Sample records for utilizing high pressure

  1. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less

  2. A Comparison of the AC Breakdown Strength of New and Used Poly A-Olefin Oil to Transformer Oil (Preprint)

    DTIC Science & Technology

    2006-04-01

    high- pressure switch program at the University of Missouri - Columbia is presently utilizing synthetic dielectric oil as the switching medium [I...power supplies, and ordinance systems. The temperature of the PA0 utilized in the high- pressure switch program routinely experiences thermal

  3. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  4. The Economic Impact of Closed-Incision Negative-Pressure Therapy in High-Risk Abdominal Incisions: A Cost-Utility Analysis.

    PubMed

    Chopra, Karan; Gowda, Arvind U; Morrow, Chris; Holton, Luther; Singh, Devinder P

    2016-04-01

    Complex abdominal wall reconstruction is beset by postoperative complications. A recent meta-analysis comparing the use of closed-incision negative-pressure therapy to standard dressings found a statistically significant reduction in surgical-site infection. The use of closed-incision negative-pressure therapy is gaining acceptance in this population; however, the economic impact of this innovative dressing remains unknown. In this study, a cost-utility analysis was performed assessing closed-incision negative-pressure therapy and standard dressings following closure of abdominal incisions in high-risk patients. Cost-utility methodology involved reviewing literature related to closed-incision negative-pressure therapy in abdominal wall surgery, obtaining utility estimates to calculate quality-adjusted life-year scores for successful surgery and surgery complicated by surgical-site infection, summing costs using Medicare Current Procedural Terminology codes, and creating a decision tree illuminating the most cost-effective dressing strategy. One-way sensitivity analysis was performed to assess the robustness of the results. The aforementioned meta-analysis comparing closed-incision negative-pressure therapy to standard dressings included a subset of five studies assessing abdominal wall surgery in 829 patients (260 closed-incision negative-pressure therapy and 569 standard dressings). Decision tree analysis revealed an estimated savings of $1546.52 and a gain of 0.0024 quality-adjusted life-year with closed-incision negative-pressure therapy compared with standard dressings; therefore, closed-incision negative-pressure therapy is a dominant treatment strategy. One-way sensitivity analysis revealed that closed-incision negative-pressure therapy is a cost-effective option when the surgical-site infection rate is greater than 16.39 percent. The use of closed-incision negative-pressure therapy is cost-saving following closure of abdominal incisions in high-risk patients.

  5. Reactor cell assembly for use in spectroscopy and microscopy applications

    DOEpatents

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  6. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  7. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Zhu, Yong

    2014-01-01

    Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05496a

  8. Numerical analysis of the accuracy of bivariate quantile distributions utilizing copulas compared to the GUM supplement 2 for oil pressure balance uncertainties

    NASA Astrophysics Data System (ADS)

    Ramnath, Vishal

    2017-11-01

    In the field of pressure metrology the effective area is Ae = A0 (1 + λP) where A0 is the zero-pressure area and λ is the distortion coefficient and the conventional practise is to construct univariate probability density functions (PDFs) for A0 and λ. As a result analytical generalized non-Gaussian bivariate joint PDFs has not featured prominently in pressure metrology. Recently extended lambda distribution based quantile functions have been successfully utilized for summarizing univariate arbitrary PDF distributions of gas pressure balances. Motivated by this development we investigate the feasibility and utility of extending and applying quantile functions to systems which naturally exhibit bivariate PDFs. Our approach is to utilize the GUM Supplement 1 methodology to solve and generate Monte Carlo based multivariate uncertainty data for an oil based pressure balance laboratory standard that is used to generate known high pressures, and which are in turn cross-floated against another pressure balance transfer standard in order to deduce the transfer standard's respective area. We then numerically analyse the uncertainty data by formulating and constructing an approximate bivariate quantile distribution that directly couples A0 and λ in order to compare and contrast its accuracy to an exact GUM Supplement 2 based uncertainty quantification analysis.

  9. Impact of high pressure freezing on DH5alpha Escherichia coli and red blood cells.

    PubMed

    Suppes, Galen J; Egan, Susan; Casillan, Alfred J; Wei Chan, Kok; Seckar, Bill

    2003-10-01

    The impact of high pressure and freezing on survivability of Escherichia coli and human red blood cells was evaluated to determine the utility of high-pressure transitions for preserving living cells. Based on microscopy and survivability, high pressures did not directly impact physical damage to living cells. E. coli studies showed that increased cell death is due to indirect phenomena with decreasing survivability at increasingly high pressures and exposure times. Pressurization rates up to 1.4kbar/min had negligible effects relative to exposures of >5min at high pressures.Both glycine and control of pH near 7.0 were successful in reducing the adverse impacts of high pressure. Survivability increased from <1% at 5min exposure to 2.1kbar of pressure to typical values >20%. The combination of glycine and the buffer salt led to even further improvements in survivability. Pressure changes were used to traverse temperature and pressures consistent with Ice I and Ice III phase boundaries of pure water.

  10. Relationship between pressure and reaction violence in thermal explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Rodriguez, G.; Remelius, D.; Baca, E.; Oschwald, D.; Suvorova, N.

    2017-01-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX 9502 thermal explosions, and fiber Bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  11. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  12. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  13. Effect of geometrical parameters on pressure distributions of impulse manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Brune, Ryan Carl

    Impulse manufacturing techniques constitute a growing field of methods that utilize high-intensity pressure events to conduct useful mechanical operations. As interest in applying this technology continues to grow, greater understanding must be achieved with respect to output pressure events in both magnitude and distribution. In order to address this need, a novel pressure measurement has been developed called the Profile Indentation Pressure Evaluation (PIPE) method that systematically analyzes indentation patterns created with impulse events. Correlation with quasi-static test data and use of software-assisted analysis techniques allows for colorized pressure maps to be generated for both electromagnetic and vaporizing foil actuator (VFA) impulse forming events. Development of this technique aided introduction of a design method for electromagnetic path actuator systems, where key geometrical variables are considered using a newly developed analysis method, which is called the Path Actuator Proximal Array (PAPA) pressure model. This model considers key current distribution and proximity effects and interprets generated pressure by considering the adjacent conductor surfaces as proximal arrays of individual conductors. According to PIPE output pressure analysis, the PAPA model provides a reliable prediction of generated pressure for path actuator systems as local geometry is changed. Associated mechanical calculations allow for pressure requirements to be calculated for shearing, flanging, and hemming operations, providing a design process for such cases. Additionally, geometry effect is investigated through a formability enhancement study using VFA metalworking techniques. A conical die assembly is utilized with both VFA high velocity and traditional quasi-static test methods on varied Hasek-type sample geometries to elicit strain states consistent with different locations on a forming limit diagram. Digital image correlation techniques are utilized to measure major and minor strains for each sample type to compare limit strain results. Overall testing indicated decreased formability at high velocity for 304 DDQ stainless steel and increased formability at high velocity for 3003-H14 aluminum. Microstructural and fractographic analysis helped dissect and analyze the observed differences in these cases. Overall, these studies comprehensively explore the effects of geometrical parameters on magnitude and distribution of impulse manufacturing generated pressure, establishing key guidelines and models for continued development and implementation in commercial applications.

  14. Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines

    NASA Astrophysics Data System (ADS)

    Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong

    2016-12-01

    Taking advantage of the refrigerating effect in the expansion at an appropriate temperature, a fraction of high-pressure natural gas transported by pipelines could be liquefied in a city gate station through a well-organized pressure reducing process without consuming any extra energy. The authors proposed such a new process, which mainly consists of a turbo-expander driven booster, throttle valves, multi-stream heat exchangers and separators, to yield liquefied natural gas (LNG) and liquid light hydrocarbons (LLHs) utilizing the high-pressure of the pipelines. Based on the assessment of the effects of several key parameters on the system performance by a steady-state simulation in Aspen HYSYS, an optimal design condition of the proposed process was determined. The results showed that the new process is more appropriate to be applied in a pressure reducing station (PRS) for the pipelines with higher pressure. For the feed gas at the pressure of 10 MPa, the maximum total liquefaction rate (ytot) of 15.4% and the maximum exergy utilizing rate (EUR) of 21.7% could be reached at the optimal condition. The present process could be used as a small-scale natural gas liquefying and peak-shaving plant at a city gate station.

  15. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives.

    PubMed

    Gunther, Nereus W; Sites, Joseph; Sommers, Christopher

    2015-09-01

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Pressure Self-focusing Effect and Novel Methods for Increasing the Maximum Pressure in Traditional and Rotational Diamond Anvil Cells.

    PubMed

    Feng, Biao; Levitas, Valery I

    2017-04-21

    The main principles of producing a region near the center of a sample, compressed in a diamond anvil cell (DAC), with a very high pressure gradient and, consequently, with high pressure are predicted theoretically. The revealed phenomenon of generating extremely high pressure gradient is called the pressure self-focusing effect. Initial analytical predictions utilized generalization of a simplified equilibrium equation. Then, the results are refined using our recent advanced model for elastoplastic material under high pressures in finite element method (FEM) simulations. The main points in producing the pressure self-focusing effect are to use beveled anvils and reach a very thin sample thickness at the center. We find that the superposition of torsion in a rotational DAC (RDAC) offers drastic enhancement of the pressure self-focusing effect and allows one to reach the same pressure under a much lower force and deformation of anvils.

  17. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    PubMed

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  18. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  19. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  20. Miniature piezoresistive solid state integrated pressure sensors

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.

    1980-01-01

    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.

  1. Turbopump options for nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Bissell, W. R.; Gunn, S. V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range.

  2. Combined Theoretical and in Situ Scattering Strategies for Optimized Discovery and Recovery of High-Pressure Phases: A Case Study of the GaN–Nb 2 O 5 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.

    2016-04-04

    The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides—semiconductors for photocatalytic overall water splitting—is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in themore » GaN–Nb2O5 system. The (Nb2O5)0.84:(NbO2)0.32:(GaN)0.82 rutile structured phase was formed at 1 GPa and 900 °C and gradually transformed to a α-PbO2-related structure above 2.8 GPa and 1000 °C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.« less

  3. Combined Theoretical and in Situ Scattering Strategies for Optimized Discovery and Recovery of High-Pressure Phases: A Case Study of the GaN–Nb 2O 5 System

    DOE PAGES

    Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.; ...

    2016-03-22

    The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides—semiconductors for photocatalytic overall water splitting—is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. In this paper, we utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases weremore » discovered in the GaN–Nb 2O 5 system. The (Nb 2O 5) 0.84:(NbO 2) 0.32:(GaN) 0.82 rutile structured phase was formed at 1 GPa and 900°C and gradually transformed to a α-PbO 2-related structure above 2.8 GPa and 1000°C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.« less

  4. A Compressed Sensing Based Method for Reducing the Sampling Time of A High Resolution Pressure Sensor Array System

    PubMed Central

    Sun, Chenglu; Li, Wei; Chen, Wei

    2017-01-01

    For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188

  5. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    PubMed

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A high pressure hollow cathode ionization source for in-situ detection of organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kanik, Isik

    2001-01-01

    We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDSj that can be utilized as an ionizer in a wide variety of mass analyzers. It is able to function under ambient Martian atmospheric conditions without modification.

  7. A High-Pressure Hollow Cathode Discharge Source for Ion Mobility Spectrometers for In-Situ Detection of Organic Molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Noren, C.; Kanik, I.

    2000-01-01

    We have designed, constructed and begun testing of a new high-pressure (5-10 Torr) hollow cathode discharge source (HCDS) that can be utilized as an ionizer for ion mobility spectrometers as well as in a wide variety of mass analyzers.

  8. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  9. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  10. 77 FR 13079 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products, natural gas and other... high temperature service. They are intended for the low temperature and pressure conveyance of water...

  11. Utility of microelectrodes in high-pressure experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golas, J.; Drickamer, H.G.; Faulkner, L.R.

    1991-11-28

    A method for preparing platinum cylindrical microelectrodes for applications in high-pressure measurements is described. Advantages of microelectrodes of this geometry are illustrated with voltammetric and chonoamperometric experiments performed at pressures of 1-8,000 bar. Quantitative data on the pressure dependence of diffusion coefficients of K[sub 3]Fe(CN)[sub 6] and O[sub 2] in 0.1 M KCl solutions are presented together with qualitative remarks on the behavior of these systems at higher pressure. The results for microelectrodes are compared to those obtained at large cylindrical Pt electrodes under the same experimental conditions.

  12. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  13. Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.

    2004-01-01

    A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.

  14. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart.

    PubMed

    Guo, Yongzheng; Wang, Zhen; Qin, Xinghua; Xu, Jie; Hou, Zuoxu; Yang, Hongyan; Mao, Xuechao; Xing, Wenjuan; Li, Xiaoliang; Zhang, Xing; Gao, Feng

    2018-06-01

    Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.

  15. Final Report. IUT No. B560420 with UC Berkeley. Organic Chemistry at High Pressures &Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, W; Crowhurst, J C; Zaug, J M

    We have successfully completed the research outlined in our proposal: Organic Chemistry at High Pressures and Temperatures. We have experimentally determined a phase diagram which documents the phases and reaction regimes of cyanuric acid , H{sub 3}C{sub 3}N{sub 3}O{sub 3} (1,3,5-triazine-2,4,6-trione), from 300 - 750 K and 0 - 8.1 GPa. We utilized a comparatively new technique to study thin samples of cyanuric acid in the diamond anvil cell in order to collect ambient temperature, high pressure FTIR and Raman data as well as the high-pressure, high-temperature data used in the phase diagram. These experiments made use of the CMLSmore » High-pressure lab's diamond anvil facilities as well as the FTIR and Raman systems.« less

  16. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  18. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.

    PubMed

    Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  19. Wear compensating seal means for rotary piston coal feeder

    DOEpatents

    Gencsoy, Hasan T.; Gardner, John F.

    1979-01-01

    The present invention is directed to a wear compensating seal arrangement for use in a rotary piston feeder utilized for feeding pulverized coal into a gasifier operating at relatively high pressures and elevated temperatures. The rotary piston feeder has a circular casing with a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable disoidal rotor having a cylinder in which a reciprocatable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam whereby pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder and then discharged therefrom into the high pressure gasifier while maintaining minimal losses of producer gas and the expenditure of minimal energy which would detract from the efficiency of the gasification. The seal arrangement of the present invention is disposed between the rotor and the casing about the coal discharge and prevents the high pressure gases from within the gasifier from escaping between these relatively movable parts during operation of the coal feeder. The seal utilizes a primary seal in contact with the rotor and a secondary seal supporting the primary seal. The primary seal is continuously urged towards the rotor by springs and the high pressure producer gas.

  20. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  1. Level indicator for pressure vessels

    DOEpatents

    Not Available

    1982-04-28

    A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  2. MEMS Reaction Control and Maneuvering for Picosat Beyond LEO

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina

    2016-01-01

    The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.

  3. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  4. A reversible transition in liquid Bi under pressure.

    PubMed

    Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y

    2018-01-21

    The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Pravica; M Galley; E Kim

    We report two separate synchrotron FTIR measurements of the high explosive HMX at ambient temperature and static high pressure in the far- (100-500 wavenumbers) and mid- (500-3200 wavenumbers) infrared (IR) regions up to 30 GPa. The sample for the far-IR experiment was loaded with no pressure-transmitting medium and the sample for the mid-IR study utilized a KBr pressurizing medium. Two possible phase transitions from beta-HMX at ambient conditions were observed near 5 and 12 GPa (likely into the epsilon phase). A phase transition was observed near 25 GPa probably into the delta phase. Pressure cycling in both experiments found nomore » irreversible damage within this pressure range.« less

  6. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  7. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    NASA Astrophysics Data System (ADS)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  8. Apparatus and method for removing particulate deposits from high temperature filters

    DOEpatents

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  9. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    PubMed Central

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  10. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  11. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  12. The influence of hyaluronan on the structure of a DPPC-bilayer under high pressures.

    PubMed

    Zander, Thomas; Wieland, D C Florian; Raj, Akanksha; Wang, Min; Nowak, Benedikt; Krywka, Christina; Dėdinaitė, Andra; Claesson, Per Martin; Garamus, Vasil M; Schreyer, Andreas; Willumeit-Römer, Regine

    2016-06-01

    The superior lubrication properties of synovial joints have inspired many studies aiming at uncovering the molecular mechanisms which give rise to low friction and wear. However, the mechanisms are not fully understood yet, and, in particular, it has not been elucidated how the biolubricants present at the interface of cartilage respond to high pressures, which arise during high loads of joints. In this study we utilize a simple model system composed of two biomolecules that have been implied as being important for joint lubrication. It consists of a solid supported dipalmitoylphosphatidylcholin (DPPC) bilayer, which was formed via vesicles fusion on a flat Si wafer, and the anionic polysaccharide hyaluronan (HA). We first characterized the structure of the HA layer that adsorbed to the DPPC bilayers at ambient pressure and different temperatures using X-ray reflectivity (XRR) measurements. Next, XRR was utilized to evaluate the response of the system to high hydrostatic pressures, up to 2kbar (200MPa), at three different temperatures. By means of fluorescence microscopy images the distribution of DPPC and HA on the surface was visualized. Our data suggest that HA adsorbs to the headgroup region that is oriented towards the water side of the supported bilayer. Phase transitions of the bilayer in response to temperature and pressure changes were also observed in presence and absence of HA. Our results reveal a higher stability against high hydrostatic pressures for DPPC/HA composite layers compared to that of the DPPC bilayer in absence of HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alterations in the sarcoplasmic protein fraction of beef muscle with postmortem aging and hydrodynamic pressure processing

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis (CE) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis were utilized to detect differences in the sarcoplasmic protein profiles of beef strip loins subjected to aging and hydrodynamic pressure processing (HDP) treatments. At 48 h postmortem, stri...

  14. High-Temperature and Pressure Aluminum Reactions in Carbon Dioxide Rich Post-Detonation Environments

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce; Manner, Virginia; Pemberton, Steven; Lieber, Mark; Johnson, Carl; Sanders, Eric

    2013-06-01

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  15. High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

    NASA Astrophysics Data System (ADS)

    Tappan, B. C.; Hill, L. G.; Manner, V. W.; Pemberton, S. J.; Lieber, M. A.; Johnson, C. E.; Sanders, V. E.

    2014-05-01

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  16. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  17. The effects of pressure sensor acoustics on airdata derived from a high-angle-of-attack flush airdata sensing (HI-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen R.; Moes, Timothy R.

    1991-01-01

    The accuracy of a prototype nonintrusive airdata system derived for high-angle-of-attack measurements was demonstrated for quasi-steady maneuvers as great as 55 degrees during phase one of the F-18 high alpha research vehicle flight test program. This system consists of a matrix of nine pressure ports arranged in annular rings on the aircraft nose, and estimates the complete airdata set utilizing flow modeling and nonlinear regression. Particular attention is paid to the effects of acoustical distortions within the individual pressure sensors of the HI-FADS pressure matrix. A dynamic model to quantify these effects which describes acoustical distortion is developed and solved in closed form for frequency response.

  18. Measurement of the differential pressure of liquid metals

    DOEpatents

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  19. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  20. Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes.

    PubMed

    Ltaïef, Aziza Hadj; Sabatino, Simona; Proietto, Federica; Ammar, Salah; Gadri, Abdellatif; Galia, Alessandro; Scialdone, Onofrio

    2018-07-01

    The treatment of toxic organic pollutants by electro-Fenton (EF) presents some drawbacks such as the necessity to work at low pH and the low solubility of oxygen in water contacted with air or oxygen at room pressure that results often in slow and relatively low abatements. Here, the coupled adoption of natural heterogeneous catalysts and of relatively high pressure was proposed in order to improve the performances of EF for the treatment of organic pollutants. Caffeic acid (CA) and 3-chlorophenol were used as model resistant organic pollutants. EF process was performed using both conventional homogeneous FeSO 4 and natural heterogeneous catalysts (pyrite, chalcopyrite, Fe 2 O 3 and Fe 3 O 4 ) as iron catalysts and oxygen at various pressures in the absence or in the presence of BDD anode. The effect of the nature of the catalyst, the oxygen pressure, the current density and the catalyst load was widely investigated in order to optimize the process. It was shown that the coupled utilization of a natural heterogeneous catalyst such as chalcopyrite and a relatively high pressure allows to obtain the total removal of CA and a high removal of the TOC (about 75%) in short times (2 h) with relatively high current efficiencies using an Iridium based anode. In the case of 3-chlorophenol, the utilization of a BDD anode was necessary to achieve a high removal of the pollutant and the TOC. It was shown that the removal of 3-chlorophenol can be effectively performed in different water bodies and with different initial concentrations of 3-chlorophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fat utilization and arterial hypertension in overweight/obese subjects.

    PubMed

    Ferro, Yvelise; Gazzaruso, Carmine; Coppola, Adriana; Romeo, Stefano; Migliaccio, Valeria; Giustina, Andrea; Pujia, Arturo; Montalcini, Tiziana

    2013-07-02

    The Respiratory Quotient is a parameter reflecting the utilization of the nutrients by a subject. It is associated with an high rate of subsequent weight gain and with the atherosclerosis. Subjects tending to burn less fat have an increased Respiratory Quotient. Aim of this study was to investigate on the relationship between the Respiratory Quotient and the cardiovascular risk factors. In this cross-sectional study we enrolled 223 individuals of both sexes aged 45-75 ys that were weight stable, receiving a balanced diet, and not affected by debilitating disease or cardiovascular disease. The Respiratory Quotient was measured by Indirect Calorimetry. The measurement of the Blood Pressure was obtained by a mercury sphygmomanometer. We enrolled 133 female and 90 male. Systolic blood pressure only was positively correlated to the Respiratory Quotient in univariate and multivariate regression analysis (p=0,017). The prevalence of hypertension was significatively different between the quartiles of the Respiratory Quotient, with the highest prevalence in the IV quartile (p=0,024). High value of the Respiratory Quotient, an index of nutrients utilization, is associated to an high prevalence of Hypertension. It is possible that in the subjects with high Respiratory Quotient and high body mass index, the activation of the renin angiotensin system, in concert to the reduction of the utilization of the endogenous fat stores, could increase the risk of hypertension.

  2. The dynamic behavior of microbubbles during long ultrasound tone-burst excitation: mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection

    PubMed Central

    Pacella, John J.; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound (US)-microbubble (MB) mediated therapies have been shown to restore perfusion and enhance drug/gene delivery. Due to the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes utilize short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure, and then formed gas-filled clusters that continued to oscillate, break up, and form new clusters. Cavitation detection confirmed continued, albeit diminishing acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone-bursts may confer additional therapeutic effects. PMID:26603628

  3. Hypertension Prevalence, Health Service Utilization, and Participant Satisfaction: Findings From a Pilot Randomized Controlled Trial in Aged Chinese Canadians

    PubMed Central

    Zou, Ping; Dennis, Cindy-Lee; Lee, Ruth; Parry, Monica

    2017-01-01

    Responding to high prevalence of hypertension and patients’ preference of integrating traditional Chinese medicine for blood pressure control, the Dietary Approach to Stop Hypertension With Sodium Reduction for Chinese Canadian (DASHNa-CC) intervention was newly designed as a culturally sensitive dietary educational intervention to facilitate middle-aged and senior Chinese Canadians’ blood pressure control in community. The aim of this study was to report the hypertension prevalence rate according to the data from blood pressure screening events, to describe the characteristics of health service utilization among aged Chinese Canadians, and to report the evaluation of participant satisfaction to the DASHNa-CC intervention. This study was designed as a pilot randomized controlled trial with a sample size of 60. Among 618 Chinese Canadians participated in blood pressure screening events, 54.5% (n = 337) having various levels of hypertension. Across 2 months, 38 (63.3%) participants made a total of 47 visits to see their family physicians; 20 (33.3%) participants consulted their family members 224 times for lifestyle modifications and hypertension self-management. Various forms of Chinese media were frequently used as sources of health care information, and English media were rarely accessed. Participants highly satisfied with the contents, delivery approaches, and integration of traditional Chinese medicine in the intervention. Results indicated that middle-aged and senior Chinese Canadians have high hypertension prevalence and specific characteristics of health service utilization. It is important to implement interventions, which are culturally tailored, language appropriate, using proper technology and incorporating traditional Chinese medicine, in Chinese Canadian community for hypertension control. PMID:28853303

  4. A best-case probe, light source, and database for H2O absorption thermometry to 2100 K and 50 bar

    NASA Astrophysics Data System (ADS)

    Brittelle, Mack S.

    This work aspired to improve the ability of forthcoming researchers to utilize near IR H2O absorption spectroscopy for thermometry with development of three best-case techniques: the design of novel high temperature sapphire optical access probes, the construction of a fixed-wavelength H 2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser, and the creation of an architecture for a high-temperature and -pressure H2O absorption cross-section database. Each area's main goal was to realize the best-case for direct absorption spectroscopy H2O vapor thermometry at combustion conditions. Optical access to combustion devices is explored through the design and implementation of two versions of novel high-temperature (2000 K) sapphire immersion probes (HTSIPs) for use in ambient flames and gas turbine combustors. The development and evaluation of a fixed wavelength H2O absorption spectroscopy (FWAS) system that is demonstrates how the ECDL allows the system to operate in multiple modes that enhance FWAS measurement accuracy by improving wavelength position monitoring, and reducing non-absorption based contamination in spectral scans. The architecture of a high temperature (21000 K) and pressure (50 bar) database (HTPD) is developed that can enhance absorption spectroscopy based thermometry. The HTPD formation is developed by the evaluation of two approaches, a line-by-line (LBL) approach, where transition lineshape parameters are extracted from spectra and used along with a physics based model to allow the simulation of spectra over a wide range of temperatures and pressures, or an absorption cross-section (sigmaabs) approach, where spectra generated from a high temperature and pressure furnace are catalog spectra at various conditions forming a database of absorption cross-sections that is then interpolated to provide a simulated absorbance spectra based on measured reference grade spectra. Utilizing near future reference grade H2O absorption spectra, generated by the Sanders Group by means of an ECDL and a high temperature and pressure furnace, a unique opportunity is taken to provide the research community with a database that can be utilized for optical thermometry.

  5. Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization.

    PubMed

    Wei, Guoguang; Zhang, Alei; Chen, Kequan; Ouyang, Pingkai

    2017-09-01

    This study presents an efficient pretreatment of crayfish shell using high pressure homogenization that enables N-acetyl-d-glucosamine (GlcNAc) production by chitinase. Firstly, the chitinase from Serratia proteamaculans NJ303 was screened for its ability to degrade crayfish shell and produce GlcNAc as the sole product. Secondly, high pressure homogenization, which caused the crayfish shell to adopt a fluffy netted structure that was characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), was evaluated as the best pretreatment method. In addition, the optimal conditions of high pressure homogenization of crayfish shell were determined to be five cycles at a pressure of 400bar, which achieved a yield of 3.9g/L of GlcNAc from 25g/L of crayfish shell in a batch enzymatic reaction over 1.5h. The results showed high pressure homogenization might be an efficient method for direct utilization of crayfish shell for enzymatic production of GlcNAc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 24 CFR 3280.404 - Standard for egress windows and devices for use in manufactured homes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....305(c)(1). (f) Protection of egress window openings in high wind areas. For homes designed to be... capable of resisting the design wind pressures specified in § 3280.305 without taking the home out of... Utilization in Manufactured Housing, except the exterior and interior pressure tests for components and...

  7. Health Instruction Packages: Consumer--Your Heart and Blood Pressure.

    ERIC Educational Resources Information Center

    Woods, James W.; And Others

    Text, illustrations, and exercises are utilized in this set of learning modules to instruct the general public in the prevention and treatment of heart disease. The first module, by James W. Woods, presents a medical definition of high blood pressure, reviews its causes and effects, and discusses its treatment. A script to a slide version of this…

  8. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of glued-diaphragm fibre optic pressure sensors in a shock tube

    NASA Astrophysics Data System (ADS)

    Sharifian, S. Ahmad; Buttsworth, David R.

    2007-02-01

    Glued-diaphragm fibre optic pressure sensors that utilize standard telecommunications components which are based on Fabry-Perot interferometry are appealing in a number of respects. Principally, they have high spatial and temporal resolution and are low in cost. These features potentially make them well suited to operation in extreme environments produced in short-duration high-enthalpy wind tunnel facilities where spatial and temporal resolution are essential, but attrition rates for sensors are typically very high. The sensors we consider utilize a zirconia ferrule substrate and a thin copper foil which are bonded together using an adhesive. The sensors show a fast response and can measure fluctuations with a frequency up to 250 kHz. The sensors also have a high spatial resolution on the order of 0.1 mm. However, with the interrogation and calibration processes adopted in this work, apparent errors of up to 30% of the maximum pressure have been observed. Such errors are primarily caused by mechanical hysteresis and adhesive viscoelasticity. If a dynamic calibration is adopted, the maximum measurement error can be limited to about 10% of the maximum pressure. However, a better approach is to eliminate the adhesive from the construction process or design the diaphragm and substrate in a way that does not require the adhesive to carry a significant fraction of the mechanical loading.

  10. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  11. Microbial production of metabolites and associated enzymatic reactions under high pressure.

    PubMed

    Dong, Yongsheng; Jiang, Hua

    2016-11-01

    High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market.

  12. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  13. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  14. Pulsed high energy synthesis of fine metal powders

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  15. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    PubMed

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators.

    PubMed

    Lee, Woong Gi; Kim, Do Hyeong; Jeon, Woo Cheol; Kwak, Sang Kyu; Kang, Seok Ju; Kang, Sang Wook

    2017-04-28

    We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO 3 ) 2 ·6H 2 O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.

  17. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, L. G.; Lawson, M.; Onyszczak, M.

    Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less

  18. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

    DOE PAGES

    Steele, L. G.; Lawson, M.; Onyszczak, M.; ...

    2017-11-28

    Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less

  19. Powder fed sheared dispersal particle generator

    NASA Technical Reports Server (NTRS)

    Morrisette, E. L.; Bushnell, D. M. (Inventor)

    1984-01-01

    A particle generating system is described which is capable of breaking up agglomerations of particles and producing a cloud of uniform, submicron-sized particles at high pressure and high flow rates. This is achieved by utilizing a tubular structure which has injection microslits on is periphery to accept and disperse the desired particle feed. By suppling a carrying fluid at a pressure, of approximately twice the ambient pressure of the velocimeter's settling chamber, the microslits operate at choked flow conditions. The shearing action of this choked flow is sufficient to overcome interparticle bonding forces, thereby breaking up the agglomerates of the particles feed into individual particles.

  20. Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamic interaction

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1989-01-01

    The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.

  1. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    PubMed

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  2. Does Access to Care Still Affect Health Care Utilization by Immigrants? Testing of an Empirical Explanatory Model of Health Care Utilization by Korean American Immigrants with High Blood Pressure

    PubMed Central

    Han, Hae-Ra; Lee, Jong-Eun; Kim, Ji-Yun; Kim, Kim B.; Ryu, Jai Poong; Kim, Miyong

    2015-01-01

    Despite well-known benefits of health care utilization for the effective management of chronic diseases, the underlying mechanism of understanding health care utilization in ethnic minority population has not been systematically explored. The purpose of this paper is to examine the predictive ability of a health care utilization model by analyzing the interplay between predisposing, enabling, and need factors. The sample consisted of hypertensive Korean American immigrants (KAIs) 40–64 years of age who participated in a self-help intervention for high blood pressure care (SHIP-HBP). Using structured questionnaires, data were collected from 445 KAIs at baseline and analyzed with path analysis. Insurance status and relevant medical history were not just strong direct effects but also carried the most total effect on the health care utilization of these patients. Life priorities, years of residence in the US and perceived income level exerted indirect effects through the participants’ insurance status. Our statistical analysis indicated a good fit for the proposed model (x2 = 28.4, P = 0.29; NFI = 0.91; CFI = 0.99; RMSEA = 0.02). Overall, the model explained 18% of the variance in health care utilization of hypertensive KAIs. These findings strongly support a need to improve access to health care for KAIs by introducing a variety of community resources and building sustainable community infrastructures. PMID:19649709

  3. High-pressure phases of Mg2Si from first principles

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.

    2016-03-01

    First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.

  4. Seal for permitting transfer of tape from one pressure region to a region of substantially different pressure

    DOEpatents

    Carter, H. Kennon; Mlekodaj, Ronald L.

    1977-01-01

    A seal is provided for allowing a thin flexible tape to be pulled from a high vacuum region (less than 10.sup.-.sup.6 torr) into atmospheric pressure. The tape first passes through a slit in an elastomer and thence through a pool of vacuum pump fluid into a differentially pumped volume. A second slit in an elastomer is the final seal element prior to exit of the tape to atmospheric pressure. The vacuum seal is utilized in a system for the rapid removal of samples, implanted in the surface of the tape, from a vacuum system to atmospheric pressure.

  5. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    DTIC Science & Technology

    2014-09-01

    simulation time frame from 30 days to one year. This was enabled by porting the simulation to the Pleiades supercomputer at NASA Ames Research Center, a...including the motivation for changes to our past approach. We then present the software implementation (3) on the NASA Ames Pleiades supercomputer...significantly updated since last year’s paper [25]. The main incentive for that was the shift to a highly parallel approach in order to utilize the Pleiades

  6. Pressure-induced dramatic changes in organic–inorganic halide perovskites

    PubMed Central

    Yang, Wenge

    2017-01-01

    Organic–inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain in terms of their stability, the use of environmentally unfriendly chemicals, and the lack of an insightful understanding into structure–property relationships. Alternatively, pressure, a fundamental thermodynamic parameter that can significantly alter the atomic and electronic structures of functional materials, has been widely utilized to further our understanding of structure–property relationships, and also to enable emergent or enhanced properties of given materials. In this perspective, we describe the recent progress of high-pressure research on hybrid perovskites, particularly regarding pressure-induced novel phenomena and pressure-enhanced properties. We discuss the effect of pressure on structures and properties, their relationships and the underlying mechanisms. Finally, we give an outlook on future research avenues in which high pressure and related alternative methods such as chemical tailoring and interfacial engineering may lead to novel hybrid perovskites uniquely suited for high-performance energy applications. PMID:29147500

  7. Micro-focusing System of the Taiwan Contract Beamline BL12XU at SPring-8 for IXS Experiments under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.-Y.; Cai, Y.-Q.; Chung, S.-C.

    The Taiwan Contract Beamline BL12XU at SPring-8 is designed for inelastic X-ray scattering (IXS) experiments. DCS is a powerful technique capable of probing the dynamic behavior and electronic structure of materials under high pressure. The state-of-the-arts technology to generate static high pressure up to mega-bar range uses diamond anvil cells (DAC). The allowed volume of the sample in DAC scales inversely with the pressure and is limited to the order of 1 x 10-3 mm3. In order to utilize such a device to explore the interesting phenomena under high pressure, we have designed a micro-focusing system using a set ofmore » KB mirrors, which is compatible with the existing optical system of BL12XU. Realistic ray-tracing results indicate that the system can achieve a focus of 10 {mu}m x 5.3 {mu}m(H x V) with a total efficiency of about 86%. The improved focus is expected to substantially enhance the experimental capability of BL12XU for high-pressure research.« less

  8. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  9. Studies in Pressurized Oxy-Combustion: Process Development and Control of Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Gopan, Akshay

    Fossil fuels supply over 80% of the world's primary energy and more than two-thirds of the world's electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide--a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would allow the utilization of vast and widespread fuel resources (coal, oil, gas and biomass) that are capable of delivering power on demand, while mitigating the potentially harmful impact of CO2. Support for carbon capture, utilization and sequestration (CCUS) for power plants is, however, limited due to the high cost of electricity associated with the currently available technologies. The ultimate requirement of high pressure CO2 for either sequestration or utilization has led to the investigation of pressurized oxy-combustion technologies. Since at higher pressure, the dew point of the flue gas is higher than at atmospheric pressure, pressurized oxy-combustion can be utilized to extract the latent heat of condensation of the flue gas moisture, leading to an increase in plant efficiency. A new staged, pressurized oxy-combustion (SPOC) process for power generation with carbon capture is presented in the first part of this dissertation. The proposed staged, pressurized oxy-combustion process not only extracts the latent heat of condensation of the flue gas moisture, but unlike first generation oxy-combustion or even other pressurized oxy-combustion processes, it also minimizes the recycle of flue gas. The net plant efficiency of this proposed process is more than 25% higher than that of first generation oxy-combustion. A detailed analysis of the capital and operating costs shows that the cost of electricity generated from this process would meet the U.S. Dept. of Energy target for power generation with carbon capture. The design of a low-recycle oxy-combustion boiler is not trivial. A number of designs have been proposed, but were deemed unfit for the utility industry due to much higher heat flux than could be safely tolerated by the boiler tubes. In the second part of this dissertation, a new burner and boiler design is proposed that could be utilized in the low-recycle SPOC process. The proposed burner/boiler design 1) accommodates low flue gas recycle without exceeding wall heat flux limits, 2) increases the share of radiative over convective heat transfer in the boiler, 3) significantly reduces ash fouling and slagging, and 4) is flexible in that it is able to operate under various thermal loads. The proposed burner design would also lead to reduced soot, as compared to a normal burner. These aspects of the burner/boiler design are investigated in the dissertation.

  10. Creating Highly Qualified Teachers: Maximizing University Resources to Provide Professional Development in Rural Areas

    ERIC Educational Resources Information Center

    Mollenkopf, Dawn L.

    2009-01-01

    The "highly qualified teacher" requirement of No Child Left Behind has put pressure on rural school districts to recruit and retain highly qualified regular and special education teachers. If necessary, they may utilize uncertified, rural teachers with provisional certification; however, these teachers may find completing the necessary…

  11. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  12. Laser Scanning System for Pressure and Temperature Paints

    NASA Technical Reports Server (NTRS)

    Sullivan, John

    1997-01-01

    Acquiring pressure maps of aerodynamic surfaces is very important for improving and validating the performance of aerospace vehicles. Traditional pressure measurements are taken with pressure taps embedded in the model surface that are connected to transducers. While pressure taps allow highly accurate measurements to be acquired, they do have several drawbacks. Pressure taps do not give good spatial resolution due to the need for individual pressure tubes, compounded by limited space available inside models. Also, building a model proves very costly if taps are needed because of the large amount of labor necessary to drill, connect and test each one. The typical cost to install one tap is about $200. Recently, a new method for measuring pressure on aerodynamic surfaces has been developed utilizing a technology known as pressure sensitive paints (PSP). Using PSP, pressure distributions can be acquired optically with high spatial resolution and simple model preparation. Flow structures can be easily visualized using PSP, but are missed using low spatial resolution arrays of pressure taps. PSP even allows pressure distributions to be found on rotating machinery where previously this has been extremely difficult or even impossible. The goal of this research is to develop a laser scanning system for use with pressure sensitive paints that allows accurate pressure measurements to be obtained on various aerodynamic surfaces ranging from wind tunnel models to high speed jet engine compressor blades.

  13. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    NASA Astrophysics Data System (ADS)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  14. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  15. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

    NASA Astrophysics Data System (ADS)

    Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun

    2017-09-01

    A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

  16. Photoexcitation of lasers and chemical reactions for NASA missions: A theoretical study. [optical pumping in high pressure gas

    NASA Technical Reports Server (NTRS)

    Javan, A.; Guerra, M.

    1981-01-01

    The possibility of obtaining CW laser oscillation by optical pumping in the infrared at an elevated gas pressure is reviewed. A specific example utilizing a mixture of CO and NO gases is included. The gas pressures considered are in excess of several atmospheres. Laser frequency tuning over a broad region becomes possible at such elevated gas pressures due to collisional broadening of the amplifying transitions. The prior-rate and surprisal analysis are applied to obtain detailed VV and VT rates for CO and NO molecules and the transfer rates in a CO-NO gas mixture. The analysis is capable of giving temperature dependence of the rate constants. Computer estimates of the rates are presented for vibrational levels up to v = 50. The results show that in the high-lying vibrational states the VV transfer rates with Delta nu = 2 become appreciable.

  17. Metallographic assessment of Al-12Si high-pressure die casting escalator steps.

    PubMed

    Vander Voort, George Frederic; Suárez-Peña, Beatriz; Asensio-Lozano, Juan

    2014-10-01

    A microstructural characterization study was performed on high-pressure die cast specimens extracted from escalator steps manufactured from an Al-12 wt.% Si alloy designed for structural applications. Black and white, color light optical imaging and scanning electron microscopy techniques were used to conduct the microstructural analysis. Most regions in the samples studied contained globular-rosette primary α-Al grains surrounded by an Al-Si eutectic aggregate, while primary dendritic α-Al grains were present in the surface layer. This dendritic microstructure was observed in the regions where the melt did not impinge directly on the die surface during cavity filling. Consequently, microstructures in the surface layer were nonuniform. Utilizing physical metallurgy principles, these results were analyzed in terms of the applied pressure and filling velocity during high-pressure die casting. The effects of these parameters on solidification at different locations of the casting are discussed.

  18. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  19. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  20. Process and system for producing high-density pellets from a gaseous medium

    DOEpatents

    Foster, Christopher A.

    1999-01-01

    A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.

  1. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  2. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS).

    PubMed

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.

  3. Theoretical Analysis and Experimental Study on the Coating Removal from Passenger-Vehicle Plastics for Recycling by Using Water Jet Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongshen; Chen, Ming

    2015-11-01

    The recovery and utilization of automotive plastics are a global concern because of the increasing number of end-of-life vehicles. In-depth studies on technologies for the removal of coatings from automotive plastics can contribute to the high value-added levels of the recycling and utilization of automotive plastic. The liquid waste generated by removing chemical paint by using traditional methods is difficult to handle and readily produces secondary pollution. Therefore, new, clean, and highly efficient techniques of paint removal must be developed. In this article, a method of coating removal from passenger-vehicle plastics was generated based on high-pressure water jet technology to facilitate the recycling of these plastics. The established technology was theoretically analyzed, numerically simulated, and experimentally studied. The high-pressure water jet equipment for the removal of automotive-plastic coatings was constructed through research and testing, and the detailed experiments on coating removal rate were performed by using this equipment. The results showed that high-pressure water jet technology can effectively remove coatings on the surfaces of passenger-vehicle plastics. The research also revealed that the coating removal rate increased as jet pressure ( P) increased and then decreased when jet moving speed ( Vn) increased. The rate decreased as the distance from nozzle to work piece ( S nw ) and the nozzle angle ( Φ) increased. The mathematical model for the rate of removal of coatings from bumper surfaces by water jet was derived based on the experiment data and can effectively predict coating removal rate under different operating conditions.

  4. Bio-mass utilization in high pressure cogeneration boiler

    NASA Astrophysics Data System (ADS)

    Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.

    2017-07-01

    Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.

  5. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox.

    PubMed

    Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo

    2018-10-15

    Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Tenderization of beef loins using a high efficiency sparker

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effectiveness of tenderizing beef strip loins using high-pressure shockwaves generated from a sparker source. A total of 117 steaks from 16 beef strip loins were utilized with each treated steak having an adjacent steak as a non-treated control. Ste...

  7. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  8. Sounding experiments of high pressure gas discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biele, Joachim K.

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less

  9. CFD predictions of near-field pressure signatures of a low-boom aircraft

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran; Baize, Daniel G.

    1992-01-01

    A three dimensional Euler marching code has been utilized to predict near-field pressure signatures of an aircraft with low boom characteristics. Computations were extended to approximately six body lengths aft of the aircraft in order to obtain pressure data at three body lengths below the aircraft for a cruise Mach number of 1.6. The near-field pressure data were extrapolated to the ground using a Whitham based method. The distance below the aircraft where the pressure data are attained is defined in this paper as the 'separation distance.' The influences of separation distances and the still highly three-dimensional flow field on the predicted ground pressure signatures and boom loudness are presented in this paper.

  10. Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome.

    PubMed

    Henderson, William R; Chen, Lu; Amato, Marcelo B P; Brochard, Laurent J

    2017-10-01

    Acute respiratory distress syndrome is a multifactorial lung injury that continues to be associated with high levels of morbidity and mortality. Mechanical ventilation, although lifesaving, is associated with new iatrogenic injury. Current best practice involves the use of small Vt, low plateau and driving pressures, and high levels of positive end-expiratory pressure. Collectively, these interventions are termed "lung-protective ventilation." Recent investigations suggest that individualized measurements of pulmonary mechanical variables rather than population-based ventilation prescriptions may be used to set the ventilator with the potential to improve outcomes beyond those achieved with standard lung protective ventilation. This review outlines the measurement and application of clinically applicable pulmonary mechanical concepts, such as plateau pressures, driving pressure, transpulmonary pressures, stress index, and measurement of strain. In addition, the concept of the "baby lung" and the utility of dynamic in addition to static measures of pulmonary mechanical variables are discussed.

  11. Acculturation, Medication Adherence, Lifestyle Behaviors, and Blood Pressure Control Among Arab Americans.

    PubMed

    Tailakh, Ayman K; Evangelista, Lorraine S; Morisky, Donald E; Mentes, Janet C; Pike, Nancy A; Phillips, Linda R

    2016-01-01

    The aim of this study was to examine the relationship between acculturation, medication adherence, lifestyle behaviors (e.g., physical activity, nutrition, weight control), and blood pressure control among hypertensive Arab Americans. The study utilized a cross-sectional descriptive design. A convenience sample of 126 participants completed questionnaires and had measures of blood pressure, weight, and height. Forty-six participants were hypertensive and were included in the analysis. Only 29.2% of participants reported high medication adherence. High medication adherence was associated with lower diastolic blood pressure, eating a healthy diet, and following lifestyle modifications. Acculturation was significantly associated with physical activity and body mass index. Our study found that acculturated participants were more adherent to medications and physical activity and had better blood pressure control. Further studies are needed to explore how acculturation improves adherence and what factors contribute to better adherence in order to design culturally sensitive interventions. © The Author(s) 2014.

  12. Acculturation, Medication Adherence, Lifestyle Behaviors, and Blood Pressure Control Among Arab Americans

    PubMed Central

    Tailakh, Ayman K.; Evangelista, Lorraine S.; Morisky, Donald E.; Mentes, Janet C.; Pike, Nancy A.; Phillips, Linda R.

    2015-01-01

    Purpose The aim of this study was to examine the relationship between acculturation, medication adherence, lifestyle behaviors (e.g., physical activity, nutrition, weight control), and blood pressure control among hypertensive Arab Americans. Design The study utilized a cross-sectional descriptive design. A convenience sample of 126 participants completed questionnaires and had measures of blood pressure, weight, and height. Forty-six participants were hypertensive and were included in the analysis. Results Only 29.2% of participants reported high medication adherence. High medication adherence was associated with lower diastolic blood pressure, eating a healthy diet, and following lifestyle modifications. Acculturation was significantly associated with physical activity and body mass index. Conclusion Our study found that acculturated participants were more adherent to medications and physical activity and had better blood pressure control. Further studies are needed to explore how acculturation improves adherence and what factors contribute to better adherence in order to design culturally sensitive interventions. PMID:24848347

  13. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  14. Test results of the highly instrumented Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.

    1992-01-01

    Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.

  15. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  16. To Follow, Reject, or Flip the Script: Managing Instructional Tension in an Era of High-Stakes Accountability

    ERIC Educational Resources Information Center

    Stillman, Jamy; Anderson, Lauren

    2011-01-01

    Considerable research indicates that high-stakes accountability policies have the capacity to influence language arts instruction, particularly in urban, high-needs schools where pressure to increase test scores tends to be most acute. This article utilizes Cultural Historical Activity Theory to critically examine the constraints and affordances…

  17. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  18. First-principles phase stability at high temperatures and pressure in Nb 90Zr 10 alloy

    DOE PAGES

    Landa, A.; Soderlind, P.

    2016-08-18

    The phase stability of Nb 90Zr 10 alloy at high temperatures and compression is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics (SCAILD) approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of the body-centered cubic phase, which results in formation of a rhombohedral phase at around 50 GPa, will prevail significant heating. As a result, the body-centered cubic structure will recover before melting at ~1800 K.

  19. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  20. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  1. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  2. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tao; Fan, Tingbo; Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focusedmore » HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.« less

  3. Subscale testing of prompt agent defeat formulations

    NASA Astrophysics Data System (ADS)

    Knott, A.; Stamatis, D.; Svingala, F.; Lightstone, J.; Miller, K.; Bensman, M.; Bohmke, M.

    2017-01-01

    There is a need to improve the current bioagent defeat systems with formulations that produce lower peak pressure and impulse, sustained high temperatures, and release of biocidal species for prompt defeat applications. In this work, explosive charge configurations similar to fuel-air explosives were detonated in a semi-enclosed chamber configuration. Binder type and fuel-to-oxidizer ratios were varied to observe the effects on combustion performance. Thermocouple measurements and high-speed video were used to monitor the combustion of the dispersed formulation. The down-selected formulations were then tested in a sub-scale vented agent defeat system developed to evaluate performance of formulations against aerosolized Bacillus thuringiensis (Bt) spores. Diagnostics including thermocouples and piezoelectric pressure gauges were utilized to characterize the detonation event. Biological sampling with surface coupons, liquid impingement, and filters of the post detonation environment were utilized to determine spore survivability and to rank the relative effectiveness of each formulation.

  4. Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.

    PubMed

    Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng

    2018-06-06

    Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Waites, W. L.; Chin, Y. T.

    1974-01-01

    A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.

  6. Rheological assessment of nanofluids at high pressure high temperature

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  7. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    NASA Technical Reports Server (NTRS)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  8. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS)

    PubMed Central

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960

  9. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  10. Soybean stem growth under high-pressure sodium with supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1991-01-01

    To study high-pressure sodium (HPS) lamps used for plant lighting because of their high energy conversion efficiencies, 'McCall' soybean plants were grown for 28 days in growth chambers utilizing HPS lamps, with/without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux levels, including blue fluorescent, were maintained near 300 or 500 micromol/sq m s. Results indicate that employment of HPS or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by the addition of a small amount of supplemental blue light.

  11. Upper esophageal sphincter (UES) metrics on high-resolution manometry (HRM) differentiate achalasia subtypes.

    PubMed

    Blais, P; Patel, A; Sayuk, G S; Gyawali, C P

    2017-12-01

    The upper esophageal sphincter (UES) reflexively responds to bolus presence within the esophageal lumen, therefore UES metrics can vary in achalasia. Within consecutive patients undergoing esophageal high-resolution manometry (HRM), 302 patients (58.2±1.0 year, 57% F) with esophageal outflow obstruction were identified, and compared to 16 asymptomatic controls (27.7±0.7 year, 56% F). Esophageal outflow obstruction was segregated into achalasia subtypes 1, 2, and 3, and esophagogastric junction outflow obstruction (EGJOO with intact peristalsis) using Chicago Classification v3.0. UES and lower esophageal sphincter (LES) metrics were compared between esophageal outflow obstruction and normal controls using univariate and multivariate analysis. Linear regression excluded multicollinearity of pressure metrics that demonstrated significant differences across individual subtype comparisons. LES integrated relaxation pressure (IRP) had utility in differentiating achalasia from controls (P<.0001), but no utility in segregating between subtypes (P=.27). In comparison to controls, patients collectively demonstrated univariate differences in UES mean basal pressure, relaxation time to nadir, recovery time, and residual pressure (UES-RP) (P≤.049). UES-RP was highest in type 2 achalasia (P<.0001 compared to other subtypes and controls). In multivariate analysis, only UES-RP retained significance in comparison between each of the subgroups (P≤.02 for each comparison). Intrabolus pressure was highest in type 3 achalasia; this demonstrated significant differences across some but not all subtype comparisons. Nadir UES-RP can differentiate achalasia subtypes within the esophageal outflow obstruction spectrum, with highest values in type 2 achalasia. This metric likely represents a surrogate marker for esophageal pressurization. © 2017 John Wiley & Sons Ltd.

  12. Implementing Photodissociation in an Orbitrap Mass Spectrometer

    PubMed Central

    Vasicek, Lisa A.; Ledvina, Aaron R.; Shaw, Jared; Griep-Raming, Jens; Westphall, Michael S.; Coon, Joshua J.; Brodbelt, Jennifer S.

    2011-01-01

    We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD. PMID:21953052

  13. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  14. Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xun; An, Linan; Xu, Chengying

    2013-06-30

    The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300°C and pressure sensors up to 800°C. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in thismore » project can survive harsh environments characterized by high temperatures (>1000°C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.« less

  15. Extraction of Xenon Using Enriching Reflux Pressure Swing Adsorption

    DTIC Science & Technology

    2010-09-01

    collection scheme aimed at preconcentrating xenon without the use of any form of cooling. The collection scheme utilizes activated charcoal (AC), a... collection efficiency for a given trap size. For a given isothermal system, it can be seen that if adsorption occurs at high pressure, where capacity is... activated charcoal at room temperature. These results are presented below and show that these early tests appear very promising and that useful quantities

  16. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    PubMed

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Single-stage, low-noise, advanced technology fan. Volume 4: Fan aerodynamics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Silverman, I.; Little, D. R.

    1977-01-01

    Test results at design speed show fan total pressure ratio, weight flow, and adiabatic efficiency to be 2.2, 2.9, and 1.8% lower than design goal values. The hybrid acoustic inlet (which utilizes a high throat Mach number and acoustic wall treatment for noise suppression) demonstrated total pressure recoveries of 98.9% and 98.2% at takeoff and approach. Exhaust duct pressure losses differed between the hardwall duct and treated duct with splitter by about 0.6% to 2.0% in terms of fan exit average total pressure (depending on operating condition). When the measured results were used to estimate pressure losses, a cruise sfc penalty of 0.68%, due to the acoustically treated duct, was projected.

  18. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  19. Launch Vehicle Base Buffeting- Recent Experimental And Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Hannemann, K.; Ludeke, H.; Pallegoix, J.-F.; Ollivier, A.; Lambare, H.; Maseland, J. E. J.; Geurts, E. G. M.; Frey, M.; Deck, S.; Schrijer, F. F. J.; Scarano, F.; Schwane, R.

    2011-05-01

    During atmospheric ascent of launcher configurations, a massively separated flow environment in the base region of the launcher can generate strong low frequency wall pressure fluctuations. The nozzle structure can be subjected to dynamic loads resulting from these pressure fluctuations. The loads are usually most severe during the high dynamic pressure phase of flight at transonic speeds and the aerodynamic excitation can induce a response of the structural modes called buffeting. In order to obtain a deeper insight into base buffeting related to the Ariane 5 launch vehicle, a set of experiments was performed in the DNW HST wind tunnel in close cooperation with the utilization of modern CFD tools (hybrid RANS/LES). During the test campaign a 1/60 scale Ariane 5 launcher test article was utilized, and detailed unsteady pressure measurements in the base region of the model were for the first time performed in conjunction with time resolved velocity field measurements using PIV. The work was performed in the framework of the ESA TRP “Unsteady Subscale Force Measurements within a Launch Vehicle Base Buffeting Environment”.

  20. Loss of control air at Browns Ferry Unit One: accident sequence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, R.M.; Hodge, S.A.

    1986-04-01

    This study describes the predicted response of the Browns Ferry Nuclear Plant to a postulated complete failure of plant control air. The failure of plant control air cascades to include the loss of drywell control air at Units 1 and 2. Nevertheless, this is a benign accident unless compounded by simultaneous failures in the turbine-driven high pressure injection systems. Accident sequence calculations are presented for Loss of Control Air sequences with assumed failure upon demand of the Reactor Core Isolation Cooling (RCIC) and the High Pressure Coolant Injection (HPCI) at Unit 1. Sequences with and without operator action are considered.more » Results show that the operators can prevent core uncovery if they take action to utilize the Control Rod Drive Hydraulic System as a backup high pressure injection system.« less

  1. A High Pressure Post-Perovskite Phase Transition in NaMgF3--a MgSiO3 Analog Material

    NASA Astrophysics Data System (ADS)

    Martin, C.; Liu, H.; Crichton, W.; Parise, J. B.

    2005-12-01

    Since Murakami et al. (2004) identified a perovskite (pv, Pbnm) to post-perovskite (ppv, Cmcm) structural phase transition in MgSiO3, the transition has been reported to occur in many oxides at ultra-high pressures (>60 GPa). The layered ppv structure is rapidly shaping a better understanding of seismic anisotropy in the controversial D" region of the lower mantle. While the ppv unit cell may be derived from indexing of the powder pattern, the structure adopted at high pressure is experimentally ill-constrained due to compromised powder diffraction statistics typically obtained from small sample volumes at extreme conditions in the diamond anvil cell. NaMgF3, a structural analog material to MgSiO3 pv, exhibits a large compressibility and presents the possibility of reducing the pv-ppv transition pressure, allowing for improved powder statistics from a larger sample volume. In accordance with our previous theoretical and experimental evidence (Liu et al., 2005; Parise et al., 2004), we have observed a phase transition in NaMgF3 during two recent independent high pressure trials utilizing monochromatic x-ray diffraction and in-situ laser heating in the diamond anvil cell at pressures as low as 30 GPa. From our analysis thus far, we have found the unit cell of the high pressure phase cannot be indexed according to pv (Pbnm) or close permutations of ppv (Cmcm) unit cells predicted for NaMgF3 or unit cells observed for ppv MgSiO3 and MgGeO3. In addition, we have precluded a breakdown to high pressure phases of NaF and MgF3 as an explanation for the observed data. Upon pressure release, we observe diffraction peaks from the high pressure phase in the absence of pv NaMgF3, suggesting the high pressure structure is quenchable to ambient conditions. The results of the work in progress will be presented at the meeting.

  2. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  3. 75 FR 5575 - Taking and Importing Marine Mammals; Navy Training Activities Conducted in the Gulf of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... present in the area to sound from various active tactical sonar sources or to pressure from underwater... utilizing mid- and high frequency active sonar sources and explosive detonations. These sonar and explosive...

  4. Titanium α-ω phase transformation pathway and a predicted metastable structure

    DOE PAGES

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  5. Sorption J-T refrigeration utilizing manganese nitride chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Lund, Alan

    1990-01-01

    The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.

  6. Investigation of Slag Compositions and Pressure Ranges Suitable for Electroslag Remelting under Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Radwitz, S.; Scholz, H.; Friedrich, B.

    It is well known that high contents of oxygen and hydrogen in creep resistant structural steels like 21CrMoV5-7 have negative influence on a variety of material properties. To investigate the refining ability of various slag compositions under reduced pressure multiple experiments were performed in a 40 kW vacuum-induction furnace with the aim to ensure minimal oxygen and hydrogen contents. With regard to slag evaporation, different mixtures of fluorides and oxides as well as pure oxide systems were utilized. The pressure was varied in the range of 5 and 700 mbar.

  7. Analytical considerations and dimensionless analysis for a description of particle interactions in high pressure processes

    NASA Astrophysics Data System (ADS)

    Rauh, Cornelia; Delgado, Antonio

    2010-12-01

    High pressures of up to several hundreds of MPa are utilized in a wide range of applications in chemical, bio-, and food engineering, aiming at selective control of (bio-)chemical reactions. Non-uniformity of process conditions may threaten the safety and quality of the resulting products because processing conditions such as pressure, temperature, and treatment history are crucial for the course of (bio-)chemical reactions. Therefore, thermofluid-dynamical phenomena during the high pressure process have to be examined, and numerical tools to predict process uniformity and to optimize the processes have to be developed. Recently applied mathematical models and numerical simulations of laboratory and industrial scale high pressure processes investigating the mentioned crucial phenomena are based on continuum balancing models of thermofluid dynamics. Nevertheless, biological systems are complex fluids containing the relevant (bio-)chemical compounds (enzymes and microorganisms). These compounds are particles that interact with the surrounding medium and between each other. This contribution deals with thermofluid-dynamical interactions of the relevant particulate (bio-)chemical compounds (enzymes and microorganisms) with the surrounding fluid. By consideration of characteristic time and length scales and particle forces, the motion of the (bio-)chemical compounds is characterized.

  8. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    PubMed

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  9. Evidence-based nursing practice: both state of the art in general and specific to pressure sores.

    PubMed

    Buss, I C; Halfens, R J; Abu-Saad, H H; Kok, G

    1999-01-01

    The importance of research-based practice in nursing has been frequently stressed, and a number of nursing studies have been conducted whose results enable nursing to improve knowledge and practice. This study reports a literature review in which the current status of knowledge and research utilization with regard to pressure sores is described. This review first gives an overview of studies on knowledge utilization in general and shows that the spontaneous diffusion of knowledge is inappropriate. Furthermore, an overview of planned research utilization activities focusing on pressure sore prevention and treatment in nursing is presented. The results of these studies show that planned research utilization activities performed in individual organizations lead to positive outcomes in almost all cases. Therefore, it could be concluded that implementing planned research utilization activities in individual health care institutions seems to be an effective strategy to decrease pressure sore incidence and prevalence rates.

  10. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems.

    PubMed

    Taylor, David D J; Slocum, Alexander H; Whittle, Andrew J

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers' homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%.

  11. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems

    PubMed Central

    Slocum, Alexander H.; Whittle, Andrew J.

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers’ homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%. PMID:29775462

  12. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Piaoran; Cao, Peng -Fei; Su, Zhe

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less

  13. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  14. Threshold kinetics of a solar-simulator-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Lee, Y.; Weaver, W. R.; Humes, D. H.; Lee, J. H.

    1984-01-01

    A model of the chemical kinetics of the n-C3F7I solar-simulator-pumped iodine laser is utilized to study the major kinetic processes associated with the threshold behavior of this experimental system. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state recombination with the alkyl radical and quenching by the parent gas control threshold at higher pressures. Treatment of the hyperfine splitting and uncertainty in the pressure broadening are important factors in fixing the threshold level. In spite of scatter in the experimental data caused by instabilities in the simulator high-pressure high-pressure arc, reasonable agreement is achieved between the model and experiment. Model parameters arrived at are within the uncertainty range of values found in the literature.

  15. Method and apparatus of cryogenic cooling for high temperature superconductor devices

    DOEpatents

    Yuan, Xing; Mine, Susumu

    2005-02-15

    A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

  16. Preliminary Investigation on the Behavior of Pore Air Pressure During Rainfall Infiltration

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Min, Ng Soon; Hasliza Hamzah, Nur; Hazreek Zainal Abidin, Mohd; Madun, Aziman; Tajudin, Saiful Azhar Ahmad

    2018-04-01

    This paper focused on the preliminary investigation of pore air pressure behaviour during rainfall infiltration in order to substantiate the mechanism of rainfall induced slope failure. The actual behaviour or pore air pressure during infiltration is yet to be clearly understood as it is regularly assumed as atmospheric. Numerical modelling of one dimensional (1D) soil column was utilized in this study to provide a preliminary insight of this highlighted uncertainty. Parametric study was performed by using rainfall intensities of 1.85 x 10-3m/s and 1.16 x 10-4m/s applied on glass beads to simulate intense and modest rainfall conditions. Analysis results show that the high rainfall intensity causes more development of pore air pressure compared to low rainfall intensity. This is because at high rainfall intensity, the rainwater cannot replace the pore air smoothly thus confining the pore air. Therefore, the effect of pore air pressure has to be taken into consideration particularly during heavy rainfall.

  17. Exploration of phase transition in ThS under pressure: An ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.

  18. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    PubMed Central

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-01-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib. PMID:26198974

  19. Combined pressure-thermal inactivation effect on spores in lu-wei beef--a traditional Chinese meat product.

    PubMed

    Wang, B-S; Li, B-S; Du, J-Z; Zeng, Q-X

    2015-08-01

    This study investigated the inactivation effect and kinetics of Bacillus coagulans and Geobacillus stearothermophilus spores suspended in lu-wei beef by combining high pressure (500 and 600 MPa) and moderate heat (70 and 80 °C or 80 and 90 °C). During pressurization, the temperature of pressure-transmitting fluid was tested with a K-type thermocouple, and the number of surviving cells was determined by a plate count method. The pressure come-up time and corresponding inactivation of Bacillus coagulans and G. stearothermophilus spores were considered during the pressure-thermal treatment. For the two types of spores, the results showed a higher inactivation effect in phosphate buffer solution than that in lu-wei beef. Among the bacteria evaluated, G. stearothermophilus spores had a higher resistance than B. coagulans spores during the pressure-thermal processing. One linear model and two nonlinear models (i.e. the Weibull and log-logistic models) were fitted to the survivor data to obtain relevant kinetic parameters, and the performance of these models was compared. The results suggested that the survival curve of the spores could be accurately described utilizing the log-logistic model, which produced the best fit for all inactivation data. The compression heating characteristics of different pressure-transmitting fluids should be considered when using high pressure to sterilize spores, particularly while the pressure is increasing. Spores can be inactivated by combining high pressure and moderate heat. The study demonstrates the synergistic inactivation effect of moderate heat in combination with high pressure in real-life food. The use of mathematical models to predict the inactivation for spores could help the food industry further to develop optimum process conditions. © 2015 The Society for Applied Microbiology.

  20. Laser absorption of nitric oxide for thermometry in high-enthalpy air

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.

    2014-12-01

    The design and demonstration of a laser absorption sensor for thermometry in high-enthalpy air is presented. The sensor exploits the highly temperature-sensitive and largely pressure-independent concentration of nitric oxide in air at chemical equilibrium. Temperature is thus inferred from an in situ measurement of nascent nitric oxide. The strategy is developed by utilizing a quantum cascade laser source for access to the strong fundamental absorption band in the mid-infrared spectrum of nitric oxide. Room temperature measurements in a high-pressure static cell validate the suitability of the Voigt lineshape model to the nitric oxide spectra at high gas densities. Shock-tube experiments enable calibration of a collision-broadening model for temperatures between 1200-3000 K. Finally, sensor performance is demonstrated in a high-pressure shock tube by measuring temperature behind reflected shock waves for both fixed-chemistry experiments where nitric oxide is seeded, and for experiments involving nitric oxide formation in shock-heated mixtures of N2 and O2. Results show excellent performance of the sensor across a wide range of operating conditions from 1100-2950 K and at pressures up to 140 atm.

  1. Developing a diagnostic tool for measuring maximum effective temperature within high pressure electrodeless discharges

    NASA Astrophysics Data System (ADS)

    Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme

    2016-09-01

    Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.

  2. Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA

    USDA-ARS?s Scientific Manuscript database

    Hydrothermal carbonization (HTC), utilizing high temperature and pressure, has the potential to treat agricultural waste and inactivate pathogens, antibiotic resistance genes (ARG), and contaminants of emerging concern (CEC) in an environmentally and economically friendly manner. Livestock mortality...

  3. Development of a low cost portable fluorometry technology and quantification of cannabinoids in body fluids

    DOT National Transportation Integrated Search

    1977-05-04

    Technology was developed for determining delta sup 9-tetrahydrocannabinol (I) and its major metabolite 11-nor-delta sup 9-tetrahydrocannabinol-9-carboxylic acid (II) in human blood plasma utilizing high pressure liquid chromatography (hplc)-ultraviol...

  4. Current status of home blood pressure monitoring in Asia: Statement from the HOPE Asia Network.

    PubMed

    Chia, Yook-Chin; Buranakitjaroen, Peera; Chen, Chen-Huan; Divinagracia, Romeo; Hoshide, Satoshi; Park, Sungha; Shin, Jinho; Siddique, Saulat; Sison, Jorge; Soenarta, Arieska Ann; Sogunuru, Guru Prasad; Tay, Jam Chin; Turana, Yuda; Wang, Ji-Guang; Wong, Lawrence; Zhang, Yuqing; Kario, Kazuomi

    2017-11-01

    Hypertension represents a major burden in Asia, with a high prevalence rate but poor level of awareness and control reported in many countries in the region. Home blood pressure monitoring has been validated as an accurate and reliable measure of blood pressure that can help guide hypertension treatment as well as identify masked and white-coat hypertension. Despite its benefits, there has been limited research into home blood pressure monitoring in Asia. The authors reviewed the current evidence on home blood pressure monitoring in Asia, including but not limited to published literature, data presented at congresses, and national hypertension management guidelines to determine the current utilization of home blood pressure monitoring in clinical practice in the region. Public policies to enable greater access to home blood pressure monitoring and its use in clinical care would add considerably to improving hypertension outcomes in Asia. ©2017 Wiley Periodicals, Inc.

  5. Fabrication of diamond based sensors for use in extreme environments

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    2015-04-23

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less

  6. Fabrication of diamond based sensors for use in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less

  7. A System Level Mass and Energy Calculation for a Temperature Swing Adsorption Pump used for In-Situ Resource Utilization (ISRU) on Mars

    NASA Technical Reports Server (NTRS)

    Hasseeb, Hashmatullah; Iannetti, Anthony

    2017-01-01

    A major component of a Martian In-Situ Resource Utilization (ISRU) system is the CO2 acquisition subsystem. This subsystem must be able to extract and separate CO2 at ambient Martian pressures and then output the gas at high pressures for the chemical reactors to generate fuel and oxygen. The Temperature Swing Adsorption (TSA) Pump is a competitive design that can perform this task using heating and cooling cycles in an enclosed volume. The design of this system is explored and analyzed for an output pressure range of 50 kPa to 500 kPa and an adsorption temperature range of -50 C to 40 C while meeting notional requirements for two mission scenarios. Mass and energy consumption results are presented for 2-stage, 3-stage, and 4-stage systems using the following adsorbents: Grace 544 13X, BASF 13X, Grace 522 5A and VSA 10 LiX.

  8. Comparison of a novel distillation method versus a traditional distillation method in a model gin system using liquid/liquid extraction.

    PubMed

    Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar

    2008-10-08

    This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.

  9. Equilibria of oligomeric proteins under high pressure - A theoretical description.

    PubMed

    Ingr, Marek; Kutálková, Eva; Hrnčiřík, Josef; Lange, Reinhard

    2016-12-21

    High pressure methods have become a useful tool for studying protein structure and stability. Using them, various physico-chemical processes including protein unfolding, aggregation, oligomer dissociation or enzyme-activity decrease were studied on many different proteins. Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-pressure techniques, as the high pressure shifts the equilibria to higher concentrations making them better observable by spectroscopic methods. This can be especially useful when the oligomeric form is highly stable at atmospheric pressure. These applications may be, however, hindered by less intensive experimental response as well as interference of the oligomerization equilibria with unfolding or aggregation of the subunits, but also by more complex theoretical description. In this study we develop mathematical models describing different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the highest possible oligomer without any intermediates) and consecutive. Closed homooligomer equilibria are discussed for any oligomerization degree, while the more complex heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant forms are evaluated as functions of pressure and concentration. Significant points (inflection points and extremes) of the resulting transition curves, that can be determined experimentally, are evaluated as functions of pressure and/or concentration. These functions can be further used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-pressure equilibrium constants and volume changes of the individual steps of the oligomer-dissociation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    DOEpatents

    Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  11. Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, Ben; Bowring, Daniel; Kochemirovskiy, Alexey

    2016-06-01

    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% aluminamore » ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.« less

  12. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  13. Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range.

    PubMed

    Choi, Eunsuk; Sul, Onejae; Hwang, Soonhyung; Cho, Joonhyung; Chun, Hyunsuk; Kim, Hongjun; Lee, Seung-Beck

    2014-10-24

    When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.

  14. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms.

    PubMed

    Levitas, Valery I; Javanbakht, Mahdi

    2014-01-07

    There are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure-shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood. Here, we elucidate generic mechanisms of coupled nucleation and evolution of dislocation and HPP structures in the nanograin material under pressure and shear utilizing the developed advanced phase field approach (PFA). Dislocations are generated at the grain boundaries and are densely piled up near them, creating a strong concentrator of the stress tensor. Averaged shear stress is essentially larger in the nanograin material due to grain boundary strengthening. This leads to the increase in the local thermodynamic driving force for PT, which allows one to significantly reduce the applied pressure. For all cases, the applied pressure is 3-20 times lower than the PT pressure and 2-12.5 times smaller than the phase equilibrium pressure. Interaction between nuclei leads sometimes to their coalescence and growth of the HPP away from stress concentrators. Plasticity plays a dual role: in addition to creating stress concentrators, it may relax stresses at other concentrators, thus competing with PT. Some ways to optimize the loading parameters have been found that lead to methods for controlling PT. Since such a local stress tensor with high shear stress component cannot be created without plastic deformations, this may lead to new transformation paths and phases, which are hidden during pressure induced PTs.

  15. Intelligent Monitoring of Rocket Test Systems

    NASA Technical Reports Server (NTRS)

    Duran, Esteban; Rocha, Stephanie; Figueroa, Fernando

    2016-01-01

    Stephanie Rocha is an undergraduate student pursuing a degree in Mechanical Engineering. Esteban Duran is pursuing a degree in Computer Science. Our mentor is Fernando Figueroa. Our project involved developing Intelligent Health Monitoring at the High Pressure Gas Facility (HPGF) utilizing the software GensymG2.

  16. Develop of innovative technologies for flame resistant cotton fabrics at USDA

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carb...

  17. Development of innovative technologies for flame resistant cotton fabrics at USDA

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carbo...

  18. High precision Hugoniot measurements on statically pre-compressed fluid helium

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-01

    The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  19. Investigation of a para-ortho hydrogen reactor for application to spacecraft sensor cooling

    NASA Technical Reports Server (NTRS)

    Nast, T. C.

    1983-01-01

    The utilization of solid hydrogen in space for sensor and instrument cooling is a very efficient technique for long term cooling or for cooling at high heat rates. The solid hydrogen can provide temperatures as low as 7 to 8 K to instruments. Vapor cooling is utilized to reduce parasitic heat inputs to the 7 to 8 K stage and is effective in providing intermediate cooling for instrument components operating at higher temperatures. The use of solid hydrogen in place of helium may lead to weight reductions as large as a factor of ten and an attendent reduction in system volume. The results of an investigation of a catalytic reactor for use with a solid hydrogen cooling system is presented. Trade studies were performed on several configurations of reactor to meet the requirements of high reactor efficiency with low pressure drop. Results for the selected reactor design are presented for both liquid hydrogen systems operating at near atmospheric pressure and the solid hydrogen cooler operating as low as 1 torr.

  20. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  1. Environmental performance, profitability, asset utilization, debt monitoring and firm value

    NASA Astrophysics Data System (ADS)

    Bukit, R. Br; Haryanto, B.; Ginting, P.

    2018-02-01

    The growing issue on firm value shows that firm value is not only determined by the firm ability to increase financial profit, but also by the company's concern in maintaining the environmental condition. The industrial development produces waste that pollutes the environment that has potential to serious impact on the next life. In addition to provide financial benefits, companies are increasingly facing pressure to be socially responsible for the survival of the company. However, past findings demonstrate that the effect of environmental performance, profitability, and asset utilization to the firm’s value are still unclear. This study aims to test whether environmental performance, firm profitability and asset utilization can effectively enhance firm value in two different conditions: intensive debt monitoring and less intensive debt monitoring. Sample of companies is taken from the list of Indonesia Stock Exchange during the period of 2013 to 2015. Using multiple regression analysis, discloses that: in intensive monitoring, managers tend to have high firm value when company has high environmental performance and or high profitability and high asset utilization. Monitoring system needs to be intensified especially for companies with the above characteristics.

  2. Retrieval Of Cloud Pressure And Chlorophyll Content Using Raman Scattering In GOME Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.

    2002-01-01

    Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.

  3. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    PubMed

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  4. The use of ion beam cleaning to obtain high quality cold welds with minimal deformation

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Moore, T. J.

    1978-01-01

    This paper describes a variation of cold welding which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation. Due to experimental fixture limitation in applying pressure work has been limited to a few low yield strength materials.

  5. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    PubMed

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  6. Plasma Gradient Piston: a new approach to precision pulse shaping

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.

    2011-10-01

    We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.

  7. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  8. DEMONSTRATION BULLETIN: BESCORP SOIL WASHING SYSTEM ALASKAN BATTERY ENTERPRISES SITE - BRICE ENVIRONMENTAL SERVICES CORPORATION

    EPA Science Inventory

    The BESCORP Soil Washing System is an aqueous volume reduction system that utilizes trommel agitation, high-pressure washing, sizing, and density separation to remove lead, lead compounds, and battery casing chips from soil contaminated by broken lead batteries. The basic concept...

  9. Ambulatory or home measurement of blood pressure?

    PubMed

    Gosse, Philippe; Coulon, Paul

    2009-04-01

    Ambulatory blood pressure monitoring (ABPM) and home blood pressure (HBPM) monitoring have been shown to be superior to conventional measurement of blood pressure in terms of reproducibility, relationship to the impact of high blood pressure on target organs, and the prediction of cardiovascular events. Nevertheless, these 2 techniques have yet to find their place in the diagnosis of hypertension and during evaluation of the efficacy of antihypertensive treatment. Although these 2 methods do not give identical results in approximately 20% of cases, their diagnostic performance and prognostic value are quite comparable. Although ABPM remains a valuable tool in clinical research, its utilization in routine clinical practice is limited by cost and availability. HBPM is increasingly employed for informed and well-managed patients, and it can help to improve control of the patient's blood pressure. Physicians involved in the management of hypertensive patients should be aware of its value in order to assist patients in their care.

  10. A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage

    NASA Technical Reports Server (NTRS)

    Tse, D. G. N.; Kreskovsky, J. P.; Shamroth, S. J.; Mcgrath, D. B.

    1994-01-01

    Laser velocimetry was utilized to map the velocity field in a serpentine turbine blade cooling passage at Reynolds and Rotation numbers of up to 25.000 and 0.48. These results were used to assess the combined influence of passage curvature and Coriolis force on the secondary velocity field generated. A Navier-Stokes code (NASTAR) was validated against incompressible test data and then used to simulate the effect of buoyancy. The measurements show a net convection from the low pressure surface to high pressure surface. The interaction of the secondary flows induced by the turns and rotation produces swirl at the turns, which persisted beyond 2 hydraulic diameters downstream of the turns. The incompressible flow field predictions agree well with the measured velocities. With radially outward flow, the buoyancy force causes a further increase in velocity on the high pressure surface and a reduction on the low pressure surface. The results were analyzed in relation to the heat transfer measurements of Wagner et al. (1991). Predicted heat transfer is enhanced on the high pressure surfaces and in turns. The incompressible flow simulation underpredicts heat transfer in these locations. Improvements observed in compressible flow simulation indicate that the buoyancy force may be important.

  11. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano Orsino

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two seriesmore » of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.« less

  12. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressedmore » by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.« less

  13. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    PubMed

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  14. Fundamental phenomena on fuel decomposition and boundary-layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir

    1995-01-01

    The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.

  15. Fundamental phenomena on fuel decomposition and boundary-layer combustion processes with applications to hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir

    The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.

  16. Aerodynamic Heat-Power Engine Operating on a Closed Cycle

    NASA Technical Reports Server (NTRS)

    Ackeret, J.; Keller, D. C.

    1942-01-01

    Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.

  17. High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium

    DOEpatents

    Wootton, Roy E.

    1980-01-01

    High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.

  18. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  19. South Korean Male Adolescents' Internal and External Influences in Academic Achievement

    ERIC Educational Resources Information Center

    Geesa, Rachel Louise

    2014-01-01

    South Korean adolescents' motivation for high academic achievement is strongly influenced by extraordinary parental support, pressures to achieve, and the practice of utilizing both public and private learning environments in South Korea. To remain competitive, educational leaders may benefit from observations of other countries' academic…

  20. Global Pressures on Education Research: Quality, Utility, and Infrastructure

    ERIC Educational Resources Information Center

    Herrington, Carolyn D.; Summers, Katherine P.

    2014-01-01

    This article provides an overview of issues likely to drive educational research globally over the next decade, and it examines the "Asia Pacific Education Review" ("APER")'s role in responding to these issues, shaping research agendas, and delivering high-quality research. We also look at the implications of these…

  1. Aqueous carbon black dispersions prepared with steam jet-cooked corn starch

    USDA-ARS?s Scientific Manuscript database

    The utilization of jet-cooked waxy and normal corn starch to prepare aqueous dispersions of hydrophobic carbon black (Vulcan XC-72R) is reported. Blending carbon black (CB) into aqueous jet-cooked dispersions of starch followed by high pressure homogenization produced stable aqueous carbon black di...

  2. Repeated measures of inflammation, blood pressure, and heart rate variability associated with personal traffic exposures in healthy adults

    EPA Science Inventory

    BACKGROUND: Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic lo...

  3. Plant extracts mediated syntheses of silver nanoparticles and their effectiveness on agricultural pathogens

    USDA-ARS?s Scientific Manuscript database

    The high demand for protein consumption in the ever-increasing population has put great pressure on food animal and crop production systems. To increase profit margin along with productivity, the utilization of antibiotics to promote animal growth and reduce mortality has contributed to the emerge...

  4. Proposed Space Flight Experiment Hardware

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The primary thrust for this plan is to develop design tools and fundamental understanding that are timely and consistent with the goal of the various exploration initiatives. The plan will utilize ISS facilities, such as the Fluids Integrated Rack (FIR) and the Microgravity Science Glovebox (MSG). A preliminary flow schematic of Two-Phase Flow Facility (T(phi)FFy) which would utilize FIR is shown in Figure 3. MSG can be utilized to use the Boiling eXperiment Facility (BXF) and Contact Line Dynamics Experiment (CLiDE) Facility. The T(phi)FFy system would have multiple test sections whereby different configurations of heat exchangers could be used to study boiling and condensation phenomena. The test sections would be instrumented for pressure drop, void fraction, heat fluxes, temperatures, high-speed imaging and other diagnostics. Besides a high-speed data acquisition system with a large data storage capability, telemetry could be used to update control and test parameters and download limited amounts of data. In addition, there would be multiple accumulators that could be used to investigate system stability and fluid management issues. The system could accommodate adiabatic tests through either the space station nitrogen supply or have an experiment-specific compressor to pressurize a sufficient amount of air or other non-condensable gas for reuse as the supply bottle is depleted.

  5. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    DOEpatents

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  6. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  7. High-Pressure Open-Channel On-Chip Electroosmotic Pump for Nanoflow High Performance Liquid Chromatography

    PubMed Central

    2015-01-01

    Here, we construct an open-channel on-chip electroosmotic pump capable of generating pressures up to ∼170 bar and flow rates up to ∼500 nL/min, adequate for high performance liquid chromatographic (HPLC) separations. A great feature of this pump is that a number of its basic pump units can be connected in series to enhance its pumping power; the output pressure is directly proportional to the number of pump units connected. This additive nature is excellent and useful, and no other pumps can work in this fashion. We demonstrate the feasibility of using this pump to perform nanoflow HPLC separations; tryptic digests of bovine serum albumin (BSA), transferrin factor (TF), and human immunoglobulins (IgG) are utilized as exemplary samples. We also compare the performance of our electroosmotic (EO)-driven HPLC with Agilent 1200 HPLC; comparable efficiencies, resolutions, and peak capacities are obtained. Since the pump is based on electroosmosis, it has no moving parts. The common material and process also allow this pump to be integrated with other microfabricated functional components. Development of this high-pressure on-chip pump will have a profound impact on the advancement of lab-on-a-chip devices. PMID:24495233

  8. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution.

    PubMed

    Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao

    2015-08-21

    Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).

  9. Prediction of Relaminarization Effects on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Giel, P. W.

    2001-01-01

    An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two-dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.

  10. Material Usage in High Pressure Oxygen Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Kravchenko, Michael; Sievers, D. Elliott

    2014-01-01

    The Nitrogen/Oxygen Recharge System (NORS) for the International Space Station (ISS) Program was required as part of the Space Shuttle retirement efforts to sustain the ISS life support systems. The system is designed around a 7000 psia Oxygen or Nitrogen Recharge Tank Assembly which is able to be utilized both internally and externally to the ISS. Material selection and usage were critical to ensure oxygen compatibility for the design, while taking into consideration toxicity, weldability, brazability and general fabrication and assembly techniques. The system uses unique hardware items such a composite overwrap pressure vessel (COPV), high pressure mechanical gauges, compact regulators and valves, quick disconnects, metal tubing and flexhoses. Numerous challenges and anomalies were encountered due to the exotic nature of this project which will be discussed in detail. The knowledge gained from these anomalies and failure resolutions can be applied to more than space applications, but can also be applicable to industry pressurized systems.

  11. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  12. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    NASA Astrophysics Data System (ADS)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  13. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    PubMed Central

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben

    2015-01-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157

  14. Determining the phase diagram of lithium via ab initio calculation and ramp compression

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric

    2015-06-01

    Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling

    NASA Astrophysics Data System (ADS)

    Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi

    2018-05-01

    Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.

  16. Continuous flow reduction of artemisinic acid utilizing multi-injection strategies-closing the gap towards a fully continuous synthesis of antimalarial drugs.

    PubMed

    Pieber, Bartholomäus; Glasnov, Toma; Kappe, C Oliver

    2015-03-09

    One of the rare alternative reagents for the reduction of carbon-carbon double bonds is diimide (HN=NH), which can be generated in situ from hydrazine hydrate (N2H4⋅H2O) and O2. Although this selective method is extremely clean and powerful, it is rarely used, as the rate-determining oxidation of hydrazine in the absence of a catalyst is relatively slow using conventional batch protocols. A continuous high-temperature/high-pressure methodology dramatically enhances the initial oxidation step, at the same time allowing for a safe and scalable processing of the hazardous reaction mixture. Simple alkenes can be selectively reduced within 10-20 min at 100-120 °C and 20 bar O2 pressure. The development of a multi-injection reactor platform for the periodic addition of N2H4⋅H2O enables the reduction of less reactive olefins even at lower reaction temperatures. This concept was utilized for the highly selective reduction of artemisinic acid to dihydroartemisinic acid, the precursor molecule for the semisynthesis of the antimalarial drug artemisinin. The industrially relevant reduction was achieved by using four consecutive liquid feeds (of N2H4⋅H2O) and residence time units resulting in a highly selective reduction within approximately 40 min at 60 °C and 20 bar O2 pressure, providing dihydroartemisinic acid in ≥93% yield and ≥95% selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Parametric optimization of the MVC desalination plant with thermomechanical compressor

    NASA Astrophysics Data System (ADS)

    Blagin, E. V.; Biryuk, V. V.; Anisimov, M. Y.; Shimanov, A. A.; Gorshkalev, A. A.

    2018-03-01

    This article deals with parametric optimization of the Mechanical Vapour Compression (MVC) desalination plant with thermomechanical compressor. In this plants thermocompressor is used instead of commonly used centrifugal compressor. Influence of two main parameters was studied. These parameters are: inlet pressure and number of stages. Analysis shows that it is possible to achieve better plant performance in comparison with traditional MVC plant. But is required reducing the number of stages and utilization of low or high initial pressure with power consumption maximum at approximately 20-30 kPa.

  18. Vacuum ultraviolet spectra of uranium hexafluoride/argon mixtures

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    The transmission properties of room temperature helium at pressures up to 20 atmospheres were determined in the wavelength range from 80 to 300 nm. Similarly, the transmission properties of uranium hexafluoride at 393 K (pressures less than 1.0 mm) were determined in the wavelength range from 80 to about 120 nm. The results show that high pressure helium is sufficiently transparent in the vacuum ultraviolet region (provided trace contaminants are removed) to be utilized as a transparent purge gas in future fissioning gaseous uranium plasma reactor experiments. Absorption cross sections for uranium hexafluoride were calculated from the data between 80 and 120 nm and were of the order of 10 to the -17 power sq cm.

  19. Pulse wave velocity in patients with severe head injury a pilot study.

    PubMed

    Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson

    2010-01-01

    The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.

  20. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  1. Fault tree analysis: NiH2 aerospace cells for LEO mission

    NASA Technical Reports Server (NTRS)

    Klein, Glenn C.; Rash, Donald E., Jr.

    1992-01-01

    The Fault Tree Analysis (FTA) is one of several reliability analyses or assessments applied to battery cells to be utilized in typical Electric Power Subsystems for spacecraft in low Earth orbit missions. FTA is generally the process of reviewing and analytically examining a system or equipment in such a way as to emphasize the lower level fault occurrences which directly or indirectly contribute to the major fault or top level event. This qualitative FTA addresses the potential of occurrence for five specific top level events: hydrogen leakage through either discrete leakage paths or through pressure vessel rupture; and four distinct modes of performance degradation - high charge voltage, suppressed discharge voltage, loss of capacity, and high pressure.

  2. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    PubMed

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  4. Fischer-Tropsch Wastewater Utilization

    DOEpatents

    Shah, Lalit S.

    2003-03-18

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  5. Predictive utility of blood pressure, waist circumference and body mass index for metabolic syndrome in patients with schizophrenia in Singapore.

    PubMed

    Nurjono, Milawaty; Lee, Jimmy

    2013-05-01

    This study aims to examine and compare the predictive utility of blood pressure (BP), waist circumference (WC) and body mass index (BMI), and to determine optimal cut-off values in prediction of metabolic syndrome (MetS) in patients with chronic schizophrenia. About 100 patients with chronic schizophrenia were recruited. BMI and BP were measured and laboratory tests to evaluate patients' high-density lipoprotein cholesterol, triglycerides and glucose levels were performed. Presence of MetS was examined according to AHA/NHLBI guidelines. Predictive utility of BP, WC and BMI was examined using receiver operating curve and discriminant indices were determined accordingly. Forty-six (46%) patients were identified to have MetS. BMI of ≥23 kg m(-2) was most accurate (AUC = 0.83, P < 0.001), with sensitivity of 93.5%, specificity of 48.1%, positive predictive value of 60.6% and negative predictive value of 92.9% in identifying MetS. This finding has immediate and significant clinical implications in the local population with schizophrenia. © 2012 Wiley Publishing Asia Pty Ltd.

  6. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less

  7. Calcium impregnation of coal enriched in CO.sub.2 using high-pressure techniques

    NASA Technical Reports Server (NTRS)

    Gavalas, George R. (Inventor); Sharma, Pramod K. (Inventor); Voecks, Gerald E. (Inventor)

    1990-01-01

    Methods are described for impregnating coal with calcium carbonate by utilizing an aqueous phase ionic reaction between calcium acetate, calcium hydroxide, and water with CO.sub.2 contained within the coal. The coal is enriched in CO.sub.2 by contacting it with CO.sub.2 at high pressure, in either a continuous or pulsed mode. The inclusion of CO.sub.2 in the coal during the process does not involve evacuating the coal and subsequently absorbing CO.sub.2 onto the coal as in prior methods. Rather, the coal is treated with carbon dioxide at high pressure in a practical and viable approach. The impregnation of coal by calcium compounds not only reduces sulfur emissions by effectively tying up the sulfur as calcium sulfide or sulfate, but also increases the gasification or combustion rate. The invention also encompasses the use of other Group IIA elements, as well as the coal products resulting from the methods of treatment described.

  8. Predictive factors of the nursing diagnosis sedentary lifestyle in people with high blood pressure.

    PubMed

    Guedes, Nirla Gomes; Lopes, Marcos Venícios de Oliveira; Araujo, Thelma Leite de; Moreira, Rafaella Pessoa; Martins, Larissa Castelo Guedes

    2011-01-01

    To verify the reproducibility of defining the characteristics and related factors in order to identify a sedentary lifestyle in patients with high blood pressure. A cross-sectional study. 310 patients diagnosed with high blood pressure. Socio-demographics and variables related to defining the characteristics and related factors of a sedentary lifestyle. The coefficient Kappa was utilized to analyze the reproducibility. The sensitivity, specificity, and predictive value of the defining characteristics were also analyzed. Logistic regression was applied in the analysis of possible predictors. The defining characteristic with the greatest sensitivity was demonstrates physical deconditioning (98.92%). The characteristics chooses a daily routine lacking physical exercise and verbalizes preference for activities low in physical activity presented higher values of specificity (99.21% and 95.97%, respectively). The following indicators were identified as powerful predictors (85.2%) for the identification of a sedentary lifestyle: demonstrates physical deconditioning, verbalizes preference for activities low in physical activity, and lack of training for accomplishment of physical exercise. © 2010 Wiley Periodicals, Inc.

  9. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enduring medial perforant path short-term synaptic depression at high pressure.

    PubMed

    Talpalar, Adolfo E; Giugliano, Michele; Grossman, Yoram

    2010-01-01

    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca(2+) ([Ca(2+)](o)) on FDD at the MPP synapses. At atmospheric pressure, high [Ca(2+)](o) (4-6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca(2+)](o) to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions.

  11. Enduring Medial Perforant Path Short-Term Synaptic Depression at High Pressure

    PubMed Central

    Talpalar, Adolfo E.; Giugliano, Michele; Grossman, Yoram

    2010-01-01

    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca2+ ([Ca2+]o) on FDD at the MPP synapses. At atmospheric pressure, high [Ca2+]o (4–6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca2+]o to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions. PMID:21048901

  12. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity.

    PubMed

    Xia, Hongrui; Sun, Longru; Lou, Hongxiang; Rahman, M Mukhlesur

    2014-05-15

    Salvianolic acid A (Sal A), an important constituent of Radix Salviae Miltiorrhizae (RSM), is effective for the treatment of myocardial infarction (MI) and coronary heart disease due to its potential in the improvement of acute myocardial ischemia. However, its content is very low in RSM. So it is obvious to find a rich source of Sal A or to improve its content by conversion of other related components into Sal A modifying reaction conditions. In this research we focused on the conversion of Sal B into Sal A in aqueous solutions of RSM by using different reaction conditions including pH, temperature, pressure and humidity. During the reactions, the contents of Sal A, Sal B and danshensu in the RSM were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS). The results indicated that the conversion of Sal B into Sal A in RSM tissues under the conditions of a high temperature, high pressure and high humidity was efficient and thereby, was readily utilized to prepare rich Sal A materials in practice. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants.

    PubMed

    Szlag, David C; Sinclair, James L; Southwell, Benjamin; Westrick, Judy A

    2015-06-12

    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA.

  14. Flap Reconstruction for Pressure Ulcers: An Outcomes Analysis

    PubMed Central

    Madden, James J.; Hoffman, Ashley N.; Kim, Justine S.; Thayer, Wesley P.; Nanney, Lillian B.; Spear, Marcia E.

    2017-01-01

    Background: Historically, complication rates after pressure ulcer reconstruction utilizing flap coverage have been high. Patients undergoing operations for pressure ulcer coverage typically have multiple risk factors for postoperative complications. The purpose of this study was to examine a large patient series in the pressure ulcer population to uncover objective evidence of the linkage between risk factors and outcomes after flap coverage. Methods: This study was a retrospective chart review of patients who underwent flap reconstruction for a pressure ulcer between 1997 and 2015. The characteristics of patients were analyzed to determine those who had complications such as pressure ulcer recurrence, wound dehiscence, and wound infection. Results: All patients (N = 276) underwent flap coverage of their pressure ulcers. The overall complication rate was 58.7% (162 patients). Wound dehiscence was the most common complication (31.2%), and the pressure ulcer recurrence rate was 28.6%. Multivariate regression for pressure ulcer recurrence revealed that body mass index <18.5 [relative risk (RR) 3.13], active smoking (RR 2.33), and ischial pressure ulcers (RR 3.46) were independent risk factors for pressure ulcer recurrence. Ischial pressure ulcers (RR 2.27) and preoperative osteomyelitis (RR 2.78) were independent risk factors for wound dehiscence. Diabetes was an independent risk factor for wound infection (RR 4.34). Conclusions: Our retrospective analysis revealed numerous factors that are associated with high rates of major postoperative complications. Risk factors must be taken into account when offering flap coverage, and risk-reducing strategies must be implemented in patients before pressure ulcer reconstruction. PMID:28203494

  15. Autocracy bias in informal groups under need for closure.

    PubMed

    Pierro, Antonio; Mannetti, Lucia; De Grada, Eraldo; Livi, Stefano; Kruglanski, Arie W

    2003-03-01

    Two experiments investigated the tendency of groups with members under high (vs. low) need for cognitive closure to develop an autocratic leadership structure in which some members dominate the discussion, constitute the "hubs" of communication, and influence the group more than other members. The first experiment found that high (vs. low) need for closure groups, as assessed via dispositional measure of the need for closure, manifested greater asymmetry of conversational floor control, such that members with autocratic interactional style were more conversationally dominant and influential than less autocratic members. The second experiment manipulated the need for closure via time pressure and utilized a social network analysis. Consistent with expectation, groups under time pressure (vs. no pressure) showed a greater asymmetry of participation, of centrality, and of prestige among the group members, such that the more focal members were perceived to exert the greater influence over the groups' decisions.

  16. Implementing Ultraviolet (UV) Disinfection for Treatment of Groundwater for Small and Medium Sized Utilities - abstract

    EPA Science Inventory

    This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...

  17. ETV Report:Siemens Model H-4XE-HO Open Channel UV System

    EPA Science Inventory

    Verification testing of the Siemens Barrier Sunligt H-4XE-HO UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The H-4XE System utilizes 16 high-output, low-pressure lamps oriented horizontally and parallel to the...

  18. ETV Report: Siemens Model V-40R-A150 Open Channel UV System

    EPA Science Inventory

    Verification testing of the Siemens Barrier Sunlight V-40R-A150 UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The V-40R System supplied by Siemens utilizes 40 high-output, low-pressure amalgam lamps, oriented ...

  19. A Whole New Dimension

    ERIC Educational Resources Information Center

    Gedemer, Linda

    2012-01-01

    3D projection plays a key training role in industry, especially for high-skills jobs such as airline pilots, astronauts, and a variety of positions in the military. By utilizing 3D simulators, organizations in these sectors conduct safe and effective training that would otherwise cost millions of dollars--or be impossible. Given the pressure on…

  20. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  1. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  2. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE PAGES

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...

    2016-09-27

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  3. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  4. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    PubMed

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  5. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  6. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  7. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    NASA Astrophysics Data System (ADS)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; Danilewsky, Andreas; Langenhorst, Falko; Ehm, Lars; Trullenque, Ghislain; Kenkmann, Thomas

    2017-07-01

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions of α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s-1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.

  8. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  9. Mid-infrared Laser Absorption Diagnostics for Detonation Studies

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    Detonation-based engines represent a challenging application for diagnostics due to the wide range of thermodynamic conditions involved (T~500-3000 K, P~2-60 atm) and the short time scales of change (~10- 6 to 10- 4 sec) associated with such systems. Non-intrusive laser absorption diagnostics can provide high time-resolution and have been employed extensively in shock tube kinetics experiments (P~1-20 atm), offering high potential for application in detonation environments with modest utilization to date [1-4]. Limiting factors in designing effective tunable laser absorption sensors for detonation engines can be divided into two sets of challenges: high-pressure, high-temperature absorption spectroscopy and harsh thermo-mechanical environments. The present work, conducted in a high-pressure shock tube and operating detonation combustor, addresses both sets of difficulties, with the objective of developing time-resolved, in-situ temperature and concentration sensors for detonation studies.

  10. Pneumatic pressure wave generator provides economical, simple testing of pressure transducers

    NASA Technical Reports Server (NTRS)

    Gaal, A. E.; Weldon, T. P.

    1967-01-01

    Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.

  11. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  12. Fracture toughness and the effects of stress state on fracture of nickel aluminides

    NASA Technical Reports Server (NTRS)

    Lewandowski, John J.; Michal, Gary M.; Locci, Ivan; Rigney, Joseph D.

    1991-01-01

    The effects of stress state on the fracture behavior of Ni3Al, Ni3Al + B, and NiAl were determined using either notched or fatigue-precracked bend bars tested to failure at room temperature, in addition to testing specimens in tension under superposed hydrostatic pressure. Although Ni3Al is observed to fail in a macroscopically brittle intergranular manner in tension tests conducted at room temperature, the fracture toughnesses presently obtained on Ni3Al exceeded 20 MPam, and R-curve behavior was exhibited. In situ monitoring of the fracture experiments was utilized to aid in interpreting the source(s) of the high toughness in Ni3Al, while SEM fractography was utilized to determine the operative fracture modes. The superposition by hydrostatic pressure during tensile testing of NiAl specimens was observed to produce increased ductility without changing the fracture mode.

  13. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    PubMed

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Recent advances in microbial production of mannitol: utilization of low-cost substrates, strain development and regulation strategies.

    PubMed

    Zhang, Min; Gu, Lei; Cheng, Chao; Ma, Jiangfeng; Xin, Fengxue; Liu, Junli; Wu, Hao; Jiang, Min

    2018-02-26

    Mannitol has been widely used in fine chemicals, pharmaceutical industries, as well as functional foods due to its excellent characteristics, such as antioxidant protecting, regulation of osmotic pressure and non-metabolizable feature. Mannitol can be naturally produced by microorganisms. Compared with chemical manufacturing, microbial production of mannitol provides high yield and convenience in products separation; however the fermentative process has not been widely adopted yet. A major obstacle to microbial production of mannitol under industrial-scale lies in the low economical efficiency, owing to the high cost of fermentation medium, leakage of fructose, low mannitol productivity. In this review, recent advances in improving the economical efficiency of microbial production of mannitol were reviewed, including utilization of low-cost substrates, strain development for high mannitol yield and process regulation strategies for high productivity.

  15. Providing Oxygen for the Crew of a Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Jeng, Frank; Conger, Bruce; Anderson, Molly S.

    2009-01-01

    Oxygen (O2) is obviously essential for human space missions, but it is important to examine all the different ways it will be used and the potential sources that it may come from. This effort will lead to storage and delivery requirements and help to determine the optimum architecture from an overall systems engineering point of view. Accounting for all the oxygen in a Lunar Outpost mission includes meeting the metabolic needs of the crew while in the surface Habitat, leakage through the Habitat or Pressurized Rover walls, recharge of the space suit backpack and emergency situations. Current plans indicate that both primary and secondary O2 bottles for the space suit will be filled to a pressure of 20.7 MPa (3000 psia). Other uses of O2 require much lower pressure. Sources of O2 at a Lunar Outpost include compressed or liquefied O2 brought along specifically for life support, scavenged O2 from the Lander propulsion system, recovered O2 from waste water or exhaled carbon dioxide and O2 mined from the moon itself. Previously, eight technology options were investigated to provide the high pressure space suit O2. High pressure O2 storage was treated as the baseline technology and compared to the other seven. The other seven were cryogenic storage followed by high pressure vaporization, scavenging liquid oxygen (LOX) from Lander followed by vaporization, LOX delivery followed by sorption compression, low pressure water electrolysis followed by mechanical compression, high pressure water electrolysis, sharing a high pressure electrolyzer with a regenerative fuel cell power system, and making use of In- Situ Resource Utilization (ISRU). This system-level analysis was conducted by comparing equivalent system mass of the eight technologies in open and closed loop life support architectures. The most promising high pressure O2 generation technologies were recommended for development. Updates and an expansion of the earlier study have been made and the results are reported in this paper. Examples of recent analyses include feasibility of recovering space suit purge O2 in a Pressurized Rover and using sub-critical LOX for primary supply while using high-pressure gaseous O2 as the secondary supply for the space-suit. Preliminary analysis on scavenging LOX from the Lander and delivering it to the Habitat has also been incorporated into this integrated lunar fluids analysis

  16. Mineral changes in cement-sandstone matrices induced by biocementation

    DOE PAGES

    Verba, C.; Thurber, A. R.; Alleau, Y.; ...

    2016-04-01

    Prevention of wellbore CO 2 leakage is a critical component of any successful carbon capture, utilization, and storage program. Sporosarcina pasteurii is a bacterium that has demonstrated the potential ability to seal a compromised wellbore through the enzymatic precipitation of CaCO 3. In this paper, we investigate the growth of S. pasteurii in a synthetic brine that mimics the Illinois Basin and on Mt. Simon sandstone encased in Class H Portland cement under high pressure and supercritical CO 2 (P CO2) conditions. The bacterium grew optimum at 30 °C compared to 40 °C under ambient and high pressure (10 MPa)more » conditions; and growth was comparable in experiments at high P CO2. Sporosarcina pasteurii actively induced the biomineralization of CaCO 3 polymorphs and MgCa(CO 3) 2 in both ambient and high pressure conditions as observed in electron microscopy. In contrast, abiotic (non-biological) samples exposed to CO 2 resulted in the formation of surficial vaterite and calcite. Finally, the ability of S. pasteurii to grow under subsurface conditions may be a promising mechanism to enhance wellbore integrity.« less

  17. Pollutant emissions from and within a model gas turbine combustor at elevated pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Drennan, S. A.; Peterson, C. O.; Khatib, F. M.; Sowa, W. A.; Samuelsen, G. S.

    1993-01-01

    Conventional and advanced gas turbine engines are coming under increased scrutiny regarding pollutant emissions. This, in turn, has created a need to obtain in-situ experimental data at practical conditions, as well as exhaust data, and to obtain the data in combustors that reflect modern designs. The in-situ data are needed to (1) assess the effects of design modifications on pollutant formation, and (2) develop a detailed data base on combustor performance for the development and verification of computer modeling. This paper reports on a novel high pressure, high temperature facility designed to acquire such data under controlled conditions and with access (optical and extractive) for in-situ measurements. To evaluate the utility of the facility, a model gas turbine combustor was selected which features practical hardware design, two rows of jets (primary and dilution) with four jets in each row, and advanced wall cooling techniques with laser drilled effusive holes. The dome is equipped with a flat-vaned swirler with vane angles of 60 degrees. Data are obtained at combustor pressures ranging from 2 to 10 atmospheres of pressure, levels of air preheat to 427 C, combustor reference velocities from 10.0 to 20.0 m/s, and an overall equivalence ratio of 0.3. Exit plane and in-situ measurements are presented for HC, O2, CO2, CO, and NO(x). The exit plane emissions of NO(x) correspond to levels reported from practical combustors and the in-situ data demonstrate the utility and potential for detailed flow field measurements.

  18. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures upmore » to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.« less

  19. Linear actuation using milligram quantities of CL-20 and TAGDNAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snedigar, Shane; Salton, Jonathan Robert; Tappan, Alexander Smith

    2009-07-01

    There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter-diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and tomore » select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3{prime}dinitroazotriazolate) (TAGDNAT).« less

  20. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phasemore » I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.« less

  1. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  2. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  3. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, Daniel J.; Tfaily, Malak M.; Moore, Ronald J.

    To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, lowmore » pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.« less

  4. The equation of state of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one determined via in-situ optical microscopy and interferometry measurements

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2016-04-07

    Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a "direct" approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI) respectively. We have validated this experimental approach by comparing results obtained for TATB (2,4,6-triamino-1,3,5-trinitrobenzene) with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the highmore » pressure EOS of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (α-NTO) up to 33 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. Furthermore, the results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less

  5. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  6. Application of polyimide actuator rod seals

    NASA Technical Reports Server (NTRS)

    Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.

    1972-01-01

    Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.

  7. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  8. Onion cells after high pressure and thermal processing: comparison of membrane integrity changes using different analytical methods and impact on tissue texture.

    PubMed

    Gonzalez, Maria E; Anthon, Gordon E; Barrett, Diane M

    2010-09-01

    Two different analytical methods were evaluated for their capacity to provide quantitative information on onion cell membrane permeability and integrity after high pressure and thermal processing and to study the impact of these processing treatments on cell compartmentalization and texture quality. To determine changes in cell membrane permeability and/or integrity the methodologies utilized were: (1) measurement of a biochemical product, pyruvate, formed as a result of membrane permeabilization followed by enzymatic activity and (2) leakage of electrolytes into solution. These results were compared to previously determined methods that quantified cell viability and ¹H-NMR T(2) of onions. These methods allowed for the monitoring of changes in the plasma and tonoplast membranes after high pressure or thermal processing. High pressure treatments consisted of 5 min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30 min water bath exposure to 40, 50, 60, 70, or 90 °C. There was strong agreement between the methods in the determination of the ranges of high pressure and temperature that induce changes in the integrity of the plasma and tonoplast membranes. Membrane rupture could clearly be identified at 300 MPa and above in high pressure treatments and at 60 °C and above in the thermal treatments. Membrane destabilization effects could already be visualized following the 200 MPa and 50 °C treatments. The texture of onions was influenced by the state of the membranes and was abruptly modified once membrane integrity was lost. In this study, we used chemical, biochemical, and histological techniques to obtain information on cell membrane permeability and onion tissue integrity after high pressure and thermal processing. Because there was strong agreement between the various methods used, it is possible to implement something relatively simple, such as ion leakage, into routine quality assurance measurements to determine the severity of preservation methods and the shelf life of processed vegetables.

  9. Development and preliminary test of a new plateau hyperbaric chamber.

    PubMed

    Sun, Liang; Ding, Meng-jiang; Cai, Tian-cai; Fan, Hao-jun; Zhang, Jian-peng

    2015-10-01

    The objective of this study is to validate the performance, define its limits, and provide details on a new plateau hyperbaric chamber at 355-, 2880-, and 4532-m high altitude. A new multiplace plateau hyperbaric chamber was designed to satisfy the needed of patients who have acute mountain sickness. Tests were conducted inside the chamber at 355-, 2880-, and 4532-m high altitude. The safely and conveniences of the new plateau hyperbaric chamber were estimated. Minimum pressures of the main compartment can reach up to 0.029, 0.022, and 0.02 MPa at 355-, 2880-, and 4532-m high altitude. During pressurization, there was no leak of air around the chamber. The time lag of pressure equilibration between main and buffer compartment varies from 30.3±2.01 to 200.5±5.44 seconds and between buffer compartment and ambient pressure varies from 60.2±4.13 to 215.9±6.76 seconds. The chamber can be applicated for acute mountain sickness treatment safety and convenience. However, further experience about animals and human within the chamber is needed to improve the hardware and establish conditions of effective utilization of this equipment in the high altitude. Copyright © 2015. Published by Elsevier Inc.

  10. CONSIDERATIONS FOR FAILURE PREVENTION IN AEROSPACE ELECTRICAL POWER SYSTEMS UTILIZING HIGHER VOLTAGES

    DTIC Science & Technology

    2017-07-01

    work , the guideline document (1) provides a basis for identifying high voltage design risks, (2) defines areas of concern as a function of environment ... work , the guideline document 1) provides a basis for identifying high voltage design risks, 2) defines areas of concern as a function of environment ...pressures (y-axis - breakdown voltage [volts-peak]) As an example of the impact of the aerospace environment , consider the calculation of the safe

  11. The power of vertical geolocation of atmospheric profiles from GNSS radio occultation.

    PubMed

    Scherllin-Pirscher, Barbara; Steiner, Andrea K; Kirchengast, Gottfried; Schwärz, Marc; Leroy, Stephen S

    2017-02-16

    High-resolution measurements from Global Navigation Satellite System (GNSS) radio occultation (RO) provide atmospheric profiles with independent information on altitude and pressure. This unique property is of crucial advantage when analyzing atmospheric characteristics that require joint knowledge of altitude and pressure or other thermodynamic atmospheric variables. Here we introduce and demonstrate the utility of this independent information from RO and discuss the computation, uncertainty, and use of RO atmospheric profiles on isohypsic coordinates-mean sea level altitude and geopotential height-as well as on thermodynamic coordinates (pressure and potential temperature). Using geopotential height as vertical grid, we give information on errors of RO-derived temperature, pressure, and potential temperature profiles and provide an empirical error model which accounts for seasonal and latitudinal variations. The observational uncertainty of individual temperature/pressure/potential temperature profiles is about 0.7 K/0.15%/1.4 K in the tropopause region. It gradually increases into the stratosphere and decreases toward the lower troposphere. This decrease is due to the increasing influence of background information. The total climatological error of mean atmospheric fields is, in general, dominated by the systematic error component. We use sampling error-corrected climatological fields to demonstrate the power of having different and accurate vertical coordinates available. As examples we analyze characteristics of the location of the tropopause for geopotential height, pressure, and potential temperature coordinates as well as seasonal variations of the midlatitude jet stream core. This highlights the broad applicability of RO and the utility of its versatile vertical geolocation for investigating the vertical structure of the troposphere and stratosphere.

  12. In-situ neutron imaging of hydrogenous fuels in combustion generated porous carbons under dynamic and steady state pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.

    Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less

  13. An experimental study of a supercritical trailing-edge flow

    NASA Technical Reports Server (NTRS)

    Brown, J. L.; Viswanath, P. R.

    1984-01-01

    An experimental study has been conducted of a transonic, turbulent, high-Reynolds-number blunt trailing-edge flow. The model shape and the surface pressure distribution are characteristics of a modern supercritical airfoil under shock-free conditions. Reynolds number and pressure gradient scaling of the boundary layer are relevant to airfoil applications. The data set is exceptionally accurate and consistent, with the momentum balance accounting for the flux of momentum to within 1 percent, except in the immediate vicinity of the blunt trailing edge. The experimental flow exhibits strong viscous-inviscid interaction and higher-order boundary-layer effects including strong adverse streamwise pressure gradient, significant normal pressure gradients associated with surface and streamline curvature, and significant wake curvature. Navier-Stokes calculations with a two-equation K-epsilon turbulence model predict the correct pressure distribution which demonstrates the utility of these engineering tools. The experiment approaches separation at the strailing edge. However, in comparison to the experiment, the calculations predict too high skin friction and insufficient displacement thickness growth. An analysis of the turbulent and mean flow fields reveals the turbulence model defects are likely in modeling the dissipation source and sink terms, and in the eddy viscosity relation.

  14. In-situ neutron imaging of hydrogenous fuels in combustion generated porous carbons under dynamic and steady state pressure conditions

    DOE PAGES

    Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.

    2017-02-12

    Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less

  15. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  16. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; ...

    2016-09-29

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. Lastly, these CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvilmore » cell.« less

  17. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  18. Progress in the utilization of an oxide-dispersion-strengthened alloy for small engine turbine blades

    NASA Technical Reports Server (NTRS)

    Beatty, T. G.; Millan, P. P.

    1984-01-01

    The conventional means of improving gas turbine engine performance typically involves increasing the turbine inlet temperature; however, at these higher operational temperatures the high pressure turbine blades require air-cooling to maintain durability. Air-cooling imposes design, material, and economic constraints not only on the turbine blades but also on engine performance. The use of uncooled turbine blades at increased operating temperatures can offer significantly improved performance in small gas turbine engines. A program to demonstrate uncooled MA6000 high pressure turbine blades in a GTEC TFE731 turbofan engine is being conducted. The project goals include demonstration of the advantages of using uncooled MA6000 turbine blades as compared with cast directionally solidified MAR-M 247 blades.

  19. Mixing in wicking structures and the use of enhanced mixing within wicks in microchannel devices

    DOEpatents

    Stenkamp, Victoria S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Alexandria, VA

    2009-06-02

    Advanced wicking structures and methods utilizing these structures are described. The use of advanced wicking structures can promote rapid mass transfer while maintaining high capillary pressure through the use of small pores. Particularly improved results in fluid contacting processes can be achieved by enhanced mixing within a wicking layer within a microchannel.

  20. Mixing in wicking structures and the use of enhanced mixing within wicks in microchannel devices

    DOEpatents

    Stenkamp, Victoria S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA

    2011-04-19

    Advanced wicking structures and methods utilizing these structures are described. The use of advanced wicking structures can promote rapid mass transfer while maintaining high capillary pressure through the use of small pores. Particularly improved results in fluid contacting processes can be achieved by enhanced mixing within a wicking layer within a microchannel.

  1. 10 CFR Appendix E to Part 50 - Emergency Planning and Preparedness for Production and Utilization Facilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... could communicate with a safety system. In this case, appropriate isolation devices would be required at..., feedwater flow, and reactor power; (2) Safety injection: Reactor core isolation cooling flow, high-pressure... data points identified in the ERDS Data Point Library 9 (site specific data base residing on the ERDS...

  2. 10 CFR Appendix E to Part 50 - Emergency Planning and Preparedness for Production and Utilization Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... could communicate with a safety system. In this case, appropriate isolation devices would be required at..., feedwater flow, and reactor power; (2) Safety injection: Reactor core isolation cooling flow, high-pressure... data points identified in the ERDS Data Point Library 9 (site specific data base residing on the ERDS...

  3. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  4. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOEpatents

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  5. Host-plant specialization in needle-eating insects of Sweden

    Treesearch

    Christer Björkman; Stig Larsson

    1991-01-01

    It has been suggested that the enormous diversity of phytochemicals within the plant kingdom makes it impossible for one and the same insect species to exploit all plant species (Dethier 1954, Fraenkel 1959). Not surprisingly, the number and diversity of host plants utilized by different phytophagous insects are highly variable, and the specific selective pressures...

  6. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.

  7. Semi-actuator disk theory for compressor choke flutter

    NASA Technical Reports Server (NTRS)

    Micklow, J.; Jeffers, J.

    1981-01-01

    A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.

  8. Mass transfer apparatus and method for separation of gases

    DOEpatents

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  9. Mass transfer apparatus and method for separation of gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  10. Space shuttle food system study: Food and beverage package development, modification 8S

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A new, highly utile rehydration package was developed for foods in zero gravity. Rehydratable foods will become more acceptable as a result of their overall rehydration capability and improved palatability. This new package design is greatly enhanced by the specified spacecraft condition of atmospheric pressure; the pressure differential between the atmosphere and the package carries the functional responsibility for rapid food rehydration without excess package manipulation by the consumer. Crew acceptance will further be enhanced by less manipulation, hotter rehydration water temperatures and the ability to hold the foods at preparation temperatures until they are consumed.

  11. Influence of stationary components on unsteady flow in industrial centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.

    1984-01-01

    An experimental investigation was performed to determine the characteristics of the onset and the growth of rotating nonuniform flow in a standard low specific speed stage, normally utilized in high pressure applications, in relation to change of stationary component geometry. Four configurations, differing only in the return channel and crossover geometry were tested on an atmospheric pressure open loop test rig. Experimental results make conspicious the effect of return channel geometry and give the possibility of shifting the unstable zone onset varying such geometry. An attempt was made to interpret the experimental results in the Emmons - Stenning's rotating stall theory.

  12. A System Level Mass and Energy Calculation for a Temperature Swing Adsorption Pump Used for In-Situ Resource Utilization (ISRU) on Mars

    NASA Technical Reports Server (NTRS)

    Hasseeb, Hashmatullah; Iannetti, Anthony

    2017-01-01

    Mars ISRU converts atmospheric CO2 to generate O2 and CH4. Reduces launch mass, thus mission cost. Increases mission duration and independence. CO2 acquisition system must: a) Reliably extract CO2 over the varying Martian environment. 1) approx. 0.67-0.93 kPa pressure and 2) 125 C to 40 C. b) Provide and compress high purity gas to chemical plants. 1) Separate N2, Ar2, etc. from approx. 95% CO2 atmosphere and 2) Current pressure targets: 50 kPa-500 kPa.

  13. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    NASA Astrophysics Data System (ADS)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  14. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near-ambient pressure far below the recharge pressure. As leakage of heat into the tank caused vaporization of the cryogenic fluid, the resulting gas would be vented through the relief valve, which would be set to maintain the pressure in the tank at the transport value. Inasmuch as the density of a cryogenic fluid at atmospheric pressure greatly exceeds that of the corresponding gas in a practical high-pressure tank at room temperature, a tank for transporting a given mass of gas according to the proposed method could be smaller (and, hence, less massive) than is a tank needed for transporting the same mass of gas according to the conventional method.

  15. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  16. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado

    2005-01-01

    Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.

  17. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  18. Effects of nucleotides on the denaturation of F actin: a differential scanning calorimetry and FTIR spectroscopy study.

    PubMed

    Bombardier, H; Wong, P; Gicquaud, C

    1997-07-30

    We have utilized DSC and high pressure FTIR spectroscopy to study the specificity and mechanism by which ATP protects actin against heat and pressure denaturation. Analysis of the thermograms shows that ATP raises the transition temperature Tm for actin from 69.6 to 75.8 degrees C, and the calorimetric enthalpy, deltaH, from 680 to 990 kJ/mole. Moreover, the peak becomes sharper indicating a more cooperative process. Among the other nucleotide triphosphates, only UTP increases the Tm by 2.5 degrees C, whereas GTP and CTP have negligable effects; ADP and AMP are less active, increasing the Tm by 2.1 and 1.6 degrees C, respectively. Therefore, gamma phosphate plays a key role in this protection, but its hydrolysis is not implicated since the nonhydrolysable analogue of ATP, ATP-PNP have the same activity as ATP. FTIR spectroscopy demonstrates that ATP also protects actin against high pressure denaturation. Analysis of the amide I band during the increase in pressure clearly illustrates that ATP protects particularly a region rich in beta-sheets of the actin molecule.

  19. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  20. Conceptual design of thermal energy storage systems for near term electric utility applications. Volume 1: Screening of concepts

    NASA Technical Reports Server (NTRS)

    Hausz, W.; Berkowitz, B. J.; Hare, R. C.

    1978-01-01

    Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.

  1. High-fidelity digital recording and playback sphygmomanometry system: device description and proof of concept.

    PubMed

    Lee, Jongshill; Chee, Youngjoon; Kim, Inyoung; Karpettas, Nikos; Kollias, Anastasios; Atkins, Neil; Stergiou, George S; O'Brien, Eoin

    2015-10-01

    This study describes the development of a new digital sphygmocorder (DS-II), which allows the digital recording and playback of the Korotkoff sounds, together with cuff pressure waveform, and its performance in a pilot validation study. A condenser microphone and stethoscope head detect Korotkoff sounds and an electronic chip, dedicated to audio-signal processing, is used to record high-quality sounds. Systolic and diastolic blood pressure (SBP/DBP) are determined from the recorded signals with an automatic beat detection algorithm that displays the cuff pressure at each beat on the monitor. Recordings of Korotkoff sounds, with the cuff pressure waveforms, and the simultaneous on-site assessments of SBP/DBP were performed during 100 measurements in 10 individuals. The observers reassessed the recorded signals to verify their accuracy and differences were calculated. The features of the high-fidelity DS-II, the technical specifications and the assessment procedures utilizing the playback software are described. Interobserver absolute differences (mean±SD) in measurements were 0.7±1.1/1.3±1.3 mmHg (SBP/DBP) with a mercury sphygmomanometer and 0.3±0.9/0.8±1.2 mmHg with the DS-II. The absolute DS-II mercury sphygmomanometer differences were 1.3±1.9/1.5±1.3 mmHg (SBP/DBP). The high-fidelity DS-II device presents satisfactory agreement with simultaneous measurements of blood pressure with a mercury sphygmomanometer. The device will be a valuable methodology for validating new blood pressure measurement technologies and devices.

  2. Under Pressure: The Utility of Spacers in Univalved Fiberglass Casts.

    PubMed

    Kleis, Kevin; Schlechter, John A; Doan, Joshua D; Farnsworth, Christine L; Edmonds, Eric W

    2017-02-24

    Univalving fiberglass casts after fracture manipulation or extremity surgery reduces the risk of developing compartment syndrome (CS). Previous experiments have demonstrated that univalving decreases intracompartmental pressures (ICPs), but increases the risk for loss of fracture reduction due to altering the mechanical properties of the cast. The purpose of this study was to correlate cast valve width within a univalved cast model to decreasing ICP. Saline bags (1 L) were covered with stockinette, Webril, and fiberglass tape then connected to an arterial pressure line monitor. Resting pressure was recorded. A water column was added to simulate 2 groups (n=5 each) of clinical CS: low pressure CS (LPCS range, 28 to 31 mm Hg) and high pressure CS (HPCS, range, 64 to 68 mm Hg). After the designated pressure was reached, the fiberglass was cut (stockinette and Webril remained intact). Cast spacers were inserted into each univalve and secured with varying widths: position #1 (3 mm wide), #2 (6 mm), #3 (9 mm), and #4 (12 mm). Pressure was recorded after cutting the fiberglass and following each spacer placement. In LPCS and HPCS groups, after univalve and placement of spacer position #1, pressure dropped by a mean of 52% and 58%, respectively. Spacer #2, decreased the pressure by a mean of 78% and 80%, respectively. Both spacer sizes significantly decreased the underlying pressure in both groups. Spacer #3 and #4 progressively reduced pressure within the cast, but not statistically significantly more than the previous spacer widths. This experimental model replicates the iatrogenic elevation in interstitial compartment pressure due to rigid cast application, not necessarily a self-sustained true CS. Increasing the univalved cast spread by ≥9 mm of the initial cast diameter will reduce pressure to a pre-CS level; however, a spread of only 6 mm can effectively reduce the pressure to <30 mm Hg depending on the initial elevated ICP. Cutting the Webril and stockinette in our model yielded a pressure decrease of 91% and 94% from the starting experimental pressure in the LPCS and the HPCS groups, respectively. Although the utility of splitting fiberglass casts has been previously demonstrated, we present evidence highlighting the benefit of spacing the split by at least 6 to 9 mm.

  3. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  4. Health utility and survival after hospital admission with acute cardiogenic pulmonary oedema.

    PubMed

    Goodacre, Steve; Gray, Alasdair; Newby, David; Dixon, Simon; Masson, Moyra; Sampson, Fiona; Nicholl, Jon; Elliot, Mark; Crane, Steven

    2011-06-01

    The aim of this study was to measure health utility and survival in patients with acute cardiogenic pulmonary oedema (ACPO), identify predictors of outcome and determine the effect of initial treatment with non-invasive ventilation (NIV) upon outcomes. A randomised controlled trial was conducted at 26 hospitals in the UK. 1069 adults with ACPO were randomised to continuous positive airway pressure (CPAP), non-invasive positive pressure ventilation (NIPPV) or standard oxygen therapy. The main outcome measures were survival to 1-5 years, health utility measured using the EQ-5D survey at 1, 3 and 6 months, and quality-adjusted life years (QALYs). Median survival was 771 days (95% CI 669 to 875), with no difference between the three treatment groups (p = 0.827). Age (HR 1.042, 95% CI 1.031 to 1.052), chronic obstructive pulmonary disease (HR 1.13, 95% CI 1.06 to 1.62), cerebrovascular disease (HR 1.41, 95% CI 1.14 to 1.73) and diabetes mellitus (HR 1.31, 95% CI 1.01 to 1.63) independently predicted mortality. Mean EQ-5D scores were 0.578, 0.576 and 0.582 at 1, 3 and 6 months, respectively, with no significant difference between the treatment groups. Male gender (+0.045 QALYs, 95% CI 0.009 to 0.081) and cerebrovascular disease (-0.080 QALYs, 95% CI -0.131 to -0.029) independently predicted health utility. Patients with ACPO have high mortality and reduced health utility. Initial treatment with CPAP or NIPPV does not alter subsequent survival or health utility.

  5. Nanoengineered CIGS thin films for low cost photovoltaics

    NASA Astrophysics Data System (ADS)

    Eldada, Louay; Taylor, Matthew; Sang, Baosheng; McWilliams, Scott; Oswald, Robert; Stanbery, Billy J.

    2008-08-01

    Low cost manufacturing of Cu(In,Ga)Se2 (CIGS) films for high efficiency photovoltaic devices by the innovative Field-Assisted Simultaneous Synthesis and Transfer (FASST®) process is reported. The FASST® process is a two-stage reactive transfer printing method relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an applied electrostatic field. The method utilizes physical mechanisms characteristic of anodic wafer bonding and rapid thermal annealing, effectively creating a sealed micro-reactor that ensures high material utilization efficiency, direct control of reaction pressure, and low thermal budget. The use of two independent ink-based or PVD-based nanoengineered precursor thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the second stage FASST® synthesis of CIGS. High quality CIGS with large grains on the order of several microns are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 12.2% have been achieved using this method.

  6. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  7. Metallurgy: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A technology utilization program is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Discussion is restricted to the effects of hydrogen on a variety of metal alloys, and the mechanical properties of some recently developed alloys. Hydrogen at both low and high pressure is shown to have adverse effects on alloys such as ultrahigh-strength steels, irradiated steels, columbium, inconel alloys, titanium alloys, and certain stainless steels. The mechanical and physical properties of a wide range of alloys, their performance at elevated temperatures, and some of the processes involved in their development are also considered.

  8. Conceptual design of closed Brayton cycle for coal-fired power generation

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.

  9. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less

  10. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    DOE PAGES

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; ...

    2017-03-27

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less

  11. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    PubMed Central

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-01-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307

  12. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing.

    PubMed

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W F; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B-H; Bao, Zhenan

    2015-08-24

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

  13. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  14. 30 CFR 250.516 - Blowout prevention equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...

  15. 30 CFR 250.516 - Blowout prevention equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...

  16. 30 CFR 250.515 - Blowout prevention equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...

  17. Health Instruction Packages: How to Take a Blood Pressure.

    ERIC Educational Resources Information Center

    Lancaster, Carolyn; And Others

    Text, illustrations, and exercises are utilized in these four learning modules to teach dental hygiene students, nursing students, and the general public how to measure blood pressure. The first module, "Can You Take a Blood Pressure?" by Carolyn Lancaster, defines blood pressure, distinguishes between systolic and diastolic pressure and…

  18. Study on the technology of dual-tube layered injection in ASP flooding

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Yongping; Xu, Dekui; Cai, Meng; Yang, Zhigang; Wang, Hailong; Song, Xingliang

    2017-10-01

    For the single-tube layered injection technology cannot solve the problem of interlayer pressure difference is greater than 2MPa injection wells, through the development of dual-tube packer, dual-tube injection allocator, downhole plug, the ground pressure regulator and molecular weight regulator. Dual-tube layered injection technology is formed. According to the data of ASP flooding injection wells in the field, the whole well is divided into high permeability and low permeability oil reservoir. Two separate injection channels can be formed by using dual-tube packer and dual-tube injection allocator. Through the use of the ground pressure regulator, the problem of the high permeability layer and low permeability layer of the injection pressure difference is solved. Through the use of the ground molecular weight regulator, the problem that the same molecular weight ASP solution is not suitable for high and low permeability is solved. By replacing the downhole plug, the grouping transformation of some oil layer can be achieved. The experiment and field application of 3 wells results show that: the flow control range is 20m3/d-70m3/d; the max. Throttling differential pressure is 3.5MPa; the viscosity loss rate of solution is less than 5%; and the molecular weight adjusting range is 20%-50%. The utilization degree of oil layer is obviously increased through the use of the dual-tube layered injection technology.

  19. A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Li, H.; Liu, X.; Jeffries, J. B.; Hanson, R. K.; Allen, M. G.; Wehe, S. D.; Mulhall, P. A.; Kindle, H. S.

    2007-05-01

    A near-infrared diode laser sensor is presented that is capable of measuring time-varying gas temperature and water vapour concentration at temperatures up to 1050 K and pressures up to 25 atm with a bandwidth of 7.5 kHz. Measurements with noise-equivalent-absorbances of the order of 10-3 (10-5 Hz-1/2) are made possible in dynamic environments through the use of wavelength modulation spectroscopy (WMS) with second harmonic detection (2f) on two water vapour spectral features near 7203.9 and 7435.6 cm-1. Laser performance characteristics that become important at the large modulation depths needed at high pressures are accounted for in the WMS-2f signal analysis, and the utility of normalization by the 1f signal to correct for variations in laser intensity, transmission and detector gain is presented. Laboratory measurements with the sensor system in a static cell with known temperature and pressure agree to 3% RMS in temperature and 4% RMS in H2O mole fraction for 500 < T < 900 K and 1 < P < 25 atm. The sensor time response is demonstrated in a high-pressure shock tube where shock wave transients are successfully captured, the average measured post-shock temperature agrees within 1% of the expected value, and H2O mole fraction agrees within 8%.

  20. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants

    PubMed Central

    Szlag, David C.; Sinclair, James L.; Southwell, Benjamin; Westrick, Judy A.

    2015-01-01

    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA. PMID:26075379

  1. Innovative Technology Transfer Partnerships

    NASA Technical Reports Server (NTRS)

    Kohler, Jeff

    2004-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Advanced Tire and Strut Pressure Monitor (TSPM) technology. The TSPM is a handheld system to accurately measure tire and strut pressure and temperature over a wide temperature range (20 to 120 OF), as well as improve personnel safety. Sensor accuracy, electronics design, and a simple user interface allow operators quick, easy access to required measurements. The handheld electronics, powered by 12-VAC or by 9-VDC batteries, provide the user with an easy-to-read visual display of pressure/temperature or the streaming of pressure/temperature data via an RS-232 interface. When connected to a laptop computer, this new measurement system can provide users with automated data recording and trending, eliminating the chance for data hand-recording errors. In addition, calibration software allows for calibration data to be automatically utilized for the generation of new data conversion equations, simplifying the calibration processes that are so critical to reliable measurements. The design places a high-accuracy pressure sensor (also used as a temperature sensor) as close to the tire or strut measurement location as possible, allowing the user to make accurate measurements rapidly, minimizing the amount of high-pressure volumes, and allowing reasonable distance between the tire or strut and the operator. The pressure sensor attaches directly to the pressure supply/relief valve on the tire and/or strut, with necessary electronics contained in the handheld enclosure. A software algorithm ensures high accuracy of the device over the wide temperature range. Using the pressure sensor as a temperature sensor permits measurement of the actual temperature of the pressurized gas. This device can be adapted to create a portable calibration standard that does not require thermal conditioning. This allows accurate pressure measurements without disturbing the gas temperature. In-place calibration can save considerable time and money and is suitable in many process applications throughout industry.

  2. Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.

    PubMed

    Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner

    2011-02-01

    We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.

  3. Implantable Hemodynamic Monitoring for Heart Failure Patients.

    PubMed

    Abraham, William T; Perl, Leor

    2017-07-18

    Rates of heart failure hospitalization remain unacceptably high. Such hospitalizations are associated with substantial patient, caregiver, and economic costs. Randomized controlled trials of noninvasive telemedical systems have failed to demonstrate reduced rates of hospitalization. The failure of these technologies may be due to the limitations of the signals measured. Intracardiac and pulmonary artery pressure-guided management has become a focus of hospitalization reduction in heart failure. Early studies using implantable hemodynamic monitors demonstrated the potential of pressure-based heart failure management, whereas subsequent studies confirmed the clinical utility of this approach. One large pivotal trial proved the safety and efficacy of pulmonary artery pressure-guided heart failure management, showing a marked reduction in heart failure hospitalizations in patients randomized to active pressure-guided management. "Next-generation" implantable hemodynamic monitors are in development, and novel approaches for the use of this data promise to expand the use of pressure-guided heart failure management. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Densimetry for the Quantification of Sorption Phenomena on Nonporous Media Near the Dew Point of Fluid Mixtures.

    PubMed

    Richter, Markus; McLinden, Mark O

    2017-07-21

    Phase equilibria of fluid mixtures are important in numerous industrial applications and are, thus, a major focus of thermophysical property research. Improved data, particularly along the dew line, are needed to improve model predictions. Here we present experimental results utilizing highly accurate densimetry to quantify the effects of sorption and capillary condensation, which exert a distorting influence on measured properties near the dew line. We investigate the (pressure, density, temperature, composition) behaviour of binary (CH 4  + C 3 H 8 ) and (Ar + CO 2 ) mixtures over the temperature range from (248.15 to 273.15) K starting at low pressures and increasing in pressure towards the dew point along isotherms. Three distinct regions are observed: (1) minor sorption effects in micropores at low pressures; (2) capillary condensation followed by wetting in macro-scale surface scratches beginning approximately 2% below the dew-point pressure; (3) bulk condensation. We hypothesize that the true dew point lies within the second region.

  5. Coking properties of coal under pressure and their influence on moving-bed gasification. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancet, M.S.; Curran, G.P.; Sim, F.A.

    1982-08-01

    The coking properties of seven bituminous coals, including three Eastern US coals, one Midwestern US coal, a Western US coal and two from the UK were studied with respect to the possible utilization of these coals in moving bed gasifier systems. Complete physical, chemical and petrographic analyses were obtained for each coal in addition to the highly specialized CCDC simulated gasifier coking test data. The effects of total pressure, hydrogen partial pressure, heating rate and the addition of gob and tar on the fluidity and swelling properties of each coal was studied. Samples of each coal were shock heated undermore » pressure to simulate coking in the top of a Lurgi gasifier. The resultant cokes were tested for various physical properties and the product yields were determined. Gas release patterns during pressurized pyrolysis were obtained in several instances. The data obtained in this work should provide a valuable data base for future gasifier feedstock evaluation programs.« less

  6. In vitro assessment of temperature change in the pulp chamber during cavity preparation.

    PubMed

    Oztürk, Bora; Uşümez, Aslihan; Oztürk, A Nilgun; Ozer, Füsun

    2004-05-01

    Tooth preparation with a high-speed handpiece may cause thermal harm to the dental pulp. This in vitro study evaluated the temperature changes in the pulp chamber during 4 different tooth preparation techniques and the effects of 3 different levels of water cooling. The tip of a thermocouple was positioned in the center of the pulp chamber of 120 extracted Shuman premolar teeth. Four different tooth preparation techniques were compared: (1) Low air pressure plus low load (LA/LL), (2) low air pressure plus high load (LA/HL), (3) high air pressure plus low load (HA/LL), and (4) high air pressure plus high load (HA/HL) in combination with 3 different water cooling rates. Control specimens were not water cooled; low water cooling consisted of 15 mL/min, and high water cooling consisted of 40 mL/min. Twelve different groups were established (n=10). An increase of 5.5 degrees C was regarded as critical value for pulpal health. The results were analyzed with a 3-factor ANOVA and Bonferroni adjusted Mann Whitney U test (alpha=.004). For all techniques without water cooling (LA/LL/0, LA/HL/0, HA/LL/0, and HA/HL/0), the average temperature rise within the pulpal chamber exceeded 5.5 degrees C during cavity preparation (7.1 degrees C; 8.9 degrees C; 11.4 degrees C, and 19.7 degrees C, respectively). When low water cooling was used with high air pressure and high load technique (HA/HL/15), the average temperature rise exceeded 5.5 degrees C limit (5.9 degrees C). However, when high water cooling (LA/LL/40, LA/HL/40, HA/LL/40, and HA/HL/40) was utilized, the critical 5.5 degrees C value was not reached with any air pressure or load (3.1 degrees C, 2.8 degrees C, 2.2 degrees C, and -1.8 degrees C, respectively). Within the limitations of this in vitro study, the results indicate that reducing the amount of water cooling or increasing air pressure and load during cavity preparation increased the temperature of the pulp chamber in extracted teeth.

  7. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  8. Making an IMPAKT; Improving care of Chronic Kidney Disease patients in the community through collaborative working and utilizing Information Technology.

    PubMed

    Xu, Gang; Major, Rupert; Shepherd, David; Brunskill, Nigel

    2017-01-01

    Chronic kidney disease (CKD) is a serious long-term condition, which if left untreated causes significant cardiovascular sequele. It is well recognized management of modifiable risk factors, such as blood pressure (BP), can lead to improved long-term outcomes. A novel information technology (IT) solution presents a possible solution to help clinicians in the community identify and manage at risk patients more efficiently. The IMproving Patient care and Awareness of Kidney disease progression Together (IMPAKT) IT tool was used to identify patients with CKD and uncontrolled hypertension in the community. A CKD nurse utilized the tool at primary care practices to identify patients who warranted potential intervention and disseminated this information to clinical staff. Blood pressure management targets and incidence of coded CKD were used to evaluate the project. Altogether 48 practices participated in an 18 month project from April 2014, and data from 20 practices, with a total adult population of 121,362, was available for analysis. Two full consecutive QI (Quality Improvement) audit cycles were completed. There was an increase in the mean recorded prevalence of coded CKD patients over the course of the project. Similarly, there was an increase in the percentage of patients with BP been recorded and importantly there was an accompanying significant increase in CKD patients achieving BP targets. At the end of the project an additional 345 individuals with CKD achieved better blood pressure control. This could potentially prevent 9 cardiovascular events in the CKD group, translating to a cost saving of £320,000 for the 20 practices involved. The most significant change in clinical markers occurred during cycle 1 of the audit, the improvement was maintained throughout cycle 2 of the audit. Our results show the real-life clinical impact of a relatively simple and easy to implement QI project, to help improve outcomes in patients with CKD. This was achieved through more efficient working by targeting of high-risk groups, and improved communication between primary/secondary care. The project could be adapted for other chronic disease conditions. Despite the recorded improvements in blood pressure management, a large proportion of high-risk patients remained above ideal blood pressure, additional interventions in this area need to be explored. Through collaborative and multi-professional working and utilizing IT resources, we have shown it is possible to deliver measurable and sustainable improvements in blood pressure control for patients with CKD in a real life clinical setting.

  9. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Furukawa, T.; Iimura, H.; Ito, Y.; Kubo, T.; Matsuo, Y.; Mita, H.; Naimi, S.; Nakamura, S.; Noto, T.; Schury, P.; Shinozuka, T.; Wakui, T.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y. X.; Hirayama, Y.; Okada, K.; Takamine, A.

    2013-01-01

    A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN's fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa-10-3 Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by a quadrupole mass separator. Observed behaviors agree with the results of gas flow and Monte Carlo simulations.

  10. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  11. A high pressure ratio DC compressor for tactical cryocoolers

    NASA Astrophysics Data System (ADS)

    Chen, Weibo; Cameron, Benjamin H.; Zagarola, Mark V.; Narayanan, Sri R.

    2016-05-01

    A high pressure ratio DC compressor is a critical component for many cryocooler cycles. Prior research has focused on the adaptation of commercial compressor technology (scroll, screw, linear with rectification valves, and regenerative) for use in cryogenic applications where long-life and oil-free (i.e., volatile contamination free) are unique requirements. In addition, many cryocooler applications are for cooling imaging instruments making low vibration an additional requirement. Another candidate compressor technology has emerged from the fuel cell industry. Proton Exchange Membranes (PEMs) are used in fuel cells to separate reactants and transport protons, and these capabilities may be used in cryocoolers to compress hydrogen from low to high pressure. A particular type of PEM utilizing an anhydrous membrane forms the basis of a solid-state cryocooler. Creare has been investigating the use of PEM compressors for low temperature Joule-Thomson and dilution cryocoolers. These cryocoolers have no moving parts, can operate at temperatures down to nominally 23 K, produce no vibration, and are low cost. Our work on the cycle optimization, cryocooler design, and development and demonstration of the compressor technology is the subject of this paper.

  12. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.

    PubMed

    Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke

    2016-09-01

    Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.

  13. In Search of the Physics: NASA's Approach to Airframe Noise

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Lockard, David P.; Streett, Craig L.

    1999-01-01

    An extensive numerical and experimental study of airframe noise mechanisms associated with a subsonic high-lift system has been performed at NASA Langley Research Center (LaRC). Investigations involving both steady and unsteady computations and experiments on small-scale models with part-span flaps and full-span flaps are presented. Both surface (steady and unsteady pressure measurements, hot films, oil flows, pressure sensitive paint) and off-surface (5 holeprobe, particle-imaged velocimetry, laser velocimetry, laser light sheet measurements) were taken in the LaRC Quiet Flow Facility (QFF) and several hard-wall tunnels. Experiments in the Low Turbulence Pressure Tunnel (LTPT) included Reynolds number variations up to flight conditions. Successful microphone array measurements were also taken providing both acoustic source maps on the model, and quantitative spectra. Critical directivity measurements were obtained in the QFF. NASA Langley unstructured and structured Reynolds-Averaged Navier-Stokes codes modeled the steady aspects of the flows. Excellent comparisons with surface and off-surface experimental data were obtained. Subsequently, these meanflow calculations were utilized in both linear stability and direct numerical simulations of the flow fields to calculate unsteady surface pressures and farfield acoustic spectra. Accurate calculations were critical in obtaining not only noise source characteristics, but shear layer correction data as well. Techniques utilized in these investigations as well as brief overviews of the results are given.

  14. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  15. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    NASA Astrophysics Data System (ADS)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the vicinity of the cavern. These programs will allow detecting changes of the host rock properties during the construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.

  16. Long stroke pump

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1979-01-01

    A very high pressure pump apparatus which minimizes wear on the seals thereof and on valves connected thereto, by utilizing a very long stroke piston rod whose opposite ends are received in long cylinders. An electric motor which drives the rod, includes a rotor with a threaded aperture that receives a long threaded middle portion of the rod, so that as the rotor turns it advances the rod.

  17. Molecular filter-based diagnostics in high speed flows

    NASA Technical Reports Server (NTRS)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  18. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  19. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.

    PubMed

    Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos

    2017-01-01

    Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.

  20. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    NASA Astrophysics Data System (ADS)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  1. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Skow, Miles

    2013-01-01

    This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure vessel load conditions. For example, low frequency measurements can be used to monitor the overwrap thickness and changes associated with pressure level. High frequency data is dominated by the properties of the overwrap, including the fiber orientations and lay-up of the layers.

  2. Modeling of Highly Instrumented Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.

    2016-01-01

    The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for estimating the rates of blockage growth and losses.

  3. Numerical simulation and experiment on multilayer stagger-split die.

    PubMed

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  4. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (OA148), volume 5

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in wind tunnel test OA148 are presented. The objectives of the test series were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 orbiter in the thermal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes.

  5. Initiation of Insensitive High Explosives Using Multiple Wave Interactions

    NASA Astrophysics Data System (ADS)

    Francois, Elizabeth; Burritt, Rosmary; Biss, Matt; Bowden, Patrick

    2017-06-01

    Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will build from recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Based on these results, further tests were conducted to isolate and measure the longevity and pressure of this phenomenon using cut-back tests. All results will be presented and discussed.

  6. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing

    In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.

  7. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  8. The Microbiome and Blood Pressure: Can Microbes Regulate Our Blood Pressure?

    PubMed Central

    Al Khodor, Souhaila; Reichert, Bernd; Shatat, Ibrahim F.

    2017-01-01

    The surfaces of the human body are heavily populated by a highly diverse microbial ecosystem termed the microbiota. The largest and richest among these highly heterogeneous populations of microbes is the gut microbiota. The collection of microbes and their genes, called the microbiome, has been studied intensely through the past few years using novel metagenomics, metatranscriptomics, and metabolomics approaches. This has enhanced our understanding of how the microbiome affects our metabolic, immunologic, neurologic, and endocrine homeostasis. Hypertension is a leading cause of cardiovascular disease worldwide; it contributes to stroke, heart disease, kidney failure, premature death, and disability. Recently, studies in humans and animals have shown that alterations in microbiota and its metabolites are associated with hypertension and atherosclerosis. In this review, we compile the recent findings and hypotheses describing the interplay between the microbiome and blood pressure, and we highlight some prospects by which utilization of microbiome-related techniques may be incorporated to better understand the pathophysiology and treatment of hypertension. PMID:28674682

  9. A 15 kWe (nominal) solar thermal-electric power conversion concept definition study: Steam Rankin reciprocator system

    NASA Technical Reports Server (NTRS)

    Wingenback, W.; Carter, J., Jr.

    1979-01-01

    A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.

  10. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  11. Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.

    1987-01-01

    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.

  12. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  13. Metastable Polymeric Nitrogen: The Ultimate Green High-Energy-Density Material

    NASA Astrophysics Data System (ADS)

    Ciezak, Jennifer

    2007-06-01

    High-energy-high-density materials offering increased stability, vulnerability, and environmental safety are being aggressively pursued to meet the requirements of the DoD Joint Visions and Future Force. Nearly two decades ago, it was proposed that polymeric nitrogen would exceed all of these requirements and possess nearly five times the energy of any conventional energetic material in use today. The present study details an investigation into nitrogen polymerization using a novel high-pressure approach utilizing sodium azide as the starting material. Due to the weaker bonding structure of the anionic azide chains in comparison to a N-N triple bond, one expects that the azide chains will create single-covalently bonded polymeric networks more easily than diatomic nitrogen. A polymeric form of sodium azide was synthesized at high pressures, but the material was not metastable at ambient conditions, which precluded performance testing. Quantum chemical calculations have indicated stabilization of the polymeric structure at ambient conditions may be possible with the addition of hydrogen. Vibrational spectroscopic characterization suggests that a meta-stable polymeric form of nitrogen has been synthesized under high-pressure using sodium azide/hydrogen as the starting materials. This material remains stable at ambient conditions upwards of two weeks depending on the storage conditions.

  14. Noncontact photoacoustic imaging by using a modified optical-fiber Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Jiao; Gao, Yingzhe; Ma, Zhenhe; Wang, Bo; Wang, Yi

    2016-03-01

    We demonstrate a noncontact photoacoustic imaging (PAI) system in which an optical interferometer is used for ultrasound detection. The system is based on a modified optical-fiber Michelson interferometer that measures the surface displacement caused by photoacoustic pressure. A synchronization method is utilized to keep its high sensitivity to reduce the influence of ambient vibrations. The system is experimentally verified by imaging of a phantom. The experimental results indicate that the proposed system can be used for noncontact PAI with high resolution and high bandwidth.

  15. Prediction of B1 to B10 phase transition in LuN under pressure: An ab-initio investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.

    2016-05-23

    Ab-initio total energy calculations have been performed in lutetium nitride (LuN) as a function of hydrostatic compression to understand the high pressure behavior of this compound. Our calculations predict a phase transition from ambient rocksalt type structure (B1 phase) to a tetragonal structure (B10 phase) at ~ 240 GPa. The phase transition has been identified as first order in nature with volume discontinuity of ~ 6%. The predicted high pressure phase has been found to be stable up to at least 400 GPa, the maximum pressure up to which calculations have been performed.Further, to substantiate the results of static lattice calculations analysismore » of lattice dynamic stability of B1 and B10 phase has been carried out at different pressures. Apart from this, we have analyzed the lattice dynamic stability CsCl type (B2) phase around the 240 GPa, the pressure reported for B1 to B2 transition in previous all-electron calculations by Gupta et al. 2013. We find that the B2 structure is lattice dynamically unstable at this pressure and remains unstable up to ~ 400 GPa, ruling out the possibility of B1 to B2 phase transition at least up to ~ 400 GPa. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of B1 phase at ambient conditions.« less

  16. Exploratory studies of the cruise performance of upper surface blown configurations. Experimental program: Test facilities, model design instrumentation, and lowspeed, high-lift tests

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.; Hackett, J. E.

    1980-01-01

    The model hardware, test facilities and instrumentation utilized in an experimental study of upper surface blown configurations at cruise is described. The high speed (subsonic) experimental work, studying the aerodynamic effects of wing nacelle geometric variations, was conducted around semispan model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Three dimensional force and two dimensional pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first order power effects. Results are also presented from a compatibility study in which a short haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High lift test data are used to substantiate the projected performance of the selected transport design.

  17. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  18. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C. [Wilmington, DE; Baker, Richard W. [Palo Alto, CA

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  19. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  20. Nonneutral GC3 and retroelement codon mimicry in Phytophthora.

    PubMed

    Jiang, Rays H Y; Govers, Francine

    2006-10-01

    Phytophthora is a genus entirely comprised of destructive plant pathogens. It belongs to the Stramenopila, a unique branch of eukaryotes, phylogenetically distinct from plants, animals, or fungi. Phytophthora genes show a strong preference for usage of codons ending with G or C (high GC3). The presence of high GC3 in genes can be utilized to differentiate coding regions from noncoding regions in the genome. We found that both selective pressure and mutation bias drive codon bias in Phytophthora. Indicative for selection pressure is the higher GC3 value of highly expressed genes in different Phytophthora species. Lineage specific GC increase of noncoding regions is reminiscent of whole-genome mutation bias, whereas the elevated Phytophthora GC3 is primarily a result of translation efficiency-driven selection. Heterogeneous retrotransposons exist in Phytophthora genomes and many of them vary in their GC content. Interestingly, the most widespread groups of retroelements in Phytophthora show high GC3 and a codon bias that is similar to host genes. Apparently, selection pressure has been exerted on the retroelement's codon usage, and such mimicry of host codon bias might be beneficial for the propagation of retrotransposons.

  1. Rapid identification of Clostridium species by high-pressure liquid chromatography.

    PubMed Central

    Harpold, D J; Wasilauskas, B L; O'Connor, M L

    1985-01-01

    High-pressure liquid chromatography was evaluated as a rapid means of identifying various species of clostridia. Isolates were inoculated into a defined medium and incubated aerobically for 1 h at 35 degrees C. The organisms were removed, and the supernatants were derivatized for 1 min at room temperature by the addition of o-phthalaldehyde. The total time required to run each chromatogram was approximately 50 min. Standardized peak heights for each medium component and any new peaks formed were calculated for each isolate and compared with those for uninoculated control medium. Multiple isolates of various Clostridium species gave consistent patterns of medium utilization that could be used for identification. This rapid method can easily be adapted for laboratory use and has the potential for automation. PMID:3905852

  2. Wavelength modulation spectroscopy near 5 μm for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

    NASA Astrophysics Data System (ADS)

    Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell

    2018-05-01

    A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.

  3. Reduced humic acid nanosheets and its uses as nanofiller

    NASA Astrophysics Data System (ADS)

    Duraia, El-shazly M.; Henderson, B.; Beall, Gary W.

    2015-10-01

    Leonardite is highly oxidized form of lignite coal and contains a number of carboxyl groups around the edges of a graphene-like core. A novel approach has been developed to synthesize graphene oxide-like nanosheets in large scale utilizing leonardite as a starting material. Humic acid extracted from leonardite has been reduced by performing a high pressure catalytic hydrogenation. The reaction was carried out inside a high pressure stirred reactor at 150 °C and 750 psi (~5.2×106 Pa). Morphology of the as-synthesized samples showed porous platy particles and EDAX analysis indicates the carbon and oxygen atomic ratios as 96:4-97:3%. The as-synthesized material has been used as nanofiller in polyurethane. The reduced humic acid-polyurethane nanocomposite showed over 250% increase of Young's modulus. This new approach provides a low cost and scalable source for graphene oxide-like nanosheets in nanocomposite applications.

  4. Development of a rotary union for Gifford-McMahon cryocoolers utilized in a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Sanz, Santiago; León, Andrés; Fraser, Jim; Neumann, Holger

    2017-12-01

    Superconducting generators (SCG) show the potential to reduce the head mass of large offshore wind turbines. By evaluating the availability and required cooling capacity in the temperatures range around 20 K, a Gifford-McMahon (GM) cryocooler among all the candidates was selected. The cold head of GM cryocooler is supposed to rotate together with the rotating superconducting coil. However, the scroll compressor of the GM cryocooler must stay stationary due to lubricating oil. As a consequence, a rotary helium union (RHU) utilizing Ferrofluidic® sealing technology was successfully developed to transfer helium gas between the rotating cold head and stationary helium compressor at ambient temperatures. It contains a high-pressure and low-pressure helium path with multiple ports, respectively. Besides the helium line, slip rings with optical fiber channels are also integrated into this RHU to transfer current and measurement signals. With promising preliminary test results, the RHU will be installed in a demonstrator of SCG and further performance investigation will be performed.

  5. Prediction and realization of ITER-like pedestal pressure in the high- B tokamak Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hughes, Jerry

    2017-10-01

    Fusion power in a burning plasma will scale as the square of the plasma pressure, which is increased in a straightforward way by increasing magnetic field: Pfus p2 B4 . Experiments on Alcator C-Mod, a compact high- B tokamak, have tested predictive capability for pedestal pressure, at toroidal field BT up to 8T , and poloidal field BP up to 1T . These reactor-like fields enable C-Mod to approach an ITER predicted value of 90kPa . This is expected if, as in the EPED model, the pedestal is constrained by onset of kinetic ballooning modes (KBMs) and peeling-ballooning modes (PMB), yielding a pressure pedestal approximately as pped BT ×BP . One successful path to high confinement on C-Mod is the high-density (ne > 3 ×1020m-3) approach, pursued using enhanced D-alpha (EDAs) H-mode. In EDA H-mode, transport regulates both the pedestal profiles and the core impurity content, holding the pedestal stationary, at just below the PBM stability boundary. We have extended this stationary ELM-suppressed regime to the highest magnetic fields achievable on C-Mod, and used it to approach the maximum pedestal predicted by EPED at high density: pped 60kPa . Another approach to high pressure utilizes a pedestal limited by PBMs at low collisionality, where pressure increases with density and EPED predicts access to a higher ``Super H'' solution for pped. Experiments at reduced density (ne < 2 ×1020m-3) and strong plasma shaping (δ > 0.5) accessed these regimes on C-Mod, producing pedestals with world record pped 80kPa , at Tped 2keV . In both the high and low density approaches, the impact of the pedestal on core performance is substantial. Our exploration of high pedestal regimes yielded a volume-averaged pressure 〈 p 〉 > 2atm , a world record value for a magnetic fusion device. The results hold promise for the projection of pedestal pressure and overall performance of high field burning plasma devices. Supported by U.S. Department of Energy awards DE-FC02-99ER54512, DE-FG02-95ER54309, DE-FC02-06ER54873, DE-AC02-09CH11466, DE-SC0007880 using Alcator C-Mod, a DOE Office of Science User Facility.

  6. High Pressure Biomass Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO 2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDOmore » hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H 2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach for biomass gasification was not very useful and was the impetus for this study. Specifically, we aimed this study at three broad objectives: (i) defining operating conditions at which C 2-C 4 hydrocarbons are formed since these represent loss of carbon efficiency, (ii) understanding the formation of tar species which create downstream processing difficulties in addition of carbon efficiency loss, and (iii) kinetics of biomass gasification where it would be possible to understand the effect of operating conditions and gas phase composition.« less

  7. Development of Low-cost, High Energy-per-unit-area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.

    1978-01-01

    The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.

  8. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  9. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  10. Nurse's Desk: food bank-based outreach and screening to decrease unmet referral needs.

    PubMed

    Larsson, Laura S; Kuster, Emilie

    2013-01-01

    The Nurse's Desk health screening project used the Intervention Wheel model to conduct outreach, screening, education, and referral for food bank clients (n = 506). Blood glucose, blood pressure, health care utilization, and unmet referral needs were assessed. Screening results identified 318 clients (62.8%) with 1 or more unmet referral needs, including 6 clients (3.16%) with capillary blood glucose more than 199 mg/dL and 132 (31.9%) with hypertension. Clients had higher-than-average systolic and diastolic blood pressures and undiagnosed diabetes than in the general population. A client-approved method for tracking completed referrals is needed for this potentially high-risk population.

  11. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics.

    PubMed

    McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina

    2014-08-01

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ~5 mm(-1) and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  12. A device and method for rapid indirect measurement of human systolic and diastolic blood pressures.

    DOT National Transportation Integrated Search

    1970-12-01

    An indirect blood pressure measuring device and method were evolved for human use. This system is capable of providing 30 measurements each of systolic and diastolic pressures per minute. The system utilizes two brachial blood pressure cuffs (one on ...

  13. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a probability of collision Pc > 10 (sup -6) can be mitigated.

  14. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    PubMed

    Li, Xue; Song, Zhengxiang

    2015-04-09

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.

  15. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    NASA Technical Reports Server (NTRS)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  16. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    PubMed

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking speed varied from 1 kilometer per hour (kmph) to 7 kmph. When instrumented in combination, the two sensors can enable measurements ranging from static to high speed conditions Both the sensor types are rugged, small sized and can be easily embedded in commercial shoes and enable plantar pressure measurement in a cost-effective manner. This research is expected to have application in the treatment of patients suffering from diabetes and gonarthrosis.

  17. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    PubMed

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  18. Intracochlear pressure transients during cochlear implant electrode insertion

    PubMed Central

    Greene, Nathaniel T.; Mattingly, Jameson K.; Banakis Hartl, Renee M.; Tollin, Daniel J.; Cass, Stephen P.

    2016-01-01

    Hypothesis Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high intensity sound transients. Background Many patients receiving a CI have some remaining functional hearing at low frequencies, thus devices and surgical techniques have been developed to utilize this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low frequency hearing is lost following CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing. Methods Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows while CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach. Results PST tended to be larger in magnitude than PSV, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170dB SPL. Instances of pressure transients varied with electrode styles. Conclusions Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high level sounds and thus could cause damage to the basilar membrane and/or hair cells. PMID:27753703

  19. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    NASA Astrophysics Data System (ADS)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  20. Development of a cuffless blood pressure measurement system.

    PubMed

    Shyu, Liang-Yu; Kao, Yao-Lin; Tsai, Wen-Ya; Hu, Weichih

    2012-01-01

    This study constructs a novel blood pressure measurement device without the air cuff to overcome the problem of discomfort and portability. The proposed device measures the blood pressure through a mechanism that is made of silicon rubber and pressure transducer. The system uses a microcontroller to control the measurement procedure and to perform the necessary computation. To verify the feasibility of the constructed device, ten young volunteers were recruited. Ten blood pressure readings were obtained using the new system and were compared with ten blood pressure readings from bedside monitor (Spacelabs Medical, model 90367). The results indicated that, when all the readings were included, the mean pressure, systolic pressure and diastolic pressure from the new system were all higher than those from bedside monitor. The correlation coefficients between these two were 0.15, 0.18 and 0.29, for mean, systolic and diastolic pressures, respectively. After excluding irregular apparatus utilization, the correlation coefficient increased to 0.71, 0.60 and 0.41 for diastolic pressure, mean pressure and systolic pressure, respectively. We can conclude from these results that the accuracy can be improved effectively by defining the user regulation more precisely. The above mentioned irregular apparatus utilization factors can be identified and eliminated by the microprocessor to provide a reliable blood pressure measurement in practical applications in the future.

  1. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  2. Equation of state of U2Mo up-to Mbar pressure range: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    Experimentally, U2Mo is known to exist in tetragonal structure at ambient conditions. In contrast to experimental reports, the past theoretical studies carried out in this material do not find this phase to be stable structure at zero pressure. In order to examine this discrepancy between experiment and theory, we have performed ab-initio electronic band structure calculations on this material. In our theoretical study, we have attempted to search for lowest enthalpy structure at ambient as well at high pressure up to 200 GPa, employing evolutionary structure search algorithm in conjunction with ab-inito method. Our investigations suggest that a hexagonal structure with space group symmetry P6/mmm is the lowest enthalpy structure not only at ambient pressure but also up to pressure range of ˜200 GPa. To further, substantiate the results of these static lattice calculations the elastic and lattice dynamical stability has also been analysed. The theoretical isotherm derived from these calculations has been utilized to determine the Hugoniot of this material. Various physical properties such as zero pressure equilibrium volume, bulk modulus and its pressure derivative has also been derived from theoretical isotherm.

  3. Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micro-pressure measurement

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with a four-beams-bossed-membrane (FBBM) structure that consisted of four short beams and a central mass to measure micro-pressure. The proposed structure can alleviate the contradiction between sensitivity and linearity to realize the micro measurement with high accuracy. In this study, the design, fabrication and test of the sensor are involved. By utilizing the finite element analysis (FEA) to analyze the stress distribution of sensitive elements and subsequently deducing the relationships between structural dimensions and mechanical performance, the optimization process makes the sensor achieve a higher sensitivity and a lower pressure nonlinearity. Based on the deduced equations, a series of optimized FBBM structure dimensions are ultimately determined. The designed sensor is fabricated on a silicon wafer by using traditional MEMS bulk-micromachining and anodic bonding technology. Experimental results show that the sensor achieves the sensitivity of 4.65 mV/V/kPa and pressure nonlinearity of 0.25% FSS in the operating range of 0-5 kPa at room temperature, indicating that this novel structure sensor can be applied in measuring the absolute micro pressure lower than 5 kPa.

  4. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking

    PubMed Central

    Actis, Ricardo L.; Ventura, Liliana B.; Lott, Donovan J.; Smith, Kirk E.; Commean, Paul K.; Hastings, Mary K.; Mueller, Michael J.

    2009-01-01

    There is evidence that appropriate footwear is an important factor in the prevention of foot pain in otherwise healthy people or foot ulcers in people with diabetes and peripheral neuropathy. A standard care for reducing forefoot plantar pressure is the utilization of orthotic devices such as total contact inserts (TCI) with therapeutic footwear. Most neuropathic ulcers occur under the metatarsal heads, and foot deformity combined with high localized plantar pressure, appear to be the most significant factors contributing to these ulcers. In this study, patient-specific finite element models of the second ray of the foot were developed to study the influence of TCI design on peak plantar pressure (PPP) under the metatarsal heads. A typical full contact insert was modified based on the results of finite element analyses, by inserting 4 mm diameter cylindrical plugs of softer material in the regions of high pressure. Validation of the numerical model was addressed by comparing the numerical results obtained by the finite element method with measured pressure distribution in the region of the metatarsal heads for a shoe and TCI condition. Two subjects, one with a history of forefoot pain and one with diabetes and peripheral neuropathy, were tested in the laboratory while wearing therapeutic shoes and customized inserts. The study showed that customized inserts with softer plugs distributed throughout the regions of high plantar pressure reduced the PPP over that of the TCI alone. This supports the outcome as predicted by the numerical model, without causing edge effects as reported by other investigators using different plug designs, and provides a greater degree of flexibility for customizing orthotic devices than current practice allows. PMID:18266017

  5. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking.

    PubMed

    Actis, Ricardo L; Ventura, Liliana B; Lott, Donovan J; Smith, Kirk E; Commean, Paul K; Hastings, Mary K; Mueller, Michael J

    2008-04-01

    There is evidence that appropriate footwear is an important factor in the prevention of foot pain in otherwise healthy people or foot ulcers in people with diabetes and peripheral neuropathy. A standard care for reducing forefoot plantar pressure is the utilization of orthotic devices such as total contact inserts (TCI) with therapeutic footwear. Most neuropathic ulcers occur under the metatarsal heads, and foot deformity combined with high localized plantar pressure, appear to be the most significant factors contributing to these ulcers. In this study, patient-specific finite element models of the second ray of the foot were developed to study the influence of TCI design on peak plantar pressure (PPP) under the metatarsal heads. A typical full contact insert was modified based on the results of finite element analyses, by inserting 4 mm diameter cylindrical plugs of softer material in the regions of high pressure. Validation of the numerical model was addressed by comparing the numerical results obtained by the finite element method with measured pressure distribution in the region of the metatarsal heads for a shoe and TCI condition. Two subjects, one with a history of forefoot pain and one with diabetes and peripheral neuropathy, were tested in the laboratory while wearing therapeutic shoes and customized inserts. The study showed that customized inserts with softer plugs distributed throughout the regions of high plantar pressure reduced the PPP over that of the TCI alone. This supports the outcome as predicted by the numerical model, without causing edge effects as reported by other investigators using different plug designs, and provides a greater degree of flexibility for customizing orthotic devices than current practice allows.

  6. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requiresmore » that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.« less

  7. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  8. Hydraulic Diagnostic Monitoring System.

    DTIC Science & Technology

    1981-03-02

    devices were utilized. In one pneumatic circuit, a temperature-compensated pressure switch performed as predicted over a broad tempera- ture range. In...installation ...... ................. 41 9 NADC 81073-60 ILLUSTRATIONS (Cont) Fig. No. Page 28 Temperature-compensated pressure switch .... ................. .42...29 Plot of pressure vs temperature for nitrogen .... ................ .. 43 30 Temperature-compensated pressure switch : diagrammatic circuit

  9. Characteristics of a velvet cathode under high repetition rate pulse operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xun Tao; Zhang Jiande; Yang Hanwu

    2009-10-15

    As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a {approx}300 kV, {approx}6 ns, {approx}100 {omega}, and 1-300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibriummore » pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.« less

  10. Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor

    NASA Astrophysics Data System (ADS)

    Yu, Zhongliang; Zhao, Yulong; Sun, Lu; Tian, Bian; Jiang, Zhuangde

    2013-01-01

    The paper presents a piezoresistive absolute micro pressure sensor, which is of great benefits for altitude location. In this investigation, the design, fabrication, and test of the sensor are involved. By analyzing the stress distribution of sensitive elements using finite element method, a novel structure through the introduction of sensitive beams into traditional bossed diaphragm is built up. The proposed configuration presents its advantages in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the equations about the sensor. Nonlinear optimization by MATLAB is carried out to determine the structure dimensions. The output signals in both static and dynamic environments are evaluated. Silicon bulk micromachining technology is utilized to fabricate the sensor prototype, and the fabrication process is discussed. Experimental results demonstrate the sensor features a high sensitivity of 11.098 μV/V/Pa in the operating range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure to promise its survival under atmosphere. Due to the excellent performance above, the sensor can be applied in measuring the absolute micro pressure lower than 500 Pa.

  11. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chordia, Lalit; Portnoff, Marc A.; Green, Ed

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO 2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO 2. Additional project tasks included building a hot air-to-sCO 2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated amore » number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO 2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.« less

  12. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  13. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  14. CF6 Jet Engine Performance Improvement: High Pressure Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Rich, S. E.; Fasching, W. A.

    1982-01-01

    An active clearance control system was developed which reduces fuel consumption and performance degradation. This system utilizes compressor discharge air during takeoff and fan discharge air during cruise to impinge on the shroud structure to improve the thermal response. The system was evaluated in component and engine tests. The test results demonstrated a performance improvement of 0.7 percent in cruise SFC.

  15. Noninvasive monitoring of systolic blood pressure on the arm utilizing photoplethysmography (PPG): clinical report

    NASA Astrophysics Data System (ADS)

    Laurent, Claes; Jonsson, Bjorn; Vegfors, Magnus; Eneling, Martin; Lindberg, Lars-Goran

    2004-07-01

    A soft (silicone) probe, containing six light emitting diodes (880 nm) and three photo detectors, utilizes photoplethysmography (PPG) to monitor pulsations from the brachialis artery under an occluding cuff during deflation. When the arterial pulse returns, measured by PPG, the corresponding pressure in the cuff is determined. This pressure is assumed to equal the systolic pressure. An assessment trial was performed on 21 patients (9 women and 12 men, aged 27-69) at the Neuro-Intensive care unit. Since the patients were already provided with arterial needles, invasive blood pressure could be used as the reference. By choosing a threshold, for detecting pulses, as a fraction (4%) of the maximum amplitude, the systolic blood pressure was underestimated (-0.57 mmHg, SD 12.1). The range of systolic pressure for the patients was 95.5 - 199.0 mmHg, n=14. The method is promising, but improvements still have to be made in order to improve the technique.

  16. Christopher Scarfe, 1941-1988

    NASA Astrophysics Data System (ADS)

    Lambert, Richard

    Tragedy of major proportion befell the family of Chris Scarfe and the University of Alberta, Canada, at 8 a.m. on July 20, 1988, when an errant car killed Chris instantly while he was out jogging on his way to work.Born in England, Chris graduated at the University of Durham, beginning his career in experimental petrology with Peter Wyllie at the University of Chicago. Returning to England, he completed a Ph.D. at the University of Leeds, assisting in the development of a high-pressure laboratory with Peter Harris. Appointed at the Univeristy of Alberta in 1972, he steadily developed a new facility, expanding the Department of Geology's embryonic high-pressure laboratory with equipment capable of pressures to 40 kbar and 2000°C. He also supervised research on basalts in the Atlantic Ocean, British Columbia, and the Northwest Territories. He spent 1987-1980 in the Geophysical Laboratory, where he met Eiichi Takahashi, establishing a friendship and a most fruitful working partnership. Quickly realizing t h e significance of very high-pressure equipment, Chris strenuously fought for a major equipment grant from the Natural Sciences and Engineering Research Council of Canada and secured it in time to have a Superpress delivered in February 1988, also utilizing support from the University. Quickly assembling a team of researchers, he brought the Superpress into immediate operation, producing diamonds within a month of start-up. Major discoveries concerning the range of stability of carbonates and on the petrogenesis of komatiites are well under way at pressures up to 200 kbar.

  17. Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer.

    PubMed

    Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong

    2018-02-01

    Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m 2 h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Yong Kyoung; Center for Biomicrosystems, Korea Institute of Science and Technology, Seoul 136-791; Lee, Sang-Myung

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared tomore » diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.« less

  19. Optimum domestic processing and cooking methods for reducing the polyphenolic (antinutrient) content of pigeon peas.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2000-01-01

    Four high yielding and early maturing cultivars of pigeon pea (Cajanus cajan) namely UPAS-120, ICPL-87, ICPL-151 and, especially, Manak, contained significant amounts of polyphenols (1075 to 1328 mg/100g), which may limit their utilization. The effectiveness of soaking (6, 12 and 18 h, 30 degrees C), soaking and dehulling, ordinary cooking, pressure cooking and germination (24, 36, 48 h, 30 degrees C) in reducing the levels of polyphenols was investigated. A decrease in the polyphenolic contents varying from 4 to 26 percent in different pigeon pea cultivar was achieved. Pressure cooking of soaked-dehulled seeds was found to be the most effective method, followed by sprouting for 48 h, ordinary cooking of soaked-dehulled seeds, and pressure cooking of soaked whole seeds followed by sprouting for 36 h.

  20. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  1. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  2. Development of Kinetics and Mathematical Models for High-Pressure Gasification of Lignite-Switchgrass Blends: Cooperative Research and Development Final Report, CRADA Number CRD-11-447

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina

    2016-04-06

    NREL will work with Participant as a subtier partner under DE-FOA-0000240 titled "Co-Production of Power, Fuels, and Chemicals via Coal/Biomass Mixtures." The goal of the project is to determine the gasification characteristics of switchgrass and lignite mixtures and develop kinetic models. NREL will utilize a pressurized thermogravimetric analyzer to measure the reactivity of chars generated in a pressurized entrained-flow reactor at Participant's facilities and to determine the evolution of gaseous species during pyrolysis of switchgrass-lignite mixtures. Mass spectrometry and Fourier-transform infrared analysis will be used to identify and quantify the gaseous species. The results of the project will aid inmore » defining key reactive properties of mixed coal biomass fuels.« less

  3. An experimental investigation of endwall profiling in a turbine vane cascade

    NASA Technical Reports Server (NTRS)

    Kopper, F. C.; Milano, R.; Vanco, M.

    1980-01-01

    Measurements of surface static pressures, flow total pressure loss, and exit air angle were obtained for two linear cascades to establish the effects of endwall profiling. Testing was conducted at an isentropic exit Mach number of 0.85. One cascade was fabricated with planar endwalls while the other had one planar and one profiled endwall. Both cascades utilized the same high pressure turbine inlet guide vane section. It was found that in terms of full passage loss the profiled endwall cascade has the superior performance. The secondary loss results obtained are reasonably well predicted by correlations developed from incompressible flow testing of similar configurations. Inviscid flow and boundary layer calculations are compared with the test data, and overall, the agreement is found to be good. Use of the results for design purposes is briefly discussed.

  4. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  5. Time- and Space-Domain Measurements of the Thermal Conductivity in Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Goncharov, A. F.

    2011-12-01

    I will give an overview of recent developments of experimental techniques to measure the thermal conductivity in diamond anvil cell (DAC) under conditions of high pressure and high temperature (P-T) which are relevant for the planetary interiors. To measure the lattice contributions to the thermal conductivity, we developed a transient heating technique (THT) in the diamond anvil cell (DAC) [1]. This technique utilizes a periodic front surface temperature variation (measured by the spectroradiometry) of a metallic absorber surrounded by the material of interest and exposed to a pulsed laser radiation (10 nanoseconds pulses). We extract the thermal diffusivity of minerals by fitting the experimental results to the model finite element (FE) calculations. We have recently modified this technique for microseconds laser pulses as this allows avoiding nonequilibrium heat transfer processes. We have measured the thermal conductivity of Ar up to 50 GPa and 2500 K; the results are in agreement with the theoretical calculations [2] in the limit of high temperatures. In collaboration with a group from the University of Illinois we have utilized a time-domain thermoreflectance (TDTR)- ultrafast (femtosecond) laser pump-probe technique for measurement of the lattice thermal conductivity at high P-T conditions. We have measured the thermal conductivity of MgO up to 60 GPa and 300 K and up to 45 GPa at 600 K. The detailed results of this study will be presented in a separate paper at this Meeting. Finally, we have combined static and pulsed laser techniques to determine the thermal conductivity of Fe and its temperature dependence at high pressures up to 70 GPa and 2000 K [3]. A thin plate of Fe was positioned in an Ar medium, laser heated from one side and the temperature is being measured from both sides of the sample radiometrically. The thermal conductivity has been determined by fitting the results of FE calculations to the experimental results. These examples demonstrate that different techniques can be successfully used to determine the thermal conductivity of materials loaded in the DAC. The choice of the technique depends on material properties, sample preparation method, and P-T range needed. I thank D. Allen Dalton, David Cahill, Viktor Struzhkin, Wen-Pin Hsieh, Zuzana Konopkova, Peter Lazor, Javier A. Montoya for critically contributing to this work. I acknowledge support from NSF EAR 0711358 and EAR-1015239, Carnegie Institution of Washington, DOE/ NNSA (CDAC), and EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001057. 1. P. Beck, A. F. Goncharov, V. V. Struzhkin, B. Militzer, H. K. Mao, R. J. Hemley (2007). Measurement of thermal diffusivity at high pressure using a transient heating technique, Appl Phys. Lett. 91, 181914. 2. K. V. Tretiakov and S. Scandolo (2004). Thermal conductivity of solid argon at high pressure and high temperature: A molecular dynamics study. Journal of Chemical Physics 121, 11177-11182. 3. Z. Konopkova, P. Lazor, A. F. Goncharov, V. V. Struzhkin (2011). Thermal conductivity of hcp iron at high pressure and temperature, High Pressure Research, 31, 228-236.

  6. Simultaneous determination of mean pressure and deviatoric stress based on numerical tensor analysis: a case study for polycrystalline x-ray diffraction of gold enclosed in a methanol-ethanol mixture.

    PubMed

    Yoneda, A; Kubo, A

    2006-06-28

    It is known that the {100} and {111} planes of cubic crystals subjected to uniaxial deviatoric stress conditions have strain responses that are free from the effect of lattice preferred orientation. By utilizing this special character, one can unambiguously and simultaneously determine the mean pressure and deviatoric stress from polycrystalline diffraction data of the cubic sample. Here we introduce a numerical tensor calculation method based on the generalized Hooke's law to simultaneously determine the hydrostatic component of the stress (mean pressure) and deviatoric stress in the sample. The feasibility of this method has been tested by examining the experimental data of the Au pressure marker enclosed in a diamond anvil cell using a pressure medium of methanol-ethanol mixture. The results demonstrated that the magnitude of the deviatoric stress is ∼0.07 GPa at the mean pressure of 10.5 GPa, which is consistent with previous results of Au strength under high pressure. Our results also showed that even a small deviatoric stress (∼0.07 GPa) could yield a ∼0.3 GPa mean pressure error at ∼10 GPa.

  7. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  8. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    PubMed

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  9. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  10. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  11. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  12. Responses of Atriplex spongiosa and Suaeda monoica to Salinity

    PubMed Central

    Storey, Richard; Jones, R. Gareth Wyn

    1979-01-01

    The growth and tissue water, K+, Na+, Cl−, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica. PMID:16660671

  13. A Liquid Density Standard Over Wide Ranges of Temperature and Pressure Based on Toluene

    PubMed Central

    McLinden, Mark O.; Splett, Jolene D.

    2008-01-01

    The density of liquid toluene has been measured over the temperature range −60 °C to 200 °C with pressures up to 35 MPa. A two-sinker hydrostatic-balance densimeter utilizing a magnetic suspension coupling provided an absolute determination of the density with low uncertainties. These data are the basis of NIST Standard Reference Material® 211d for liquid density over the temperature range −50 °C to 150 °C and pressure range 0.1 MPa to 30 MPa. A thorough uncertainty analysis is presented; this includes effects resulting from the experimental density determination, possible degradation of the sample due to time and exposure to high temperatures, dissolved air, uncertainties in the empirical density model, and the sample-to-sample variations in the SRM vials. Also considered is the effect of uncertainty in the temperature and pressure measurements. This SRM is intended for the calibration of industrial densimeters. PMID:27096111

  14. Constant pressure high throughput membrane permeation testing system

    DOEpatents

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  15. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  16. SSMILES.

    ERIC Educational Resources Information Center

    Sunal, Dennis W., Ed.; Tracy, Dyanne M., Ed.

    1993-01-01

    Describes an activity in which the students utilize the mathematics concepts of ratio, proportion, and data tabulation to examine the relationship between air pressure, temperature, and humidity. Students learn to approximate partial pressure by using humidity and temperature readings and by interpolating from the vapor pressure-temperature table.…

  17. Solar Pond Potential as A New Renewable Energy in South Sulawesi

    NASA Astrophysics Data System (ADS)

    Fadliah Baso, Nur; Chaerah Gunadin, Indar; Yusran

    2018-03-01

    Renewable energy sources need to be developed to maintain the electric energy availability by utilizing oceanic energy, namely solar pond energy. This energy is highly influenced by several factors including salinity, air temperature and solar radiation. This study was focused on finding the potential of solar pond in South Sulawesi, a region with fairly high solar radiation and abundant salt water raw materials availability. The method used in this study was analyzing the values from the mathematic models of daily horizontal solar radiation, air temperature, wind speed, relative humidity and atmospheric pressure for the last 22 years which were finalized using MATLAB. The findings of this study will show the areas with good potentials to apply solar pond in South Sulawesi that can be utilized in various fields including power generator, industrial heating process, desalination and heating for biomass conversion.

  18. An Introduction to Atomic Layer Deposition with Thermal Applications

    NASA Technical Reports Server (NTRS)

    Dwivedi, Vivek H.

    2015-01-01

    Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.

  19. Operator’s Manual. Prototype Heavy Rescue/Fire Fighting Vehicle

    DTIC Science & Technology

    1980-09-01

    system for emergency operation if pressure is lost in either parking or service brake systems . The system is operational automatically and is...controlled by the foot treadle ’sive. It will provide for TWO full brake applications and ONE release. ELECTRICAL SYSTEM A dual battery system is utilized for...cleaner. * Lubricate chassis. . Repack wheel bearings. . Inspect brake system and adjust brakes . . Replace fuel filter. . Check high and low idle.

  20. On-site SiH4 generator using hydrogen plasma generated in slit-type narrow gap

    NASA Astrophysics Data System (ADS)

    Takei, Norihisa; Shinoda, Fumiya; Kakiuchi, Hiroaki; Yasutake, Kiyoshi; Ohmi, Hiromasa

    2018-06-01

    We have been developing an on-site silane (SiH4) generator based on use of the chemical etching reaction between solid silicon (Si) and the high-density H atoms that are generated in high-pressure H2 plasma. In this study, we have developed a slit-type plasma source for high-efficiency SiH4 generation. High-density H2 plasma was generated in a narrow slit-type discharge gap using a 2.45 GHz microwave power supply. The plasma’s optical emission intensity distribution along the slit was measured and the resulting distribution was reflected by both the electric power distribution and the hydrogen gas flow. Because the Si etching rate strongly affects the SiH4 generation rate, the Si etching behavior was investigated with respect to variations in the experimental parameters. The weight etch rate increased monotonically with increasing input microwave power. However, the weight etch rate decreased with increasing H2 pressure and an increasing plasma gap. This reduction in the etch rate appears to be related to shrinkage of the plasma generation area because increased input power is required to maintain a constant plasma area with increasing H2 pressure and the increasing plasma gap. Additionally, the weight etch rate also increases with increasing H2 flow rate. The SiH4 generation rate of the slit-type plasma source was also evaluated using gas-phase Fourier transform infrared absorption spectroscopy and the material utilization efficiencies of both Si and the H2 gas for SiH4 gas formation were discussed. The main etch product was determined to be SiH4 and the developed plasma source achieved a SiH4 generation rate of 10 sccm (standard cubic centimeters per minute) at an input power of 900 W. In addition, the Si utilization efficiency exceeded 60%.

  1. Robotic Lunar Lander Development Status

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  2. NASA's Robotic Lunar Lander Development Program

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin W.; Reed, Cheryl L. B.; Artis, David; Cole, Tim; Eng, Doug S.; Kubota, Sanae; Lafferty, Paul; McGee, Timothy; Morese, Brian J.; Chavers, Gregory; hide

    2012-01-01

    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  3. Negative-pressure and low-pressure hydrocephalus: the role of cerebrospinal fluid leaks resulting from surgical approaches to the cranial base.

    PubMed

    Filippidis, Aristotelis S; Kalani, M Yashar S; Nakaji, Peter; Rekate, Harold L

    2011-11-01

    Negative-pressure and low-pressure hydrocephalus are rare clinical entities that are frequently misdiagnosed. They are characterized by recurrent episodes of shunt failure because the intracranial pressure is lower than the opening pressure of the valve. In this report the authors discuss iatrogenic CSF leaks as a cause of low- or negative-pressure hydrocephalus after approaches to the cranial base. The authors retrospectively reviewed cases of low-pressure or negative-pressure hydrocephalus presenting after cranial approaches complicated with a CSF leak at their institution. Three patients were identified. Symptoms of high intracranial pressure and ventriculomegaly were present, although the measured pressures were low or negative. A blocked communication between the ventricles and the subarachnoid space was documented in 2 of the cases and presumed in the third. Shunt revisions failed repeatedly. In all cases, temporary clinical and radiographic improvement resulted from external ventricular drainage at subatmospheric pressures. The CSF leaks were sealed and CSF communication was reestablished operatively. In 1 case, neck wrapping was used with temporary success. Negative-pressure or low-pressure hydrocephalus associated with CSF leaks, especially after cranial base approaches, is difficult to treat. The solution often requires the utilization of subatmospheric external ventricular drains to establish a lower ventricular drainage pressure than the drainage pressure created in the subarachnoid space, where the pressure is artificially lowered by the CSF leak. Treatment involves correction of the CSF leak, neck wrapping to increase brain turgor and allow the pressure in the ventricles to rise to the level of the opening pressure of the valve, and reestablishing the CSF route.

  4. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  5. Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D.

    We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on themore » metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, J.R.; Keywood, S.S.

    PTFE-based gaskets in chemical plant service typically fail in an extrusion mode, sometimes referred to as blowout. Test work previously published by Monsanto indicated that correctly installed PTFE-based gaskets have pressure performance far exceeding system pressure ratings. These results have since been confirmed by extensive testing at the Montreal based Ecole Polytechnique Tightness Testing and Research Laboratory (TTRL), funded by a consortium of gasket users and manufacturers. With the knowledge that properly installed gaskets can withstand system pressures in excess of 1,000 psig [6,894 kPa], failures at two chemical plants were re-examined. This analysis indicates that extrusion type failures canmore » be caused by excessive internal pressures, associated with sections of pipe having an external source of heat coincident with a blocked flow condition. This results in high system pressures which explain the extrusion type failures observed. The paper discusses details of individual failures and examines methods to prevent them. Other causes for extrusion failures are reviewed, with a recommendation that stronger gasket materials not be utilized to correct problems until it is verified that excessive pressure build-up is not the problem. Also summarized are the requirements for proper installation to achieve the potential blowout resistance found in these gaskets.« less

  7. Effect of different body postures on the pressures generated during an L-1 maneuver.

    PubMed

    Williams, C A; Lind, A R; Wiley, R L; Douglas, J E; Miller, G

    1988-10-01

    Changes in blood pressure, intrathoracic pressure, heart rate and the electromyographic activity of various muscle groups were determined while nine male subjects performed 15-s L-1 straining maneuvers at four spine-to-thigh angles (70, 84, 94, and 105 degrees) and two seatback angles (30 and 60 degrees). There was no significant difference between the changes in these variables due to the different body positions. At the onset of the L-1, arterial pressure immediately increased to 195 +/- 5 mm Hg, but fell progressively during the next 5 s to 160 +/- 5 mm Hg. It remained constant during the next 5 s of the maneuver and then recovered to 180 +/- mm Hg during the last 5 s of the maneuver. Esophageal pressure followed essentially the same pattern of response, but heart rate progressively increased during the entire L-1. No one muscle group was utilized more than another. Inflation of an anti-G suit to 4 PSI had no effect on the variables measured. Generation of high arterial pressures during L-1 maneuvers is transitory and not affected either positively or negatively by altering subject body position.

  8. Pressure ulcer prevention and treatment knowledge of Jordanian nurses.

    PubMed

    Saleh, Mohammad Y N; Al-Hussami, Mahmoud; Anthony, Denis

    2013-02-01

    The aims of the study were to determine: (1) Jordanian nurses' level of knowledge of pressure ulcer prevention and treatment of hospitalized patients based on guidelines for pressure ulcer prevention and treatment. (2) Frequency of utilization of pressure ulcer prevention and treatment interventions in clinical practice. (3) Variables that are associated with nurses' utilization of pressure ulcer prevention and treatment interventions. Pressure ulcers are common and previous studies have shown education, knowledge and attitude affect implementation of interventions. A cross-sectional survey design was used to collect data from 460 nurses between June 2010 and November 2010. We used a questionnaire, which was informed by earlier work and guidelines, to collect data about nurses' knowledge and practice of pressure ulcer prevention and treatment. Knowledge and education show an association with implementation of prevention, and demographic variables do not. Similarly knowledge and type of hospital showed an association with implementing treatment. Of concern the use of "donuts" and massage are reported in use. Although pressure ulcer care is well known by nurses, inappropriate pressure ulcer interventions were reported in use. Copyright © 2013 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  9. Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    Benckert, H.; Wachter, J.

    1980-01-01

    Flow induced aerodynamic spring coefficients of labyrinth seals are discussed and the restoring force in the deflection plane of the rotor and the lateral force acting perpendicularly to it are also considered. The effects of operational conditions on the spring characteristics of these components are examined, such as differential pressure, speed, inlet flow conditions, and the geometry of the labyrinth seals. Estimation formulas for the lateral forces due to shaft rotation and inlet swirl, which are developed through experiments, are presented. The utilization of the investigations is explained and results of stability calculations, especially for high pressure centrifugal compressors, are added. Suggestions are made concerning the avoidance of exciting forces in labyrinths.

  10. A cost-effectiveness analysis of two different repositioning strategies for the prevention of pressure ulcers.

    PubMed

    Marsden, Grace; Jones, Katie; Neilson, Julie; Avital, Liz; Collier, Mark; Stansby, Gerard

    2015-12-01

    To assess the cost effectiveness of two repositioning strategies and inform the 2014 National Institute for Health and Care Excellence clinical guideline recommendations on pressure ulcer prevention. Pressure ulcers are distressing events, caused when skin and underlying tissues are placed under pressure sufficient to impair blood supply. They can have a substantial impact on quality of life and have significant resource implications. Repositioning is a key prevention strategy, but can be resource intensive, leading to variation in practice. This economic analysis was conducted to identify the most cost-effective repositioning strategy for the prevention of pressure ulcers. The economic analysis took the form of a cost-utility model. The clinical inputs to the model were taken from a systematic review of clinical data. The population in the model was older people in a nursing home. The economic model was developed with members of the guideline development group and included costs borne by the UK National Health Service. Outcomes were expressed as costs and quality adjusted life years. Despite being marginally more clinically effective, alternating 2 and 4 hourly repositioning is not a cost-effective use of UK National Health Service resources (compared with 4 hourly repositioning) for this high risk group of patients at a cost-effectiveness threshold of £20,000 per quality adjusted life years. These results were used to inform the clinical guideline recommendations for those who are at high risk of developing pressure ulcers. © 2015 John Wiley & Sons Ltd.

  11. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    NASA Astrophysics Data System (ADS)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting machine and (4) described a method for determining an operators' noise dosage of a roof bolting machine utilizing predicted or determined sound pressure levels.

  12. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa.

    PubMed

    Schneidereit, D; Vass, H; Reischl, B; Allen, R J; Friedrich, O

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules [Formula: see text] is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence.

  13. Development of a low loss magnetic composite utilizing amorphous metal flake. Second semi-annual progress report, March 19-September 18, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-10-01

    Composite specimens of amorphous metal flakes have been made using several different binders and several different compaction parameters. The binders have included epoxies, anaerobic adhesives, polyimides, polyamideimides, polyeherimides, and polyesterimides. Compaction variables included the time, temperature and pressure of compaction; flake size, and flake alignment. The best results were achieved using a polyetherimide and aligned flake. Packing factors of 87% were achieved in specimens which also exhibited high mechanical integrity and the ability to withstand a high temperature anneal.

  14. Catalysts and process for liquid hydrocarbon fuel production

    DOEpatents

    White, Mark G; Liu, Shetian

    2014-12-09

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  15. 14 CFR 23.365 - Pressurized cabin loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... landing. (d) The airplane structure must be strong enough to withstand the pressure differential loads... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23... structure must be strong enough to withstand the flight loads combined with pressure differential loads from...

  16. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  17. Optimization of a pressure control valve for high power automatic transmission considering stability

    NASA Astrophysics Data System (ADS)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  18. Pressurized diesel fuel processing using hydrogen peroxide for the fuel cell power unit in low-oxygen environments

    NASA Astrophysics Data System (ADS)

    Lee, Kwangho; Han, Gwangwoo; Cho, Sungbaek; Bae, Joongmyeon

    2018-03-01

    A novel concept for diesel fuel processing utilizing H2O2 is suggested to obtain the high-purity H2 required for air-independent propulsion using polymer electrolyte membrane fuel cells for use in submarines and unmanned underwater vehicles. The core components include 1) a diesel-H2O2 autothermal reforming (ATR) reactor to produce H2-rich gas, 2) a water-gas shift (WGS) reactor to convert CO to H2, and 3) a H2 separation membrane to separate only high-purity H2. Diesel and H2O2 can easily be pressurized as they are liquids. The application of the H2 separation membrane without a compressor in the middle of the process is thus advantageous. In this paper, the characteristics of pressurized ATR and WGS reactions are investigated according to the operating conditions. In both reactors, the methanation reaction is enhanced as the pressure increases. Then, permeation experiments with a H2 separation membrane are performed while varying the temperature, pressure difference, and inlet gas composition. In particular, approximately 90% of the H2 is recovered when the steam-separated rear gas of the WGS reactor is used in the H2 separation membrane. Finally, based on the experimental results, design points are suggested for maximizing the efficiency of the diesel-H2O2 fuel processor.

  19. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor.

    PubMed

    Ma, Yanan; Yue, Yang; Zhang, Hang; Cheng, Feng; Zhao, Wanqiu; Rao, Jiangyu; Luo, Shijun; Wang, Jie; Jiang, Xueliang; Liu, Zhitian; Liu, Nishuang; Gao, Yihua

    2018-04-24

    A piezoresistive sensor based on ultralight and superelastic aerogel is reported to fabricate MXene/reduced graphene oxide (MX/rGO) hybrid 3D structures and utilize their pressure-sensitive characteristics. The MX/rGO aerogel not only combines the rGO's large specific surface area and the MXene's (Ti 3 C 2 T x ) high conductivity but also exhibits rich porous structure, which leads to performance better than that of single-component rGO or MXene in terms of the pressure sensor. The large nanosheets of rGO can prevent the poor oxidization of MXene by wrapping MXene inside the aerogel. More importantly, the piezoresistive sensor based on the MX/rGO aerogel shows extremely high sensitivity (22.56 kPa -1 ), fast response time (<200 ms), and good stability over 10 000 cycles. The piezoresistive sensor based on the MX/rGO hybrid 3D aerogel can easily capture the signal below 10 Pa, thus clearly testing the pulse of an adult at random. Based on its superior performance, it also demonstrates potential applications in measuring pressure distribution, distinguishing subtle strain, and monitoring healthy activity.

  20. Steady and unsteady blade stresses within the SSME ATD/HPOTP inducer

    NASA Technical Reports Server (NTRS)

    Gross, R. Steven

    1994-01-01

    There were two main goals of the ATD HPOTP (alternate turbopump development)(high pressure oxygen turbopump). First, determine the steady and unsteady inducer blade surface strains produced by hydrodynamic sources as a function of flow capacity (Q/N), suction specific speed (Nss), and Reynolds number (Re). Second, to identify the hydrodynamic source(s) of the unsteady blade strains. The reason the aforementioned goals are expressed in terms of blade strains as opposed to blade hydrodynamic pressures is because of the interest regarding the high cycle life of the inducer blades. This report focuses on the first goal of the test program which involves the determination of the steady and unsteady strain (stress) values at various points within the inducer blades. Strain gages were selected as the strain measuring devices. Concurrent with the experimental program, an analytical study was undertaken to produce a complete NASTRAN finite-element model of the inducer. Computational fluid dynamics analyses were utilized to provide the estimated steady-state blade surface pressure loading needed as load input to the NASTRAN inducer model.

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less

  2. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  3. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  4. Biocultural research in global mental health: mapping idioms of distress onto blood pressure in a population survey.

    PubMed

    Sancilio, Amelia; Eggerman, Mark; Panter-Brick, Catherine

    2017-01-01

    Biocultural research remains a challenge in the field of global mental health. We sought to test associations between blood pressure and idioms of distress in a population survey. We drew on a randomly selected sample of 991 adults (498 men, 493 women) in Afghanistan, for whom physiological and psychosocial data were systematically collected. Assessment of mental health (Self-Reported Questionnaire, Afghan Symptom Checklist) included conceptualizations of distress related to pressure (fishar), anxiety, and dysphoria, as well as dimensions of negative affect and aggression. We used principal component analysis to map survey responses to fishar, and multiple regressions to examine associations with systolic/diastolic blood pressure, controlling for age, body mass index, and wealth, and differentiating by gender, mental health, and medication. The Afghan sample averaged 129/80 mmHg, with 27.14% of hypertensive individuals. SBP showed inverse associations with reports of low fishar (β = -4.58, P < .001) and high fishar (β = 6.90, P < .001), as did DPB with low fishar (β = -1.55, P < .001) and high fishar (β = 3.77, P < .001). Low and high fishar responses accounted for substantial proportions of SBP data variation (R 2  = 20% and R 2  = 24%), especially in adults on blood pressure medication (R 2  = 58% and R 2  = 49%). Subjective reports of fishar map onto physiological blood pressure more robustly than other conceptualizations of mental distress related to anxiety, dysphoria, negative affect, or aggression. Our results point to the utility of mapping biological and cultural measures of stress and distress, advancing biopsychosocial understandings of wellbeing in global mental health surveys. © 2016 Wiley Periodicals, Inc.

  5. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    PubMed

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.

    PubMed

    Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G

    2012-03-02

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  7. Manufacturing and characterization of a ceramic single-use microvalve

    NASA Astrophysics Data System (ADS)

    Khaji, Z.; Klintberg, L.; Thornell, G.

    2016-09-01

    We present the manufacturing and characterization of a ceramic single-use microvalve with the potential to be integrated in lab-on-a-chip devices, and forsee its utilization in space and other demanding applications. A 3 mm diameter membrane was used as the flow barrier, and the opening mechanism was based on cracking the membrane by inducing thermal stresses on it with fast and localized resistive heating. Four manufacturing schemes based on high-temperature co-fired ceramic technology were studied. Three designs for the integrated heaters and two thicknesses of 40 and 120 μm for the membranes were considered, and the heat distribution over their membranes, the required heating energies, their opening mode, and the flows admitted through were compared. Furthermore, the effect of applying  +1 and  -1 bar pressure difference on the membrane during cracking was investigated. Thick membranes demonstrated unpromising results for low-pressure applications since the heating either resulted in microcracks or cracking of the whole chip. Because of the higher pressure tolerance of the thick membranes, the design with microcracks can be considered for high-pressure applications where flow is facilitated anyway. Thin membranes, on the other hand, showed different opening sizes depending on heater design and, consequently, heat distribution over the membranes, from microcracks to holes with sizes of 3-100% of the membrane area. For all the designs, applying  +1 bar over pressure contributed to bigger openings, whereas  -1 bar pressure difference only did so for one of the designs, resulting in smaller openings for the other two. The energy required for breaking these membranes was a few hundred mJ with no significant dependence on design and applied pressure. The maximum sustainable pressure of the valve for the current design and thin membranes was 7 bar.

  8. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  9. Measuring static seated pressure distributions and risk for skin pressure ulceration in ice sledge hockey players.

    PubMed

    Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A

    2016-01-01

    To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p < 0.001) and without (p < 0.001). Placement of the cushion resulted in significantly lower average pressure in controls when knees were extended (p = 0.024) but not when flexed (p = 0.248). Placement of the cushion resulted in no difference in pressure (p = 0.443) in the disability group. Pressures recorded indicate high risk for skin ulceration. Cushioning was effective only in the control group with knees extended. That knee extension significantly lowered average seated pressures is important, as many sledge hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.

  10. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  11. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  12. Final Engineering Report - Phase I HYCOS (Hydraulic Check Out System)

    DTIC Science & Technology

    1976-07-30

    34 Shock Strut Pressure/Level Concept 37 35 Pressure vs Temperature Variation 40 36 Temperature Compensated Pressure Switch (Concept) 41 37...Temperature Compensated Pressure Switch (NEO-DYNE) ... 42 38 Deslccant Saturation Monitor 43 39 HIAC Model PC-120 Contamination Monitor 44 40...variables. If a thermal compensated pressure switch is utilized which has the same operating slope as the ideal gaa, then a low charge can be

  13. PRESSURE SYSTEM CONTROL

    DOEpatents

    Esselman, W.H.; Kaplan, G.M.

    1961-06-20

    The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.

  14. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  15. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  16. Techniques for measuring ultrahigh-pressure Hugoniot equation of state on a three-stage gas gun

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Hu, Jianbo; Dai, Chengda; Wang, Qiangsong; Bo, Jingsong; Tan, Hua; Yu, Yuying

    2011-06-01

    A three-stage gas gun was developed by mounting an extending launcher tube on a two-stage gas gun, and was successfully applied to perform ultrahigh-pressure Hugoniot measurements for Ta and Pt by using this three-stage gun. Here we introduced the three-stag gas gun launcher and Hugoniot measurement techniques, including shock front shape diagnosis, shock wave velocity and impact velocity measurement as well as numerical simulation. By using this three-stage gun, Ta or Pt impactors were launched up to ~10 km/s, and the Hugoniot data were respectively measured with high accuracy up to 750 GPa for Ta and 1TPa for Pt. It is demonstrated that the three-stage gas gun is a promising technique for studying the ultrahigh-pressure properties of materials, which never before obtained by utilizing two-stage light-gas-gun.

  17. Usefulness of a Darwinian System in a Biotechnological Application: Evolution of Optical Window Fluorescent Protein Variants under Selective Pressure

    PubMed Central

    Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W.; Zitzelsberger, Horst; Caldwell, Randolph B

    2014-01-01

    With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model. PMID:25192257

  18. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  19. Usefulness of a Darwinian system in a biotechnological application: evolution of optical window fluorescent protein variants under selective pressure.

    PubMed

    Schoetz, Ulrike; Deliolanis, Nikolaos C; Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W; Zitzelsberger, Horst; Caldwell, Randolph B

    2014-01-01

    With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.

  20. Development of an Actuator for Flow Control Utilizing Detonation

    NASA Technical Reports Server (NTRS)

    Lonneman, Patrick J.; Cutler, Andrew D.

    2004-01-01

    Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.

  1. Self-anti-reflective density-modulated thin films by HIPS technique

    NASA Astrophysics Data System (ADS)

    Keles, Filiz; Badradeen, Emad; Karabacak, Tansel

    2017-08-01

    A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.

  2. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.

  3. Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.

    PubMed

    Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu

    2013-11-08

    Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cryogenic, high speed, turbopump bearing cooling requirements

    NASA Technical Reports Server (NTRS)

    Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

    1988-01-01

    Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

  5. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  6. Graphene Nanobubbles Produced by Water Splitting.

    PubMed

    An, Hongjie; Tan, Beng Hau; Moo, James Guo Sheng; Liu, Sheng; Pumera, Martin; Ohl, Claus-Dieter

    2017-05-10

    Graphene nanobubbles are of significant interest due to their ability to trap mesoscopic volumes of gas for various applications in nanoscale engineering. However, conventional protocols to produce such bubbles are relatively elaborate and require specialized equipment to subject graphite samples to high temperatures or pressures. Here, we demonstrate the formation of graphene nanobubbles between layers of highly oriented pyrolytic graphite (HOPG) with electrolysis. Although this process can also lead to the formation of gaseous surface nanobubbles on top of the substrate, the two types of bubbles can easily be distinguished using atomic force microscopy. We estimated the Young's modulus, internal pressure, and the thickness of the top membrane of the graphene nanobubbles. The hydrogen storage capacity can reach ∼5 wt % for a graphene nanobubble with a membrane that is four layers thick. The simplicity of our protocol paves the way for such graphitic nanobubbles to be utilized for energy storage and industrial applications on a wide scale.

  7. Initiation of Insensitive High Explosives Using Multiple Wave Interactions

    NASA Astrophysics Data System (ADS)

    Francois, Elizabeth

    Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will focus on recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Further testing will be performed using cutback experiments to isolate the overdriven state, and quantify the duration of the phenomenon.

  8. Orbital transfer vehicle oxygen turbopump technology. Volume 3: Hot oxygen testing

    NASA Technical Reports Server (NTRS)

    Urke, Robert L.

    1992-01-01

    This report covers the work done in preparation for a liquid oxygen rocket engine turbopump test utilizing high pressure hot oxygen gas for the turbine drive. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas. The goal of this test program was to demonstrate the successful operation of the TPA under simulated engine conditions including the hot oxygen turbine drive. This testing follows a highly successful series of tests pumping liquid oxygen with gaseous nitrogen as the turbine drive gas. That testing included starting of the TPA with no assist to the hydrostatic bearing. The bearing start entailed a rubbing start until the pump generated enough pressure to support the bearing. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The TPA was refurbished for the hot gas drive tests and facility work was begun, but unfortunately funding cuts prohibited the actual testing.

  9. On the Yield Strength of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Jain, Chhavi; Korenaga, Jun; Karato, Shun-ichiro

    2017-10-01

    The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of Mei et al. (2010) with a comprehensive inversion approach based on Markov chain Monte Carlo sampling. Our inversion results indicate that the uncertainty of the relevant flow law parameters is considerably greater than previously thought. Depending on the choice of flow law parameters, the strength of oceanic lithosphere would vary substantially, carrying different implications for the origin of plate tectonics on Earth. To reduce the flow law ambiguity, we suggest that it is important to establish a theoretical basis for estimating macroscopic stress in high-pressure experiments and also to better utilize marine geophysical observations.

  10. Comparison of Reef Fish Survey Data Gathered by Open and Closed Circuit SCUBA Divers Reveals Differences in Areas With Higher Fishing Pressure

    PubMed Central

    Stamoulis, Kostantinos A.; Boland, Raymond C.; Lino, Kevin C.; Hauk, Brian B.; Leonard, Jason C.; Asher, Jacob M.; Lopes, Keolohilani H.; Kosaki, Randall K.

    2016-01-01

    Visual survey by divers using open-circuit (OC) SCUBA is the most widely used approach to survey coral reef fishes. Therefore, it is important to quantify sources of bias in OC surveys, such as the possibility that avoidance of OC divers by fishes can lead to undercounting in areas where targeted species have come to associate divers with a risk of being speared. One potential way to reduce diver avoidance is to utilize closed circuit rebreathers (CCRs), which do not produce the noise and bubbles that are a major source of disturbance associated with OC diving. For this study, we conducted 66 paired OC and CCR fish surveys in the Main Hawaiian Islands at locations with relatively high, moderate, and light fishing pressure. We found no significant differences in biomass estimates between OC and CCR surveys when data were pooled across all sites, however there were differences at the most heavily fished location, Oahu. There, biomass estimates from OC divers were significantly lower for several targeted fish groups, including surgeonfishes, targeted wrasses, and snappers, as well as for all targeted fishes combined, with mean OC biomass between 32 and 68% of mean CCR biomass. There were no clear differences between OC and CCR biomass estimates for these groups at sites with moderate or low fishing pressure, or at any location for other targeted fish groups, including groupers, parrotfishes, and goatfishes. Bias associated with avoidance of OC divers at heavily fished locations could be substantially reduced, or at least calibrated for, by utilization of CCR. In addition to being affected by fishing pressure, the extent to which avoidance of OC divers is problematic for visual surveys varies greatly among taxa, and is likely to be highly influenced by the survey methodology and dimensions used. PMID:27936044

  11. Comparison of Reef Fish Survey Data Gathered by Open and Closed Circuit SCUBA Divers Reveals Differences in Areas With Higher Fishing Pressure.

    PubMed

    Gray, Andrew E; Williams, Ivor D; Stamoulis, Kostantinos A; Boland, Raymond C; Lino, Kevin C; Hauk, Brian B; Leonard, Jason C; Rooney, John J; Asher, Jacob M; Lopes, Keolohilani H; Kosaki, Randall K

    2016-01-01

    Visual survey by divers using open-circuit (OC) SCUBA is the most widely used approach to survey coral reef fishes. Therefore, it is important to quantify sources of bias in OC surveys, such as the possibility that avoidance of OC divers by fishes can lead to undercounting in areas where targeted species have come to associate divers with a risk of being speared. One potential way to reduce diver avoidance is to utilize closed circuit rebreathers (CCRs), which do not produce the noise and bubbles that are a major source of disturbance associated with OC diving. For this study, we conducted 66 paired OC and CCR fish surveys in the Main Hawaiian Islands at locations with relatively high, moderate, and light fishing pressure. We found no significant differences in biomass estimates between OC and CCR surveys when data were pooled across all sites, however there were differences at the most heavily fished location, Oahu. There, biomass estimates from OC divers were significantly lower for several targeted fish groups, including surgeonfishes, targeted wrasses, and snappers, as well as for all targeted fishes combined, with mean OC biomass between 32 and 68% of mean CCR biomass. There were no clear differences between OC and CCR biomass estimates for these groups at sites with moderate or low fishing pressure, or at any location for other targeted fish groups, including groupers, parrotfishes, and goatfishes. Bias associated with avoidance of OC divers at heavily fished locations could be substantially reduced, or at least calibrated for, by utilization of CCR. In addition to being affected by fishing pressure, the extent to which avoidance of OC divers is problematic for visual surveys varies greatly among taxa, and is likely to be highly influenced by the survey methodology and dimensions used.

  12. Industrial waste utilization in the panels production for high buildings facade and socle facing

    NASA Astrophysics Data System (ADS)

    Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg

    2018-03-01

    The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.

  13. PASOTRON high-energy microwave source

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  14. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal constructs.

  15. Dressing for Altitude: U.S. Aviation Pressure Suits--Wiley Post to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2012-01-01

    Since its earliest days, flight has been about pushing the limits of technology and, in many cases, pushing the limits of human endurance. The human body can be the limiting factor in the design of aircraft and spacecraft. Humans cannot survive unaided at high altitudes. There have been a number of books written on the subject of spacesuits, but the literature on the high-altitude pressure suits is lacking. This volume provides a high-level summary of the technological development and operational use of partial- and full-pressure suits, from the earliest models to the current high altitude, full-pressure suits used for modern aviation, as well as those that were used for launch and entry on the Space Shuttle. The goal of this work is to provide a resource on the technology for suits designed to keep humans alive at the edge of space. Hopefully, future generations will learn from the hard-fought lessons of the past. NASA is committed to the future of aerospace, and a key component of that future is the workforce. Without these men and women, technological advancements would not be possible. Dressing for Altitude is designed to provide the history of the technology and to explore the lessons learned through years of research in creating, testing, and utilizing today s high-altitude suits. It is our hope that this information will prove helpful in the development of future suits. Even with the closeout of the Space Shuttle and the planned ending of the U-2 program, pressure suits will be needed for protection as long as humans seek to explore high frontiers. The NASA Aeronautics Research Mission Directorate is committed to the training of the current and future aerospace workforce. This book and the other books published by the NASA Aeronautics Research Mission Directorate are in support of this commitment. Hopefully, you will find this book a valuable resource for many years to come.

  16. Analysis of a Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam

    2013-01-01

    The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.

  17. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  18. Pressure Pulsation in a High Head Francis Turbine Operating at Variable Speed

    NASA Astrophysics Data System (ADS)

    Sannes, D. B.; Iliev, I.; Agnalt, E.; Dahlhaug, O. G.

    2018-06-01

    This paper presents the preliminary work of the master thesis of the author, written at the Norwegian University of Science and Technology. Today, many Francis turbines experience formations of cracks in the runner due to pressure pulsations. This can eventually cause failure. One way to reduce this effect is to change the operation point of the turbine, by utilizing variable speed technology. This work presents the results from measurements of the Francis turbine at the Waterpower Laboratory at NTNU. Measurements of pressure pulsations and efficiency were done for the whole operating range of a high head Francis model turbine. The results will be presented in a similar diagram as the Hill Chart, but instead of constant efficiency curves there will be curves of constant peak-peak values. This way, it is possible to find an optimal operation point for the same power production, were the pressure pulsations are at its lowest. Six points were chosen for further analysis to instigate the effect of changing the speed by ±50 rpm. The analysis shows best results for operation below BEP when the speed was reduced. The change in speed also introduced the possibility to have other frequencies in the system. It is therefore important avoid runner speeds that can cause resonance in the system.

  19. Self-powered heat-resistant polymeric 1D nanowires and 3D micro/nanowire assemblies in a pressure-crystallized size-distributed graphene oxide/poly (vinylidene fluoride) composite

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang

    2017-12-01

    Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.

  20. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  1. Thermoelctric Properties of Bi and Bismuth Telluride Composites

    NASA Astrophysics Data System (ADS)

    Huber, Tito E.; Calcao, Ricky

    1998-03-01

    It has been suggested that microengineering traditional thermoelectric materials into composites may leadto asignificant improvement in their thermoelectric performance. One approach for the fabrication of nanostructured materials is the utilization of nanochannel insulators as a matrix for the synthesis of dense composites using high pressure injection of the melt. We will discuss the synthesis and structural properties of oriented Bi and Bismuth Telluride wire arrays prepared with this technique. Funded by the Army Research Office.

  2. Life and Utilization Criteria Identification in Design (LUCID). Volume 1

    DTIC Science & Technology

    1981-10-01

    stator, seal /spacer, etc. weights are added to these rotor weights in estimating module weights. Weights of other engine modules (combustor, augmentor...of turbine airfoil/platform cooling air and disk cooling/ seal leakage air), number of vanes and blades for the single stage high-pressure turbine, and...subroutines include hubs, shafts, seals and spacers in estimating rotor weights. Module weight is estimated by adding case and stator weights to the rotor

  3. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.

  4. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest critical temperature difference for He-Armixture gas is around 66 °C which is achieved in pressure range of 1.5 MPa - 2.0 MPa and mole fractions of helium of 0.55 - 0.65. The He-N2 and He-O2 mixture gases demonstrate almost the same performances, both have the lowest critical temperature difference around 59 °C atpressures of 1.0 MPa - 1.5 MPa and helium's mole fractions of 0.35 - 0.55. For all tested gases, the lowest critical temperature difference of around 51 °C is provided by He-CO2 mixture gas at pressures of 0.5 MPa - 1.0 MPa with helium's mole fractions of 0.15 - 0.40.

  5. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  6. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS.

    PubMed

    Baedorf Kassis, Elias; Loring, Stephen H; Talmor, Daniel

    2016-08-01

    The driving pressure of the respiratory system has been shown to strongly correlate with mortality in a recent large retrospective ARDSnet study. Respiratory system driving pressure [plateau pressure-positive end-expiratory pressure (PEEP)] does not account for variable chest wall compliance. Esophageal manometry can be utilized to determine transpulmonary driving pressure. We have examined the relationships between respiratory system and transpulmonary driving pressure, pulmonary mechanics and 28-day mortality. Fifty-six patients from a previous study were analyzed to compare PEEP titration to maintain positive transpulmonary end-expiratory pressure to a control protocol. Respiratory system and transpulmonary driving pressures and pulmonary mechanics were examined at baseline, 5 min and 24 h. Analysis of variance and linear regression were used to compare 28 day survivors versus non-survivors and the intervention group versus the control group, respectively. At baseline and 5 min there was no difference in respiratory system or transpulmonary driving pressure. By 24 h, survivors had lower respiratory system and transpulmonary driving pressures. Similarly, by 24 h the intervention group had lower transpulmonary driving pressure. This decrease was explained by improved elastance and increased PEEP. The results suggest that utilizing PEEP titration to target positive transpulmonary pressure via esophageal manometry causes both improved elastance and driving pressures. Treatment strategies leading to decreased respiratory system and transpulmonary driving pressure at 24 h may be associated with improved 28 day mortality. Studies to clarify the role of respiratory system and transpulmonary driving pressures as a prognosticator and bedside ventilator target are warranted.

  7. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  8. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE PAGES

    Ok, Salim; Hoyt, David W.; Andersen, Amity; ...

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  9. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  10. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  11. Laser Velocimeter for Studies of Microgravity Combustion Flowfields

    NASA Technical Reports Server (NTRS)

    Varghese, P. L.; Jagodzinski, J.

    2001-01-01

    We are currently developing a velocimeter based on modulated filtered Rayleigh scattering (MFRS), utilizing diode lasers to make measurements in an unseeded gas or flame. MFRS is a novel variation of filtered Rayleigh scattering, utilizing modulation absorption spectroscopy to detect a strong absorption of a weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption and semiconductor diode lasers generate the relatively weak Rayleigh scattered signal. Alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry; the compact, rugged construction of diode lasers makes them ideally suited for microgravity experimentation. Molecular Rayleigh scattering of laser light simplifies flow measurements as it obviates the complications of flow-seeding. The MFRS velocimeter should offer an attractive alternative to comparable systems, providing a relatively inexpensive means of measuring velocity in unseeded flows and flames.

  12. Quantitative Measurements of Nitric Oxide Concentration in High-Pressure, Swirl-Stabilized Spray Flames

    NASA Technical Reports Server (NTRS)

    Cooper, Clayton S.; Laurendeau, Normand M.; Hicks, Yolanda R. (Technical Monitor)

    2000-01-01

    Lean direct-injection (LDI) spray flames offer the possibility of reducing NO(sub x) emissions from gas turbines by rapid mixing of the liquid fuel and air so as to drive the flame structure toward partially-premixed conditions. We consider the technical approaches required to utilize laser-induced fluorescence methods for quantitatively measuring NO concentrations in high-pressure LDI spray flames. In the progression from atmospheric to high-pressure measurements, the LIF method requires a shift from the saturated to the linear regime of fluorescence measurements. As such, we discuss quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of NO concentration in LDI spray flames. Spatially-resolved LIF measurements of NO concentration (ppm) are reported for preheated, LDI spray flames at pressures of two to five atmospheres. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q(sub 2)(26.5) transition of the gamma(0,0) band. Detection is performed in a two nanometer region centered on the gamma(0,1) band. A complete scheme is developed by which quantitative NO concentrations in high-pressure LDI spray flames can be measured by applying linear LIF. NO is doped into the reactants and convected through the flame with no apparent destruction, thus allowing a NO fluorescence calibration to be taken inside the flame environment. The in-situ calibration scheme is validated by comparisons to a reference flame. Quantitative NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors. Moreover, parametric studies are provided for variations in pressure, air-preheat temperature, and equivalence ratio. Similar parametric studies are performed for lean, premixed-prevaporized flames to permit comparisons to those for LDI flames. Finally, PLIF is expanded to high pressure in an effort to quantify the detected fluorescence image for LDI flames. Success is achieved by correcting the PLIF calibration via a single-point LIF measurement. This procedure removes the influence of any preferential background that occurs in the PLIF detection window. In general, both the LIF and PLIF measurements verify that the LDI strategy could be used to reduce NO(sub x) emissions in future gas turbine combustors.

  13. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    NASA Astrophysics Data System (ADS)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  14. Seismic attributes and advanced computer algorithm to predict formation pore pressure: Qalibah formation of Northwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nour, Abdoulshakour M.

    Oil and gas exploration professionals have long recognized the importance of predicting pore pressure before drilling wells. Pre-drill pore pressure estimation not only helps with drilling wells safely but also aids in the determination of formation fluids migration and seal integrity. With respect to the hydrocarbon reservoirs, the appropriate drilling mud weight is directly related to the estimated pore pressure in the formation. If the mud weight is lower than the formation pressure, a blowout may occur, and conversely, if it is higher than the formation pressure, the formation may suffer irreparable damage due to the invasion of drilling fluids into the formation. A simple definition of pore pressure is the pressure of the pore fluids in excess of the hydrostatic pressure. In this thesis, I investigated the utility of advance computer algorithm called Support Vector Machine (SVM) to learn the pattern of high pore pressure regime, using seismic attributes such as Instantaneous phase, t*Attenuation, Cosine of Phase, Vp/Vs ratio, P-Impedance, Reflection Acoustic Impedance, Dominant frequency and one well attribute (Mud-Weigh) as the learning dataset. I applied this technique to the over pressured Qalibah formation of Northwest Saudi Arabia. The results of my research revealed that in the Qalibah formation of Northwest Saudi Arabia, the pore pressure trend can be predicted using SVM with seismic and well attributes as the learning dataset. I was able to show the pore pressure trend at any given point within the geographical extent of the 3D seismic data from which the seismic attributes were derived. In addition, my results surprisingly showed the subtle variation of pressure within the thick succession of shale units of the Qalibah formation.

  15. Is Neighborhood Access to Health Care Provision Associated with Individual-Level Utilization and Satisfaction?

    PubMed Central

    Hiscock, Rosemary; Pearce, Jamie; Blakely, Tony; Witten, Karen

    2008-01-01

    Objective To explore whether travel time access to the nearest general practitioner (GP) surgery (which is equivalent to U.S. primary care physician [PCP] office) and pharmacy predicts individual-level health service utilization and satisfaction. Data Sources GP and pharmacy addresses were obtained from the New Zealand Ministry of Health in 2003 and merged with a geographic boundaries data set. Travel times derived from these data were appended to the 2002/03 New Zealand Health Survey (N = 12,529). Study Design Multilevel logistic regression was used to model the relationship between travel time access and five health service outcomes: GP consultation, blood pressure test, cholesterol test, visit to pharmacy, and satisfaction with latest GP consultation. Data Collection/Extraction Travel times between each census meshblock centroid and the nearest GP and pharmacy were calculated using Geographical Information System. Principal Findings When travel times were long, blood pressure tests were less likely in urban areas (odds ratio [OR] 0.75 [0.59–0.97]), GP consultations were less likely in rural centers (OR 0.42 [0.22–0.78]) and pharmacy visits were less likely in highly rural areas (OR 0.36 [0.13–0.99]). There was some evidence of lower utilization in rural areas. Conclusions Locational access to GP surgeries and pharmacies appears to sometimes be associated with health service use but not satisfaction. PMID:18671752

  16. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  17. PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants.

    PubMed

    Park, Steve; Guan, Xiying; Kim, Youngwan; Creighton, Francis Pete X; Wei, Eric; Kymissis, Ioannis John; Nakajima, Hideko Heidi; Olson, Elizabeth S

    2018-01-01

    We report the fabrication and characterization of a prototype polyvinylidene fluoride polymer-based implantable microphone for detecting sound inside gerbil and human cochleae. With the current configuration and amplification, the signal-to-noise ratios were sufficiently high for normally occurring sound pressures and frequencies (ear canal pressures >50-60 dB SPL and 0.1-10 kHz), though 10 to 20 dB poorer than for some hearing aid microphones. These results demonstrate the feasibility of the prototype devices as implantable microphones for the development of totally implantable cochlear implants. For patients, this will improve sound reception by utilizing the outer ear and will improve the use of cochlear implants.

  18. PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants

    PubMed Central

    Guan, Xiying; Kim, Youngwan; Creighton, Francis (Pete) X.; Wei, Eric; Kymissis, Ioannis(John); Nakajima, Hideko Heidi; Olson, Elizabeth S.

    2018-01-01

    We report the fabrication and characterization of a prototype polyvinylidene fluoride polymer-based implantable microphone for detecting sound inside gerbil and human cochleae. With the current configuration and amplification, the signal-to-noise ratios were sufficiently high for normally occurring sound pressures and frequencies (ear canal pressures >50–60 dB SPL and 0.1–10 kHz), though 10 to 20 dB poorer than for some hearing aid microphones. These results demonstrate the feasibility of the prototype devices as implantable microphones for the development of totally implantable cochlear implants. For patients, this will improve sound reception by utilizing the outer ear and will improve the use of cochlear implants. PMID:29732950

  19. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-21

    Shock compression experiments in the few hundred GPa (multi-Mabr) regime were performed on Lithium Deuteride (LiD) single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ~200-600 GPa along the Principal Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – as well as pressure and density of re - shock states up to ~900 GPa. Lastly, the experimental measurements are compared with recent density functional theorymore » calculations as well as a new tabular equation of state developed at Los Alamos National Labs.« less

  20. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.

Top