scientific Manuscript database
Secondary metabolic pathway genes are typically clustered in fungi. An exception to this paradigm is seen for genes required for the production of dothistromin, an aflatoxin-like virulence factor produced by the pine needle pathogen Dothistroma septosporum. In contrast to the tight clustering of gen...
Zhou, Zhenxing; Xu, Qingqing; Bu, Qingting; Guo, Yuanyang; Liu, Shuiping; Liu, Yu; Du, Yiling; Li, Yongquan
2015-02-09
Genomic sequencing of actinomycetes has revealed the presence of numerous gene clusters seemingly capable of natural product biosynthesis, yet most clusters are cryptic under laboratory conditions. Bioinformatics analysis of the completely sequenced genome of Streptomyces chattanoogensis L10 (CGMCC 2644) revealed a silent angucycline biosynthetic gene cluster. The overexpression of a pathway-specific activator gene under the constitutive ermE* promoter successfully triggered the expression of the angucycline biosynthetic genes. Two novel members of the angucycline antibiotic family, chattamycins A and B, were further isolated and elucidated. Biological activity assays demonstrated that chattamycin B possesses good antitumor activities against human cancer cell lines and moderate antibacterial activities. The results presented here provide a feasible method to activate silent angucycline biosynthetic gene clusters to discover potential new drug leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The ergot alkaloid gene cluster: functional analyses and evolutionary aspects.
Lorenz, Nicole; Haarmann, Thomas; Pazoutová, Sylvie; Jung, Manfred; Tudzynski, Paul
2009-01-01
Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).
Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S
2016-12-01
Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.
Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine
2016-01-01
Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408
Andrews, J O; Conway, W; Cho, W -K; Narayanan, A; Spille, J -H; Jayanth, N; Inoue, T; Mullen, S; Thaler, J; Cissé, I I
2018-05-09
We present qSR, an analytical tool for the quantitative analysis of single molecule based super-resolution data. The software is created as an open-source platform integrating multiple algorithms for rigorous spatial and temporal characterizations of protein clusters in super-resolution data of living cells. First, we illustrate qSR using a sample live cell data of RNA Polymerase II (Pol II) as an example of highly dynamic sub-diffractive clusters. Then we utilize qSR to investigate the organization and dynamics of endogenous RNA Polymerase I (Pol I) in live human cells, throughout the cell cycle. Our analysis reveals a previously uncharacterized transient clustering of Pol I. Both stable and transient populations of Pol I clusters co-exist in individual living cells, and their relative fraction vary during cell cycle, in a manner correlating with global gene expression. Thus, qSR serves to facilitate the study of protein organization and dynamics with very high spatial and temporal resolutions directly in live cell.
Scoring clustering solutions by their biological relevance.
Gat-Viks, I; Sharan, R; Shamir, R
2003-12-12
A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. The software is available from the authors upon request.
Cluster and propensity based approximation of a network
2013-01-01
Background The models in this article generalize current models for both correlation networks and multigraph networks. Correlation networks are widely applied in genomics research. In contrast to general networks, it is straightforward to test the statistical significance of an edge in a correlation network. It is also easy to decompose the underlying correlation matrix and generate informative network statistics such as the module eigenvector. However, correlation networks only capture the connections between numeric variables. An open question is whether one can find suitable decompositions of the similarity measures employed in constructing general networks. Multigraph networks are attractive because they support likelihood based inference. Unfortunately, it is unclear how to adjust current statistical methods to detect the clusters inherent in many data sets. Results Here we present an intuitive and parsimonious parametrization of a general similarity measure such as a network adjacency matrix. The cluster and propensity based approximation (CPBA) of a network not only generalizes correlation network methods but also multigraph methods. In particular, it gives rise to a novel and more realistic multigraph model that accounts for clustering and provides likelihood based tests for assessing the significance of an edge after controlling for clustering. We present a novel Majorization-Minimization (MM) algorithm for estimating the parameters of the CPBA. To illustrate the practical utility of the CPBA of a network, we apply it to gene expression data and to a bi-partite network model for diseases and disease genes from the Online Mendelian Inheritance in Man (OMIM). Conclusions The CPBA of a network is theoretically appealing since a) it generalizes correlation and multigraph network methods, b) it improves likelihood based significance tests for edge counts, c) it directly models higher-order relationships between clusters, and d) it suggests novel clustering algorithms. The CPBA of a network is implemented in Fortran 95 and bundled in the freely available R package PropClust. PMID:23497424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebhaber, S.A.; Weiss, I.; Cash, F.E.
Synthesis of normal human hemoglobin A, {alpha}{sub 2}{beta}{sub 2}, is based upon balanced expression of genes in the {alpha}-globin gene cluster on chromosome 15 and the {beta}-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the {beta}-globin cluster depend on sequences located at a considerable distance 5{prime} to the {beta}-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the {alpha}-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with {alpha}-thalassemia in whom structurally normal {alpha}-globin genesmore » have been inactivated in cis by a discrete de novo 35-kilobase deletion located {approximately}30 kilobases 5{prime} from the {alpha}-globin gene cluster. They conclude that this deletion inactivates expression of the {alpha}-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the {alpha}-globin genes.« less
The intact dupA cluster is a more reliable Helicobacter pylori virulence marker than dupA alone.
Jung, Sung Woo; Sugimoto, Mitsushige; Shiota, Seiji; Graham, David Y; Yamaoka, Yoshio
2012-01-01
The duodenal ulcer promoting (dupA) gene, located in the plasticity region of Helicobacter pylori, is associated with duodenal ulcer development. dupA was predicted to form a type IV secretory system (T4SS) with vir genes around dupA (dupA cluster). We investigated the prevalence of dupA and dupA clusters and clarified associations between the dupA cluster status and clinical outcomes in the U.S. population. In all, 245 H. pylori strains were examined using PCR to evaluate the status of dupA and the adjacent vir genes predicted to form T4SS, in addition to the status of cag pathogenicity island (PAI). The associations between dupA cluster status and interleukin-8 (IL-8) and IL-12 production were also examined. The presence of dupA and all adjacent vir genes were defined as a complete dupA cluster. Many variations related to the status of dupA and dupA cluster genes were identified. Concurrent H. pylori infection and the presence of a complete dupA cluster increases duodenal ulcer risk compared to H. pylori infection with incomplete dupA cluster or without the dupA gene independent on the cag PAI status (adjusted odds ratio, 2.13; 95% confidence interval, 1.13 to 4.03). Gastric mucosal IL-8 levels were also significantly higher in the complete dupA cluster group than in other groups (P=0.01). In conclusion, although the causal relationship between the dupA cluster and duodenal ulcer development is not proved, the presence of a complete dupA cluster but not dupA alone, is associated with duodenal ulcer development.
The Intact dupA Cluster Is a More Reliable Helicobacter pylori Virulence Marker than dupA Alone
Jung, Sung Woo; Sugimoto, Mitsushige; Shiota, Seiji; Graham, David Y.
2012-01-01
The duodenal ulcer promoting (dupA) gene, located in the plasticity region of Helicobacter pylori, is associated with duodenal ulcer development. dupA was predicted to form a type IV secretory system (T4SS) with vir genes around dupA (dupA cluster). We investigated the prevalence of dupA and dupA clusters and clarified associations between the dupA cluster status and clinical outcomes in the U.S. population. In all, 245 H. pylori strains were examined using PCR to evaluate the status of dupA and the adjacent vir genes predicted to form T4SS, in addition to the status of cag pathogenicity island (PAI). The associations between dupA cluster status and interleukin-8 (IL-8) and IL-12 production were also examined. The presence of dupA and all adjacent vir genes were defined as a complete dupA cluster. Many variations related to the status of dupA and dupA cluster genes were identified. Concurrent H. pylori infection and the presence of a complete dupA cluster increases duodenal ulcer risk compared to H. pylori infection with incomplete dupA cluster or without the dupA gene independent on the cag PAI status (adjusted odds ratio, 2.13; 95% confidence interval, 1.13 to 4.03). Gastric mucosal IL-8 levels were also significantly higher in the complete dupA cluster group than in other groups (P = 0.01). In conclusion, although the causal relationship between the dupA cluster and duodenal ulcer development is not proved, the presence of a complete dupA cluster but not dupA alone, is associated with duodenal ulcer development. PMID:22038914
Fast gene ontology based clustering for microarray experiments.
Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa
2008-11-21
Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.
Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh
2013-08-01
NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plugge, Caroline M.; Scholten, Johannes C.; Culley, David E.
2010-09-01
Abstract Desulfovibrio vulgaris is a metabolically flexible microorganism. It can use sulfate as electron acceptor to catabolize a variety of substrates, or in the absence of sulfate can utilize organic acids and alcohols by forming a syntrophic association with hydrogen scavenging partner to relieve inhibition by hydrogen. These alternativemetabolic types increase the chance of survival for D. vulgaris in environments where one of the potential external electron acceptors becomes depleted. In this work, whole-genome D. vulgaris microarrays were used to determine relative transcript levels as D. vulgaris shifted its metabolism from syntroph in a lactate-oxidizing dual-culture with Methanosarcina barkeri tomore » a sulfidogenic metabolism. Syntrophic dual-cultures were grown in two independent chemostats and perturbation was introduced after six volume changes with the addition of sulfate. The results showed that 132 genes were differentially expressed in D. vulgaris 2 hours after addition of sulfate. Functional analyses suggested that genes involved in cell envelope and energy metabolism were the most regulated when comparing syntrophic and sulfidogenic metabolism. Up-regulation was observed for genes encoding ATPase and the membrane-integrated energy conserving hydrogenase (Ech) when cells shifted to a sulfidogenic metabolism. A five-gene cluster encoding several lipo- and membrane-bound proteins was down-regulated when cells were shifted to a sulfidogenic metabolism. Interestingly, this gene cluster has orthologs found only in another syntrophic bacterium Syntrophobacter fumaroxidans and four recently sequenced Desulfovibrio strains. This study also identified several novel c-type cytochrome encoding genes which may be involved in the sulfidogenic metabolism.« less
Campbell, Elsie L; Hagen, Kari D; Chen, Rui; Risser, Douglas D; Ferreira, Daniela P; Meeks, John C
2015-02-15
In cyanobacterial Nostoc species, substratum-dependent gliding motility is confined to specialized nongrowing filaments called hormogonia, which differentiate from vegetative filaments as part of a conditional life cycle and function as dispersal units. Here we confirm that Nostoc punctiforme hormogonia are positively phototactic to white light over a wide range of intensities. N. punctiforme contains two gene clusters (clusters 2 and 2i), each of which encodes modular cyanobacteriochrome-methyl-accepting chemotaxis proteins (MCPs) and other proteins that putatively constitute a basic chemotaxis-like signal transduction complex. Transcriptional analysis established that all genes in clusters 2 and 2i, plus two additional clusters (clusters 1 and 3) with genes encoding MCPs lacking cyanobacteriochrome sensory domains, are upregulated during the differentiation of hormogonia. Mutational analysis determined that only genes in cluster 2i are essential for positive phototaxis in N. punctiforme hormogonia; here these genes are designated ptx (for phototaxis) genes. The cluster is unusual in containing complete or partial duplicates of genes encoding proteins homologous to the well-described chemotaxis elements CheY, CheW, MCP, and CheA. The cyanobacteriochrome-MCP gene (ptxD) lacks transmembrane domains and has 7 potential binding sites for bilins. The transcriptional start site of the ptx genes does not resemble a sigma 70 consensus recognition sequence; moreover, it is upstream of two genes encoding gas vesicle proteins (gvpA and gvpC), which also are expressed only in the hormogonium filaments of N. punctiforme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Identifying a gene expression signature of cluster headache in blood
Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.
2017-01-01
Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859
Neubauer, Lisa; Dopstadt, Julian; Humpf, Hans-Ulrich; Tudzynski, Paul
2016-01-01
Claviceps purpurea is a phytopathogenic fungus infecting a broad range of grasses including economically important cereal crop plants. The infection cycle ends with the formation of the typical purple-black pigmented sclerotia containing the toxic ergot alkaloids. Besides these ergot alkaloids little is known about the secondary metabolism of the fungus. Red anthraquinone derivatives and yellow xanthone dimers (ergochromes) have been isolated from sclerotia and described as ergot pigments, but the corresponding gene cluster has remained unknown. Fungal pigments gain increasing interest for example as environmentally friendly alternatives to existing dyes. Furthermore, several pigments show biological activities and may have some pharmaceutical value. This study identified the gene cluster responsible for the synthesis of the ergot pigments. Overexpression of the cluster-specific transcription factor led to activation of the gene cluster and to the production of several known ergot pigments. Knock out of the cluster key enzyme, a nonreducing polyketide synthase, clearly showed that this cluster is responsible for the production of red anthraquinones as well as yellow ergochromes. Furthermore, a tentative biosynthetic pathway for the ergot pigments is proposed. By changing the culture conditions, pigment production was activated in axenic culture so that high concentration of phosphate and low concentration of sucrose induced pigment syntheses. This is the first functional analysis of a secondary metabolite gene cluster in the ergot fungus besides that for the classical ergot alkaloids. We demonstrated that this gene cluster is responsible for the typical purple-black color of the ergot sclerotia and showed that the red and yellow ergot pigments are products of the same biosynthetic pathway. Activation of the gene cluster in axenic culture opened up new possibilities for biotechnological applications like the dye production or the development of new pharmaceuticals.
The hmuQ and hmuD Genes from Bradyrhizobium japonicum Encode Heme-Degrading Enzymes
Puri, Sumant; O'Brian, Mark R.
2006-01-01
Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bll7423) that encode proteins with weak similarity to the heme-degrading monooxygenase IsdG from Staphylococcus aureus. The hmuQ gene is clustered with known heme transport genes in the genome. Recombinant HmuQ bound heme with a Kd value of 0.8 μM and showed spectral properties consistent with a heme oxygenase. In the presence of a reductant, HmuQ catalyzed the degradation of heme and the formation of biliverdin. The hmuQ and hmuD genes complemented a Corynebacterium ulcerans heme oxygenase mutant in trans for utilization of heme as the sole iron source for growth. Furthermore, homologs of hmuQ and hmuD were identified in many bacterial genera, and the recombinant homolog from Brucella melitensis bound heme and catalyzed its degradation. The findings show that hmuQ and hmuD encode heme oxygenases and indicate that the IsdG family of heme-degrading monooxygenases is not restricted to gram-positive pathogenic bacteria. PMID:16952937
2012-01-01
Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154
Comparative genomics of the Bifidobacterium breve taxon.
Bottacini, Francesca; O'Connell Motherway, Mary; Kuczynski, Justin; O'Connell, Kerry Joan; Serafini, Fausta; Duranti, Sabrina; Milani, Christian; Turroni, Francesca; Lugli, Gabriele Andrea; Zomer, Aldert; Zhurina, Daria; Riedel, Christian; Ventura, Marco; van Sinderen, Douwe
2014-03-01
Bifidobacteria are commonly found as part of the microbiota of the gastrointestinal tract (GIT) of a broad range of hosts, where their presence is positively correlated with the host's health status. In this study, we assessed the genomes of thirteen representatives of Bifidobacterium breve, which is not only a frequently encountered component of the (adult and infant) human gut microbiota, but can also be isolated from human milk and vagina. In silico analysis of genome sequences from thirteen B. breve strains isolated from different environments (infant and adult faeces, human milk, human vagina) shows that the genetic variability of this species principally consists of hypothetical genes and mobile elements, but, interestingly, also genes correlated with the adaptation to host environment and gut colonization. These latter genes specify the biosynthetic machinery for sortase-dependent pili and exopolysaccharide production, as well as genes that provide protection against invasion of foreign DNA (i.e. CRISPR loci and restriction/modification systems), and genes that encode enzymes responsible for carbohydrate fermentation. Gene-trait matching analysis showed clear correlations between known metabolic capabilities and characterized genes, and it also allowed the identification of a gene cluster involved in the utilization of the alcohol-sugar sorbitol. Genome analysis of thirteen representatives of the B. breve species revealed that the deduced pan-genome exhibits an essentially close trend. For this reason our analyses suggest that this number of B. breve representatives is sufficient to fully describe the pan-genome of this species. Comparative genomics also facilitated the genetic explanation for differential carbon source utilization phenotypes previously observed in different strains of B. breve.
Kato, Hiroki; Tsunematsu, Yuta; Yamamoto, Tsuyoshi; Namiki, Takuya; Kishimoto, Shinji; Noguchi, Hiroshi; Watanabe, Kenji
2016-07-01
To rapidly identify novel natural products and their associated biosynthetic genes from underutilized and genetically difficult-to-manipulate microbes, we developed a method that uses (1) chemical screening to isolate novel microbial secondary metabolites, (2) bioinformatic analyses to identify a potential biosynthetic gene cluster and (3) heterologous expression of the genes in a convenient host to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. The chemical screen was achieved by searching known natural product databases with data from liquid chromatographic and high-resolution mass spectrometric analyses collected on the extract from a target microbe culture. Using this method, we were able to isolate two new meroterpenes, subglutinols C (1) and D (2), from an entomopathogenic filamentous fungus Metarhizium robertsii ARSEF 23. Bioinformatics analysis of the genome allowed us to identify a gene cluster likely to be responsible for the formation of subglutinols. Heterologous expression of three genes from the gene cluster encoding a polyketide synthase, a prenyltransferase and a geranylgeranyl pyrophosphate synthase in Aspergillus nidulans A1145 afforded an α-pyrone-fused uncyclized diterpene, the expected intermediate of the subglutinol biosynthesis, thereby confirming the gene cluster to be responsible for the subglutinol biosynthesis. These results indicate the usefulness of our methodology in isolating new natural products and identifying their associated biosynthetic gene cluster from microbes that are not amenable to genetic manipulation. Our method should facilitate the natural product discovery efforts by expediting the identification of new secondary metabolites and their associated biosynthetic genes from a wider source of microbes.
Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.
2013-01-01
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology. PMID:23818858
Outcome-Driven Cluster Analysis with Application to Microarray Data.
Hsu, Jessie J; Finkelstein, Dianne M; Schoenfeld, David A
2015-01-01
One goal of cluster analysis is to sort characteristics into groups (clusters) so that those in the same group are more highly correlated to each other than they are to those in other groups. An example is the search for groups of genes whose expression of RNA is correlated in a population of patients. These genes would be of greater interest if their common level of RNA expression were additionally predictive of the clinical outcome. This issue arose in the context of a study of trauma patients on whom RNA samples were available. The question of interest was whether there were groups of genes that were behaving similarly, and whether each gene in the cluster would have a similar effect on who would recover. For this, we develop an algorithm to simultaneously assign characteristics (genes) into groups of highly correlated genes that have the same effect on the outcome (recovery). We propose a random effects model where the genes within each group (cluster) equal the sum of a random effect, specific to the observation and cluster, and an independent error term. The outcome variable is a linear combination of the random effects of each cluster. To fit the model, we implement a Markov chain Monte Carlo algorithm based on the likelihood of the observed data. We evaluate the effect of including outcome in the model through simulation studies and describe a strategy for prediction. These methods are applied to trauma data from the Inflammation and Host Response to Injury research program, revealing a clustering of the genes that are informed by the recovery outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, R.S.
Broad host range plasmid vectors useful for cloning genes from bacteria that grow on methane and methanol were constructed. We have cloned and mapped nineteen genes required for the growth of Methylobacterium organophilum strain XX on methanol. Nineteen genes were found in seven linkage groups on the M. organophilum genome and were separated by 40 kb or more. Eleven genes were required for the synthesis of methanol dehydrogenase (MDH) and were located in three unlinked gene clusters. The MDH structural gene was localized on a 2.5 kb DNA fragment. The gene was sequenced and contains a 175 bp untranslated leadermore » sequence, a signal sequence and the structural gene. MDH messenger RNA (mRNA) has a half life of approximately 20 min. and is present at approximately 2% of the cellular mRNA. The structural gene for the ..gamma.. subunit of methane monoxygenases has been cloned from Methylosporovibrio. Methane monooxygenase subunits have been purified by Prof. J. Lipscomb's laboratory and are being sequenced to construct DNA probes to identify cloned subunit genes. New facultative methylotrophic bacteria were isolated and characterized. Several amino acid auxotrophs have been isolated. 11 refs.« less
Cancer Detection in Microarray Data Using a Modified Cat Swarm Optimization Clustering Approach
M, Pandi; R, Balamurugan; N, Sadhasivam
2017-12-29
Objective: A better understanding of functional genomics can be obtained by extracting patterns hidden in gene expression data. This could have paramount implications for cancer diagnosis, gene treatments and other domains. Clustering may reveal natural structures and identify interesting patterns in underlying data. The main objective of this research was to derive a heuristic approach to detection of highly co-expressed genes related to cancer from gene expression data with minimum Mean Squared Error (MSE). Methods: A modified CSO algorithm using Harmony Search (MCSO-HS) for clustering cancer gene expression data was applied. Experiment results are analyzed using two cancer gene expression benchmark datasets, namely for leukaemia and for breast cancer. Result: The results indicated MCSO-HS to be better than HS and CSO, 13% and 9% with the leukaemia dataset. For breast cancer dataset improvement was by 22% and 17%, respectively, in terms of MSE. Conclusion: The results showed MCSO-HS to outperform HS and CSO with both benchmark datasets. To validate the clustering results, this work was tested with internal and external cluster validation indices. Also this work points to biological validation of clusters with gene ontology in terms of function, process and component. Creative Commons Attribution License
Wan, B; Yarbrough, J W; Schultz, T W
2008-01-01
This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.
Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.
2008-01-01
A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597
Evidence against the selfish operon theory.
Pál, Csaba; Hurst, Laurence D
2004-06-01
According to the selfish operon hypothesis, the clustering of genes and their subsequent organization into operons is beneficial for the constituent genes because it enables the horizontal gene transfer of weakly selected, functionally coupled genes. The majority of these are expected to be non-essential genes. From our analysis of the Escherichia coli genome, we conclude that the selfish operon hypothesis is unlikely to provide a general explanation for clustering nor can it account for the gene composition of operons. Contrary to expectations, essential genes with related functions have an especially strong tendency to cluster, even if they are not in operons. Moreover, essential genes are particularly abundant in operons.
Missing link in the evolution of Hox clusters.
Ogishima, Soichi; Tanaka, Hiroshi
2007-01-31
Hox cluster has key roles in regulating the patterning of the antero-posterior axis in a metazoan embryo. It consists of the anterior, central and posterior genes; the central genes have been identified only in bilaterians, but not in cnidarians, and are responsible for archiving morphological complexity in bilaterian development. However, their evolutionary history has not been revealed, that is, there has been a "missing link". Here we show the evolutionary history of Hox clusters of 18 bilaterians and 2 cnidarians by using a new method, "motif-based reconstruction", examining the gain/loss processes of evolutionarily conserved sequences, "motifs", outside the homeodomain. We successfully identified the missing link in the evolution of Hox clusters between the cnidarian-bilaterian ancestor and the bilaterians as the ancestor of the central genes, which we call the proto-central gene. Exploring the correspondent gene with the proto-central gene, we found that one of the acoela Hox genes has the same motif repertory as that of the proto-central gene. This interesting finding suggests that the acoela Hox cluster corresponds with the missing link in the evolution of the Hox cluster between the cnidarian-bilaterian ancestor and the bilaterians. Our findings suggested that motif gains/diversifications led to the explosive diversity of the bilaterian body plan.
Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph
2012-01-01
Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541
Rios, Jonathan J; Perelygin, Andrey A; Long, Maureen T; Lear, Teri L; Zharkikh, Andrey A; Brinton, Margo A; Adelson, David L
2007-01-01
Background The mammalian OAS/RNASEL pathway plays an important role in antiviral host defense. A premature stop-codon within the murine Oas1b gene results in the increased susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or other viral infections in horses. Polymorphisms in the human OAS gene cluster have been previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control studies. Results Genomic sequence for equine OAS1 was obtained from a contig assembly generated from a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1 gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31 SNPs. Conclusion In this report, two dinucleotide microsatellites and 64 single nucleotide polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms are the first to be reported for these genes and will facilitate future case-control studies of horse susceptibility to infectious diseases. PMID:17822564
2011-01-01
Background Increased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk. Methods Gene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets. Results Unsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions. Conclusion This is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast cancer. PMID:22044755
NASA Astrophysics Data System (ADS)
Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari
2017-05-01
The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.
Patel, Vidushi S; Ezaz, Tariq; Deakin, Janine E; Graves, Jennifer A Marshall
2010-12-01
The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.
Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae.
Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu
2018-01-01
A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata . It consists of 10 amino acid residues, including five N -methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae . The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR , were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae , gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata . Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae , although there may be unknown factors limiting productivity in this species.
Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae
Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu
2018-01-01
A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species. PMID:29686660
Darbani, Behrooz; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam H.; Møller, Birger Lindberg; Rook, Fred
2016-01-01
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters. PMID:27841372
Spohn, Marius; Kirchner, Norbert; Kulik, Andreas; Jochim, Angelika; Wolf, Felix; Muenzer, Patrick; Borst, Oliver; Gross, Harald; Wohlleben, Wolfgang
2014-01-01
The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A. PMID:25114137
Elmore, M Holly; McGary, Kriston L; Wisecaver, Jennifer H; Slot, Jason C; Geiser, David M; Sink, Stacy; O'Donnell, Kerry; Rokas, Antonis
2015-02-06
Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC's closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sun, Shuang; Zhou, Lian; Jin, Kaiming; Jiang, Haixia; He, Ya-Wen
2016-01-01
Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production. PMID:27456813
de Jonge, Ronnie; Ebert, Malaika K; Huitt-Roehl, Callie R; Pal, Paramita; Suttle, Jeffrey C; Spanner, Rebecca E; Neubauer, Jonathan D; Jurick, Wayne M; Stott, Karina A; Secor, Gary A; Thomma, Bart P H J; Van de Peer, Yves; Townsend, Craig A; Bolton, Melvin D
2018-06-12
Species in the genus Cercospora cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen Cercospora beticola and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis ( CTB ) cluster. We show that the CTB gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range Colletotrichum genus as well as the rice pathogen Magnaporthe oryzae Although cercosporin biosynthesis has been thought to rely on an eight-gene CTB cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all CTB cluster-harboring species. We demonstrate that the CTB cluster is larger than previously recognized and includes cercosporin facilitator protein, previously shown to be involved with cercosporin autoresistance, and four additional genes required for cercosporin biosynthesis, including the final pathway enzymes that install the unusual cercosporin methylenedioxy bridge. Lastly, we demonstrate production of cercosporin by Colletotrichum fioriniae , the first known cercosporin producer within this agriculturally important genus. Thus, our results provide insight into the intricate evolution and biology of a toxin critical to agriculture and broaden the production of cercosporin to another fungal genus containing many plant pathogens of important crops worldwide. Copyright © 2018 the Author(s). Published by PNAS.
Zhu, Y B; Xie, X Q; Li, Z Y; Bai, H; Dong, L; Dong, Z P; Dong, J G
2014-08-28
The nucleotide-binding site (NBS) disease-resistance genes are the largest category of plant disease-resistance gene analogs. The complete set of disease-resistant candidate genes, which encode the NBS sequence, was filtered in the genomes of two varieties of foxtail millet (Yugu1 and 'Zhang gu'). This study investigated a number of characteristics of the putative NBS genes, such as structural diversity and phylogenetic relationships. A total of 269 and 281 NBS-coding sequences were identified in Yugu1 and 'Zhang gu', respectively. When the two databases were compared, 72 genes were found to be identical and 164 genes showed more than 90% similarity. Physical positioning and gene family analysis of the NBS disease-resistance genes in the genome revealed that the number of genes on each chromosome was similar in both varieties. The eighth chromosome contained the largest number of genes and the ninth chromosome contained the lowest number of genes. Exactly 34 gene clusters containing the 161 genes were found in the Yugu1 genome, with each cluster containing 4.7 genes on average. In comparison, the 'Zhang gu' genome possessed 28 gene clusters, which had 151 genes, with an average of 5.4 genes in each cluster. The largest gene cluster, located on the eighth chromosome, contained 12 genes in the Yugu1 database, whereas it contained 16 genes in the 'Zhang gu' database. The classification results showed that the CC-NBS-LRR gene made up the largest part of each chromosome in the two databases. Two TIR-NBS genes were also found in the Yugu1 genome.
Daiba, Akito; Inaba, Niro; Ando, Satoshi; Kajiyama, Naoki; Yatsuhashi, Hiroshi; Terasaki, Hiroshi; Ito, Atsushi; Ogasawara, Masanori; Abe, Aki; Yoshioka, Junichi; Hayashida, Kazuhiro; Kaneko, Shuichi; Kohara, Michinori; Ito, Satoru
2004-03-19
We have designed and established a low-density (295 genes) cDNA microarray for the prediction of IFN efficacy in hepatitis C patients. To obtain a precise and consistent microarray data, we collected a data set from three spots for each gene (mRNA) and using three different scanning conditions. We also established an artificial reference RNA representing pseudo-inflammatory conditions from established hepatocyte cell lines supplemented with synthetic RNAs to 48 inflammatory genes. We also developed a novel algorithm that replaces the standard hierarchical-clustering method and allows handling of the large data set with ease. This algorithm utilizes a standard space database (SSDB) as a key scale to calculate the Mahalanobis distance (MD) from the center of gravity in the SSDB. We further utilized sMD (divided by parameter k: MD/k) to reduce MD number as a predictive value. The efficacy prediction of conventional IFN mono-therapy was 100% for non-responder (NR) vs. transient responder (TR)/sustained responder (SR) (P < 0.0005). Finally, we show that this method is acceptable for clinical application.
Molding the business end of neurotoxins by diversifying evolution.
Kozminsky-Atias, Adi; Zilberberg, Noam
2012-02-01
A diverse range of organisms utilize neurotoxins that target specific ion channels and modulate their activity. Typically, toxins are clustered into several multigene families, providing an organism with the upper hand in the never-ending predator-prey arms race. Several gene families, including those encoding certain neurotoxins, have been subject to diversifying selection forces, resulting in rapid gene evolution. Here we sought a spatial pattern in the distribution of both diversifying and purifying selection forces common to neurotoxin gene families. Utilizing the mechanistic empirical combination model, we analyzed various toxin families from different phyla affecting various receptors and relying on diverse modes of action. Through this approach, we were able to detect clear correlations between the pharmacological surface of a toxin and rapidly evolving domains, rich in positively selected residues. On the other hand, patches of negatively selected residues were restricted to the nontoxic face of the molecule and most likely help in stabilizing the tertiary structure of the toxin. We thus propose a mutual evolutionary strategy of venomous animals in which adaptive molecular evolution is directed toward the toxin active surface. Furthermore, we propose that the binding domains of unstudied toxins could be readily predicted using evolutionary considerations.
Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J
2008-01-01
Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates.
[Chromosomal large fragment deletion induced by CRISPR/Cas9 gene editing system].
Cheng, L H; Liu, Y; Niu, T
2017-05-14
Objective: Using CRISPR-Cas9 gene editing technology to achieve a number of genes co-deletion on the same chromosome. Methods: CRISPR-Cas9 lentiviral plasmid that could induce deletion of Aloxe3-Alox12b-Alox8 cluster genes located on mouse 11B3 chromosome was constructed via molecular clone. HEK293T cells were transfected to package lentivirus of CRISPR or Cas9 cDNA, then mouse NIH3T3 cells were infected by lentivirus and genomic DNA of these cells was extracted. The deleted fragment was amplified by PCR, TA clone, Sanger sequencing and other techniques were used to confirm the deletion of Aloxe3-Alox12b-Alox8 cluster genes. Results: The CRISPR-Cas9 lentiviral plasmid, which could induce deletion of Aloxe3-Alox12b-Alox8 cluster genes, was successfully constructed. Deletion of target chromosome fragment (Aloxe3-Alox12b-Alox8 cluster genes) was verified by PCR. The deletion of Aloxe3-Alox12b-Alox8 cluster genes was affirmed by TA clone, Sanger sequencing, and the breakpoint junctions of the CRISPR-Cas9 system mediate cutting events were accurately recombined, insertion mutation did not occur between two cleavage sites at all. Conclusion: Large fragment deletion of Aloxe3-Alox12b-Alox8 cluster genes located on mouse chromosome 11B3 was successfully induced by CRISPR-Cas9 gene editing system.
2013-01-01
Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom. PMID:23688303
de Marcos, Alberto; Triviño, Magdalena; Pérez-Bueno, María Luisa; Ballesteros, Isabel; Barón, Matilde; Mena, Montaña; Fenoll, Carmen
2015-01-01
Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up−regulated in mute−3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute−3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of stomata. PMID:26157447
Rensing, Stefan A; Fritzowsky, Dana; Lang, Daniel; Reski, Ralf
2005-01-01
Background The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. Results We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. Conclusion Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in comparison with the seed plant Arabidopsis. Putative retained genes exhibit possible functions that might explain the peculiar physiological properties of mosses. Both the transcriptome representation (including a BLAST and retrieval service) and splice site prediction have been made available on , setting the basis for assembly and annotation of the Physcomitrella genome, of which draft shotgun sequences will become available in 2005. PMID:15784153
USDA-ARS?s Scientific Manuscript database
Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...
The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean
USDA-ARS?s Scientific Manuscript database
A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...
Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying
2018-04-03
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Chou, A; Burke, J
1999-05-01
DNA sequence clustering has become a valuable method in support of gene discovery and gene expression analysis. Our interest lies in leveraging the sequence diversity within clusters of expressed sequence tags (ESTs) to model gene structure for the study of gene variants that arise from, among other things, alternative mRNA splicing, polymorphism, and divergence after gene duplication, fusion, and translocation events. In previous work, CRAW was developed to discover gene variants from assembled clusters of ESTs. Most importantly, novel gene features (the differing units between gene variants, for example alternative exons, polymorphisms, transposable elements, etc.) that are specialized to tissue, disease, population, or developmental states can be identified when these tools collate DNA source information with gene variant discrimination. While the goal is complete automation of novel feature and gene variant detection, current methods are far from perfect and hence the development of effective tools for visualization and exploratory data analysis are of paramount importance in the process of sifting through candidate genes and validating targets. We present CRAWview, a Java based visualization extension to CRAW. Features that vary between gene forms are displayed using an automatically generated color coded index. The reporting format of CRAWview gives a brief, high level summary report to display overlap and divergence within clusters of sequences as well as the ability to 'drill down' and see detailed information concerning regions of interest. Additionally, the alignment viewing and editing capabilities of CRAWview make it possible to interactively correct frame-shifts and otherwise edit cluster assemblies. We have implemented CRAWview as a Java application across windows NT/95 and UNIX platforms. A beta version of CRAWview will be freely available to academic users from Pangea Systems (http://www.pangeasystems.com). Contact :
Zhai, Ying; Bai, Silei; Liu, Jingjing; Yang, Liyuan; Han, Li; Huang, Xueshi; He, Jing
2016-04-22
Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-frame gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Post-genome research on the biosynthesis of ergot alkaloids.
Li, Shu-Ming; Unsöld, Inge A
2006-10-01
Genome sequencing provides new opportunities and challenges for identifying genes for the biosynthesis of secondary metabolites. A putative biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine type, was identified in the genome sequence of ASPERGILLUS FUMIGATUS by a bioinformatic approach. This cluster spans 22 kb of genomic DNA and comprises at least 11 open reading frames (ORFs). Seven of them are orthologous to genes from the biosynthetic gene cluster of ergot alkaloids in CLAVICEPS PURPUREA. Experimental evidence of the identified cluster was provided by heterologous expression and biochemical characterization of two ORFs, FgaPT1 and FgaPT2, in the cluster of A. FUMIGATUS, which show remarkable similarities to dimethylallyltryptophan synthase from C. PURPUREA and function as prenyltransferases. FgaPT2 converts L-tryptophan to dimethylallyltryptophan and thereby catalyzes the first step of ergot alkaloid biosynthesis, whilst FgaPT1 catalyzes the last step of the fumigaclavine C biosynthesis, i. e., the prenylation of fumigaclavine A at C-2 position of the indole nucleus. In addition to information obtained from the gene cluster of ergot alkaloids from C. PURPUREA, the identification of the biosynthetic gene cluster of fumigaclavine C in A. FUMIGATUS opens an alternative way to study the biosynthesis of ergot alkaloids in fungi.
Statistical indicators of collective behavior and functional clusters in gene networks of yeast
NASA Astrophysics Data System (ADS)
Živković, J.; Tadić, B.; Wick, N.; Thurner, S.
2006-03-01
We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.
Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.
Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi
2018-01-01
Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.
Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.
Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V
2016-01-01
Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.
Novel genomic island modifies DNA with 7-deazaguanine derivatives
Thiaville, Jennifer J.; Kellner, Stefanie M.; Yuan, Yifeng; Hutinet, Geoffrey; Thiaville, Patrick C.; Jumpathong, Watthanachai; Mohapatra, Susovan; Brochier-Armanet, Celine; Letarov, Andrey V.; Hillebrand, Roman; Malik, Chanchal K.; Rizzo, Carmelo J.; Dedon, Peter C.; de Crécy-Lagard, Valérie
2016-01-01
The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2’-deoxy-preQ0 and 2’-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S. Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis. Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction–modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2’-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism. PMID:26929322
Bhattacharya, Anindya; De, Rajat K
2010-08-01
Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to be consulted before installation and execution of the software. Copyright 2010 Elsevier Inc. All rights reserved.
Wiese, A; Syldatk, C; Mattes, R; Altenbuchner, J
2001-09-01
Arthrobacter aurescens DSM 3747 hydrolyzes stereospecifically 5'-monosubstituted hydantoins to alpha-amino acids. The genes involved in hydantoin utilization (hyu) were isolated on an 8.7-kb DNA fragment, and by DNA sequence analysis eight ORFs were identified. The hyu gene cluster includes four genes: hyuP encoding a putative transport protein, the hydantoin racemase gene hyuA, the hydantoinase gene hyuH, and the carbamoylase gene hyuC. The four genes are transcribed in the same direction. Upstream of hyuP and in opposite orientation to the hyu genes, three ORFs were found showing similarities to cytochrome P450 monooxygenase (ORF1, incomplete), to membrane proteins (ORF2), and to ferredoxin (ORF3). ORF8 was found downstream of hyuC and again in opposite orientation to the hyu genes. The gene product of ORF8 displayed similarities to the LacI/GalR family of transcriptional regulators. Reverse transcriptase PCR experiments and Northern blot analysis revealed that the genes hyuPAHC are coexpressed in A. aurescens after induction with 3-N-CH3-IMH. The expression of the hyu operon was not regulated by the putative regulator ORF8 as shown by gene disruption and mobility-shift experiments.
NASA Astrophysics Data System (ADS)
Pagnuco, Inti A.; Pastore, Juan I.; Abras, Guillermo; Brun, Marcel; Ballarin, Virginia L.
2016-04-01
It is usually assumed that co-expressed genes suggest co-regulation in the underlying regulatory network. Determining sets of co-expressed genes is an important task, where significative groups of genes are defined based on some criteria. This task is usually performed by clustering algorithms, where the whole family of genes, or a subset of them, are clustered into meaningful groups based on their expression values in a set of experiment. In this work we used a methodology based on the Silhouette index as a measure of cluster quality for individual gene groups, and a combination of several variants of hierarchical clustering to generate the candidate groups, to obtain sets of co-expressed genes for two real data examples. We analyzed the quality of the best ranked groups, obtained by the algorithm, using an online bioinformatics tool that provides network information for the selected genes. Moreover, to verify the performance of the algorithm, considering the fact that it doesn’t find all possible subsets, we compared its results against a full search, to determine the amount of good co-regulated sets not detected.
Kettle, Andrew J; Carere, Jason; Batley, Jacqueline; Manners, John M; Kazan, Kemal; Gardiner, Donald M
2016-03-01
A number of cereals produce the benzoxazolinone class of phytoalexins. Fusarium species pathogenic towards these hosts can typically degrade these compounds via an aminophenol intermediate, and the ability to do so is encoded by a group of genes found in the Fusarium Detoxification of Benzoxazolinone (FDB) cluster. A zinc finger transcription factor encoded by one of the FDB cluster genes (FDB3) has been proposed to regulate the expression of other genes in the cluster and hence is potentially involved in benzoxazolinone degradation. Herein we show that Fdb3 is essential for the ability of Fusarium pseudograminearum to efficiently detoxify the predominant wheat benzoxazolinone, 6-methoxy-benzoxazolin-2-one (MBOA), but not benzoxazoline-2-one (BOA). Furthermore, additional genes thought to be part of the FDB gene cluster, based upon transcriptional response to benzoxazolinones, are regulated by Fdb3. However, deletion mutants for these latter genes remain capable of benzoxazolinone degradation, suggesting that they are not essential for this process. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Rudolf, Jeffrey D.; Yan, Xiaohui; Shen, Ben
2015-01-01
The enediynes are one of the most fascinating families of bacterial natural products given their unprecedented molecular architecture and extraordinary cytotoxicity. Enediynes are rare with only 11 structurally characterized members and four additional members isolated in their cycloaromatized form. Recent advances in DNA sequencing have resulted in an explosion of microbial genomes. A virtual survey of the GenBank and JGI genome databases revealed 87 enediyne biosynthetic gene clusters from 78 bacteria strains, implying enediynes are more common than previously thought. Here we report the construction and analysis of an enediyne genome neighborhood network (GNN) as a high-throughput approach to analyze secondary metabolite gene clusters. Analysis of the enediyne GNN facilitated rapid gene cluster annotation, revealed genetic trends in enediyne biosynthetic gene clusters resulting in a simple prediction scheme to determine 9- vs 10-membered enediyne gene clusters, and supported a genomic-based strain prioritization method for enediyne discovery. PMID:26318027
Hierarchical Dirichlet process model for gene expression clustering
2013-01-01
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447
Haase, Elaine M.; Feng, Xianghui; Pan, Jiachuan; Miecznikowski, Jeffrey C.
2015-01-01
Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA− mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance. PMID:26025889
Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R
2006-07-01
Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.
NASA Technical Reports Server (NTRS)
Mjolsness, Eric; Castano, Rebecca; Mann, Tobias; Wold, Barbara
2000-01-01
We provide preliminary evidence that existing algorithms for inferring small-scale gene regulation networks from gene expression data can be adapted to large-scale gene expression data coming from hybridization microarrays. The essential steps are (I) clustering many genes by their expression time-course data into a minimal set of clusters of co-expressed genes, (2) theoretically modeling the various conditions under which the time-courses are measured using a continuous-time analog recurrent neural network for the cluster mean time-courses, (3) fitting such a regulatory model to the cluster mean time courses by simulated annealing with weight decay, and (4) analysing several such fits for commonalities in the circuit parameter sets including the connection matrices. This procedure can be used to assess the adequacy of existing and future gene expression time-course data sets for determining transcriptional regulatory relationships such as coregulation.
Wang, Zhao-Xin; Li, Shu-Ming; Heide, Lutz
2000-01-01
The biosynthetic gene cluster of the aminocoumarin antibiotic coumermycin A1 was cloned by screening of a cosmid library of Streptomyces rishiriensis DSM 40489 with heterologous probes from a dTDP-glucose 4,6-dehydratase gene, involved in deoxysugar biosynthesis, and from the aminocoumarin resistance gyrase gene gyrBr. Sequence analysis of a 30.8-kb region upstream of gyrBr revealed the presence of 28 complete open reading frames (ORFs). Fifteen of the identified ORFs showed, on average, 84% identity to corresponding ORFs in the biosynthetic gene cluster of novobiocin, another aminocoumarin antibiotic. Possible functions of 17 ORFs in the biosynthesis of coumermycin A1 could be assigned by comparison with sequences in GenBank. Experimental proof for the function of the identified gene cluster was provided by an insertional gene inactivation experiment, which resulted in an abolishment of coumermycin A1 production. PMID:11036020
Saavedra, Milene T; Quon, Bradley S; Faino, Anna; Caceres, Silvia M; Poch, Katie R; Sanders, Linda A; Malcolm, Kenneth C; Nichols, David P; Sagel, Scott D; Taylor-Cousar, Jennifer L; Leach, Sonia M; Strand, Matthew; Nick, Jerry A
2018-05-01
Cystic fibrosis pulmonary exacerbations accelerate pulmonary decline and increase mortality. Previously, we identified a 10-gene leukocyte panel measured directly from whole blood, which indicates response to exacerbation treatment. We hypothesized that molecular characteristics of exacerbations could also predict future disease severity. We tested whether a 10-gene panel measured from whole blood could identify patient cohorts at increased risk for severe morbidity and mortality, beyond standard clinical measures. Transcript abundance for the 10-gene panel was measured from whole blood at the beginning of exacerbation treatment (n = 57). A hierarchical cluster analysis of subjects based on their gene expression was performed, yielding four molecular clusters. An analysis of cluster membership and outcomes incorporating an independent cohort (n = 21) was completed to evaluate robustness of cluster partitioning of genes to predict severe morbidity and mortality. The four molecular clusters were analyzed for differences in forced expiratory volume in 1 second, C-reactive protein, return to baseline forced expiratory volume in 1 second after treatment, time to next exacerbation, and time to morbidity or mortality events (defined as lung transplant referral, lung transplant, intensive care unit admission for respiratory insufficiency, or death). Clustering based on gene expression discriminated between patient groups with significant differences in forced expiratory volume in 1 second, admission frequency, and overall morbidity and mortality. At 5 years, all subjects in cluster 1 (very low risk) were alive and well, whereas 90% of subjects in cluster 4 (high risk) had suffered a major event (P = 0.0001). In multivariable analysis, the ability of gene expression to predict clinical outcomes remained significant, despite adjustment for forced expiratory volume in 1 second, sex, and admission frequency. The robustness of gene clustering to categorize patients appropriately in terms of clinical characteristics, and short- and long-term clinical outcomes, remained consistent, even when adding in a secondary population with significantly different clinical outcomes. Whole blood gene expression profiling allows molecular classification of acute pulmonary exacerbations, beyond standard clinical measures, providing a predictive tool for identifying subjects at increased risk for mortality and disease progression.
Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K
2003-11-01
Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf
Metabolism of Sialic Acid by Bifidobacterium breve UCC2003
Egan, Muireann; O'Connell Motherway, Mary; Ventura, Marco
2014-01-01
Bifidobacteria constitute a specific group of commensal bacteria that inhabit the gastrointestinal tracts of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilize several plant-derived carbohydrates that include cellodextrins, starch, and galactan. In the present study, we investigated the ability of this strain to utilize the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3′-sialyllactose, an abundant HMO, by another infant gut bifidobacterial strain, Bifidobacterium bifidum PRL2010. PMID:24814790
Kämpfer, Peter; Falsen, Enevold; Busse, Hans-Jürgen
2008-01-01
Pseudomonas mephitica CCUG 2513(T) has been reinvestigated to clarify its taxonomic position. 16S rRNA gene sequence comparisons demonstrated that this strain clusters phylogenetically closely with Janthinobacterium lividum (99.8% sequence similarity to the type strain). Investigation of fatty acid patterns, polar lipid profiles, polyamine patterns and quinone systems supported this delineation. Substrate utilization profiles and biochemical characteristics displayed no differences from the type strain of J. lividum, CCUG 2344(T). Therefore, the reclassification of Pseudomonas mephitica as a later heterotypic synonym of Janthinobacterium lividum is proposed, based upon the estimated phylogenetic position derived from 16S rRNA gene sequence data and chemotaxonomic and biochemical data.
Transcription factor clusters regulate genes in eukaryotic cells
Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan
2017-01-01
Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133
Zhang, Xian; Liu, Xueduan; Liang, Yili; Xiao, Yunhua; Ma, Liyuan; Guo, Xue; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Yin, Huaqun
2017-01-01
The spatial-temporal distribution of populations in various econiches is thought to be potentially related to individual differences in the utilization of nutrients or other resources, but their functional roles in the microbial communities remain elusive. We compared differentiation in gene repertoire and metabolic profiles, with a focus on the potential functional traits of three commonly recognized members (Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans) in bioleaching heaps. Comparative genomics revealed that intra-species divergence might be driven by horizontal gene transfer. These co-occurring bacteria shared a few homologous genes, which significantly suggested the genomic differences between these organisms. Notably, relatively more genes assigned to the Clusters of Orthologous Groups category [G] (carbohydrate transport and metabolism) were identified in Sulfobacillus thermosulfidooxidans compared to the two other species, which probably indicated their mixotrophic capabilities that assimilate both organic and inorganic forms of carbon. Further inspection revealed distinctive metabolic capabilities involving carbon assimilation, nitrogen uptake, and iron-sulfur cycling, providing robust evidence for functional differences with respect to nutrient utilization. Therefore, we proposed that the mutual compensation of functionalities among these co-occurring organisms might provide a selective advantage for efficiently utilizing the limited resources in their habitats. Furthermore, it might be favorable to chemoautotrophs' lifestyles to form mutualistic interactions with these heterotrophic and/or mixotrophic acidophiles, whereby the latter could degrade organic compounds to effectively detoxify the environments. Collectively, the findings shed light on the genetic traits and potential metabolic activities of these organisms, and enable us to make some inferences about genomic and functional differences that might allow them to co-exist. PMID:28529505
Stathakis, D. G.; Pentz, E. S.; Freeman, M. E.; Kullman, J.; Hankins, G. R.; Pearlson, N. J.; Wright, TRF.
1995-01-01
We report the complete molecular organization of the Dopa decarboxylase gene cluster. Mutagenesis screens recovered 77 new Df(2L)TW130 recessive lethal mutations. These new alleles combined with 263 previously isolated mutations in the cluster to define 18 essential genes. In addition, seven new deficiencies were isolated and characterized. Deficiency mapping, restriction fragment length polymorphism (RFLP) analysis and P-element-mediated germline transformation experiments determined the gene order for all 18 loci. Genomic and cDNA restriction endonuclease mapping, Northern blot analysis and DNA sequencing provided information on exact gene location, mRNA size and transcriptional direction for most of these loci. In addition, this analysis identified two transcription units that had not previously been identified by extensive mutagenesis screening. Most of the loci are contained within two dense subclusters. We discuss the effectiveness of mutagens and strategies used in our screens, the variable mutability of loci within the genome of Drosophila melanogaster, the cytological and molecular organization of the Ddc gene cluster, the validity of the one band-one gene hypothesis and a possible purpose for the clustering of genes in the Ddc region. PMID:8647399
Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.
2011-01-01
Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618
Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.
2016-01-01
Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652
antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters
Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko
2015-01-01
Abstract Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. PMID:25948579
β-globin gene cluster haplotypes in ethnic minority populations of southwest China
Sun, Hao; Liu, Hongxian; Huang, Kai; Lin, Keqin; Huang, Xiaoqin; Chu, Jiayou; Ma, Shaohui; Yang, Zhaoqing
2017-01-01
The genetic diversity and relationships among ethnic minority populations of southwest China were investigated using seven polymorphic restriction enzyme sites in the β-globin gene cluster. The haplotypes of 1392 chromosomes from ten ethnic populations living in southwest China were determined. Linkage equilibrium and recombination hotspot were found between the 5′ sites and 3′ sites of the β-globin gene cluster. 5′ haplotypes 2 (+−−−), 6 (−++−+), 9 (−++++) and 3′ haplotype FW3 (−+) were the predominant haplotypes. Notably, haplotype 9 frequency was significantly high in the southwest populations, indicating their difference with other Chinese. The interpopulation differentiation of southwest Chinese minority populations is less than those in populations of northern China and other continents. Phylogenetic analysis shows that populations sharing same ethnic origin or language clustered to each other, indicating current β-globin cluster diversity in the Chinese populations reflects their ethnic origin and linguistic affiliations to a great extent. This study characterizes β-globin gene cluster haplotypes in southwest Chinese minorities for the first time, and reveals the genetic variability and affinity of these populations using β-globin cluster haplotype frequencies. The results suggest that ethnic origin plays an important role in shaping variations of the β-globin gene cluster in the southwestern ethnic populations of China. PMID:28205625
Hidalgo, Pedro I; Ullán, Ricardo V; Albillos, Silvia M; Montero, Olimpio; Fernández-Bodega, María Ángeles; García-Estrada, Carlos; Fernández-Aguado, Marta; Martín, Juan-Francisco
2014-01-01
The PR-toxin is a potent mycotoxin produced by Penicillium roqueforti in moulded grains and grass silages and may contaminate blue-veined cheese. The PR-toxin derives from the 15 carbon atoms sesquiterpene aristolochene formed by the aristolochene synthase (encoded by ari1). We have cloned and sequenced a four gene cluster that includes the ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four silenced mutants overproduce large amounts of mycophenolic acid, an antitumor compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and mycophenolic acid production. An eleven gene cluster that includes the above mentioned four prx genes and a 14-TMS drug/H(+) antiporter was found in the genome of Penicillium chrysogenum. This eleven gene cluster has been reported to be very poorly expressed in a transcriptomic study of P. chrysogenum genes under conditions of penicillin production (strongly aerated cultures). We found that this apparently silent gene cluster is able to produce PR-toxin in P. chrysogenum under static culture conditions on hydrated rice medium. Noteworthily, the production of PR-toxin was 2.6-fold higher in P. chrysogenum npe10, a strain deleted in the 56.8kb amplifiable region containing the pen gene cluster, than in the parental strain Wisconsin 54-1255 providing another example of cross-talk between secondary metabolite pathways in this fungus. A detailed PR-toxin biosynthesis pathway is proposed based on all available evidence. Copyright © 2013 Elsevier Inc. All rights reserved.
The nif Gene Operon of the Methanogenic Archaeon Methanococcus maripaludis
Kessler, Peter S.; Blank, Carrine; Leigh, John A.
1998-01-01
Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5′ to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens. PMID:9515920
A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.
Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong
2015-01-01
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.
A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus
Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong
2015-01-01
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180
Use of keyword hierarchies to interpret gene expression patterns.
Masys, D R; Welsh, J B; Lynn Fink, J; Gribskov, M; Klacansky, I; Corbeil, J
2001-04-01
High-density microarray technology permits the quantitative and simultaneous monitoring of thousands of genes. The interpretation challenge is to extract relevant information from this large amount of data. A growing variety of statistical analysis approaches are available to identify clusters of genes that share common expression characteristics, but provide no information regarding the biological similarities of genes within clusters. The published literature provides a potential source of information to assist in interpretation of clustering results. We describe a data mining method that uses indexing terms ('keywords') from the published literature linked to specific genes to present a view of the conceptual similarity of genes within a cluster or group of interest. The method takes advantage of the hierarchical nature of Medical Subject Headings used to index citations in the MEDLINE database, and the registry numbers applied to enzymes.
Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong-Guan
2016-01-01
ABSTRACT Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. PMID:27073098
Kihara, Takahiro; Hiroe, Ayaka; Ishii-Hyakutake, Manami; Mizuno, Kouhei; Tsuge, Takeharu
2017-08-01
Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJ YB4 ) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJ YB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJ YB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJ YB4 , which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJ YB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.
Wotton, Karl R; Shimeld, Sebastian M
2011-12-01
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.
Wang, Hao; Fewer, David P; Holm, Liisa; Rouhiainen, Leo; Sivonen, Kaarina
2014-06-24
Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites.
González, Víctor M; Aventín, Núria; Centeno, Emilio; Puigdomènech, Pere
2014-12-17
Plant NBS-LRR -resistance genes tend to be found in clusters, which have been shown to be hot spots of genome variability. In melon, half of the 81 predicted NBS-LRR genes group in nine clusters, and a 1 Mb region on linkage group V contains the highest density of R-genes and presence/absence gene polymorphisms found in the melon genome. This region is known to contain the locus of Vat, an agronomically important gene that confers resistance to aphids. However, the presence of duplications makes the sequencing and annotation of R-gene clusters difficult, usually resulting in multi-gapped sequences with higher than average errors. A 1-Mb sequence that contains the largest NBS-LRR gene cluster found in melon was improved using a strategy that combines Illumina paired-end mapping and PCR-based gap closing. Unknown sequence was decreased by 70% while about 3,000 SNPs and small indels were corrected. As a result, the annotations of 18 of a total of 23 NBS-LRR genes found in this region were modified, including additional coding sequences, amino acid changes, correction of splicing boundaries, or fussion of ORFs in common transcription units. A phylogeny analysis of the R-genes and their comparison with syntenic sequences in other cucurbits point to a pattern of local gene amplifications since the diversification of cucurbits from other families, and through speciation within the family. A candidate Vat gene is proposed based on the sequence similarity between a reported Vat gene from a Korean melon cultivar and a sequence fragment previously absent in the unrefined sequence. A sequence refinement strategy allowed substantial improvement of a 1 Mb fragment of the melon genome and the re-annotation of the largest cluster of NBS-LRR gene homologues found in melon. Analysis of the cluster revealed that resistance genes have been produced by sequence duplication in adjacent genome locations since the divergence of cucurbits from other close families, and through the process of speciation within the family a candidate Vat gene was also identified using sequence previously unavailable, which demonstrates the advantages of genome assembly refinements when analyzing complex regions such as those containing clusters of highly similar genes.
Synnergren, Jane; Améen, Caroline; Jansson, Andreas; Sartipy, Peter
2012-02-27
It is now well documented that human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes. These cells constitute a promising source of material for use in drug development, toxicity testing, and regenerative medicine. To assess their utility as replacement or complement to existing models, extensive phenotypic characterization of the cells is required. In the present study, we used microarrays and analyzed the global transcription of hESC-derived cardiomyocyte clusters (CMCs) and determined similarities as well as differences compared with reference samples from fetal and adult heart tissue. In addition, we performed a focused analysis of the expression of cardiac ion channels and genes involved in the Ca(2+)-handling machinery, which in previous studies have been shown to be immature in stem cell-derived cardiomyocytes. Our results show that hESC-derived CMCs, on a global level, have a highly similar gene expression profile compared with human heart tissue, and their transcriptional phenotype was more similar to fetal than to adult heart. Despite the high similarity to heart tissue, a number of significantly differentially expressed genes were identified, providing some clues toward understanding the molecular difference between in vivo sourced tissue and stem cell derivatives generated in vitro. Interestingly, some of the cardiac-related ion channels and Ca(2+)-handling genes showed differential expression between the CMCs and heart tissues. These genes may represent candidates for future genetic engineering to create hESC-derived CMCs that better mimic the phenotype of the cardiomyocytes present in the adult human heart.
Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli.
Iguchi, Atsushi; Shirai, Hiroki; Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro
2011-01-01
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.
Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich
2017-02-16
Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation.
Wlodarska, Marta; Luo, Chengwei; Kolde, Raivo; d'Hennezel, Eva; Annand, John W; Heim, Cortney E; Krastel, Philipp; Schmitt, Esther K; Omar, Abdifatah S; Creasey, Elizabeth A; Garner, Ashley L; Mohammadi, Sina; O'Connell, Daniel J; Abubucker, Sahar; Arthur, Timothy D; Franzosa, Eric A; Huttenhower, Curtis; Murphy, Leon O; Haiser, Henry J; Vlamakis, Hera; Porter, Jeffrey A; Xavier, Ramnik J
2017-07-12
Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.
Conversion events in gene clusters
2011-01-01
Background Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments. Results To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at http://www.bx.psu.edu/miller_lab. Conclusions These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes. PMID:21798034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, Kelley A.; Jensen, Paul R.
Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In conclusion: We found that marine-derived MAR4 streptomycetes possess a relatively high genetic potential for HI biosynthesis. The combination of horizontal gene transfer, duplication, and rearrangement indicate that complex evolutionary processes account for the high level of HI gene cluster diversity in these bacteria, the products of which may provide a yet to be defined adaptation to the marine environment.« less
Gallagher, Kelley A.; Jensen, Paul R.
2015-11-17
Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In conclusion: We found that marine-derived MAR4 streptomycetes possess a relatively high genetic potential for HI biosynthesis. The combination of horizontal gene transfer, duplication, and rearrangement indicate that complex evolutionary processes account for the high level of HI gene cluster diversity in these bacteria, the products of which may provide a yet to be defined adaptation to the marine environment.« less
2017-06-30
Clustered Regularly Interspaced Short Palindromic Repeat/ CRISPR -associated protein 9 ( CRISPR /Cas9)-based Gene Drives En vi ro nm en ta l L ab or at...Management on Military Lands Clustered Regularly Interspaced Short Palindromic Repeat/ CRISPR -associated protein 9 ( CRISPR /Cas9)-based Gene Drives Ping... CRISPR /Cas9-based Gene Drives for Invasive Species Management on Military Lands” ERDC/EL SR-17-2 ii Abstract Applications of genetic engineering
Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene; Gillani, Nazira; Mulvey, Michael R.
2008-01-01
Enterococcus faecalis N06-0364, exhibiting a vancomycin MIC of 8 μg/ml, was found to harbor a novel d-Ala-d-Ser gene cluster, designated vanL. The vanL gene cluster was similar in organization to the vanC operon, but the VanT serine racemase was encoded by two separate genes, vanTmL (membrane binding) and vanTrL (racemase). PMID:18458129
[Chlorobaculum macestae sp. nov., a new green sulfur bacterium].
Koppen, O I; Berg, I A; Lebedeva, N V; Taisova, A S; Kolganova, T V; Slobodova, N V; Bulygina, E S; Turova, T P; Ivanovskiĭ, R N
2008-01-01
The investigated green sulfur bacterium, strain M, was isolated from a sulfidic spring on the Black Sea Coast of the Caucasus. The cells of strain M are straight or curved rods 0.6-0.9 x 1.8-4.2 microm in size. According to the cell wall structure, the bacteria are gram-negative. Chlorosomes are located along the cell periphery. Strain M is an obligate anaerobe capable of photoautotrophic growth on sulfide, thiosulfate, and H2. It utilizes ammonium, urea, casein hydrolysate, and N2 as nitrogen sources and sulfide, thiosulfate, and elemental sulfur as sulfur sources. Bacteriochlorophyll c and the carotenoid chlorobactene are the main pigments. The optimal growth temperature is 25-28 degrees C; the optimal pH is 6.8. The strain does not require NaCl. Vitamin B12 stimulates growth. The content of the G+C base pairs in the DNA of strain M is 58.3 mol %. In the phylogenetic tree constructed on the basis of analysis of nucleotide sequences of 16S rRNA genes, strain M forms a separate branch, which occupies an intermediate position between the phylogenetic cluster containing representatives of the genus Chlorobaculum (94.9-96.8%) and the cluster containing species of the genus Chlorobium (94.1-96.5%). According to the results of analysis of the amino acid sequence corresponding to the fmo gene, strain M represents a branch which, unlike that in the "ribosomal" tree, falls into the cluster of the genus Chlorobaculum (95.8-97.2%). Phylogenetic analysis of the amino acid sequence corresponding to the nifH gene placed species of the genera Chlorobaculum and Chlorobium into a single cluster, whereas strain M formed a separate branch. The results obtained allow us to describe strain M as a new species of the genus Chlorobaculum. Chlorobaculum macestae sp. nov.
Gene panel testing for hereditary breast cancer.
Winship, Ingrid; Southey, Melissa C
2016-03-21
Inherited predisposition to breast cancer is explained only in part by mutations in the BRCA1 and BRCA2 genes. Most families with an apparent familial clustering of breast cancer who are investigated through Australia's network of genetic services and familial cancer centres do not have mutations in either of these genes. More recently, additional breast cancer predisposition genes, such as PALB2, have been identified. New genetic technology allows a panel of multiple genes to be tested for mutations in a single test. This enables more women and their families to have risk assessment and risk management, in a preventive approach to predictable breast cancer. Predictive testing for a known family-specific mutation in a breast cancer predisposition gene provides personalised risk assessment and evidence-based risk management. Breast cancer predisposition gene panel tests have a greater diagnostic yield than conventional testing of only the BRCA1 and BRCA2 genes. The clinical validity and utility of some of the putative breast cancer predisposition genes is not yet clear. Ethical issues warrant consideration, as multiple gene panel testing has the potential to identify secondary findings not originally sought by the test requested. Multiple gene panel tests may provide an affordable and effective way to investigate the heritability of breast cancer.
Efficient Agent-Based Cluster Ensembles
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Tumer, Kagan
2006-01-01
Numerous domains ranging from distributed data acquisition to knowledge reuse need to solve the cluster ensemble problem of combining multiple clusterings into a single unified clustering. Unfortunately current non-agent-based cluster combining methods do not work in a distributed environment, are not robust to corrupted clusterings and require centralized access to all original clusterings. Overcoming these issues will allow cluster ensembles to be used in fundamentally distributed and failure-prone domains such as data acquisition from satellite constellations, in addition to domains demanding confidentiality such as combining clusterings of user profiles. This paper proposes an efficient, distributed, agent-based clustering ensemble method that addresses these issues. In this approach each agent is assigned a small subset of the data and votes on which final cluster its data points should belong to. The final clustering is then evaluated by a global utility, computed in a distributed way. This clustering is also evaluated using an agent-specific utility that is shown to be easier for the agents to maximize. Results show that agents using the agent-specific utility can achieve better performance than traditional non-agent based methods and are effective even when up to 50% of the agents fail.
Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen
2014-01-01
The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.
Molecular Subtypes of Glioblastoma Are Relevant to Lower Grade Glioma
Sloan, Andrew E.; Chen, Yanwen; Brat, Daniel J.; O’Neill, Brian Patrick; de Groot, John; Yust-Katz, Shlomit; Yung, Wai-Kwan Alfred; Cohen, Mark L.; Aldape, Kenneth D.; Rosenfeld, Steven; Verhaak, Roeland G. W.; Barnholtz-Sloan, Jill S.
2014-01-01
Background Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM) expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas). Methods Gene expression array, single nucleotide polymorphism (SNP) array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III) from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson). Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP) was assigned using prediction models by Fine et al. Results Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs. Conclusions GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression. PMID:24614622
Fanconi anemia gene editing by the CRISPR/Cas9 system.
Osborn, Mark J; Gabriel, Richard; Webber, Beau R; DeFeo, Anthony P; McElroy, Amber N; Jarjour, Jordan; Starker, Colby G; Wagner, John E; Joung, J Keith; Voytas, Daniel F; von Kalle, Christof; Schmidt, Manfred; Blazar, Bruce R; Tolar, Jakub
2015-02-01
Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.
Recent Advances in Preclinical Developments Using Adenovirus Hybrid Vectors.
Ehrke-Schulz, Eric; Zhang, Wenli; Gao, Jian; Ehrhardt, Anja
2017-10-01
Adenovirus (Ad)-based vectors are efficient gene-transfer vehicles to deliver foreign DNA into living organisms, offering large cargo capacity and low immunogenicity and genotoxicity. As Ad shows low integration rates of their genomes into host chromosomes, vector-derived gene expression decreases due to continuous cell cycling in regenerating tissues and dividing cell populations. To overcome this hurdle, adenoviral delivery can be combined with mechanisms leading to maintenance of therapeutic DNA and long-term effects of the desired treatment. Several hybrid Ad vectors (AdV) exploiting various strategies for long-term treatment have been developed and characterized. This review summarizes recent developments of preclinical approaches using hybrid AdVs utilizing either the Sleeping Beauty transposase system for somatic integration into host chromosomes or designer nucleases, including transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease for permanent gene editing. Further options on how to optimize these vectors further are discussed, which may lead to future clinical applications of these versatile gene-therapy tools.
Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida.
Faddeeva-Vakhrusheva, Anna; Kraaijeveld, Ken; Derks, Martijn F L; Anvar, Seyed Yahya; Agamennone, Valeria; Suring, Wouter; Kampfraath, Andries A; Ellers, Jacintha; Le Ngoc, Giang; van Gestel, Cornelis A M; Mariën, Janine; Smit, Sandra; van Straalen, Nico M; Roelofs, Dick
2017-06-28
Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle. We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster. The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.
Biosynthetic Genes for the Tetrodecamycin Antibiotics
Gverzdys, Tomas
2016-01-01
ABSTRACT We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s). IMPORTANCE The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules. PMID:27137499
Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum
Eeckhaut, Venessa; Van Immerseel, Filip; Croubels, Siska; De Baere, Siegrid; Haesebrouck, Freddy; Ducatelle, Richard; Louis, Petra; Vandamme, Peter
2011-01-01
Summary Sixteen butyrate‐producing bacteria were isolated from the caecal content of chickens and analysed phylogenetically. They did not represent a coherent phylogenetic group, but were allied to four different lineages in the Firmicutes phylum. Fourteen strains appeared to represent novel species, based on a level of ≤ 98.5% 16S rRNA gene sequence similarity towards their nearest validly named neighbours. The highest butyrate concentrations were produced by the strains belonging to clostridial clusters IV and XIVa, clusters which are predominant in the chicken caecal microbiota. In only one of the 16 strains tested, the butyrate kinase operon could be amplified, while the butyryl‐CoA : acetate CoA‐transferase gene was detected in eight strains belonging to clostridial clusters IV, XIVa and XIVb. None of the clostridial cluster XVI isolates carried this gene based on degenerate PCR analyses. However, another CoA‐transferase gene more similar to propionate CoA‐transferase was detected in the majority of the clostridial cluster XVI isolates. Since this gene is located directly downstream of the remaining butyrate pathway genes in several human cluster XVI bacteria, it may be involved in butyrate formation in these bacteria. The present study indicates that butyrate producers related to cluster XVI may play a more important role in the chicken gut than in the human gut. PMID:21375722
Wang, Xiuna; Zhang, Xiaoling; Liu, Ling; Xiang, Meichun; Wang, Wenzhao; Sun, Xiang; Che, Yongsheng; Guo, Liangdong; Liu, Gang; Guo, Liyun; Wang, Chengshu; Yin, Wen-Bing; Stadler, Marc; Zhang, Xinyu; Liu, Xingzhong
2015-01-27
In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.
Andrés-Benito, Pol; Moreno, Jesús; Aso, Ester; Povedano, Mónica; Ferrer, Isidro
2017-01-01
Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte- and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment. PMID:28283675
PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes
Fong, Christine; Rohmer, Laurence; Radey, Matthew; Wasnick, Michael; Brittnacher, Mitchell J
2008-01-01
Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any web browser with no client side software setup or installation required. Source code is freely available to researchers interested in setting up a local version of PSAT for analysis of genomes not available through the public server. Access to the public web server and instructions for obtaining source code can be found at . PMID:18366802
D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C
2017-01-01
Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms.
Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification
Pu, Jiali; Zhang, Baorong; Feng, Jian
2015-01-01
The capability to modify the genome precisely and efficiently offers an extremely useful tool for biomedical research. Recent developments in genome editing technologies such as transcription activator-like effector nuclease and the clustered regularly interspaced short palindromic repeats system have made genome modification available for a number of organisms with relative ease. Here, we introduce these genome editing techniques, compare and contrast each technical approach and discuss their potential to study the underlying mechanisms of human disease using patient-derived induced pluripotent stem cells. PMID:25956682
Kovina, A P; Petrova, N V; Razin, S V; Yarovaia, O V
2016-01-01
In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio reriowas detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.
Janevska, Slavica; Tudzynski, Bettina
2018-01-01
The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.
Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array.
Roehrdanz, R; Heilmann, L; Senechal, P; Sears, S; Evenson, P
2010-08-01
Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.
Song, Xiaowei; Wang, Yajun; Tang, Yezhong
2013-01-01
As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication.
Song, Xiaowei; Wang, Yajun; Tang, Yezhong
2013-01-01
As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication. PMID:24349554
Clustering of change patterns using Fourier coefficients.
Kim, Jaehee; Kim, Haseong
2008-01-15
To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a time period because biologically related gene groups can share the same change patterns. Many clustering algorithms have been proposed to group observation data. However, because of the complexity of the underlying functions there have not been many studies on grouping data based on change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. The sample Fourier coefficients not only provide information about the underlying functions, but also reduce the dimension. In addition, as their limiting distribution is a multivariate normal, a model-based clustering method incorporating statistical properties would be appropriate. This work is aimed at discovering gene groups with similar change patterns that share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. The model-based method is advantageous over other methods in our proposed model because the sample Fourier coefficients asymptotically follow the multivariate normal distribution. Change patterns are automatically estimated with the Fourier representation in our model. Our model was tested in simulations and on real gene data sets. The simulation results showed that the model-based clustering method with the sample Fourier coefficients has a lower clustering error rate than K-means clustering. Even when the number of repeated time points was small, the same results were obtained. We also applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns. The R program is available upon the request.
Ancient genomic architecture for mammalian olfactory receptor clusters
Aloni, Ronny; Olender, Tsviya; Lancet, Doron
2006-01-01
Background Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome. Results We developed a new and general tool for genome-wide definition of genomic gene clusters conserved in multiple species. Syntenic orthologs, defined as gene pairs showing conservation of both genomic location and coding sequence, were subjected to a graph theory algorithm for discovering CLICs (clusters in conservation). When applied to ORs in five mammals, including the marsupial opossum, more than 90% of the OR genes were found within a framework of 48 multi-species CLICs, invoking a general conservation of gene order and composition. A detailed analysis of individual CLICs revealed multiple differences among species, interpretable through species-specific genomic rearrangements and reflecting complex mammalian evolutionary dynamics. One significant instance involves CLIC #1, which lacks a human member, implying the human-specific deletion of an OR cluster, whose mouse counterpart has been tentatively associated with isovaleric acid odorant detection. Conclusion The identified multi-species CLICs demonstrate that most of the mammalian OR clusters have a common ancestry, preceding the split between marsupials and placental mammals. However, only two of these CLICs were capable of incorporating chicken OR genes, parsimoniously implying that all other CLICs emerged subsequent to the avian-mammalian divergence. PMID:17010214
antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.
Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H
2015-07-01
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wyckoff, Elizabeth E.; Valle, Ana-Maria; Smith, Stacey L.; Payne, Shelley M.
1999-01-01
Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [3H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores. PMID:10601218
Campa, Ana; Giraldez, Ramón; Ferreira, Juan José
2011-06-01
Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.
Tsai, Yu-Cheng; Cooke, Nancy E.; Liebhaber, Stephen A.
2016-01-01
Abstract The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR ‘loops’ over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed ‘hCS chromatin hub’. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355
Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae
Oshima, Kenshiro; Yoshizaki, Mariko; Kawanishi, Michiko; Nakaya, Kohei; Suzuki, Takehito; Miyauchi, Eiji; Ishii, Yasuo; Tanabe, Soichi; Murakami, Masaru; Hattori, Masahira
2011-01-01
Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish. PMID:21829716
Conditional clustering of temporal expression profiles
Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola
2008-01-01
Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna
Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less
Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; ...
2015-04-09
Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less
Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.
2015-01-01
Summary Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. PMID:25865308
2013-01-01
Background ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. Results We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. Conclusions Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity. PMID:23802544
Soybean Fe-S cluster biosynthesis regulated by external iron or phosphate fluctuation.
Qin, Lu; Wang, Meihuan; Chen, Liyu; Liang, Xuejiao; Wu, Zhigeng; Lin, Zhihao; Zuo, Jia; Feng, Xiangyang; Zhao, Jing; Liao, Hong; Ye, Hong
2015-03-01
Iron and phosphorus are essential for soybean nodulation. Our results suggested that the deficiency of Fe or P impairs nodulation by affecting the assembly of functional iron-sulfur cluster via different mechanisms. Iron (Fe) and phosphorus (P) are important mineral nutrients for soybean and are indispensable for nodulation. However, it remains elusive how the pathways of Fe metabolism respond to the fluctuation of external Fe or P. Iron is required for the iron-sulfur (Fe-S) cluster assembly in higher plant. Here, we investigated the expression pattern of Fe-S cluster biosynthesis genes in the nodulated soybean. Soybean genome encodes 42 putative Fe-S cluster biosynthesis genes, which were expressed differently in shoots and roots, suggesting of physiological relevance. Nodules initiated from roots of soybean after rhizobia inoculation. In comparison with that in shoots, iron concentration was three times higher in nodules. The Fe-S cluster biosynthesis genes were activated and several Fe-S protein activities were increased in nodules, indicating that a more effective Fe-S cluster biosynthesis is accompanied by nodulation. Fe-S cluster biosynthesis genes were massively repressed and some Fe-S protein activities were decreased in nodules by Fe deficiency, leading to tiny nodules. Notably, P deficiency induced a similar Fe-deficiency response in nodules, i.e, certain Fe-S enzyme activity loss and tiny nodules. However, distinct from Fe-deficient nodules, higher iron concentration was accumulated and the Fe-S cluster biosynthesis genes were not suppressed in the P-deficiency-treated nodules. Taken together, our results showed that both Fe deficiency and P deficiency impair nodulation, but they affect the assembly of Fe-S cluster maybe via different mechanisms. The data also suggested that Fe-S cluster biosynthesis likely links Fe metabolism and P metabolism in root and nodule cells of soybean.
Yuan, Siqi; Zheng, Yuchi; Zeng, Xiaomao
2016-01-01
Recent improvements in next-generation sequencing (NGS) technologies can facilitate the obtainment of mitochondrial genomes. However, it is not clear whether NGS could be effectively used to reconstruct the mitogenome with high gene rearrangement. These high rearrangements would cause amplification failure, and/or assembly and alignment errors. Here, we choose two frogs with rearranged gene order, Amolops chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect the mitogenome assembly and alignment by using NGS. The mitogenomes with gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in the mitogenome of A. chunganensis and Q. boulengeri are typical neobatrachian pattern except for rearrangements at the position of “WANCY” tRNA genes cluster. Further, the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM. Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri. PMID:27994980
Martín, Juan F.; Liras, Paloma
2017-01-01
The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently. PMID:29186777
USDA-ARS?s Scientific Manuscript database
An intronless cluster of three class I small heat shock protein (sHSP) chaperone genes, Sl17.6, Sl20.0 and Sl20.1, resident on the short arm of chromosome 6 in tomato, was previously characterized (Goyal et al., 2012). This shsp chaperone gene cluster was found decorated with cis sequences known to ...
Strain-Level Diversity of Secondary Metabolism in Streptomyces albus
Seipke, Ryan F.
2015-01-01
Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820
Furuya, Toshiki; Hirose, Satomi; Osanai, Hisashi; Semba, Hisashi; Kino, Kuniki
2011-01-01
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc2155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc2155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc2155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc2155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria. PMID:21183637
Hadjithomas, Michalis; Chen, I-Min A; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C; Ivanova, Natalia N
2017-01-04
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
Faria, José P.; Davis, James J.; Edirisinghe, Janaka N.; Taylor, Ronald C.; Weisenhorn, Pamela; Olson, Robert D.; Stevens, Rick L.; Rocha, Miguel; Rocha, Isabel; Best, Aaron A.; DeJongh, Matthew; Tintle, Nathan L.; Parrello, Bruce; Overbeek, Ross; Henry, Christopher S.
2016-01-01
Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets, Atomic Regulons (ARs), represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here, we describe an approach for inferring ARs that leverages large-scale expression data sets, gene context, and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: Hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB, showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness (CLR) analysis, finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs, it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms, we computed ARs for Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus, each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed that the consistency of AR gene membership correlates with phylogenetic distance, but there is clear variability in the regulatory networks of closely related organisms. As large scale expression data sets become increasingly common for model and non-model organisms, comparative analyses of atomic regulons will provide valuable insights into fundamental regulatory modules used across the bacterial domain. PMID:27933038
The Bordetella bhu Locus Is Required for Heme Iron Utilization
Vanderpool, Carin K.; Armstrong, Sandra K.
2001-01-01
Bordetella pertussis and Bordetella bronchiseptica are capable of obtaining iron from hemin and hemoglobin. Genes encoding a putative bacterial heme iron acquisition system (bhu, for Bordetella heme utilization) were identified in a B. pertussis genomic sequence database, and the corresponding DNA was isolated from a virulent strain of B. pertussis. A B. pertussis bhuR mutant, predicted to lack the heme outer membrane receptor, was generated by allelic exchange. In contrast to the wild-type strain, bhuR mutant PM5 was incapable of acquiring iron from hemin and hemoglobin; genetic complementation of PM5 with the cloned bhuRSTUV genes restored heme utilization to wild-type levels. In parallel studies, B. bronchiseptica bhu sequences were also identified and a B. bronchiseptica bhuR mutant was constructed and confirmed to be defective in heme iron acquisition. The wild-type B. bronchiseptica parent strain grown under low-iron conditions produced the presumptive BhuR protein, which was absent in the bhuR mutant. Furthermore, production of BhuR by iron-starved B. bronchiseptica was markedly enhanced by culture in hemin-supplemented medium, suggesting that these organisms sense and respond to heme in the environment. Analysis of the genetic region upstream of the bhu cluster identified open reading frames predicted to encode homologs of the Escherichia coli ferric citrate uptake regulators FecI and FecR. These putative Bordetella regulators may mediate heme-responsive positive transcriptional control of the bhu genes. PMID:11418569
O’Rourke, Jamie A.; Yang, S. Samuel; Miller, Susan S.; Bucciarelli, Bruna; Liu, Junqi; Rydeen, Ariel; Bozsoki, Zoltan; Uhde-Stone, Claudia; Tu, Zheng Jin; Allan, Deborah; Gronwald, John W.; Vance, Carroll P.
2013-01-01
Phosphorus, in its orthophosphate form (Pi), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to Pi deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in Pi-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to Pi supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to Pi deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to Pi deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the Pi status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in Pi deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to Pi deficiency. PMID:23197803
O'Rourke, Jamie A; Yang, S Samuel; Miller, Susan S; Bucciarelli, Bruna; Liu, Junqi; Rydeen, Ariel; Bozsoki, Zoltan; Uhde-Stone, Claudia; Tu, Zheng Jin; Allan, Deborah; Gronwald, John W; Vance, Carroll P
2013-02-01
Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.
Krzyżanowska, Dorota M.; Ossowicki, Adam; Rajewska, Magdalena; Maciąg, Tomasz; Jabłońska, Magdalena; Obuchowski, Michał; Heeb, Stephan; Jafra, Sylwia
2016-01-01
Dickeya solani and Pectobacterium carotovorum subsp. brasiliense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain. Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologs of four nfs genes, that confer production of a non-fluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homolog of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability. A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study illustrates that mining of microbial genomes is a powerful approach for predictingthe presence of novel secondary-metabolite encoding genes especially when coupled with transposon mutagenesis. PMID:27303376
Esplin, M Sean; Manuck, Tracy A.; Varner, Michael W.; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John
2015-01-01
Objective We sought to employ an innovative tool based on common biological pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB), in order to enhance investigators' ability to identify to highlight common mechanisms and underlying genetic factors responsible for SPTB. Study Design A secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks gestation. Each woman was assessed for the presence of underlying SPTB etiologies. A hierarchical cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis using VEGAS software. Results 1028 women with SPTB were assigned phenotypes. Hierarchical clustering of the phenotypes revealed five major clusters. Cluster 1 (N=445) was characterized by maternal stress, cluster 2 (N=294) by premature membrane rupture, cluster 3 (N=120) by familial factors, and cluster 4 (N=63) by maternal comorbidities. Cluster 5 (N=106) was multifactorial, characterized by infection (INF), decidual hemorrhage (DH) and placental dysfunction (PD). These three phenotypes were highly correlated by Chi-square analysis [PD and DH (p<2.2e-6); PD and INF (p=6.2e-10); INF and DH (p=0.0036)]. Gene-based testing identified the INS (insulin) gene as significantly associated with cluster 3 of SPTB. Conclusion We identified 5 major clusters of SPTB based on a phenotype tool and hierarchal clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors underlying SPTB. PMID:26070700
Patterning C. elegans: homeotic cluster genes, cell fates and cell migrations.
Salser, S J; Kenyon, C
1994-05-01
Despite its simple body form, the nematode C. elegans expresses homeotic cluster genes similar to those of insects and vertebrates in the patterning of many cell types and tissues along the anteroposterior axis. In the ventral nerve cord, these genes program spatial patterns of cell death, fusion, division and neurotransmitter production; in migrating cells they regulate the direction and extent of movement. Nematode development permits an analysis at the cellular level of how homeotic cluster genes interact to specify cell fates, and how cell behavior can be regulated to assemble an organism.
Yang, Dong; Zhu, Xiangcheng; Wu, Xueyun; Feng, Zhiyang; Huang, Lei; Shen, Ben; Xu, Zhinan
2011-01-01
iso-Migrastatin (iso-MGS) has been actively pursued recently as an outstanding candidate of antimetastasis agents. Having characterized the iso-MGS biosynthetic gene cluster from its native producer Streptomyces platensis NRRL 18993, we have recently succeeded in producing iso-MGS in five selected heterologous Streptomyces hosts, albeit the low titers failed to meet expectations and cast doubt on the utility of this novel technique for large-scale production. To further explore and capitalize on the production capacity of these hosts, a thorough investigation of these five engineered strains with three fermentation media for iso-MGS production was undertaken. Streptomyces albus J1074 and Streptomyces lividans K4-114 were found to be preferred heterologous hosts, and subsequent analysis of carbon and nitrogen sources revealed that sucrose and yeast extract were ideal for iso-MGS production. After the initial optimization, the titers of iso-MGS in all five hosts were considerably improved by 3–18-fold in the optimized R2YE medium. Furthermore, the iso-MGS titer of S. albus J1074 (pBS11001) was significantly improved to 186.7 mg/L by a hybrid medium strategy. Addition of NaHCO3 to the latter finally afforded an optimized iso-MGS titer of 213.8 mg/L, about 5-fold higher than the originally reported system. With S. albus J1074 (pBS11001) as a model host, the expression of iso-MGS gene cluster in four different media was systematically studied via the quantitative RT–PCR technology. The resultant comparison revealed the correlation of gene expression and iso-MGS production for the first time; synchronous expression of the whole gene cluster was crucial for optimal iso-MGS production. These results reveal new insights into the iso-MGS biosynthetic machinery in heterologous hosts and provide the primary data to realize large-scale production of iso-MGS for further preclinical studies. PMID:21132287
Wang, S-N; Shan, S; Zheng, Y; Peng, Y; Lu, Z-Y; Yang, Y-Q; Li, R-J; Zhang, Y-J; Guo, Y-Y
2017-08-01
Odorant receptors (ORs) expressed in the antennae of parasitoid wasps are responsible for detection of various lipophilic airborne molecules. In the present study, 107 novel OR genes were identified from Microplitis mediator antennal transcriptome data. Phylogenetic analysis of the set of OR genes from M. mediator and Microplitis demolitor revealed that M. mediator OR (MmedOR) genes can be classified into different subfamilies, and the majority of MmedORs in each subfamily shared high sequence identities and clear orthologous relationships to M. demolitor ORs. Within a subfamily, six MmedOR genes, MmedOR98, 124, 125, 126, 131 and 155, shared a similar gene structure and were tightly linked in the genome. To evaluate whether the clustered MmedOR genes share common regulatory features, the transcription profile and expression characteristics of the six closely related OR genes were investigated in M. mediator. Rapid amplification of cDNA ends-PCR experiments revealed that the OR genes within the cluster were transcribed as single mRNAs, and a bicistronic mRNA for two adjacent genes (MmedOR124 and MmedOR98) was also detected in female antennae by reverse transcription PCR. In situ hybridization experiments indicated that each OR gene within the cluster was expressed in a different number of cells. Moreover, there was no co-expression of the two highly related OR genes, MmedOR124 and MmedOR98, which appeared to be individually expressed in a distinct population of neurons. Overall, there were distinct expression profiles of closely related MmedOR genes from the same cluster in M. mediator. These data provide a basic understanding of the olfactory coding in parasitoid wasps. © 2017 The Royal Entomological Society.
Outi M. Koivistoinen; Mikko Arvas; Jennifer R. Headman; Martina Andberg; Merja Penttilä; Thomas W. Jeffries; Peter Richard
2012-01-01
In Scheffersomyces (Pichia) stipitis and related fungal species the genes for L-rhamnose catabolism RHA1, LRA2, LRA3 and LRA4 but not LADH are clustered. We find that located next to the cluster is a transcription...
Badal, Brateil; Solovyov, Alexander; Di Cecilia, Serena; Chan, Joseph Minhow; Chang, Li-Wei; Iqbal, Ramiz; Aydin, Iraz T.; Rajan, Geena S.; Chen, Chen; Abbate, Franco; Arora, Kshitij S.; Tanne, Antoine; Gruber, Stephen B.; Johnson, Timothy M.; Fullen, Douglas R.; Phelps, Robert; Bhardwaj, Nina; Bernstein, Emily; Ting, David T.; Brunner, Georg; Schadt, Eric E.; Greenbaum, Benjamin D.; Celebi, Julide Tok
2017-01-01
BACKGROUND. Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes. METHODS. We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions. We utilized a next-generation sequencing platform that enabled a comprehensive analysis of protein-coding and -noncoding RNA transcripts. RESULTS. Gene expression changes unequivocally discriminated between benign and malignant states, and a dual epigenetic and immune signature emerged defining this transition. To our knowledge, we discovered previously unrecognized melanoma subtypes. A high-risk primary melanoma subset was distinguished by a 122-epigenetic gene signature (“epigenetic” cluster) and TP53 family gene deregulation (TP53, TP63, and TP73). This subtype associated with poor overall survival and showed enrichment of cell cycle genes. Noncoding repetitive element transcripts (LINEs, SINEs, and ERVs) that can result in immunostimulatory signals recapitulating a state of “viral mimicry” were significantly repressed. The high-risk subtype and its poor predictive characteristics were validated in several independent cohorts. Additionally, primary melanomas distinguished by specific immune signatures (“immune” clusters) were identified. CONCLUSION. The TP53 family of genes and genes regulating the epigenetic machinery demonstrate strong prognostic and biological relevance during progression of early disease. Gene expression profiling of protein-coding and -noncoding RNA transcripts may be a better predictor for disease course in melanoma. This study outlines the transcriptional interplay of the cancer cell’s epigenome with the immune milieu with potential for future therapeutic targeting. FUNDING. National Institutes of Health (CA154683, CA158557, CA177940, CA087497-13), Tisch Cancer Institute, Melanoma Research Foundation, the Dow Family Charitable Foundation, and the Icahn School of Medicine at Mount Sinai. PMID:28469092
Biosynthetic Genes for the Tetrodecamycin Antibiotics.
Gverzdys, Tomas; Nodwell, Justin R
2016-07-15
We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s). The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cheng, Yi-Qiang; Yang, Min; Matter, Andrea M
2007-06-01
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.
RubisCO Gene Clusters Found in a Metagenome Microarray from Acid Mine Drainage
Guo, Xue; Yin, Huaqun; Cong, Jing; Dai, Zhimin; Liang, Yili
2013-01-01
The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring in eubacteria and plastids may seriously affect the credibility of this approach. Here, we presented a new method to analyze the diversity and genomic content of RubisCO genes in acid mine drainage (AMD). A metagenome microarray containing 7,776 large-insertion fosmids was constructed to quickly screen genome fragments containing RubisCO form I large-subunit genes (cbbL). Forty-six cbbL-containing fosmids were detected, and six fosmids were fully sequenced. To evaluate the reliability of the metagenome microarray and understand the microbial community in AMD, the diversities of cbbL and the 16S rRNA gene were analyzed. Fosmid sequences revealed that the form I RubisCO gene cluster could be subdivided into form IA and IB RubisCO gene clusters in AMD, because of significant divergences in molecular phylogenetics and conservative genomic organization. Interestingly, the form I RubisCO gene cluster coexisted with the form II RubisCO gene cluster in one fosmid genomic fragment. Phylogenetic analyses revealed that horizontal transfers of RubisCO genes may occur widely in AMD, which makes the evolutionary history of RubisCO difficult to reconcile with organismal phylogeny. PMID:23335778
Delineation of metabolic gene clusters in plant genomes by chromatin signatures
Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T.; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J.; Kumar, S. Vinod; Freemont, Paul S.; Osbourn, Anne
2016-01-01
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889
Derntl, Christian; Rassinger, Alice; Srebotnik, Ewald; Mach, Robert L.
2016-01-01
ABSTRACT The industrially used ascomycete Trichoderma reesei secretes a typical yellow pigment during cultivation, while other Trichoderma species do not. A comparative genomic analysis suggested that a putative secondary metabolism cluster, containing two polyketide-synthase encoding genes, is responsible for the yellow pigment synthesis. This cluster is conserved in a set of rather distantly related fungi, including Acremonium chrysogenum and Penicillium chrysogenum. In an attempt to silence the cluster in T. reesei, two genes of the cluster encoding transcription factors were individually deleted. For a complete genetic proof-of-function, the genes were reinserted into the genomes of the respective deletion strains. The deletion of the first transcription factor (termed yellow pigment regulator 1 [Ypr1]) resulted in the full abolishment of the yellow pigment formation and the expression of most genes of this cluster. A comparative high-pressure liquid chromatography (HPLC) analysis of supernatants of the ypr1 deletion and its parent strain suggested the presence of several yellow compounds in T. reesei that are all derived from the same cluster. A subsequent gas chromatography/mass spectrometry analysis strongly indicated the presence of sorbicillin in the major HPLC peak. The presence of the second transcription factor, termed yellow pigment regulator 2 (Ypr2), reduces the yellow pigment formation and the expression of most cluster genes, including the gene encoding the activator Ypr1. IMPORTANCE Trichoderma reesei is used for industry-scale production of carbohydrate-active enzymes. During growth, it secretes a typical yellow pigment. This is not favorable for industrial enzyme production because it makes the downstream process more complicated and thus increases operating costs. In this study, we demonstrate which regulators influence the synthesis of the yellow pigment. Based on these data, we also provide indication as to which genes are under the control of these regulators and are finally responsible for the biosynthesis of the yellow pigment. These genes are organized in a cluster that is also found in other industrially relevant fungi, such as the two antibiotic producers Penicillium chrysogenum and Acremonium chrysogenum. The targeted manipulation of a secondary metabolism cluster is an important option for any biotechnologically applied microorganism. PMID:27520818
ERIC Educational Resources Information Center
Scharfenberg, Franz-Josef; Bogner, Franz X.
2013-01-01
This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…
Metabolism of sialic acid by Bifidobacterium breve UCC2003.
Egan, Muireann; O'Connell Motherway, Mary; Ventura, Marco; van Sinderen, Douwe
2014-07-01
Bifidobacteria constitute a specific group of commensal bacteria that inhabit the gastrointestinal tracts of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilize several plant-derived carbohydrates that include cellodextrins, starch, and galactan. In the present study, we investigated the ability of this strain to utilize the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3'-sialyllactose, an abundant HMO, by another infant gut bifidobacterial strain, Bifidobacterium bifidum PRL2010. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Lengeler, J
1975-01-01
Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity for any of the three hexitols. PMID:1100602
Pathway Distiller - multisource biological pathway consolidation
2012-01-01
Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. Conclusions By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. PMID:23134636
Pathway Distiller - multisource biological pathway consolidation.
Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong
2012-01-01
One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
A new clustering of antibody CDR loop conformations
North, Benjamin; Lehmann, Andreas; Dunbrack, Roland L.
2010-01-01
Previous analyses of the complementarity determining regions (CDRs) of antibodies have focused on a small number of “canonical” conformations for each loop. This is primarily the result of the work of Chothia and colleagues, most recently in 1997. Because of the widespread utility of antibodies, we have revisited the clustering of conformations of the six CDR loops with the much larger amount of structural information currently available. In this work, we were careful to use a high-quality data set by eliminating low-resolution structures and CDRs with high B-factors or high conformational energies. We used a distance function based on directional statistics and an effective clustering algorithm using affinity propagation. With this data set of over 300 non-redundant antibody structures, we were able to cover 28 CDR-length combinations (e.g., L1 length 11, or “L1-11” in our nomenclature) for L1, L2, L3, H1 and H2. The Chothia analysis covered only 20 CDR-lengths. Only four of these had more than one conformational cluster, of which two could easily be distinguished by gene source (mouse/human; κ/λ) and one purely by the presence and positions of Pro residues (L3-9). Thus using the Chothia analysis does not require the complicated set of “structure-determining residues” that is often assumed. Of our 28 CDR-lengths, 15 of them have multiple conformational clusters including ten for which Chothia had only one canonical class. We have a total of 72 clusters for the non-H3 CDRs; approximately 85% of the non-H3 sequences can be assigned to a conformational cluster based on gene source and/or sequence. We found that earlier predictions of “bulged” vs. “non-bulged” conformations based on the presence or absence of anchor residues Arg/Lys94 and Asp101 of H3 have not held up, since all four combinations lead to a majority of conformations that are bulged. Thus the earlier analyses have been significantly enhanced by the increased data. We believe the new classification will lead to improved methods for antibody structure prediction and design. PMID:21035459
Méjean, Annick; Mazmouz, Rabia; Mann, Stéphane; Calteau, Alexandra; Médigue, Claudine; Ploux, Olivier
2010-01-01
We report a draft sequence of the genome of Oscillatoria sp. PCC 6506, a cyanobacterium that produces anatoxin-a and homoanatoxin-a, two neurotoxins, and cylindrospermopsin, a cytotoxin. Beside the clusters of genes responsible for the biosynthesis of these toxins, we have found other clusters of genes likely involved in the biosynthesis of not-yet-identified secondary metabolites. PMID:20675499
2012-01-01
Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster. PMID:22577841
Nara, Ayako; Hashimoto, Takuya; Komatsu, Mamoru; Nishiyama, Makoto; Kuzuyama, Tomohisa; Ikeda, Haruo
2017-05-01
Bafilomycins A 1 , C 1 and B 1 (setamycin) produced by Kitasatospora setae KM-6054 belong to the plecomacrolide family, which exhibit antibacterial, antifungal, antineoplastic and immunosuppressive activities. An analysis of gene clusters from K. setae KM-6054 governing the biosynthesis of bafilomycins revealed that it contains five large open reading frames (ORFs) encoding the multifunctional polypeptides of bafilomycin polyketide synthases (PKSs). These clustered PKS genes, which are responsible for bafilomycin biosynthesis, together encode 11 homologous sets of enzyme activities, each catalyzing a specific round of polyketide chain elongation. The region contains an additional 13 ORFs spanning a distance of 73 287 bp, some of which encode polypeptides governing other key steps in bafilomycin biosynthesis. Five ORFs, BfmB, BfmC, BfmD, BfmE and BfmF, were involved in the formation of methoxymalonyl-acyl carrier protein (ACP). Two possible regulatory genes, bfmR and bfmH, were found downstream of the above genes. A gene-knockout analysis revealed that BfmR was only a transcriptional regulator for the transcription of bafilomycin biosynthetic genes. Two genes, bfmI and bfmJ, were found downstream of bfmH. An analysis of these gene-disruption mutants in addition to an enzymatic analysis of BfmI and BfmJ revealed that BfmJ activated fumarate and BfmI functioned as a catalyst to form a fumaryl ester at the C21 hydroxyl residue of bafilomycin A 1 . A comparative analysis of bafilomycin gene clusters in K. setae KM-6054, Streptomyces lohii JCM 14114 and Streptomyces griseus DSM 2608 revealed that each ORF of both gene clusters in two Streptomyces strains were quite similar to each other. However, each ORF of gene cluster in K. setae KM-6054 was of lower similarity to that of corresponding ORF in the two Streptomyces species.
Dutartre, Leslie; Hilliou, Frédérique; Feyereisen, René
2012-05-11
The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.
The complete genome sequence of Clostridium indolis DSM 755T
Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P.; Cantor, Michael N.; Hua, Susan X.; Woyke, Tanja; Blanchard, Jeffrey L.
2014-01-01
Clostridium indolis DSM 755T is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755T reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species. PMID:25197485
The complete genome sequence of Clostridium indolis DSM 755(T.).
Biddle, Amy S; Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Woyke, Tanja; Blanchard, Jeffrey L
2014-06-15
Clostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755(T) reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species.
2013-01-01
Background Community-based health care planning and regulation necessitates grouping facilities and areal units into regions of similar health care use. Limited research has explored the methodologies used in creating these regions. We offer a new methodology that clusters facilities based on similarities in patient utilization patterns and geographic location. Our case study focused on Hospital Groups in Michigan, the allocation units used for predicting future inpatient hospital bed demand in the state’s Bed Need Methodology. The scientific, practical, and political concerns that were considered throughout the formulation and development of the methodology are detailed. Methods The clustering methodology employs a 2-step K-means + Ward’s clustering algorithm to group hospitals. The final number of clusters is selected using a heuristic that integrates both a statistical-based measure of cluster fit and characteristics of the resulting Hospital Groups. Results Using recent hospital utilization data, the clustering methodology identified 33 Hospital Groups in Michigan. Conclusions Despite being developed within the politically charged climate of Certificate of Need regulation, we have provided an objective, replicable, and sustainable methodology to create Hospital Groups. Because the methodology is built upon theoretically sound principles of clustering analysis and health care service utilization, it is highly transferable across applications and suitable for grouping facilities or areal units. PMID:23964905
Delamater, Paul L; Shortridge, Ashton M; Messina, Joseph P
2013-08-22
Community-based health care planning and regulation necessitates grouping facilities and areal units into regions of similar health care use. Limited research has explored the methodologies used in creating these regions. We offer a new methodology that clusters facilities based on similarities in patient utilization patterns and geographic location. Our case study focused on Hospital Groups in Michigan, the allocation units used for predicting future inpatient hospital bed demand in the state's Bed Need Methodology. The scientific, practical, and political concerns that were considered throughout the formulation and development of the methodology are detailed. The clustering methodology employs a 2-step K-means + Ward's clustering algorithm to group hospitals. The final number of clusters is selected using a heuristic that integrates both a statistical-based measure of cluster fit and characteristics of the resulting Hospital Groups. Using recent hospital utilization data, the clustering methodology identified 33 Hospital Groups in Michigan. Despite being developed within the politically charged climate of Certificate of Need regulation, we have provided an objective, replicable, and sustainable methodology to create Hospital Groups. Because the methodology is built upon theoretically sound principles of clustering analysis and health care service utilization, it is highly transferable across applications and suitable for grouping facilities or areal units.
Ancient acquisition of "alginate utilization loci" by human gut microbiota.
Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William
2018-05-23
In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.
Almagro-Moreno, Salvador; Boyd, E. Fidelma
2009-01-01
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383
Almagro-Moreno, Salvador; Boyd, E Fidelma
2009-09-01
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.
2004-08-06
The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayedmore » embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less
Philip Stewart; Daniel Cullen
1999-06-01
The lignin peroxidases of Phanerochaete chrysosporium are encoded by a minimum of 10 closely related genes. Physical and genetic mapping of a cluster of eight lip genes revealed six genes occurring in pairs and transcriptionally convergent, suggesting that portions of the lip family arose by gene duplication events. The completed sequence of 1ipG and lipJ, together...
Xiao, Yinghua; van Hijum, Sacha A F T; Abee, Tjakko; Wells-Bennik, Marjon H J
2015-01-01
The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies.
Xiao, Yinghua; van Hijum, Sacha A. F. T.; Abee, Tjakko; Wells-Bennik, Marjon H. J.
2015-01-01
The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies. PMID:25978838
1988-01-01
We report the organization of the human genes encoding the complement components C4-binding protein (C4BP), C3b/C4b receptor (CR1), decay accelerating factor (DAF), and C3dg receptor (CR2) within the regulator of complement activation (RCA) gene cluster. Using pulsed field gel electrophoresis analysis these genes have been physically linked and aligned as CR1-CR2-DAF-C4BP in an 800-kb DNA segment. The very tight linkage between the CR1 and the C4BP loci, contrasted with the relative long DNA distance between these genes, suggests the existence of mechanisms interfering with recombination within the RCA gene cluster. PMID:2450163
Roque, Dario R; Makowski, Liza; Chen, Ting-Huei; Rashid, Naim; Hayes, D Neil; Bae-Jump, Victoria
2016-08-01
The Cancer Genome Atlas (TCGA) identified four integrated clusters for endometrial cancer (EC): POLE, MSI, CNL and CNH. We evaluated differences in gene expression profiles of obese and non-obese women with EC and examined the association of body mass index (BMI) within the clusters identified in TCGA. TCGA RNAseq data was used to identify genes related to increasing BMI among ECs. The POLE, MSI and CNL clusters were composed mostly of endometrioid EC. Patient BMI was compared between these three clusters with one-way ANOVA. Association between gene expression and BMI was also assessed while adjusting for confounding effects of potential confounding factors. p-Values testing the association between gene expression and BMI were adjusted for multiple hypothesis testing over the 20,531 genes considered. Mean BMI was statistically different between the ECs in the CNL (35.8) versus POLE (29.8) cluster (p=0.006) and approached significance for the MSI (33.0) versus CNL (35.8) cluster (p=0.05). 181 genes were significantly up- or down-regulated with increasing BMI in endometrioid EC (q-value<0.01), including LPL, IRS-1, IGFBP4, IGFBP7 and the progesterone receptor. DAVID functional annotation analysis revealed significant enrichment in "cell cycle" (adjusted p-value=1.5E-5) and "DNA metabolic processes" (adjusted p-value=1E-3) for the identified genes. Obesity related genes were found to be upregulated with increasing BMI among endometrioid ECs. Patients with POLE tumors have the lowest median BMI when compared to MSI and CNL. Given the heterogeneity among endometrioid EC, consideration should be given to abandoning the Type I and II classification of EC tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Moorthy, Sakthi D.; Davidson, Scott; Shchuka, Virlana M.; Singh, Gurdeep; Malek-Gilani, Nakisa; Langroudi, Lida; Martchenko, Alexandre; So, Vincent; Macpherson, Neil N.; Mitchell, Jennifer A.
2017-01-01
Transcriptional enhancers are critical for maintaining cell-type–specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes. PMID:27895109
Gillot, Guillaume; Jany, Jean-Luc; Dominguez-Santos, Rebeca; Poirier, Elisabeth; Debaets, Stella; Hidalgo, Pedro I; Ullán, Ricardo V; Coton, Emmanuel; Coton, Monika
2017-04-01
Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
ClusterMine360: a database of microbial PKS/NRPS biosynthesis
Conway, Kyle R.; Boddy, Christopher N.
2013-01-01
ClusterMine360 (http://www.clustermine360.ca/) is a database of microbial polyketide and non-ribosomal peptide gene clusters. It takes advantage of crowd-sourcing by allowing members of the community to make contributions while automation is used to help achieve high data consistency and quality. The database currently has >200 gene clusters from >185 compound families. It also features a unique sequence repository containing >10 000 polyketide synthase/non-ribosomal peptide synthetase domains. The sequences are filterable and downloadable as individual or multiple sequence FASTA files. We are confident that this database will be a useful resource for members of the polyketide synthases/non-ribosomal peptide synthetases research community, enabling them to keep up with the growing number of sequenced gene clusters and rapidly mine these clusters for functional information. PMID:23104377
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
Molecular evolution of the HoxA cluster in the three major gnathostome lineages
Chiu, Chi-hua; Amemiya, Chris; Dewar, Ken; Kim, Chang-Bae; Ruddle, Frank H.; Wagner, Günter P.
2002-01-01
The duplication of Hox clusters and their maintenance in a lineage has a prominent but little understood role in chordate evolution. Here we examined how Hox cluster duplication may influence changes in cluster architecture and patterns of noncoding sequence evolution. We sequenced the entire duplicated HoxAa and HoxAb clusters of zebrafish (Danio rerio) and extended the 5′ (posterior) part of the HoxM (HoxA-like) cluster of horn shark (Heterodontus francisci) containing the hoxa11 and hoxa13 orthologs as well as intergenic and flanking noncoding sequences. The duplicated HoxA clusters in zebrafish each house considerably fewer genes and are dramatically shorter than the single HoxA clusters of human and horn shark. We compared the intergenic sequences of the HoxA clusters of human, horn shark, zebrafish (Aa, Ab), and striped bass and found extensive conservation of noncoding sequence motifs, i.e., phylogenetic footprints, between the human and horn shark, representing two of the three gnathostome lineages. These are putative cis-regulatory elements that may play a role in the regulation of the ancestral HoxA cluster. In contrast, homologous regions of the duplicated HoxAa and HoxAb clusters of zebrafish and the HoxA cluster of striped bass revealed a striking loss of conservation of these putative cis-regulatory sequences in the 3′ (anterior) segment of the cluster, where zebrafish only retains single representatives of group 1, 3, 4, and 5 (HoxAa) and group 2 (HoxAb) genes and in the 5′ part of the clusters, where zebrafish retains two copies of the group 13, 11, and 9 genes, i.e., AbdB-like genes. In analyzing patterns of cis-sequence evolution in the 5′ part of the clusters, we explicitly looked for evidence of complementary loss of conserved noncoding sequences, as predicted by the duplication-degeneration-complementation model in which genetic redundancy after gene duplication is resolved because of the fixation of complementary degenerative mutations. Our data did not yield evidence supporting this prediction. We conclude that changes in the pattern of cis-sequence conservation after Hox cluster duplication are more consistent with being the outcome of adaptive modification rather than passive mechanisms that erode redundancy created by the duplication event. These results support the view that genome duplications may provide a mechanism whereby master control genes undergo radical modifications conducive to major alterations in body plan. Such genomic revolutions may contribute significantly to the evolutionary process. PMID:11943847
A ground truth based comparative study on clustering of gene expression data.
Zhu, Yitan; Wang, Zuyi; Miller, David J; Clarke, Robert; Xuan, Jianhua; Hoffman, Eric P; Wang, Yue
2008-05-01
Given the variety of available clustering methods for gene expression data analysis, it is important to develop an appropriate and rigorous validation scheme to assess the performance and limitations of the most widely used clustering algorithms. In this paper, we present a ground truth based comparative study on the functionality, accuracy, and stability of five data clustering methods, namely hierarchical clustering, K-means clustering, self-organizing maps, standard finite normal mixture fitting, and a caBIG toolkit (VIsual Statistical Data Analyzer--VISDA), tested on sample clustering of seven published microarray gene expression datasets and one synthetic dataset. We examined the performance of these algorithms in both data-sufficient and data-insufficient cases using quantitative performance measures, including cluster number detection accuracy and mean and standard deviation of partition accuracy. The experimental results showed that VISDA, an interactive coarse-to-fine maximum likelihood fitting algorithm, is a solid performer on most of the datasets, while K-means clustering and self-organizing maps optimized by the mean squared compactness criterion generally produce more stable solutions than the other methods.
clusterProfiler: an R package for comparing biological themes among gene clusters.
Yu, Guangchuang; Wang, Li-Gen; Han, Yanyan; He, Qing-Yu
2012-05-01
Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne
2005-04-15
The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.
Qurrat-ul-Ain; Seemab, Umair; Nawaz, Sulaman; Rashid, Sajid
2011-01-01
In human, WNT gene clusters are highly conserved at specie level and associated with carcinogenesis. Among them, WNT-10A and WNT-6 genes clustered in chromosome 2q35 are homologous to WNT-10B and WNT-1 located in chromosome 12q13, respectively. In an attempt to study co-regulation, the coordinated expression of these genes was monitored in human breast cancer tissues. As compared to normal tissue, both WNT-10A and WNT-10B genes exhibited lower expression while WNT-6 and WNT-1 showed increased expression in breast cancer tissues. The co-expression pattern was elaborated by detailed phylogenetic and syntenic analyses. Moreover, the intergenic and intragenic regions for these gene clusters were analyzed for studying the transcriptional regulation. In this context, adequate conserved binding sites for SOX and TCF family of transcriptional factors were observed. We propose that SOX9 and TCF4 may compete for binding at the promoters of WNT family genes thus regulating the disease phenotype. PMID:22355234
Marenholz, Ingo; Grosche, Sarah; Kalb, Birgit; Rüschendorf, Franz; Blümchen, Katharina; Schlags, Rupert; Harandi, Neda; Price, Mareike; Hansen, Gesine; Seidenberg, Jürgen; Röblitz, Holger; Yürek, Songül; Tschirner, Sebastian; Hong, Xiumei; Wang, Xiaobin; Homuth, Georg; Schmidt, Carsten O; Nöthen, Markus M; Hübner, Norbert; Niggemann, Bodo; Beyer, Kirsten; Lee, Young-Ae
2017-10-20
Genetic factors and mechanisms underlying food allergy are largely unknown. Due to heterogeneity of symptoms a reliable diagnosis is often difficult to make. Here, we report a genome-wide association study on food allergy diagnosed by oral food challenge in 497 cases and 2387 controls. We identify five loci at genome-wide significance, the clade B serpin (SERPINB) gene cluster at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 locus, and the human leukocyte antigen (HLA) region. Stratifying the results for the causative food demonstrates that association of the HLA locus is peanut allergy-specific whereas the other four loci increase the risk for any food allergy. Variants in the SERPINB gene cluster are associated with SERPINB10 expression in leukocytes. Moreover, SERPINB genes are highly expressed in the esophagus. All identified loci are involved in immunological regulation or epithelial barrier function, emphasizing the role of both mechanisms in food allergy.
NASA Astrophysics Data System (ADS)
Guo, Jingyu; Tian, Dehua; McKinney, Brett A.; Hartman, John L.
2010-06-01
Interactions between genetic and/or environmental factors are ubiquitous, affecting the phenotypes of organisms in complex ways. Knowledge about such interactions is becoming rate-limiting for our understanding of human disease and other biological phenomena. Phenomics refers to the integrative analysis of how all genes contribute to phenotype variation, entailing genome and organism level information. A systems biology view of gene interactions is critical for phenomics. Unfortunately the problem is intractable in humans; however, it can be addressed in simpler genetic model systems. Our research group has focused on the concept of genetic buffering of phenotypic variation, in studies employing the single-cell eukaryotic organism, S. cerevisiae. We have developed a methodology, quantitative high throughput cellular phenotyping (Q-HTCP), for high-resolution measurements of gene-gene and gene-environment interactions on a genome-wide scale. Q-HTCP is being applied to the complete set of S. cerevisiae gene deletion strains, a unique resource for systematically mapping gene interactions. Genetic buffering is the idea that comprehensive and quantitative knowledge about how genes interact with respect to phenotypes will lead to an appreciation of how genes and pathways are functionally connected at a systems level to maintain homeostasis. However, extracting biologically useful information from Q-HTCP data is challenging, due to the multidimensional and nonlinear nature of gene interactions, together with a relative lack of prior biological information. Here we describe a new approach for mining quantitative genetic interaction data called recursive expectation-maximization clustering (REMc). We developed REMc to help discover phenomic modules, defined as sets of genes with similar patterns of interaction across a series of genetic or environmental perturbations. Such modules are reflective of buffering mechanisms, i.e., genes that play a related role in the maintenance of physiological homeostasis. To develop the method, 297 gene deletion strains were selected based on gene-drug interactions with hydroxyurea, an inhibitor of ribonucleotide reductase enzyme activity, which is critical for DNA synthesis. To partition the gene functions, these 297 deletion strains were challenged with growth inhibitory drugs known to target different genes and cellular pathways. Q-HTCP-derived growth curves were used to quantify all gene interactions, and the data were used to test the performance of REMc. Fundamental advantages of REMc include objective assessment of total number of clusters and assignment to each cluster a log-likelihood value, which can be considered an indicator of statistical quality of clusters. To assess the biological quality of clusters, we developed a method called gene ontology information divergence z-score (GOid_z). GOid_z summarizes total enrichment of GO attributes within individual clusters. Using these and other criteria, we compared the performance of REMc to hierarchical and K-means clustering. The main conclusion is that REMc provides distinct efficiencies for mining Q-HTCP data. It facilitates identification of phenomic modules, which contribute to buffering mechanisms that underlie cellular homeostasis and the regulation of phenotypic expression.
Arnold, Matthias
2017-12-02
The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.
Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; ...
2016-11-29
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less
Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John
2015-09-01
We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P < 2.2e-6; PD and INF, P = 6.2e-10; INF and DH, (P = .0036). Gene-based testing identified the INS (insulin) gene as significantly associated with cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.
Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.
2008-01-01
Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss, were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as “expression signatures”. Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that diffierent doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose. PMID:16725192
Biased immunoglobulin light chain gene usage in the shark1
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-01-01
This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033
Biased Immunoglobulin Light Chain Gene Usage in the Shark.
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-10-15
This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. Copyright © 2015 by The American Association of Immunologists, Inc.
Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling
2015-03-01
Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong
2017-06-01
The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhavnani, Suresh K.; Chen, Tianlong; Ayyaswamy, Archana; Visweswaran, Shyam; Bellala, Gowtham; Rohit, Divekar; Kevin E., Bassler
2017-01-01
A primary goal of precision medicine is to identify patient subgroups based on their characteristics (e.g., comorbidities or genes) with the goal of designing more targeted interventions. While network visualization methods such as Fruchterman-Reingold have been used to successfully identify such patient subgroups in small to medium sized data sets, they often fail to reveal comprehensible visual patterns in large and dense networks despite having significant clustering. We therefore developed an algorithm called ExplodeLayout, which exploits the existence of significant clusters in bipartite networks to automatically “explode” a traditional network layout with the goal of separating overlapping clusters, while at the same time preserving key network topological properties that are critical for the comprehension of patient subgroups. We demonstrate the utility of ExplodeLayout by visualizing a large dataset extracted from Medicare consisting of readmitted hip-fracture patients and their comorbidities, demonstrate its statistically significant improvement over a traditional layout algorithm, and discuss how the resulting network visualization enabled clinicians to infer mechanisms precipitating hospital readmission in specific patient subgroups. PMID:28815099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahnke, Richard L.; Stackebrandt, Erko; Meier-Kolthoff, Jan P.
Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2T and its next relatives seem more closely related to the genus Myroides than to the typemore » species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2T to decompose plant and algae derived polysaccharides. In conclusion, based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.« less
Hahnke, Richard L.; Stackebrandt, Erko; Meier-Kolthoff, Jan P.; ...
2015-07-30
Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2T and its next relatives seem more closely related to the genus Myroides than to the typemore » species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2T to decompose plant and algae derived polysaccharides. In conclusion, based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.« less
Yin, Min; Li, Guiding; Jiang, Yi; Han, Li; Huang, Xueshi; Lu, Tao; Jiang, Chenglin
2017-11-20
Streptomyces albolongus YIM 101047 produces novel bafilomycins and odoriferous sesquiterpenoids with cytotoxic and antimicrobial activities. Here, we report the complete genome sequence of S. albolongus YIM 101047, which consists of an 8,027,788bp linear chromosome. Forty-six putative biosynthetic gene clusters of secondary metabolites were found. The sesquiterpenoid gene cluster was on the left arm (0.09-0.10Mb), and the bafilomycin biosynthetic gene cluster was on the right arm (7.46-7.64Mb) of the chromosome. Twenty-two putative gene clusters with high or moderate similarity to important antibiotic biosynthetic gene clusters were found, including the antitumor agents bafilomycin, epothilone and hedamycin; the antibacterial/antifungal agents clavulanic acid, collismycin A, frontalamides, kanamycin, streptomycin and streptothricin; the protein phosphatase inhibitor RK-682; and the acute iron poisoning medication desferrioxamine B. The genome sequence reported here will enable us to study the biosynthetic mechanism of these important antibiotics and will facilitate the discovery of novel secondary metabolites with potential applications to human health. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Changsheng; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P
2017-07-18
The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI-02 (1) and propose a mechanism for the biogenesis of its 3,4-dihydronaphthalen-1(2H)-one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act-like qin gene cluster by overexpression of the pathway-specific activator. Mining of this strain also identified dehydroxy-GTRI-02 (2), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018-01-01
ABSTRACT Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were entirely sterile, while mutants in the other two MAT genes were able to develop stipes but never formed an apothecial disk. Little was known about the reprogramming of gene expression during apothecium development. We analyzed transcriptomes of sclerotia, three stages of apothecium development (primordia, stipes, and apothecial disks), and ascospores by RNA sequencing. Ten secondary metabolite gene clusters were upregulated at the onset of sexual development and downregulated in ascospores released from apothecia. Notably, more than 3,900 genes were differentially expressed in ascospores compared to mature apothecial disks. Among the genes that were upregulated in ascospores were numerous genes encoding virulence factors, which reveals that ascospores are transcriptionally primed for infection prior to their arrival on a host plant. Strikingly, the massive transcriptional changes at the initiation and completion of the sexual cycle often affected clusters of genes, rather than randomly dispersed genes. Thirty-five clusters of genes were jointly upregulated during the onset of sexual reproduction, while 99 clusters of genes (comprising >900 genes) were jointly downregulated in ascospores. These transcriptional changes coincided with changes in expression of genes encoding enzymes participating in chromatin organization, hinting at the occurrence of massive epigenetic regulation of gene expression during sexual reproduction. PMID:29440571
Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.
USDA-ARS?s Scientific Manuscript database
Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...
Neuronal cell fate specification in Drosophila.
Jan, Y N; Jan, L Y
1994-02-01
Recent work indicates that the Drosophila nervous system develops in a progressive process of cell fate specification. Expression of specific proneural genes in clusters of cells (the proneural clusters) in the cellular blastoderm endows these cells with the potential to form certain types of neural precursors. Intercellular interactions that involve both proneural genes and neurogenic genes then allow the neural precursors to be singled out from the proneural clusters. Expression of neural precursor genes in all neural precursors is likely to account for the universal aspects of neuronal differentiation, such as axonal outgrowth. Selective expression of certain neuronal-type selector genes further specifies the type of neuron(s) that a neural precursor will produce.
2012-01-01
Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores—soluble, low molecular weight compounds—have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition to acquire iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of “odd” siderophores can reveal the evolutionary strategy that led to their creation. We report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well-known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholera vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores. PMID:22830960
Seyedsayamdost, Mohammad R; Cleto, Sara; Carr, Gavin; Vlamakis, Hera; João Vieira, Maria; Kolter, Roberto; Clardy, Jon
2012-08-22
Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores-soluble, low molecular weight compounds-have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition to acquire iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of "odd" siderophores can reveal the evolutionary strategy that led to their creation. We report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well-known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholera vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.