Sample records for utilizing high resolution

  1. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  2. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    USDA-ARS?s Scientific Manuscript database

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  3. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  4. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  5. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  6. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  7. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOEpatents

    Terwilliger, Steve [Albuquerque, NM

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  8. Utilization of high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature

    USDA-ARS?s Scientific Manuscript database

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...

  9. Large Area Field of View for Fast Temporal Resolution Astronomy

    NASA Astrophysics Data System (ADS)

    Covarrubias, Ricardo A.

    2018-01-01

    Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.

  10. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  11. Assessing the competing roles of model resolution and meteorological forcing fidelity in hyperresolution simulations of snowpack and streamflow in the southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.

    2017-12-01

    Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.

  12. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-03-01

    Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.

  13. High resolution tsunami inversion for 2010 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  14. Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher

    NASA Astrophysics Data System (ADS)

    Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory

    2004-08-01

    As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.

  15. High-resolution nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using gas permeable mold

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2017-03-01

    We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.

  16. High-resolution Land Cover Datasets, Composite Curve Numbers, and Storm Water Retention in the Tampa Bay, FL region

    EPA Science Inventory

    Policy makers need to understand how land cover change alters storm water regimes, yet existing methods do not fully utilize newly available datasets to quantify storm water changes at a landscape-scale. Here, we use high-resolution, remotely-sensed land cover, imperviousness, an...

  17. Rapid discrimination of Isaria javanica and Isaria poprawskii from Isaria spp. using high resolution DNA melting assays

    USDA-ARS?s Scientific Manuscript database

    The current study evaluates the potential of using high resolution DNA melting assays to discriminate species in the genus, Isaria. The study utilizes a previously identified 103 base pair PCR amplicon, which was reported to be selective for Isaria fumosorosea. Our study finds the amplicon selective...

  18. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Sandra, Koen; Pereira, Alberto Dos Santos; Vanhoenacker, Gerd; David, Frank; Sandra, Pat

    2010-06-18

    A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200bar to extend the peak capacity or increase productivity is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  20. Design and simulation of high resolution optical imaging system based on near-field using solid immersion lens with NA = 2.2

    NASA Astrophysics Data System (ADS)

    Abbasian, Karim; Sadeghi, Rasool; Sadeghi, Parvin

    2014-03-01

    In this work, by changing annular aperture zones transmittance, we could get a spot size smaller than any reported one by utilizing annular aperture. Where, by dividing the annular aperture to more than three zones and utilizing of Sony corporation Produced SIL that has NA higher than 2, we could improve imaging resolution for radial polarization (RP); also we could decrease the FWHM from around ? to near ?. Here, the FWHM variation, according to the refractive index changing, has decreased to zero for RP. After that, circular polarization (CP) has been introduced to get a spot size less than ?. This image resolution improving can be applied to enhance optical data storage, microscopes and lithographic and other high accurate optical systems.

  1. Mothers' Resolution of Their Young Children's Psychiatric Diagnoses: Associations with Child, Parent, and Relationship Characteristics

    ERIC Educational Resources Information Center

    Kearney, Joan A.; Britner, Preston A.; Farrell, Anne F.; Robinson, JoAnn L.

    2011-01-01

    Maternal resolution of a child's diagnosis relates to sensitive caregiving and healthy attachment. Failure to resolve is associated with maternal distress, high caregiving burden, and the quality of marital and social support. This study examined maternal resolution of diagnosis in a child psychiatric population utilizing the Reaction to Diagnosis…

  2. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  3. A Pitch Extraction Method with High Frequency Resolution for Singing Evaluation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo

    This paper proposes a pitch estimation method suitable for singing evaluation incorporable in KARAOKE machines. Professional singers and musicians have sharp hearing for music and singing voice. They recognize that singer's voice pitch is “a little off key” or “be in tune”. In the same way, the pitch estimation method that has high frequency resolution is necessary in order to evaluate singing. This paper proposes a pitch estimation method with high frequency resolution utilizing harmonic characteristic of autocorrelation function. The proposed method can estimate a fundamental frequency in the range 50 ∼ 1700[Hz] with resolution less than 3.6 cents in light processing.

  4. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  5. High-resolution anorectal manometry: An expensive hobby or worth every penny?

    PubMed

    Basilisco, G; Bharucha, A E

    2017-08-01

    Introduced approximately 10 years ago, high-resolution manometry catheters have fostered interest in anorectal manometry. This review, which accompanies two articles in this issue of Neurogastroenterology and Motility, reviews the methods, clinical indications, utility, and pitfalls of anorectal manometry and revisits the American Gastroenterological Association (AGA) Medical Position Statement on Anorectal Testing Techniques, which was last published in 1999. High-resolution manometry provides a refined assessment of the anorectal pressure profile, obviates the need for station pull-through maneuvers, and minimizes movement artifacts. In selected cases, this refined assessment may be useful for identifying structural abnormalities or anal weakness. However, many manometry patterns that were previously regarded as abnormal are also observed in a majority of healthy patients, which substantially limits the utility of manometry for identifying defecatory disorders. It is our impression that most conclusions of the AGA medical position statement from 1999 remain valid today. High-resolution techniques have not substantially affected the number of publications on or management of anorectal disorders. The ongoing efforts of an international working group to standardize techniques for anorectal manometry are welcome. Although high-resolution manometry is more than an expensive hobby, improvements in catheter design and further research to rigorously define and evaluate these techniques are necessary to determine if they are worth every penny. © 2017 John Wiley & Sons Ltd.

  6. Variability Extraction and Synthesis via Multi-Resolution Analysis using Distribution Transformer High-Speed Power Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Mather, Barry A

    A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less

  7. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    PubMed

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  8. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    PubMed Central

    Togami, Takashi; Yamaguchi, Norio

    2017-01-01

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis. PMID:29113104

  9. Optical data storage and metallization of polymers

    NASA Technical Reports Server (NTRS)

    Roland, C. M.; Sonnenschein, M. F.

    1991-01-01

    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described.

  10. Clinical Utility of High-Frequency Musculoskeletal Ultrasonography in Foot and Ankle Pathology: How Ultrasound Imaging Influences Diagnosis and Management.

    PubMed

    Delzell, Patricia B; Tritle, Benjamin A; Bullen, Jennifer A; Chiunda, Stella; Forney, Michael C

    The use of high-frequency (high-resolution) musculoskeletal ultrasonography is increasing and has shown promising utility in many areas of medicine. The utility of musculoskeletal ultrasonography for foot and ankle complaints has not been widely investigated, however. Although some conditions of the foot and ankle are easily diagnosed by physical examination, others can have nonspecific examination findings, making optimal treatment decisions difficult. We hypothesized that high-resolution musculoskeletal ultrasound scanning of the foot and ankle can affect the diagnosis and/or treatment for patients presenting with foot or ankle complaints. Retrospectively, the cases of 98 patients who had undergone musculoskeletal ultrasound scanning of the foot or ankle were reviewed. The pre-ultrasound clinical diagnosis and treatment were compared with the post-ultrasound diagnosis and treatment. In 64% of the patients, the diagnosis or treatment changed after the ultrasound examination. In 43% of patients, both the diagnosis and the treatment changed after ultrasound scanning. For those patients for whom the diagnosis and treatment were unchanged after the ultrasound examination, the ultrasound findings were concordant with the pre-ultrasound clinical diagnosis for 100% of the patients. These results suggest that in a large proportion of patients, high-resolution musculoskeletal ultrasonography of the foot or ankle can facilitate appropriate diagnosis and management. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  12. Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Rose, A.

    2017-12-01

    At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.

  13. Sparse super-resolution reconstructions of video from mobile devices in digital TV broadcast applications

    NASA Astrophysics Data System (ADS)

    Boon, Choong S.; Guleryuz, Onur G.; Kawahara, Toshiro; Suzuki, Yoshinori

    2006-08-01

    We consider the mobile service scenario where video programming is broadcast to low-resolution wireless terminals. In such a scenario, broadcasters utilize simultaneous data services and bi-directional communications capabilities of the terminals in order to offer substantially enriched viewing experiences to users by allowing user participation and user tuned content. While users immediately benefit from this service when using their phones in mobile environments, the service is less appealing in stationary environments where a regular television provides competing programming at much higher display resolutions. We propose a fast super-resolution technique that allows the mobile terminals to show a much enhanced version of the broadcast video on nearby high-resolution devices, extending the appeal and usefulness of the broadcast service. The proposed single frame super-resolution algorithm uses recent sparse recovery results to provide high quality and high-resolution video reconstructions based solely on individual decoded frames provided by the low-resolution broadcast.

  14. Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.

  15. Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.

    PubMed

    Kumar, S Santosh; Hong, Jiarong

    2018-05-14

    We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.

  16. Demonstration Of Ultra HI-FI (UHF) Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2004-01-01

    Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.

  17. Ultra High-Resolution Anterior Segment Optical Coherence Tomography in the Diagnosis and Management of Ocular Surface Squamous Neoplasia

    PubMed Central

    Thomas, Benjamin J.; Galor, Anat; Nanji, Afshan A.; Sayyad, Fouad El; Wang, Jianhua; Dubovy, Sander R.; Joag, Madhura G.; Karp, Carol L.

    2014-01-01

    The development of optical coherence tomography (OCT) technology has helped to usher in a new era of in vivo diagnostic imaging of the eye. The utilization of OCT for imaging of the anterior segment and ocular surface has evolved from time-domain devices to spectral-domain devices with greater penetrance and resolution, providing novel images of anterior segment pathology to assist in diagnosis and management of disease. Ocular surface squamous neoplasia (OSSN) is one such pathology that has proven demonstrable by certain anterior segment OCT machines, specifically the newer devices capable of performing ultra high-resolution OCT (UHR-OCT). Distinctive features of OSSN on high resolution OCT allow for diagnosis and differentiation from other ocular surface pathologies. Subtle findings on these images help to characterize the OSSN lesions beyond what is apparent with the clinical examination, providing guidance for clinical management. The purpose of this review is to examine the published literature on the utilization of UHR-OCT for the diagnosis and management of OSSN, as well as to report novel uses of this technology and potential directions for its future development. PMID:24439046

  18. SAFARI optical system architecture and design concept

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  19. Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Rappaport, S.

    1977-01-01

    An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.

  20. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  1. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  2. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    NASA Technical Reports Server (NTRS)

    Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Parker, Allen R. Jr. (Inventor); Hamory, Philip J (Inventor); Chan, Hon Man (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  3. Attofarad resolution capacitance-voltage measurement of nanometer scale field effect transistors utilizing ambient noise.

    PubMed

    Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip

    2009-08-19

    A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.

  4. Development of inorganic resists for electron beam lithography: Novel materials and simulations

    NASA Astrophysics Data System (ADS)

    Jeyakumar, Augustin

    Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.

  5. The time resolution of the St Petersburg paradox

    PubMed Central

    Peters, Ole

    2011-01-01

    A resolution of the St Petersburg paradox is presented. In contrast to the standard resolution, utility is not required. Instead, the time-average performance of the lottery is computed. The final result can be phrased mathematically identically to Daniel Bernoulli's resolution, which uses logarithmic utility, but is derived using a conceptually different argument. The advantage of the time resolution is the elimination of arbitrary utility functions. PMID:22042904

  6. Dynamic measurements of thermophysical properties of metals and alloys at high temperatures by subsecond pulse heating techniques

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1993-01-01

    Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting temperature. It utilizes a modified millisecond-resolution heating system designed for use in a microgravity environment.

  7. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  8. LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching

    PubMed Central

    Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.

    2018-01-01

    Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939

  9. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    NASA Astrophysics Data System (ADS)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  10. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  11. Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS)

    NASA Astrophysics Data System (ADS)

    Kumer, John B.; Rairden, Richard L.; Mitchell, Keith E.; Roche, Aidan E.; Mergenthaler, John L.

    2002-11-01

    The Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS) uses relatively inexpensive off the shelf components in a small and simple package to provide ultra high spectral resolution over a limited spectral range. For example, the modest first try laboratory test setup DECTOSS we describe in this presentation achieves resolving power ~ 105 on a spectral range of about 1 nm centered near 760 nm. This ultra high spectral resolution facilitates some important atmospheric remote sensing applications including profiling cirrus and/or aerosol above bright reflective surfaces in the O2 A-band and the column measurements of CO and CO2 utilizing solar reflectance spectra. We show details of the how the use of ultra high spectral resolution in the O2 A-band improves the profiling of cirrus and aerosol. The DECTOSS utilizes a Narrow Band Spectral Filter (NBSF), a Low Resolution Etalon (LRE) and a High Resolution Etalon (HRE). Light passing through these elements is focused on to a 2 Dimensional Array Detector (2DAD). Off the shelf, solid etalons with airgap or solid spacer gap are used in this application. In its simplest application this setup utilizes a spatially uniform extended source so that spatial and spectral structure are not confused. In this presentation we'll show 2D spectral data obtained in a desktop test configuration, and in the first try laboratory test setup. These were obtained by illuminating a Lambertian screen with (1) monochromatic light, and (2) with atmospheric absorption spectra in the oxygen (O2) A-band. Extracting the 1D spectra from these data is a work in progress and we show preliminary results compared with (1) solar absorption data obtained with a large Echelle grating spectrometer, and (2) theoretical spectra. We point out areas for improvement in our laboratory test setup, and general improvements in spectral range and sensitivity that are planned for our next generation field test setup.

  12. Radar/radiometer facilities for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Taylor, R. C.

    1973-01-01

    The OSU ElectroScience Laboratory Radar/Radiometer Facilities are described. This instrumentation includes a high-resolution radar/radiometer system, a fully automated low-resolution radar system, and a small surveillance radar system. The high-resolution radar/radiometer system operates at 3, 9, and 15 GHz using two 9.1 m and one 4.6 m parabolic antennas, respectively. The low-resolution and surveillance radars operate at 9 and 15 GHz, respectively. Both the high- and low-resolution systems are interfaced to real-time digital processing and recording systems. This capability was developed for the measurement of the temporal and spatial characteristics of precipitation in conjunction with millimeter wavelength propagation studies utilizing the Advanced Technology Satellites. Precipitation characteristics derived from these measurements could also be of direct benefit in such diverse areas as: the atmospheric sciences, meteorology, water resources, flood control and warning, severe storm warning, agricultural crop studies, and urban and regional planning.

  13. Simultaneous dual-color fluorescence microscope: a characterization study.

    PubMed

    Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong

    2013-01-01

    High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.

  14. Feasibility of high resolution seismic reflection to improve accuracy of hydrogeologic models in a culturally noisy part of Ventura County, CA, USA

    USGS Publications Warehouse

    Miller, R.; Black, W.; Miele, M.; Morgan, T.; Ivanov, J.; Xia, J.; Peterie, S.

    2011-01-01

    A high-resolution seismic reflection investigation mapped reflectors and identified characteristics potentially influencing the interpretation of the hydrogeology underlying a portion of the Oxnard Plain in Ventura County, California. Design and implementation of this study was heavily influenced by high levels of cultural noise from vehicles, power lines, roads, manufacturing facilities, and underground utilities/vaults. Acquisition and processing flows were tailored to this noisy environment and relatively shallow target interval. Layering within both upper and lower aquifer systems was delineated at a vertical resolution potential of around 2.5 m at 350 m depth. ?? 2011 Society of Exploration Geophysicists.

  15. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  16. A Compressed Sensing Based Method for Reducing the Sampling Time of A High Resolution Pressure Sensor Array System

    PubMed Central

    Sun, Chenglu; Li, Wei; Chen, Wei

    2017-01-01

    For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188

  17. Dual-comb spectroscopy of laser-induced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy

    Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less

  18. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  19. Operational multisensor sea ice concentration algorithm utilizing Sentinel-1 and AMSR2 data

    NASA Astrophysics Data System (ADS)

    Dinessen, Frode

    2017-04-01

    The Norwegian Ice Service provide ice charts of the European part of the Arctic every weekday. The charts are produced from a manually interpretation of satellite data where SAR (Synthetic Aperture Radar) data plays a central role because of its high spatial resolution and Independence of cloud cover. A new chart is produced every weekday and the charts are distributed through the CMEMS portal. After the launch of Sentinel-1A and B the number of available SAR data have significant increased making it difficult to utilize all the data in a manually process. This in combination with a user demand for a more frequent update of the ice conditions, also during the weekends, have made it important to focus the development on utilizing the high resolution Sentinel-1 data in an automatic sea ice concentration analysis. The algorithm developed here is based on a multi sensor approach using an optimal interpolation to combine sea ice concentration products derived from Sentinel-1 and passive microwave data from AMSR2. The Sentinel-1 data is classified with a Bayesian SAR classification algorithm using data in extra wide mode dual polarization (HH/HV) to separate ice and water in the full 40x40 meter spatial resolution. From the classification of ice/water the sea ice concentration is estimated by calculating amount of ice within an area of 1x1 km. The AMSR2 sea ice concentration are produced as part of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) project and utilize the 89 GHz channel to produce a concentration product with a 3km spatial resolution. Results from the automatic classification will be presented.

  20. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  1. Tunable hard X-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seely, John F., E-mail: seelyjf@gmail.com; Feldman, Uri; Henins, Albert

    2016-05-15

    A Cauchois type hard x-ray spectrometer was developed that utilizes the (301) diffraction planes at an asymmetric angle of 23.51° to the normal to the surface of a cylindrically curved quartz transmission crystal. The energy coverage is tunable by rotating the crystal and the detector arm, and spectra were recorded in the 8 keV to 20 keV range with greater than 2000 resolving power. The high resolution results from low aberrations enabled by the nearly perpendicular angle of the diffracted rays with the back surface of the crystal. By using other asymmetric planes of the same crystal and rotating tomore » selected angles, the spectrometer can operate with high resolution up to 50 keV.« less

  2. Two-dimensional fringe probing of transient liquid temperatures in a mini space.

    PubMed

    Xue, Zhenlan; Qiu, Huihe

    2011-05-01

    A 2D fringe probing transient temperature measurement technique based on photothermal deflection theory was developed. It utilizes material's refractive index dependence on temperature gradient to obtain temperature information from laser deflection. Instead of single beam, this method applies multiple laser beams to obtain 2D temperature information. The laser fringe was generated with a Mach-Zehnder interferometer. A transient heating experiment was conducted using an electric wire to demonstrate this technique. Temperature field around a heating wire and variation with time was obtained utilizing the scattering fringe patterns. This technique provides non-invasive 2D temperature measurements with spatial and temporal resolutions of 3.5 μm and 4 ms, respectively. It is possible to achieve temporal resolution to 500 μs utilizing the existing high speed camera.

  3. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  4. Automated, per pixel Cloud Detection from High-Resolution VNIR Data

    NASA Technical Reports Server (NTRS)

    Varlyguin, Dmitry L.

    2007-01-01

    CASA is a fully automated software program for the per-pixel detection of clouds and cloud shadows from medium- (e.g., Landsat, SPOT, AWiFS) and high- (e.g., IKONOS, QuickBird, OrbView) resolution imagery without the use of thermal data. CASA is an object-based feature extraction program which utilizes a complex combination of spectral, spatial, and contextual information available in the imagery and the hierarchical self-learning logic for accurate detection of clouds and their shadows.

  5. High-resolution imaging and target designation through clouds or smoke

    DOEpatents

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  6. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    DOE PAGES

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; ...

    2014-09-19

    In this paper, we have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li + or Li 2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV formore » the 135 Å Li 2 + lines. Finally, recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.« less

  7. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    NASA Astrophysics Data System (ADS)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (< 10 days ) and longer ( 1 year) Perturbed Parameters Ensemble (PPE) simulations at low resolution to identify model feature sensitivity to parameter changes. The CAPT tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in greater detail once an educated set of parameter choice is selected. Limitations on using short-term simulations for tuning climate model are also discussed.

  8. VizieR Online Data Catalog: Detailed abundances of KOI stars with planets. I. (Schuler+, 2015)

    NASA Astrophysics Data System (ADS)

    Schuler, S. C.; Vaz, Z. A.; Katime Santrich, O. J.; Cunha, K.; Smith, V. V.; King, J. R.; Teske, J. K.; Ghezzi, L.; Howell, S. B.; Isaacson, H.

    2016-03-01

    We have analyzed high-resolution, high-signal-to-noise ratio (S/N) spectra of seven stars, each of which has at least one confirmed small planet discovered by Kepler. The spectra of these stars were obtained as part of the Kepler Follow-up Observing Program (KFOP). The 10m Keck I telescope and High Resolution Echelle Spectrometer (HIRES) are being utilized for precise RV measurements of high-priority KOIs. The KFOP spectra are characterized by a spectral resolution of R=50000 and span 3650-7950Å with incomplete coverage in the reddest orders. Additional observations of Kepler-21 were made independently with Keck/HIRES and the 4m Mayall telescope and echelle spectrograph at Kitt Peak National Observatory (KPNO) in UT 2011. (4 data files).

  9. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  10. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as governmental entities and municipalities.

  11. Suitability of holographic beam scanning in high resolution applications

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Goutam Buddha, S. S.; Boruah, Bosanta R.

    2018-02-01

    The high resolution applications of a laser scanning imaging system very much demand the accurate positioning of the illumination beam. The galvanometer scanner based beam scanning imaging systems, on the other hand, suffer from both short term and long term beam instability issues. Fortunately Computer generated holography based beam scanning offers extremely accurate beam steering, which can be very useful for imaging in high-resolution applications in confocal microscopy. The holographic beam scanning can be achieved by writing a sequence of holograms onto a spatial light modulator and utilizing one of the diffracted orders as the illumination beam. This paper highlights relative advantages of such a holographic beam scanning based confocal system and presents some of preliminary experimental results.

  12. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  13. Geostationary earth climate sensor: Scientific utility and feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Campbell, G. Garrett; Vonderharr, T. H.; Evert, T.; Kidder, Stanley Q.; Purdom, James F. W.

    1991-01-01

    The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features.

  14. Damage extraction of buildings in the 2015 Gorkha, Nepal earthquake from high-resolution SAR data

    NASA Astrophysics Data System (ADS)

    Yamazaki, Fumio; Bahri, Rendy; Liu, Wen; Sasagawa, Tadashi

    2016-05-01

    Satellite remote sensing is recognized as one of the effective tools for detecting and monitoring affected areas due to natural disasters. Since SAR sensors can capture images not only at daytime but also at nighttime and under cloud-cover conditions, they are especially useful at an emergency response period. In this study, multi-temporal high-resolution TerraSAR-X images were used for damage inspection of the Kathmandu area, which was severely affected by the April 25, 2015 Gorkha Earthquake. The SAR images obtained before and after the earthquake were utilized for calculating the difference and correlation coefficient of backscatter. The affected areas were identified by high values of the absolute difference and low values of the correlation coefficient. The post-event high-resolution optical satellite images were employed as ground truth data to verify our results. Although it was difficult to estimate the damage levels for individual buildings, the high resolution SAR images could illustrate their capability in detecting collapsed buildings at emergency response times.

  15. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  16. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  17. Spectral optical coherence tomography for ophthalmologic applications

    NASA Astrophysics Data System (ADS)

    Targowski, Piotr; Bajraszewski, Tomasz; Gorczyńska, Iwona; Szkulmowska, Anna; Szkulmowski, Maciej; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Kaluzny, Bartłomiej J.

    2006-09-01

    The overview of the Spectral Optical Coherence Tomography an alternative method to more popular Time domain modality is given. Examples from medical practice utilizing high resolution, ultra fast SOCT device are presented.

  18. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.

    2018-04-01

    We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

  19. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  20. Libraries of High and Mid-Resolution Spectra of F, G, K, and M Field Stars

    NASA Astrophysics Data System (ADS)

    Montes, D.

    1998-06-01

    I have compiled here the three libraries of high and mid-resolution optical spectra of late-type stars I have recently published. The libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 1000 Å, with spectral resolution ranging from 0.09 to 3.0 Å. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity. The spectra have been obtained with the aim of providing a library of high and mid-resolution spectra to be used in the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways. A digital version of all the fully reduced spectra is available via FTP and the World Wide Web (WWW) in FITS format.

  1. High-resolution x-ray tomography using laboratory sources

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing

    2006-08-01

    X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.

  2. High-Resolution Strain Analysis of the Human Heart with Fast-DENSE

    NASA Astrophysics Data System (ADS)

    Aletras, Anthony H.; Balaban, Robert S.; Wen, Han

    1999-09-01

    Single breath-hold displacement data from the human heart were acquired with fast-DENSE (fast displacement encoding with stimulated echoes) during systolic contraction at 2.5 × 2.5 mm in-plane resolution. Encoding strengths of 0.86-1.60 mm/π were utilized in order to extend the dynamic range of the phase measurements and minimize effects of physiologic and instrument noise. The noise level in strain measurements for both contraction and dilation corresponded to a strain value of 2.8%. In the human heart, strain analysis has sufficient resolution to reveal transmural variation across the left ventricular wall. Data processing required minimal user intervention and provided a rapid quantitative feedback. The intrinsic temporal integration of fast-DENSE achieves high accuracy at the expense of temporal resolution.

  3. Time and space integrating acousto-optic folded spectrum processing for SETI

    NASA Technical Reports Server (NTRS)

    Wagner, K.; Psaltis, D.

    1986-01-01

    Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.

  4. Metabolite-cycled density-weighted concentric rings k-space trajectory (DW-CRT) enables high-resolution 1 H magnetic resonance spectroscopic imaging at 3-Tesla.

    PubMed

    Steel, Adam; Chiew, Mark; Jezzard, Peter; Voets, Natalie L; Plaha, Puneet; Thomas, Michael Albert; Stagg, Charlotte J; Emir, Uzay E

    2018-05-17

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique in both experimental and clinical settings. However, to date, MRSI has been hampered by prohibitively long acquisition times and artifacts caused by subject motion and hardware-related frequency drift. In the present study, we demonstrate that density weighted concentric ring trajectory (DW-CRT) k-space sampling in combination with semi-LASER excitation and metabolite-cycling enables high-resolution MRSI data to be rapidly acquired at 3 Tesla. Single-slice full-intensity MRSI data (short echo time (TE) semi-LASER TE = 32 ms) were acquired from 6 healthy volunteers with an in-plane resolution of 5 × 5 mm in 13 min 30 sec using this approach. Using LCModel analysis, we found that the acquired spectra allowed for the mapping of total N-acetylaspartate (median Cramer-Rao Lower Bound [CRLB] = 3%), glutamate+glutamine (8%), and glutathione (13%). In addition, we demonstrate potential clinical utility of this technique by optimizing the TE to detect 2-hydroxyglutarate (long TE semi-LASER, TE = 110 ms), to produce relevant high-resolution metabolite maps of grade III IDH-mutant oligodendroglioma in a single patient. This study demonstrates the potential utility of MRSI in the clinical setting at 3 Tesla.

  5. Cross-correlation photothermal optical coherence tomography with high effective resolution.

    PubMed

    Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie

    2017-12-01

    We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.

  6. The roughness of grounded ice sheet beds: Case studies from high resolution radio echo sounding studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Young, Duncan; Blankeship, Donald; Beem, Lucas; Cavitte, Marie; Quartini, Enrica; Lindzey, Laura; Jackson, Charles; Roberts, Jason; Ritz, Catherine; Siegert, Martin; Greenbaum, Jamin; Frederick, Bruce

    2017-04-01

    The roughness of subglacial interfaces (as measured by airborne radar echo sounding) at length scales between profile line spacing and the footprint of the instrument is a key, but complex, signature of glacial and geomorphic processes, material lithology and integrated history at the bed of ice sheets. Subglacial roughness is also intertwined with assessments of ice thickness uncertainty using radar echo sounding, the utility of interpolation methodologies, and a key aspect of subglacial assess strategies. Here we present an assessment of subglacial roughness estimation in both West and East Antarctica, and compare this to exposed subglacial terrains. We will use recent high resolution aerogeophysical surveys to examine what variations in roughness are a fingerprint for, assess the limits of ice thickness uncertainty quantification and compare strategies for roughness assessment and utilization.

  7. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  8. A detailed study of gold-nanoparticle loaded cells using X-ray based techniques for cell-tracking applications with single-cell sensitivity

    NASA Astrophysics Data System (ADS)

    Astolfo, Alberto; Arfelli, Fulvia; Schültke, Elisabeth; James, Simon; Mancini, Lucia; Menk, Ralf-Hendrik

    2013-03-01

    In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.

  9. Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    NASA Technical Reports Server (NTRS)

    Olson, W. S.; Yeh, C. L.; Weinman, J. A.; Chin, R. T.

    1985-01-01

    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems.

  10. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  11. Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders.

    PubMed

    Işil, Çağatay; Yorulmaz, Mustafa; Solmaz, Berkan; Turhan, Adil Burak; Yurdakul, Celalettin; Ünlü, Selim; Ozbay, Ekmel; Koç, Aykut

    2018-04-01

    Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image patches and their corresponding manual truth image patches in order to learn the transformation between them. Following training, the designed network reconstructs denoised and resolution-enhanced image patches for unseen input.

  12. EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent

    2009-03-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.

  13. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Caudillo, Roman; Chandhok, Manish

    2010-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. Readiness of EUV materials is currently one high risk area according to recent assessments made at the 2009 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data collected utilizing Intel's Micro-Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <= 12.5mJ/cm2 with <= 4nm LWR.

  14. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  15. Optical detection of explosives: spectral signatures for the explosive bouquet

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  16. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase.

    Treesearch

    Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy

    2003-01-01

    Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...

  17. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    NASA Astrophysics Data System (ADS)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  18. Developing Age Models to Utilize High Arctic Coastal Sediments for Paleoclimate Research: Results from the Colville Delta and Simpson Lagoon, Alaska

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Allison, M. A.; Bianchi, T. S.; Marcantonio, F.

    2012-12-01

    Sediment cores collected from Simpson Lagoon on the inner Beaufort Sea shelf adjacent to the Colville River delta, AK are being utilized to develop new, high-resolution (sub-decadal scale) archives of the 0-3,000 year Arctic paleoclimate record necessary to assess natural and anthropogenic climate variability. An imperative first step for developing a new paleoclimate archive is to establish methodologies for constraining the age-depth relationship. Naturally occurring and bomb-produced radioisotopes have been utilized in sediments to constrain downcore variability of accumulation rates on 100-103 y timescales, but this methodology is complicated by low activities of many of these tracers at high latitudes. The present study utilizes the combination of a (1) multi-tracer approach and a (2) tailored measurement strategy to overcome this limitation. 210Pb and 137Cs analyses were conducted on the fine (<32μm) sediment fraction to maximize measurable activity and to minimize radioisotope activity variability resulting from changes in grain size: 137Cs geochronologies proved more reliable in this setting and revealed mm/y sediment accumulation in the lagoon. To corroborate the 137Cs results, 239,240Pu activities were analyzed for selected sites using ICP-MS which has ultra-low detection limits, and yielded accumulation rates that matched the Cs geochronology. Age model development for the remainder of the core lengths (>~100 y in age) were completed using radiocarbon dating of benthic foraminifera tests, which proved the only datable in situ carbon available in this sediment archive. These dates have been used to constrain the ages of acoustic reflectors in CHIRP subbottom seismic records collected from the lagoon. Using this age control, spatial patterns of lagoonal sediment accumulation over the last ~3 ky were derived from the CHIRP data. Two depocenters are identified and validate combining age-dated coring with high-resolution seismic profiling to identify areas of the highest temporal resolution for Arctic paleoclimate research in coastal sediments.

  19. High-Resolution Ambient MS Imaging of Negative Ions in Positive Ion Mode: Using Dicationic Reagents with the Single-Probe

    NASA Astrophysics Data System (ADS)

    Rao, Wei; Pan, Ning; Tian, Xiang; Yang, Zhibo

    2016-01-01

    We have used the Single-probe, a miniaturized sampling device utilizing in-situ surface microextraction for ambient mass spectrometry (MS) analysis, for the high resolution MS imaging (MSI) of negatively charged species in the positive ionization mode. Two dicationic compounds, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride [C5(bpyr)2F2] and 1,3-propanediyl-bis(tripropylphosphonium) difluoride [C3(triprp)2F2], were added into the sampling solvent to form 1+ charged adducts with the negatively charged species extracted from tissues. We were able to detect 526 and 322 negatively charged species this way using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, including oleic acid, arachidonic acid, and several species of phosphatidic acid, phosphoethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and others. In conjunction with the identification of the non-adduct cations, we have tentatively identified a total number of 1200 and 828 metabolites from mouse brain sections using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, through high mass accuracy measurements (mass error <5 ppm); MS/MS analyses were also performed to verify the identity of selected species. In addition to the high mass accuracy measurement, we were able to generate high spatial resolution (~17 μm) MS images of mouse brain sections. Our study demonstrated that utilization of dicationic compounds in the surface microextraction with the Single-probe device can perform high mass and spatial resolution ambient MSI measurements of broader types of compounds in tissues. Other reagents can be potentially used with the Single-probe device for a variety of reactive MSI studies to enable the analysis of species that are previously intractable.

  20. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  1. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    PubMed

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  2. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals.

    PubMed

    Wu, Yimin A; Kirkland, Angus I; Schäffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moiré patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  3. A high-resolution programmable Vernier delay generator based on carry chains in FPGA

    NASA Astrophysics Data System (ADS)

    Cui, Ke; Li, Xiangyu; Zhu, Rihong

    2017-06-01

    This paper presents an architecture of a high-resolution delay generator implemented in a single field programmable gate array chip by exploiting the method of utilizing dedicated carry chains. It serves as the core component in various physical instruments. The proposed delay generator contains the coarse delay step and the fine delay step to guarantee both large dynamic range and high resolution. The carry chains are organized in the Vernier delay loop style to fulfill the fine delay step with high precision and high linearity. The delay generator was implemented in the EP3SE110F1152I3 Stratix III device from Altera on a self-designed test board. Test results show that the obtained resolution is 38.6 ps, and the differential nonlinearity/integral nonlinearity is in the range of [-0.18 least significant bit (LSB), 0.24 LSB]/(-0.02 LSB, 0.01 LSB) under the nominal supply voltage of 1100 mV and environmental temperature of 2 0°C. The delay generator is rather efficient concerning resource cost, which uses only 668 look-up tables and 146 registers in total.

  4. Lock-in imaging with synchronous digital mirror demodulation

    NASA Astrophysics Data System (ADS)

    Bush, Michael G.

    2010-04-01

    Lock-in imaging enables high contrast imaging in adverse conditions by exploiting a modulated light source and homodyne detection. We report results on a patent pending lock-in imaging system fabricated from commercial-off-theshelf parts utilizing standard cameras and a spatial light modulator. By leveraging the capabilities of standard parts we are able to present a low cost, high resolution, high sensitivity camera with applications in search and rescue, friend or foe identification (IFF), and covert surveillance. Different operating modes allow the same instrument to be utilized for dual band multispectral imaging or high dynamic range imaging, increasing the flexibility in different operational settings.

  5. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  6. Averaging scheme for atomic resolution off-axis electron holograms.

    PubMed

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Gyrocopter-Based Remote Sensing Platform

    NASA Astrophysics Data System (ADS)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-04-01

    In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.

  8. Long Time-lapse Nanoscopy with Spontaneously Blinking Membrane Probes

    PubMed Central

    Takakura, Hideo; Zhang, Yongdeng; Erdmann, Roman S.; Thompson, Alexander D.; Lin, Yu; McNellis, Brian; Rivera-Molina, Felix; Uno, Shin-nosuke; Kamiya, Mako; Urano, Yasuteru; Rothman, James E.; Bewersdorf, Joerg; Schepartz, Alanna; Toomre, Derek

    2017-01-01

    Long time-lapse, diffraction-unlimited super-resolution imaging of cellular structures and organelles in living cells is highly challenging, as it requires dense labeling, bright, highly photostable dyes, and non-toxic conditions. We developed a set of high-density, environment-sensitive (HIDE) membrane probes based on HMSiR that assemble in situ and enable long time-lapse, live cell nanoscopy of discrete cellular structures and organelles with high spatio-temporal resolution. HIDE-enabled nanoscopy movies are up to 50x longer than movies obtained with labeled proteins, reveal the 2D dynamics of the mitochondria, plasma membrane, and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum in living cells. These new HIDE probes also facilitate the acquisition of live cell, two-color, super-resolution images, greatly expanding the utility of nanoscopy to visualize processes and structures in living cells. PMID:28671662

  9. Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer

    NASA Astrophysics Data System (ADS)

    Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid

    2017-04-01

    An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.

  10. Small feature sizes and high aperture ratio organic light-emitting diodes by using laser-patterned polyimide shadow masks

    NASA Astrophysics Data System (ADS)

    Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany

    2014-02-01

    A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, J.; Mather, B.

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability inmore » system load and the variability of distributed PV generation are made.« less

  12. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  13. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  14. Implementing Photodissociation in an Orbitrap Mass Spectrometer

    PubMed Central

    Vasicek, Lisa A.; Ledvina, Aaron R.; Shaw, Jared; Griep-Raming, Jens; Westphall, Michael S.; Coon, Joshua J.; Brodbelt, Jennifer S.

    2011-01-01

    We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD. PMID:21953052

  15. Artificial Neural Network for Probabilistic Feature Recognition in Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.

    PubMed

    Woldegebriel, Michael; Derks, Eduard

    2017-01-17

    In this work, a novel probabilistic untargeted feature detection algorithm for liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) using artificial neural network (ANN) is presented. The feature detection process is approached as a pattern recognition problem, and thus, ANN was utilized as an efficient feature recognition tool. Unlike most existing feature detection algorithms, with this approach, any suspected chromatographic profile (i.e., shape of a peak) can easily be incorporated by training the network, avoiding the need to perform computationally expensive regression methods with specific mathematical models. In addition, with this method, we have shown that the high-resolution raw data can be fully utilized without applying any arbitrary thresholds or data reduction, therefore improving the sensitivity of the method for compound identification purposes. Furthermore, opposed to existing deterministic (binary) approaches, this method rather estimates the probability of a feature being present/absent at a given point of interest, thus giving chance for all data points to be propagated down the data analysis pipeline, weighed with their probability. The algorithm was tested with data sets generated from spiked samples in forensic and food safety context and has shown promising results by detecting features for all compounds in a computationally reasonable time.

  16. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  17. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    PubMed

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  18. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  19. Evaluation of glued-diaphragm fibre optic pressure sensors in a shock tube

    NASA Astrophysics Data System (ADS)

    Sharifian, S. Ahmad; Buttsworth, David R.

    2007-02-01

    Glued-diaphragm fibre optic pressure sensors that utilize standard telecommunications components which are based on Fabry-Perot interferometry are appealing in a number of respects. Principally, they have high spatial and temporal resolution and are low in cost. These features potentially make them well suited to operation in extreme environments produced in short-duration high-enthalpy wind tunnel facilities where spatial and temporal resolution are essential, but attrition rates for sensors are typically very high. The sensors we consider utilize a zirconia ferrule substrate and a thin copper foil which are bonded together using an adhesive. The sensors show a fast response and can measure fluctuations with a frequency up to 250 kHz. The sensors also have a high spatial resolution on the order of 0.1 mm. However, with the interrogation and calibration processes adopted in this work, apparent errors of up to 30% of the maximum pressure have been observed. Such errors are primarily caused by mechanical hysteresis and adhesive viscoelasticity. If a dynamic calibration is adopted, the maximum measurement error can be limited to about 10% of the maximum pressure. However, a better approach is to eliminate the adhesive from the construction process or design the diaphragm and substrate in a way that does not require the adhesive to carry a significant fraction of the mechanical loading.

  20. Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-01-01

    We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.

  1. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  2. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri; Heikkilä, Anu

    2015-10-15

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with amore » silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.« less

  3. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations

    DOE PAGES

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...

    2017-01-18

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  4. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  5. A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Xi, A.G, Weisenberger, H. Dong, Brian Kross, S. Lee, J. McKisson, Carl Zorn

    We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applyingmore » a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate {approx}1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.« less

  6. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  7. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less

  8. Cassette Series Designed for Live-Cell Imaging of Proteins and High Resolution Techniques in Yeast

    PubMed Central

    Young, Carissa L.; Raden, David L.; Caplan, Jeffrey; Czymmek, Kirk; Robinson, Anne S.

    2012-01-01

    During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization, and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize, and monitor the spatial localization of proteins and complexes at the sub-organelle level; yet, many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for FlAsH-based localization, and the first evaluation in yeast of a photoswitchable variant – mEos2 – to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolor labeling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif that is compatible with diaminobenzidine photooxidation used for protein localization by electron microscopy and mEos2 that is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analyzing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques. PMID:22473760

  9. Fusing Cubesat and Landsat 8 data for near-daily mapping of leaf area index at 3 m resolution

    NASA Astrophysics Data System (ADS)

    McCabe, M.; Houborg, R.

    2017-12-01

    Constellations of small cubesats are emerging as a relatively inexpensive observational resource with the potential to overcome spatio-temporal constraints of traditional single-sensor satellite missions. With more than 130 compact 3U (i.e., 10 x 10 x 30 cm) cubesats currently in orbit, the company "Planet" has realized near-daily image capture in RGB and the near-infrared (NIR) at 3 m resolution for every location on the earth. However cross-sensor inconsistencies can be a limiting factor, which result from relatively low signal-to-noise ratios, varying overpass times, and sensor-specific spectral response functions. In addition, the sensor radiometric information content is more limited compared to conventional satellite systems such as Landsat. In this study, a synergistic machine-learning framework utilizing Planet, Landsat 8, and MODIS data is developed to produce Landsat 8 consistent LAI with a factor of 10 increase in spatial resolution and a daily observing potential, globally. The Cubist machine-learning technique is used to establish scene-specific links between scale-consistent cubesat RGB+NIR imagery and Landsat 8 LAI. The scheme implements a novel LAI target sampling technique for model training purposes, which accounts for changes in cover conditions over the cubesat and Landsat acquisition timespans. Results over an agricultural region in Saudi Arabia highlight the utility of the approach for detecting high frequency (i.e., near-daily) and fine-scale (i.e., 3 m) intra-field dynamics in LAI with demonstrated potential for timely identification of developing crop risks. The framework maximizes the utility of ultra-high resolution cubesat data for agricultural management and resource efficiency optimization at the precision scale.

  10. Investigation to improve the resolution and range of a light imaging system for very thick tissues

    NASA Astrophysics Data System (ADS)

    Wist, Abund O.; Moon, Peter; Herr, Steven L.; Fatouros, Panos P.

    1995-05-01

    A high resolution light imaging system has been developed utilizing an HeNe (628 nm, 32 mW) and a receiver with post collimation mounted on an x, y table to scan the object. The image can be either recorded on a film or stored in a computer for display on a terminal. Tests show that the system in the regular mode is capable of detecting the spine and soft tissues in anesthetized mice, and of transilluminating fully an adult skull bone with a resolution for details better than one third mm. In teeth, all regular carious lesions, including incipient lesions larger than one third of a mm, can be seen in front or in the back of the tooth, none of which could be detected by dental x-ray systems. Applying a new high resolution mode, the resolution can be increased in teeth to less than 0.1 mm. Some difficulty still exists in detecting small lesions on occlusal or approximal surfaces.

  11. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  12. Femtosecond MeV Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, R. K.; Wang, X. J.

    2017-11-01

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.

  13. Real-Time GNSS-Based Attitude Determination in the Measurement Domain.

    PubMed

    Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun

    2017-02-05

    A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance.

  14. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  15. Chaotic Brillouin optical correlation-domain analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Zhang, Mingtao; Zhang, Mingjiang; Liu, Yi; Feng, Changkun; Wang, Yahui; Wang, Yuncai

    2018-04-01

    We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) system for distributed fiber sensing. The utilization of the chaotic laser with low coherent state ensures high spatial resolution. The experimental results demonstrate a 3.92-cm spatial resolution over a 906-m measurement range. The uncertainty in the measurement of the local Brillouin frequency shift is 1.2MHz. The measurement signal-to-noise ratio is given, which is agreement with the theoretical value.

  16. A device to measure the effects of strong magnetic fields on the image resolution of PET scanners

    NASA Astrophysics Data System (ADS)

    Burdette, D.; Albani, D.; Chesi, E.; Clinthorne, N. H.; Cochran, E.; Honscheid, K.; Huh, S. S.; Kagan, H.; Knopp, M.; Lacasta, C.; Mikuz, M.; Schmalbrock, P.; Studen, A.; Weilhammer, P.

    2009-10-01

    Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as Ga68 and Tc94m, which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for Na22 and Ga68 point sources.

  17. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Deriving high-resolution protein backbone structure propensities from all crystal data using the information maximization device.

    PubMed

    Solis, Armando D

    2014-01-01

    The most informative probability distribution functions (PDFs) describing the Ramachandran phi-psi dihedral angle pair, a fundamental descriptor of backbone conformation of protein molecules, are derived from high-resolution X-ray crystal structures using an information-theoretic approach. The Information Maximization Device (IMD) is established, based on fundamental information-theoretic concepts, and then applied specifically to derive highly resolved phi-psi maps for all 20 single amino acid and all 8000 triplet sequences at an optimal resolution determined by the volume of current data. The paper shows that utilizing the latent information contained in all viable high-resolution crystal structures found in the Protein Data Bank (PDB), totaling more than 77,000 chains, permits the derivation of a large number of optimized sequence-dependent PDFs. This work demonstrates the effectiveness of the IMD and the superiority of the resulting PDFs by extensive fold recognition experiments and rigorous comparisons with previously published triplet PDFs. Because it automatically optimizes PDFs, IMD results in improved performance of knowledge-based potentials, which rely on such PDFs. Furthermore, it provides an easy computational recipe for empirically deriving other kinds of sequence-dependent structural PDFs with greater detail and precision. The high-resolution phi-psi maps derived in this work are available for download.

  19. Human immunodeficiency virus atropy induces modification of subcutaneous adipose tissue architecture: in vivo visualization by high-resolution magnetic resonance imaging.

    PubMed

    Josse, G; Gensanne, D; Aquilina, C; Bernard, J; Saint-Martory, C; Lagarde, J M; Schmitt, A M

    2009-04-01

    Human immunodeficiency virus (HIV) infection generally induces lipodystrophy. For targeted treatment a better understanding of its development is necessary. The utility of high-resolution magnetic resonance imaging (MRI) is explored. The present study presents a way to visualize the adipose tissue architecture in vivo and to inspect modifications associated with the atrophy. High-resolution MRI scans with surface coils were performed on the calf and at the lumbar region of three groups of patients: HIV patients with lipoatrophy, HIV patients without lipoatrophy and healthy volunteers. All patients underwent a clinical examination. In addition, dual energy X-ray absorptiometry (DEXA) measurements were taken. On the MRI scans adipose tissue thickness and adipose nodule size were measured. Results High-resolution MRI enabled identification of a clear disorganization of adipose tissue in patients with lipoatrophy. In addition, these patients presented a very small adipose tissue thickness on the calf and a very small nodule size. led to the hypothesis that adipose tissue disorganization appears before changes in DEXA measurements or clinically visible modifications. High-resolution MRI enabled visualization in vivo of precise changes in tissue organization due to HIV lipoatrophy. This imaging technique should be very informative for better monitoring of the atrophy.

  20. Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution.

    PubMed

    Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R

    2013-01-01

    Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.

  1. Detailed Investigation of Core-Shell Precipitates in a Cu-Containing High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Alam, T.; Gwalani, B.; Viswanathan, G.; Fraser, H.; Banerjee, R.

    2018-05-01

    Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core-shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core-shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy-energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core-shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.

  2. Fabrication method of two-photon luminescent organic nano-architectures using electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kamura, Yoshio; Imura, Kohei

    2018-06-01

    Optical recording on organic thin films with a high spatial resolution is promising for high-density optical memories, optical computing, and security systems. The spatial resolution of the optical recording is limited by the diffraction of light. Electrons can be focused to a nanometer-sized spot, providing the potential for achieving better resolution. In conventional electron-beam lithography, however, optical tuning of the fabricated structures is limited mostly to metals and semiconductors rather than organic materials. In this article, we report a fabrication method of luminescent organic architectures using a focused electron beam. We optimized the fabrication conditions of the electron beam to generate chemical species showing visible photoluminescence via two-photon near-infrared excitations. We utilized this fabrication method to draw nanoscale optical architectures on a polystyrene thin film.

  3. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  4. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  5. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  6. Picosecond timing resolution detection of ggr-photons utilizing microchannel-plate detectors: experimental tests of quantum nonlocality and photon localization

    NASA Astrophysics Data System (ADS)

    Irby, Victor D.

    2004-09-01

    The concept and subsequent experimental verification of the proportionality between pulse amplitude and detector transit time for microchannel-plate detectors is presented. This discovery has led to considerable improvement in the overall timing resolution for detection of high-energy ggr-photons. Utilizing a 22Na positron source, a full width half maximum (FWHM) timing resolution of 138 ps has been achieved. This FWHM includes detector transit-time spread for both chevron-stack-type detectors, timing spread due to uncertainties in annihilation location, all electronic uncertainty and any remaining quantum mechanical uncertainty. The first measurement of the minimum quantum uncertainty in the time interval between detection of the two annihilation photons is reported. The experimental results give strong evidence against instantaneous spatial localization of ggr-photons due to measurement-induced nonlocal quantum wavefunction collapse. The experimental results are also the first that imply momentum is conserved only after the quantum uncertainty in time has elapsed (Yukawa H 1935 Proc. Phys. Math. Soc. Japan 17 48).

  7. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    PubMed

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  8. Pinhole X-ray/coronagraph optical systems concept definition study

    NASA Technical Reports Server (NTRS)

    Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.

    1980-01-01

    The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.

  9. High Resolution Three-Dimensional MR Imaging of the Skull Base: Compartments, Boundaries, and Critical Structures.

    PubMed

    Blitz, Ari Meir; Aygun, Nafi; Herzka, Daniel A; Ishii, Masaru; Gallia, Gary L

    2017-01-01

    High-resolution 3D MRI of the skull base allows for a more detailed and accurate assessment of normal anatomic structures as well as the location and extent of skull base pathologies than has previously been possible. This article describes the techniques employed for high-resolution skull base MRI including pre- and post-contrast constructive interference in the steady state (CISS) imaging and their utility for evaluation of the many small structures of the skull base, focusing on those regions and concepts most pertinent to localization of cranial nerve palsies and in providing pre-operative guidance and post-operative assessment. The concept of skull base compartments as a means of conceptualizing the various layers of the skull base and their importance in assessment of masses of the skull base is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  11. Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0

    NASA Astrophysics Data System (ADS)

    Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.

    2015-11-01

    The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.

  12. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  13. Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr

    NASA Astrophysics Data System (ADS)

    Knudson, Karla P.; Ravelo, Ana Christina

    2015-11-01

    The relationship between climate, biological productivity, and nutrient flux is of considerable interest in the subarctic Pacific, which represents an important high-nitrate, low-chlorophyll region. While previous studies suggest that changes in iron supply and/or physical ocean stratification could hypothetically explain orbital-scale fluctuations in subarctic Pacific nutrient utilization and productivity, previous records of nutrient utilization are too short to evaluate these relationships over many glacial-interglacial cycles. We present new, high-resolution records of sedimentary δ15N, which offer the first opportunity to evaluate systematic, orbital-scale variations in subarctic Pacific nitrate utilization from 1.2 Ma. Nitrate utilization was enhanced during all glacials, varied with orbital-scale periodicity since the mid-Pleistocene transition, was strongly correlated with enhanced aeolian dust and low atmospheric CO2, but was not correlated with productivity. These results suggest that glacial stratification, rather than iron fertilization, systematically exerted an important regional control on nutrient utilization and air-sea carbon flux.

  14. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  15. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  16. Strategies for high-throughput focused-beam ptychography

    DOE PAGES

    Jacobsen, Chris; Deng, Junjing; Nashed, Youssef

    2017-08-08

    X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.

  17. Strategies for high-throughput focused-beam ptychography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Chris; Deng, Junjing; Nashed, Youssef

    X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.

  18. Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Kempler, Steven

    2007-01-01

    This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.

  19. Landsat-Swath Imaging Spectrometer Design

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori; Wilson, Daniel W.; Bender, Holly A.

    2015-01-01

    We describe the design of a high-throughput pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution. The design is based on a 3200 x 480 element x 18 µm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.

  20. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  1. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  2. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  3. The development of high resolution silicon x-ray microcalorimeters

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  4. A High-Resolution Capability for Large-Eddy Simulation of Jet Flows

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2011-01-01

    A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.

  5. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  6. VizieR Online Data Catalog: Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)

    NASA Astrophysics Data System (ADS)

    Luck, R. E.

    2017-06-01

    The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain Echelle Spectrograph provided much of the observational data for this study. High-resolution spectra were obtained during numerous observing runs, from 1996 to 2010. The spectra cover a continuous wavelength range from about 484 to 700nm, with a resolving power of about 60000. The wavelength range used demands two separate observations--one centered at about 520nm, and the other at about 630nm. Typical S/N values per pixel for the spectra are more than 150. Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope and High-Resolution Spectrograph. The spectra have a resolution of 30000, spanning the wavelength range of 400 to 785nm. They also have very high signal-to-noise ratios, >300 per resolution element in numerous cases. The last set of spectra were obtained from the ELODIE Archive (Moultaka et al. 2004PASP..116..693M). These spectra are fully processed, including order co-addition, and have a continuous wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE spectra utilized here all have S/N>75 per pixel. (6 data files).

  7. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  8. Response to comment on "High-resolution global maps of 21st-century forest cover change".

    PubMed

    Hansen, M; Potapov, P; Margono, B; Stehman, S; Turubanova, S; Tyukavina, A

    2014-05-30

    Tropek et al. critique the Hansen et al. global forest loss paper in terms of its utility and accuracy. Both criticisms suffer from a miscomprehension of the definition of forest employed as well as the requirements of product validation. Utility of the product is enhanced through its integration with forest type, carbon stock, protected area status, and other ancillary data. Copyright © 2014, American Association for the Advancement of Science.

  9. A Randomized Trial of the Effects of Nebulized Albuterol on Pulmonary Edema in Brain Dead Organ Donors

    PubMed Central

    Ware, Lorraine B.; Landeck, Megan; Koyama, Tatsuki; Zhao, Zhiguo; Singer, Jonathan; Kern, Ryan; Neidlinger, Nikole; Nguyen, John; Johnson, Elizabeth; Janz, David R.; Bernard, Gordon R.; Lee, Jae W.; Matthay, Michael A.

    2013-01-01

    Donor lung utilization rates are persistently low primarily due to donor lung dysfunction. We hypothesized that a treatment that enhances the resolution of pulmonary edema by stimulating the rate of alveolar fluid clearance would improve donor oxygenation and increase donor lung utilization. We conducted a randomized, blinded, placebo-controlled trial of aerosolized albuterol (5 mg q4h) versus saline placebo during active donor management in 506 organ donors. The primary outcome was change in oxygenation (PaO2/FiO2) from enrollment to organ procurement. The albuterol (n=260) and placebo (n=246) groups were well matched for age, gender, ethnicity, smoking, and cause of brain death. The change in PaO2/FiO2 from enrollment to organ procurement did not differ between treatment groups (p=0.54) nor did donor lung utilization (albuterol 29% vs. placebo 32%, p=0.44). Donors in the albuterol vs. placebo group were more likely to have the study drug dose reduced (13% vs. 1%, p<0.001) or stopped (8% vs. 0%, p<0.001) for tachycardia. In summary, treatment with high dose inhaled albuterol during the donor management period did not improve donor oxygenation or increase donor lung utilization but did cause tachycardia. High dose aerosolized albuterol should not be used in donors to enhance the resolution of pulmonary edema. PMID:24730050

  10. Delineating Tree Types in a Complex Tropical Forest Setting Using High Resolution Multispectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Cross, M.

    2016-12-01

    An improved process for the identification of tree types from satellite imagery for tropical forests is needed for more accurate assessments of the impact of forests on the global climate. La Selva Biological Station in Costa Rica was the tropical forest area selected for this particular study. WorldView-3 imagery was utilized because of its high spatial, spectral and radiometric resolution, its availability, and its potential to differentiate species in a complex forest setting. The first-step was to establish confidence in the high spatial and high radiometric resolution imagery from WorldView-3 in delineating tree types within a complex forest setting. In achieving this goal, ASD field spectrometer data were collected of specific tree species to establish solid ground control within the study site. The spectrometer data were collected from the top of each specific tree canopy utilizing established towers located at La Selva Biological Station so as to match the near-nadir view of the WorldView-3 imagery. The ASD data was processed utilizing the spectral response functions for each of the WorldView-3 bands to convert the ASD data into a band specific reflectivity. This allowed direct comparison of the ASD spectrometer reflectance data to the WorldView-3 multispectral imagery. The WorldView-3 imagery was processed to surface reflectance using two standard atmospheric correction procedures and the proprietary DigitalGlobe Atmospheric Compensation (AComp) product. The most accurate correction process was identified through comparison to the spectrometer data collected. A series of statistical measures were then utilized to access the accuracy of the processed imagery and which imagery bands are best suited for tree type identification. From this analysis, a segmentation/classification process was performed to identify individual tree type locations within the study area. It is envisioned the results of this study will improve traditional forest classification processes, provide more accurate assessments of species density and distribution, facilitate a more accurate biomass estimate of the tropical forest which will impact the accuracy of tree carbon storage estimates, and ultimately assist in developing a better overall characterization of tropical rainforest dynamics.

  11. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.

  12. Planar diode multiplier chains for THz spectroscopy

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank W.; Drouin, Brian J.; Pearson, John C.; Mehdi, Imran; Lewena, Frank; Endres, Christian; Winnewisser, Gisbert

    2005-01-01

    High-resolution laboratory spectroscopy is utilized as a diagnostic tool to determine noise and harmonic content of balanced [9]-[11] and unbalanced [12]-[14] multiplier designs. Balanced multiplier designs suppress unintended harmonics more than -20dB. Much smaller values were measured on unbalanced multipliers.

  13. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  14. High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences

    PubMed Central

    Morimoto, Yusuke V.; Kami-ike, Nobunori; Miyata, Tomoko; Kawamoto, Akihiro; Kato, Takayuki

    2016-01-01

    ABSTRACT Protons are utilized for various biological activities such as energy transduction and cell signaling. For construction of the bacterial flagellum, a type III export apparatus utilizes ATP and proton motive force to drive flagellar protein export, but the energy transduction mechanism remains unclear. Here, we have developed a high-resolution pH imaging system to measure local pH differences within living Salmonella enterica cells, especially in close proximity to the cytoplasmic membrane and the export apparatus. The local pH near the membrane was ca. 0.2 pH unit higher than the bulk cytoplasmic pH. However, the local pH near the export apparatus was ca. 0.1 pH unit lower than that near the membrane. This drop of local pH depended on the activities of both transmembrane export components and FliI ATPase. We propose that the export apparatus acts as an H+/protein antiporter to couple ATP hydrolysis with H+ flow to drive protein export. PMID:27923921

  15. Reconstructed high-resolution scatterometer data: a comparison with AVHRR vegetation index images for regional-scale monitoring of tropical rain forests

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1993-08-01

    There is considerable interest in utilizing microwave and visible spectrum imagery for the assessment of tropical rain forests. Because rain forest spans large sub-continental areas, medium resolution (1 - 16 km) imagery will play an important role in providing a global perspective of any forest removal or change. Since 1978, AVHRR imagery from NOAA polar orbiters has provided coverage of tropical regions at this desirable resolution, but much of the imagery is plagued with heavy cloud cover typical of equatorial regions. In contrast, no historical source of active microwave imagery at native 1 - 16 km resolution exists for all the global rain forest regions. In this paper, the authors compare the utility of Seasat scatterometer (SASS) ku-band microwave data to early-date AVHRR vegetation index products for discrimination of tropical vegetation formations. When considered separately, both the AVHRR imagery and the SASS imagery could be used to distinguish between broad categories of equatorial land cover, but the AVHRR imagery was slightly superior. When combined, the two data sets provided discrimination capability superior than could be obtained by using either set alone.

  16. All-passive pixel super-resolution of time-stretch imaging

    PubMed Central

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936

  17. WE-EF-210-07: Development of a Minimally Invasive Photo Acoustic Imaging System for Early Prostate Cancer Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, M; Yousefi, S; Xing, L

    Purpose: The objective of this work is to design, implement and characterize a catheter-based ultrasound/photoacoustic imaging probe for early-diagnosis of prostate cancer and to aid in image-guided radiation therapy. Methods: The need to image across 6–10cm of tissue to image the whole prostate gland limits the resolution achievable with a transrectal ultrasound approach. In contrast, the urethra bisects the prostate gland, providing a minimally invasive pathway for deploying a high resolution ultrasound transducer. Utilizing a high-frequency (20MHz) ultrasound/photoacoustic probe, high-resolution structural and molecular imaging of the prostate tissue is possible. A custom 3D printed probe containing a high-frequency single-element ultrasoundmore » transducer is utilized. The diameter of the probe is designed to fit inside a Foley catheter and the probe is rotated around the central axis to achieve a circular B-scan. A custom ultrasound amplifier and receiver was set up to trigger the ultrasound pulse transmission and record the reflected signal. The reconstructed images were compared to images generated by traditional 5 MHz ultrasound transducers. Results: The preliminary results using the high-frequency ultrasound probe show that it is possible to resolve finely detailed information in a prostate tissue phantom that was not achievable with previous low-frequency ultrasound systems. Preliminary ultrasound imaging was performed on tissue mimicking phantom and sensitivity and signal-to-noise ratio of the catheter was measured. Conclusion: In order to achieve non-invasive, high-resolution, structural and molecular imaging for early-diagnosis and image-guided radiation therapy of the prostate tissue, a transurethral catheter was designed. Structural/molecular imaging using ultrasound/photoacoustic of the prostate tissue will allow for localization of hyper vascularized areas for early-stage prostate cancer diagnosis.« less

  18. Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens

    PubMed Central

    Lee, Eun Seong; Lee, Sang-Won; Hsu, Julie; Potma, Eric O.

    2014-01-01

    We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens. PMID:25071953

  19. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  20. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser.

    PubMed

    Craig, Ian M; Taubman, Matthew S; Lea, A Scott; Phillips, Mark C; Josberger, Erik E; Raschke, Markus B

    2013-12-16

    Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of particles of explosives by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm(-1), spatial resolution of 25 nm, sensitivity better than 100 attomoles, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.

  1. High-resolution corneal topography and tomography of fish eye using wide-field white light interference microscopy

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-04-01

    Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.

  2. High-Resolution and -Efficiency Gamma-Ray Detection for the FRIB Decay Station

    NASA Astrophysics Data System (ADS)

    Grover, Hannah; Leach, Kyle; Natzke, Connor; FRIB Decay Station Collaboration Collaboration

    2017-09-01

    As we push our knowledge of nuclear structure to the frontier of the unknown with FRIB, a new high-efficiency, -resolution, and -sensitivity photon-detection device is critical. The FRIB Decay Station Collaboration is working to create a new detector array that meets the needs of the exploratory nature of FRIB by minimizing cost and maximizing efficiency. GEANT4 simulations are being utilized to combine detectors in various configurations to test their feasibility. I will discuss these simulations and how they compare to existing simulations of past-generation decay-spectroscopy equipment. This work has been funded by the DOE Office of Science, Office of Nuclear Physics.

  3. Proposal to National Aeronautics and Space Administration for continuation of a grazing incidence imaging telescope for X-ray astronomy using sounding rockets

    NASA Technical Reports Server (NTRS)

    Murray, B.

    1976-01-01

    The construction of a high resolution imaging telescope experiment payload suitable for launch on an Astrobee F sounding rocket was proposed. Also integration, launch, and subsequent data analysis effort were included. The payload utilizes major component subassemblies from the HEAO-B satellite program which were nonflight development units for that program. These were the X ray mirror and high resolution imager brassboard detector. The properties of the mirror and detector were discussed. The availability of these items for a sounding rocket experiment were explored with the HEAO-B project office.

  4. Image restoration method based on Hilbert transform for full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2008-01-01

    A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

  5. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  6. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  7. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  8. Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.

    PubMed

    Robitaille, P M; Abduljalil, A M; Kangarlu, A

    2000-01-01

    To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.

  9. Multi-frame super-resolution with quality self-assessment for retinal fundus videos.

    PubMed

    Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P

    2014-01-01

    This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.

  10. Achieving superresolution with illumination-enhanced sparsity.

    PubMed

    Yu, Jiun-Yann; Becker, Stephen R; Folberth, James; Wallin, Bruce F; Chen, Simeng; Cogswell, Carol J

    2018-04-16

    Recent advances in superresolution fluorescence microscopy have been limited by a belief that surpassing two-fold resolution enhancement of the Rayleigh resolution limit requires stimulated emission or the fluorophore to undergo state transitions. Here we demonstrate a new superresolution method that requires only image acquisitions with a focused illumination spot and computational post-processing. The proposed method utilizes the focused illumination spot to effectively reduce the object size and enhance the object sparsity and consequently increases the resolution and accuracy through nonlinear image post-processing. This method clearly resolves 70nm resolution test objects emitting ~530nm light with a 1.4 numerical aperture (NA) objective, and, when imaging through a 0.5NA objective, exhibits high spatial frequencies comparable to a 1.4NA widefield image, both demonstrating a resolution enhancement above two-fold of the Rayleigh resolution limit. More importantly, we examine how the resolution increases with photon numbers, and show that the more-than-two-fold enhancement is achievable with realistic photon budgets.

  11. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  12. The use of colonic and anorectal high-resolution manometry and its place in clinical work and in research.

    PubMed

    Dinning, P G; Carrington, E V; Scott, S M

    2015-12-01

    In the esophagus, high-resolution manometry (HRM) has become a standard diagnostic tool in the investigation of suspected motility disorders. However, at the opposite end of the digestive tract (i.e., the colon and anorectum), the use of HRM still remains in its infancy, with relatively few published studies in the scientific literature. Further, the clinical utility of those studies that have been performed is largely undetermined. This review assesses all of the HRM studies published to date from both the colon and anorectum, explores the catheter types used, and attempts to determine the worth of HRM over traditional 'low-resolution' recordings from the same regions. Ultimately, this review addresses whether HRM currently provides information that will benefit patient diagnosis and treatment. © 2015 John Wiley & Sons Ltd.

  13. Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.

    2018-03-01

    We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.

  14. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Yepes Quintero, A. P.; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-07-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40%) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  15. High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-03-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 %) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  16. MWIR imaging spectrometer with digital time delay integration for remote sensing and characterization of solar system objects

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.

    2007-09-01

    An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.

  17. Evaluation of Roadway Reallocation Projects: Analysis of Before-and-After Travel Speeds and Congestion Utilizing High-Resolution Bus Transit Data

    DOT National Transportation Integrated Search

    2017-11-01

    The traditional process of identifying corridors for road diet improvements involves selecting potential corridors (mostly based on identifying fourlane roads) and conducting a traffic impact analysis of proposed changes on a selected roadway before ...

  18. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  19. Development of an immersive virtual reality head-mounted display with high performance.

    PubMed

    Wang, Yunqi; Liu, Weiqi; Meng, Xiangxiang; Fu, Hanyi; Zhang, Daliang; Kang, Yusi; Feng, Rui; Wei, Zhonglun; Zhu, Xiuqing; Jiang, Guohua

    2016-09-01

    To resolve the contradiction between large field of view and high resolution in immersive virtual reality (VR) head-mounted displays (HMDs), an HMD monocular optical system with a large field of view and high resolution was designed. The system was fabricated by adopting aspheric technology with CNC grinding and a high-resolution LCD as the image source. With this monocular optical system, an HMD binocular optical system with a wide-range continuously adjustable interpupillary distance was achieved in the form of partially overlapping fields of view (FOV) combined with a screw adjustment mechanism. A fast image processor-centered LCD driver circuit and an image preprocessing system were also built to address binocular vision inconsistency in the partially overlapping FOV binocular optical system. The distortions of the HMD optical system with a large field of view were measured. Meanwhile, the optical distortions in the display and the trapezoidal distortions introduced during image processing were corrected by a calibration model for reverse rotations and translations. A high-performance not-fully-transparent VR HMD device with high resolution (1920×1080) and large FOV [141.6°(H)×73.08°(V)] was developed. The full field-of-view average value of angular resolution is 18.6  pixels/degree. With the device, high-quality VR simulations can be completed under various scenarios, and the device can be utilized for simulated trainings in aeronautics, astronautics, and other fields with corresponding platforms. The developed device has positive practical significance.

  20. Utility of the T-SPOT®.TB test's borderline category to increase test resolution for results around the cut-off point.

    PubMed

    Rego, Karen; Pereira, Kristen; MacDougall, James; Cruikshank, William

    2018-01-01

    Accurate identification of individuals with TB infection, is required to achieve the WHO's End TB Strategy goals. While there is general acceptance that the T-SPOT.TB test borderline category provides an opportunity to increase test resolution of results around the test cut-off point, this has not been investigated. 645,947 tests were analyzed to determine frequency of borderline results, effect of age and time between tests and associations between subjects' clinical risk factors and retest results. 645,947 tests produced 93.5% negatives, 4% positives, 0.6% invalids, and 1.8% borderlines. Within the borderline results, 5044 were repeated, with 59.2%, 20.0% and 20.2% resolving to negative, positive and borderline, respectively. Age of subject did not affect retest results; however, time between tests indicated that retest resolution occurred with greatest frequency after 90 days. TB risk factors were provided for 2640 subjects and 17% of low risk subjects with a high initial borderline resolved to negative while 27.6% of subjects with high risk and an initial low borderline resolved to positive, suggesting that these subjects could have been inappropriately classified if using a single cut-off point test with no borderline category. This study demonstrates the utility of the T-SPOT.TB test's borderline category to increase test resolution around the test cut-off point. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  2. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  3. Real-Time GNSS-Based Attitude Determination in the Measurement Domain

    PubMed Central

    Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun

    2017-01-01

    A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance. PMID:28165434

  4. Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.

    Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less

  5. Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements

    DOE PAGES

    Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.; ...

    2018-04-19

    Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less

  6. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Excellent imagery has been obtained from SL-3 along track 5 across the Bighorn Mountains and track 19 across the northern Black Hills. The red band is by far the best of the four black and white films of S-190A. Excellent detail is visible of topography, structure, resistant lithologies, and culture with good resolution obtainable at high magnification (30X). The infrared bands do not have as good resolution and are grainy at high magnification. They are of use as a complement to the red band particularly for relief enhancement in areas of heavy green grass and forest cover. S-190B high definition black and white is comparable to the red band (S-190A) in detail. Its main advantage is larger initial scale and slightly better resolution. High resolution color transparencies along track 19 allow detailed delineation of cultivated land and strip mining. A group of folds northwest of Billings stand out clearly. Light colored units in northwestern Black Hills and in the badlands can be mapped in great detail.

  7. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  8. The CHARIS High-Contrast Integral-Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; hide

    2017-01-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.

  9. The Application of Chinese High-Spatial Remote Sensing Satellite Image in Land Law Enforcement Information Extraction

    NASA Astrophysics Data System (ADS)

    Wang, N.; Yang, R.

    2018-04-01

    Chinese high -resolution (HR) remote sensing satellites have made huge leap in the past decade. Commercial satellite datasets, such as GF-1, GF-2 and ZY-3 images, the panchromatic images (PAN) resolution of them are 2 m, 1 m and 2.1 m and the multispectral images (MS) resolution are 8 m, 4 m, 5.8 m respectively have been emerged in recent years. Chinese HR satellite imagery has been free downloaded for public welfare purposes using. Local government began to employ more professional technician to improve traditional land management technology. This paper focused on analysing the actual requirements of the applications in government land law enforcement in Guangxi Autonomous Region. 66 counties in Guangxi Autonomous Region were selected for illegal land utilization spot extraction with fusion Chinese HR images. The procedure contains: A. Defines illegal land utilization spot type. B. Data collection, GF-1, GF-2, and ZY-3 datasets were acquired in the first half year of 2016 and other auxiliary data were collected in 2015. C. Batch process, HR images were collected for batch preprocessing through ENVI/IDL tool. D. Illegal land utilization spot extraction by visual interpretation. E. Obtaining attribute data with ArcGIS Geoprocessor (GP) model. F. Thematic mapping and surveying. Through analysing 42 counties results, law enforcement officials found 1092 illegal land using spots and 16 suspicious illegal mining spots. The results show that Chinese HR satellite images have great potential for feature information extraction and the processing procedure appears robust.

  10. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2006-06-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  11. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2004-09-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  12. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2008-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  13. Detection of grapes in natural environment using HOG features in low resolution images

    NASA Astrophysics Data System (ADS)

    Škrabánek, Pavel; Majerík, Filip

    2017-07-01

    Detection of grapes in real-life images has importance in various viticulture applications. A grape detector based on an SVM classifier, in combination with a HOG descriptor, has proven to be very efficient in detection of white varieties in high-resolution images. Nevertheless, the high time complexity of such utilization was not suitable for its real-time applications, even when a detector of a simplified structure was used. Thus, we examined possibilities of the simplified version application on images of lower resolutions. For this purpose, we designed a method aimed at search for a detector’s setting which gives the best time complexity vs. performance ratio. In order to provide precise evaluation results, we formed new extended datasets. We discovered that even applied on low-resolution images, the simplified detector, with an appropriate setting of all tuneable parameters, was competitive with other state of the art solutions. We concluded that the detector is qualified for real-time detection of grapes in real-life images.

  14. Femtosecond MeV Electron Energy-Loss Spectroscopy

    DOE PAGES

    Li, R. K.; Wang, X. J.

    2017-11-09

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less

  15. Femtosecond MeV Electron Energy-Loss Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R. K.; Wang, X. J.

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less

  16. [Basic examination of an imagecharacteristic in Multivane].

    PubMed

    Ohshita, Tsuyoshi

    2011-01-01

    Deterioration in the image because of a patient's movement always becomes a problem in the MRI inspection. To solve this problem, the imaging procedure named Multivane was developed. The principle is similar to the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) method. As for Multivane, the effect of the body motion correction is high. However, the filling method of k space is different than a past Cartesian method. A basic examination of the image characteristic of Multivane and Cartesian was utilized along with geostationary phantom. The examination items are SNR, CNR, and a spatial resolution. As a result, Multivane of SNR was high. Cartesian of the contrast and the spatial resolution was also high. It is important to recognize these features and to use Multivane.

  17. Identification of Brucella spp. isolated from human brucellosis in Malaysia using high-resolution melt (HRM) analysis.

    PubMed

    Mohamed Zahidi, Jama'ayah; Bee Yong, Tay; Hashim, Rohaidah; Mohd Noor, Azura; Hamzah, Siti Hawa; Ahmad, Norazah

    2015-04-01

    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator

    NASA Astrophysics Data System (ADS)

    Helmcke, J.; Snyder, J. J.; Morinaga, A.; Mensing, F.; Gläser, M.

    1987-06-01

    A new dye laser spectrometer utilizing a non-tunable reference resonator is described. The resonator consists of two Zerodur mirrors optically contacted to a Zerodur spacer. Frequency scanning of the laser is provided by acoustooptic modulation. Residual drifts of the resonator frequency — measured on line — are compensated automatically by corresponding corrections of the modulation frequency. The stability during several hours and the resettability of the dye laser frequency are±2.5 kHz and±10 kHz, respectively.

  19. Clinical Utility of Optical Coherence Tomography in Glaucoma

    PubMed Central

    Dong, Zachary M.; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Optical coherence tomography (OCT) has established itself as the dominant imaging modality in the management of glaucoma and retinal diseases, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change. This article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the clinical utility of OCT with respect to diagnosis and progression monitoring, with additional emphasis on advances in OCT technology that continue to facilitate glaucoma research and inform clinical management strategies. PMID:27537415

  20. An ROI multi-resolution compression method for 3D-HEVC

    NASA Astrophysics Data System (ADS)

    Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan

    2017-09-01

    3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.

  1. Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.

    2013-12-01

    After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel observations from UAVs, including synthetic aperture radar and multispectral imagery.

  2. LLNL/Lion Precision LVDT amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D.J.

    1994-04-01

    A high-precision, low-noise, LVDT amplifier has been developed which is a significant advancement on the current state of the art in contact displacement measurement. This amplifier offers the dynamic range of a typical LVDT probe but with a resolution that rivals that of non contact displacement measuring systems such as capacitance gauges and laser interferometers. Resolution of 0.1 {mu} in with 100 Hz bandwidth is possible. This level of resolution is over an order of magnitude greater than what is now commercially available. A front panel switch can reduce the bandwidth to 2.5 Hz and attain a resolution of 0.025more » {mu} in. This level of resolution meets or exceeds that of displacement measuring laser interferometry or capacitance gauge systems. Contact displacement measurement offers high part spatial resolution and therefore can measure not only part contour but surface finish. Capacitance gauges and displacement laser interferometry offer poor part spatial resolution and can not provide good surface finish measurements. Machine tool builders, meteorologists and quality inspection departments can immediately utilize the higher accuracy and capabilities that this amplifier offers. The precision manufacturing industry can improve as a result of improved capability to measure parts that help reduce costs and minimize material waste.« less

  3. Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Webb, Ian K.; Garimella, Sandilya V. B.

    Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution limits many applications. Here we report on traveling wave (TW) ion mobility (IM) separations in a Serpentine Ultra-long Path with Extended Routing (SUPER) Structures for Lossless Ion Manipulations (SLIM) module in conjunction with mass spectrometry (MS). The extended routing utilized multiple passes was facilitated by the introduction of a lossless ion switch at the end of the ion path that either directed ions to the MS detector or to another pass through the serpentine separation region, providing theoretically unlimited TWIM path lengths. Ions were confined inmore » the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths (e.g., ~1094 meters over 81 passes through the 13.5 m serpentine path). In this multi-pass SUPER TWIM provided resolution approximately proportional to the square root of the number of passes (or path length). More than 30-fold higher IM resolution for Agilent tuning mix m/z 622 and 922 ions (~340 vs. ~10) was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars Lacto-N-hexaose and Lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for Lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.« less

  4. Multi-shot PROPELLER for high-field preclinical MRI

    PubMed Central

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F.; Johnson, G. Allan

    2012-01-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T2-weighted imaging using PROPELLER MRI meets this need. The 2-shot PROPELLER technique presented here, provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and non-invasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The 2-shot modification introduced here, retains more high-frequency information and provides higher SNR than conventional single-shot PROPELLER, making this sequence feasible at high-fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. PMID:20572138

  5. Multishot PROPELLER for high-field preclinical MRI.

    PubMed

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F; Johnson, G Allan

    2010-07-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T(2)-weighted imaging using PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI meets this need. The two-shot PROPELLER technique presented here provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and noninvasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The two-shot modification introduced here retains more high-frequency information and provides higher signal-to-noise ratio than conventional single-shot PROPELLER, making this sequence feasible at high fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. (c) 2010 Wiley-Liss, Inc.

  6. A TECHNIQUE FOR ASSESSING THE ACCURACY OF SUB-PIXEL IMPERVIOUS SURFACE ESTIMATES DERIVED FROM LANDSAT TM IMAGERY

    EPA Science Inventory

    We developed a technique for assessing the accuracy of sub-pixel derived estimates of impervious surface extracted from LANDSAT TM imagery. We utilized spatially coincident
    sub-pixel derived impervious surface estimates, high-resolution planimetric GIS data, vector--to-
    r...

  7. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    EPA Science Inventory

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  8. AN ACCURACY ASSESSMENT OF 1992 LANDSAT-MSS DERIVED LAND COVER FOR THE UPPER SAN PEDRO WATERSHED (U.S./MEXICO)

    EPA Science Inventory

    The utility of Digital Orthophoto Quads (DOQS) in assessing the classification accuracy of land cover derived from Landsat MSS data was investigated. Initially, the suitability of DOQs in distinguishing between different land cover classes was assessed using high-resolution airbo...

  9. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  10. Microscopic Optical Projection Tomography In Vivo

    PubMed Central

    Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios

    2011-01-01

    We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481

  11. Development of Scanning Ultrafast Electron Microscope Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less

  12. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE PAGES

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; ...

    2016-06-06

    Here, we have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improvedmore » spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  13. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  14. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-06-15

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectralmore » resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  15. A novel iterative modified bicubic interpolation method enables high-contrast and high-resolution image generation for F-18 FDG-PET.

    PubMed

    Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji

    2017-12-01

    Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  16. Imaging Analysis of the Hard X-Ray Telescope ProtoEXIST2 and New Techniques for High-Resolution Coded-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Barthelmy, Scott D.

    2016-01-01

    Wide-field (greater than or approximately equal to 100 degrees squared) hard X-ray coded-aperture telescopes with high angular resolution (greater than or approximately equal to 2 minutes) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without the assistance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: the average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a timescale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to, a high-resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during a high-altitude balloon flight in fall 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with a simulated ideal Poisson background.

  17. Source of coherent short wavelength radiation

    DOEpatents

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  18. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    PubMed

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  20. Exploring the Utility of the Planned CYGNSS Mission for Investigating the Initiation and Development of the Madden-Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Lang, Timothy; Mecikalski, John; Li, Xuanli; Chronis, Themis; Brewer, Alan; Churnside, James; Rutledge, Steve

    2014-01-01

    CYGNSS is a planned constellation consisting of multiple micro-satellites that leverage the Global Positioning System (GPS) to provide rapidly updated, high resolution (approx. 15-50 km, approx. 4 h) surface wind speeds (via bi-static scatterometry) over the tropical oceans in any weather condition, including heavy rainfall. The approach of the work to be presented at this conference is to utilize a limited-domain, cloud-system resolving model (Weather Research and Forecasting or WRF) and its attendant data assimilation scheme (Three-Dimensional Variational Assimilation or 3DVAR) to investigate the utility of the CYGNSS mission for helping characterize key convectiveto- mesoscale processes - such as surface evaporation, moisture advection and convergence, and upscale development of precipitation systems - that help drive the initiation and development of the Madden-Julian Oscillation (MJO) in the equatorial Indian Ocean. The proposed work will focus on three scientific objectives. Objective 1 is to produce a high-resolution surface wind dataset resolution (approx. 0.5 h, approx. 1-4 km) for multiple MJO onsets using WRF-assimilated winds and other data from the DYNAmics of the MJO (DYNAMO) field campaign, which took place during October 2011 - March 2012. Objective 2 is to study the variability of surface winds during MJO onsets at temporal and spatial scales of finer resolution than future CYGNSS data. The goal is to understand how sub-CYGNSS-resolution processes will shape the observations made by the satellite constellation. Objective 3 is to ingest simulated CYGNSS data into the WRF model in order to perform observing system simulation experiments (OSSEs). These will be used to test and quantify the potential beneficial effects provided by CYGNSS, particularly for characterizing the physical processes driving convective organization and upscale development during the initiation and development of the MJO. The proposed research is ideal for answering important questions about the CYGNSS mission, such as the representativeness of surface wind retrievals in the context of the complex airflow processes that occur during heavy precipitation, as well as the tradeoffs in retrieval accuracy that result from finer spatial resolution of the CYGNSS winds versus increased errors/noisiness in those data. Research plans and initial progress toward these objectives will be presented.

  1. Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts.

    PubMed

    Tomlins, Peter H; Smith, Graham N; Woolliams, Peter D; Rasakanthan, Janarthanan; Sugden, Kate

    2011-04-25

    Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.

  2. Ground truth spectrometry and imagery of eruption clouds to maximize utility of satellite imagery

    NASA Technical Reports Server (NTRS)

    Rose, William I.

    1993-01-01

    Field experiments with thermal imaging infrared radiometers were performed and a laboratory system was designed for controlled study of simulated ash clouds. Using AVHRR (Advanced Very High Resolution Radiometer) thermal infrared bands 4 and 5, a radiative transfer method was developed to retrieve particle sizes, optical depth and particle mass involcanic clouds. A model was developed for measuring the same parameters using TIMS (Thermal Infrared Multispectral Scanner), MODIS (Moderate Resolution Imaging Spectrometer), and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Related publications are attached.

  3. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James

    2004-08-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.


  4. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.

  5. Enhancing the performance of the light field microscope using wavefront coding

    PubMed Central

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-01-01

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056

  6. Enhancing the performance of the light field microscope using wavefront coding.

    PubMed

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  7. Three-dimensional hydrogen microscopy using a high-energy proton probe

    NASA Astrophysics Data System (ADS)

    Dollinger, G.; Reichart, P.; Datzmann, G.; Hauptner, A.; Körner, H.-J.

    2003-01-01

    It is a challenge to measure two-dimensional or three-dimensional (3D) hydrogen profiles on a micrometer scale. Quantitative hydrogen analyses of micrometer resolution are demonstrated utilizing proton-proton scattering at a high-energy proton microprobe. It has more than an-order-of-magnitude better position resolution and in addition higher sensitivity than any other technique for 3D hydrogen analyses. This type of hydrogen imaging opens plenty room to characterize microstructured materials, and semiconductor devices or objects in microbiology. The first hydrogen image obtained with a 10 MeV proton microprobe shows the hydrogen distribution of the microcapillary system being present in the wing of a mayfly and demonstrates the potential of the method.

  8. High-Resolution Isotropic Three-Dimensional MR Imaging of the Extraforaminal Segments of the Cranial Nerves.

    PubMed

    Wen, Jessica; Desai, Naman S; Jeffery, Dean; Aygun, Nafi; Blitz, Ari

    2018-02-01

    High-resolution isotropic 3-dimensional (D) MR imaging with and without contrast is now routinely used for imaging evaluation of cranial nerve anatomy and pathologic conditions. The anatomic details of the extraforaminal segments are well-visualized on these techniques. A wide range of pathologic entities may cause enhancement or displacement of the nerve, which is now visible to an extent not available on standard 2D imaging. This article highlights the anatomy of extraforaminal segments of the cranial nerves and uses select cases to illustrate the utility and power of these sequences, with a focus on constructive interference in steady-state. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nanopore fabrication and characterization by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J. C.; Kotakoski, J.; Gölzhäuser, A.

    2016-04-01

    The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes, and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores' growth behavior allows inferring on the profile of the helium ion beam.

  10. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  11. Sub-Nanosecond Cinematography In Laser Fusion Research: Current Techniques And Applications At The Lawrence Livermore National Laboratory*

    NASA Astrophysics Data System (ADS)

    Coleman, Lamar W...

    1985-02-01

    Progress in laser fusion research has increased the need for detail and precision in the diagnosis of experiments. This has spawned the development and use of sophisticated sub-nanosecond resolution diavostic systems. These systems typically use ultrafast x-ray or optical streak caAleras in combination. with spatially imaging or spectrally dispersing elements. These instruments provide high resolution data essential for understanding the processes occurrilltg in the interaction. of high. intensity laser light with targets. Several of these types of instruments and their capabilities will be discussed. The utilization of these kinds of diagnostics systems on the nearly completed 100 kJ Nova laser facility will be described.

  12. Sub-nanosecond cinematography in laser fusion research: Current techniques and applications at the Lawrence Livermore Laboratory

    NASA Astrophysics Data System (ADS)

    Coleman, L. W.

    1985-01-01

    Progress in laser fusion research has increased the need for detail and precision in the diagnosis of experiments. This has spawned the development and use of sophisticated sub-nanosecond resolution diagnostic systems. These systems typically use ultrafast X-ray or optical streak cameras in combination with spatially imaging or spectrally dispersing elements. These instruments provide high resolution data essential for understanding the processes occurring in the interaction of high intensity laser light with targets. Several of these types of instruments and their capabilities will be discussed. The utilization of these kinds of diagnostics systems on the nearly completed 100 kJ Nova laser facility will be described.

  13. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  14. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  15. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  16. VizieR Online Data Catalog: H-band spectroscopic analysis of 25 bright M31 GCs (Sakari+, 2016)

    NASA Astrophysics Data System (ADS)

    Sakari, C. M.; Shetrone, M. D.; Schiavon, R. P.; Bizyaev, D.; Prieto, C. A.; Beers, T. C.; Caldwell, N.; Garcia-Hernandez, D. A.; Lucatello, S.; Majewski, S.; O'Connell, R. W.; Pan, K.; Strader, J.

    2016-11-01

    H-band spectra (1.51-1.69um) of the target clusters were obtained with the moderately high resolution (R=22500) APOGEE spectrograph on the 2.5m Telescope at Apache Point Observatory in 2011 and 2013. The details of the observations can be found in Majewski+ (2015arXiv150905420M) and Zasowski+ (2013AJ....146...81Z), including descriptions of the plates and fibers that were utilized for the observations. The high-resolution optical abundances from Colucci et al. (2009, J/ApJ/704/385 and 2014ApJ...797..116C) are supplemented with new results for five globular clusters (GCs). The new optical spectra were obtained in 2009 and 2010 with the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory in Fort Davis, TX (R=30000; spectral coverage over ~5320-6290 and ~6360-7340Å in the blue and the red, respectively). (5 data files).

  17. High resolution remote sensing information identification for characterizing uranium mineralization setting in Namibia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding

    2011-11-01

    The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.

  18. Rapid, High-Resolution Detection of Environmental Change over Continental Scales from Satellite Data - the Earth Observation Data Cube

    NASA Technical Reports Server (NTRS)

    Lewis, Adam; Lymburner, Leo; Purss, Matthew B. J.; Brooke, Brendan; Evans, Ben; Ip, Alex; Dekker, Arnold G.; Irons, James R.; Minchin, Stuart; Mueller, Norman

    2015-01-01

    The effort and cost required to convert satellite Earth Observation (EO) data into meaningful geophysical variables has prevented the systematic analysis of all available observations. To overcome these problems, we utilise an integrated High Performance Computing and Data environment to rapidly process, restructure and analyse the Australian Landsat data archive. In this approach, the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations - the EO Data Cube. This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement. We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous, 25 m resolution observations. Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.

  19. Highly undersampled MR image reconstruction using an improved dual-dictionary learning method with self-adaptive dictionaries.

    PubMed

    Li, Jiansen; Song, Ying; Zhu, Zhen; Zhao, Jun

    2017-05-01

    Dual-dictionary learning (Dual-DL) method utilizes both a low-resolution dictionary and a high-resolution dictionary, which are co-trained for sparse coding and image updating, respectively. It can effectively exploit a priori knowledge regarding the typical structures, specific features, and local details of training sets images. The prior knowledge helps to improve the reconstruction quality greatly. This method has been successfully applied in magnetic resonance (MR) image reconstruction. However, it relies heavily on the training sets, and dictionaries are fixed and nonadaptive. In this research, we improve Dual-DL by using self-adaptive dictionaries. The low- and high-resolution dictionaries are updated correspondingly along with the image updating stage to ensure their self-adaptivity. The updated dictionaries incorporate both the prior information of the training sets and the test image directly. Both dictionaries feature improved adaptability. Experimental results demonstrate that the proposed method can efficiently and significantly improve the quality and robustness of MR image reconstruction.

  20. Multispectral image enhancement processing for microsat-borne imager

    NASA Astrophysics Data System (ADS)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  1. Regional sea level variability in a high-resolution global coupled climate model

    NASA Astrophysics Data System (ADS)

    Palko, D.; Kirtman, B. P.

    2016-12-01

    The prediction of trends at regional scales is essential in order to adapt to and prepare for the effects of climate change. However, GCMs are unable to make reliable predictions at regional scales. The prediction of local sea level trends is particularly critical. The main goal of this research is to utilize high-resolution (HR) (0.1° resolution in the ocean) coupled model runs of CCSM4 to analyze regional sea surface height (SSH) trends. Unlike typical, lower resolution (1.0°) GCM runs these HR runs resolve features in the ocean, like the Gulf Stream, which may have a large effect on regional sea level. We characterize the variability of regional SSH along the Atlantic coast of the US using tide gauge observations along with fixed radiative forcing runs of CCSM4 and HR interactive ensemble runs. The interactive ensemble couples an ensemble mean atmosphere with a single ocean realization. This coupling results in a 30% decrease in the strength of the Atlantic meridional overturning circulation; therefore, the HR interactive ensemble is analogous to a HR hosing experiment. By characterizing the variability in these high-resolution GCM runs and observations we seek to understand what processes influence coastal SSH along the Eastern Coast of the United States and better predict future SLR.

  2. Utilization of Cone-Beam Computed Tomographic Angiography in Planning for Gamma Knife Radiosurgery of Arteriovenous Malformations: A Case Series and Early Report

    PubMed Central

    Safain, Mina G.; Rahal, Jason P.; Raval, Ami; Rivard, Mark J.; Mignano, John; Wu, Julian; Malek, Adel M.

    2014-01-01

    Background The effectiveness of Gamma Knife radiosurgery (GKR) for cerebral arteriovenous malformations (AVM) is predicated on inclusion of the entire nidus while excluding normal tissue. As such, GKR may be limited by the resolution and accuracy of the imaging modality used in targeting. Objective We present the first case series to demonstrate the feasibility of utilizing ultra-high-resolution C-arm cone beam computed tomography angiography (CBCT-A) in AVM targeting. Methods From June 2009 to June 2013, CBCT-A was utilized for targeting of all patients with AVMs treated with GKR at our institution. Patients underwent Leksell stereotactic head frame placement followed by catheter-based biplane 2-D digital subtraction angiography (DSA), 3-D rotational angiography (3DRA), as well as CBCT-A. The CBCT-A dataset was used for stereotactic planning for GKR. Patients were followed up at 1, 3, 6, and 12 months, and then annually thereafter. Results CBCT-A-based targeting was used in twenty-two consecutive patients. CBCT-A provided detailed spatial resolution and sensitivity of nidal angioarchitecture enabling treatment. The average radiation dose to the margin of the AVM nidus corresponding to the 50% percent isodose line was 15.6 Gy. No patient had treatment-associated hemorrhage. At early follow-up (mean=16 months), 84% of patients had a decreasing or obliterated AVM nidus. Conclusion CBCT-A-guided radiosurgery is feasible and useful because it provides sufficient detailed resolution and sensitivity for imaging brain AVMs. PMID:24584136

  3. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging

    PubMed Central

    Cui, Xiquan; Lee, Lap Man; Heng, Xin; Zhong, Weiwei; Sternberg, Paul W.; Psaltis, Demetri; Yang, Changhuei

    2008-01-01

    Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (≈0.9 μm for the first and ≈0.8 μm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications. PMID:18663227

  4. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-01-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  5. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish

    2011-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.

  6. Development of New High Resolution Neutron Detector

    NASA Astrophysics Data System (ADS)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  7. High spatial resolution soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy tomore » use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.« less

  8. Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Neumark, Daniel M.

    2018-04-01

    Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  10. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE PAGES

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...

    2017-11-15

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  11. Guide-star-based computational adaptive optics for broadband interferometric tomography

    PubMed Central

    Adie, Steven G.; Shemonski, Nathan D.; Graf, Benedikt W.; Ahmad, Adeel; Scott Carney, P.; Boppart, Stephen A.

    2012-01-01

    We present a method for the numerical correction of optical aberrations based on indirect sensing of the scattered wavefront from point-like scatterers (“guide stars”) within a three-dimensional broadband interferometric tomogram. This method enables the correction of high-order monochromatic and chromatic aberrations utilizing guide stars that are revealed after numerical compensation of defocus and low-order aberrations of the optical system. Guide-star-based aberration correction in a silicone phantom with sparse sub-resolution-sized scatterers demonstrates improvement of resolution and signal-to-noise ratio over a large isotome. Results in highly scattering muscle tissue showed improved resolution of fine structure over an extended volume. Guide-star-based computational adaptive optics expands upon the use of image metrics for numerically optimizing the aberration correction in broadband interferometric tomography, and is analogous to phase-conjugation and time-reversal methods for focusing in turbid media. PMID:23284179

  12. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  13. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    PubMed Central

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan M.; Caspi, Daniel D.; Trend, Raissa M.

    2010-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (−)-sparteine as chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of base and hydrogen bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 °C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good to excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones. PMID:19904777

  14. High-resolution measurement of a bottlenose dolphin's (Tursiops truncatus) biosonar transmission beam pattern in the horizontal plane.

    PubMed

    Finneran, James J; Branstetter, Brian K; Houser, Dorian S; Moore, Patrick W; Mulsow, Jason; Martin, Cameron; Perisho, Shaun

    2014-10-01

    Previous measurements of toothed whale echolocation transmission beam patterns have utilized few hydrophones and have therefore been limited to fine angular resolution only near the principal axis or poor resolution over larger azimuthal ranges. In this study, a circular, horizontal planar array of 35 hydrophones was used to measure a dolphin's transmission beam pattern with 5° to 10° resolution at azimuths from -150° to +150°. Beam patterns and directivity indices were calculated from both the peak-peak sound pressure and the energy flux density. The emitted pulse became smaller in amplitude and progressively distorted as it was recorded farther off the principal axis. Beyond ±30° to 40°, the off-axis signal consisted of two distinct pulses whose difference in time of arrival increased with the absolute value of the azimuthal angle. A simple model suggests that the second pulse is best explained as a reflection from internal structures in the dolphin's head, and does not implicate the use of a second sound source. Click energy was also more directional at the higher source levels utilized at longer ranges, where the center frequency was elevated compared to that of the lower amplitude clicks used at shorter range.

  15. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.

    PubMed

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of detail, however, is insufficient for materials and devices involving bias and time dependent electrochemical events; or at solid-liquid interfaces, where non-linear or lossy dielectrics are present. Here, we demonstrate direct recovery of the bias dependence of the electrostatic force at high temporal resolution using General acquisition Mode (G-Mode) KPFM. G-Mode KPFM utilizes high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates. We show how G-Mode KPFM can be used to capture nanoscale CPD and capacitance information with a temporal resolution much faster than the cantilever bandwidth, determined by the modulation frequency of the AC voltage. In this way, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as a promising route to extend KPFM to the solid-liquid interface.

  16. Extracting the Bosonic Spectra of Pb Using Superconducting-Tip STS and Comparing it with the Cuprates

    NASA Astrophysics Data System (ADS)

    Niestemski, F. C.; Johnston, S.; Contryman, A. W.; Camp, C. D.; Devereaux, T. P.; Manoharan, H. C.

    2012-02-01

    In high-temperature superconductors the meaning of the common feature labeled ``peak-dip-hump'' is still a point of great debate. In terms of scanning tunneling spectroscopy (STS) this refers to the shape of satellite features that occur outside the coherence peaks in the dI/dV spectra. There are many conflicting interpretations and labeling schemes for this feature in both the hole- and electron-doped cuprates. The path to resolving this confusion is to study a well-understood BCS superconductor to better observe the way that the STM measures bosonic information. Utilizing the ultra-low electronic noise of our home-built low-temperature STM, and utilizing a superconducting tip for increased spectral resolution, we recreate the original McMillan and Rowell S-I-S junctionootnotetextW. L. McMillan and J. M. Rowell Phys. Rev. Lett., 14, 108-112 (1965) with the STM equivalent (S-Vacuum-S). This method provides very high energy resolution for both the filled and empty electronic states in both the superconducting and normal state. We compare this data to first-principle Eliashberg calculations and relate this data to ``peak-dip-hump'' in the high Tc case.

  17. Biomarker Candidates of Chlamydophila pneumoniae Proteins and Protein Fragments Identified by Affinity-Proteomics Using FTICR-MS and LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael

    2011-04-01

    We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.

  18. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOEpatents

    Majewski, Stanislaw; Majewski, Lucasz A.

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  19. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  20. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  1. Revealing fine microstructural morphology in the living human retina using Optical Coherence Tomography with pancorrection

    NASA Astrophysics Data System (ADS)

    Torti, C.; Považay, B.; Hofer, B.; Unterhuber, A.; Hermann, B.; Drexler, W.

    2008-09-01

    Ultra-high speed optical coherence tomography employing an ultra-broadband light source has been combined with adaptive optics utilizing a single high stroke deformable mirror and chromatic aberration compensation. The reduction of motion artefacts, geometric and chromatic aberrations (pancorrection) permits to achieve an isotropic resolution of 2-3 μm in the human eye. The performance of this non-invasive imaging modality enables to resolve cellular structures including cone photoreceptors, nerve fibre bundles and collagenous plates of the lamina cribrosa, and retinal pigment epithelial (RPE) cells in the human retina in vivo with superior detail. Alterations of cellular morphology due to cone degeneration in a colour-blind subject are investigated in ultra-high resolution with selective depth sectioning for the first time.

  2. Microwave sensing technology issues related to a global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Campbell, Thomas G.; Shiue, Jim; Connolly, Denis; Woo, Ken

    1991-01-01

    The objectives are to enable the development of lighter and less power consuming, high resolution microwave sensors which will operate at frequencies from 1 to 200 GHz. These systems will use large aperture antenna systems (both reflector and phased arrays) capable of wide scan angle, high polarization purity, and utilize sidelobe suppression techniques as required. Essentially, the success of this technology program will enable high resolution microwave radiometers from geostationary orbit, lightweight and more efficient radar systems from low Earth orbit, and eliminate mechanical scanning methods to the fullest extent possible; a main source of platform instability in large space systems. The Global Change Technology Initiative (GCTI) will develop technology which will enable the use of satellite systems for Earth observations on a global scale.

  3. Techniques for automatic large scale change analysis of temporal multispectral imagery

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst's job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change.

  4. A dual cone-beam CT system for image guided radiotherapy: initial performance characterization.

    PubMed

    Li, Hao; Giles, William; Bowsher, James; Yin, Fang-Fang

    2013-02-01

    The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube∕detector sets. The benchtop dual CBCT system consists of two orthogonally placed 40 × 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0∼25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R(2) ≥ 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast. The performance of a benchtop dual CBCT imaging system has been characterized and is comparable to that of a single CBCT.

  5. Evaluation of the U.S. Geological Survey Landsat burned area essential climate variable across the conterminous U.S. using commercial high-resolution imagery

    USGS Publications Warehouse

    Vanderhoof, Melanie; Brunner, Nicole M.; Beal, Yen-Ju G.; Hawbaker, Todd J.

    2017-01-01

    The U.S. Geological Survey has produced the Landsat Burned Area Essential Climate Variable (BAECV) product for the conterminous United States (CONUS), which provides wall-to-wall annual maps of burned area at 30 m resolution (1984–2015). Validation is a critical component in the generation of such remotely sensed products. Previous efforts to validate the BAECV relied on a reference dataset derived from Landsat, which was effective in evaluating the product across its timespan but did not allow for consideration of inaccuracies imposed by the Landsat sensor itself. In this effort, the BAECV was validated using 286 high-resolution images, collected from GeoEye-1, QuickBird-2, Worldview-2 and RapidEye satellites. A disproportionate sampling strategy was utilized to ensure enough burned area pixels were collected. Errors of omission and commission for burned area averaged 22 ± 4% and 48 ± 3%, respectively, across CONUS. Errors were lowest across the western U.S. The elevated error of commission relative to omission was largely driven by patterns in the Great Plains which saw low errors of omission (13 ± 13%) but high errors of commission (70 ± 5%) and potentially a region-growing function included in the BAECV algorithm. While the BAECV reliably detected agricultural fires in the Great Plains, it frequently mapped tilled areas or areas with low vegetation as burned. Landscape metrics were calculated for individual fire events to assess the influence of image resolution (2 m, 30 m and 500 m) on mapping fire heterogeneity. As the spatial detail of imagery increased, fire events were mapped in a patchier manner with greater patch and edge densities, and shape complexity, which can influence estimates of total greenhouse gas emissions and rates of vegetation recovery. The increasing number of satellites collecting high-resolution imagery and rapid improvements in the frequency with which imagery is being collected means greater opportunities to utilize these sources of imagery for Landsat product validation. 

  6. Review of GaN-based devices for terahertz operation

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash

    2017-09-01

    GaN provides the highest electron saturation velocity, breakdown voltage, operation temperature, and thus the highest combined frequency-power performance among commonly used semiconductors. The industrial need for compact, economical, high-resolution, and high-power terahertz (THz) imaging and spectroscopy systems are promoting the utilization of GaN for implementing the next generation of THz systems. As it is reviewed, the mentioned characteristics of GaN together with its capabilities of providing high two-dimensional election densities and large longitudinal optical phonon of ˜90 meV make it one of the most promising semiconductor materials for the future of the THz emitters, detectors, mixers, and frequency multiplicators. GaN-based devices have shown capabilities of operation in the upper THz frequency band of 5 to 12 THz with relatively high photon densities in room temperature. As a result, THz imaging and spectroscopy systems with high resolution and deep depth of penetration can be realized through utilizing GaN-based devices. A comprehensive review of the history and the state of the art of GaN-based electronic devices, including plasma heterostructure field-effect transistors, negative differential resistances, hetero-dimensional Schottky diodes, impact avalanche transit times, quantum-cascade lasers, high electron mobility transistors, Gunn diodes, and tera field-effect transistors together with their impact on the future of THz imaging and spectroscopy systems is provided.

  7. High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles.

    PubMed

    Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi

    2018-01-19

    An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cover estimations using object-based image analysis rule sets developed across multiple scales in pinyon-juniper woodlands

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have been conducted that evaluate the utility of remote sensing for monitoring and assessing vegetation and ground cover to support land management decisions and complement ground-measurements. However, few land cover comparisons have been made using high-resolution imagery and obj...

  9. Groucho: An Energy Conservation Computer Game.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.

    Groucho is a computer game designed to teach energy conservation concepts to upper elementary and junior high school students. The game is written in Applesoft Basic for the Apple II microcomputer. A complete listing of the program is provided. The game utilizes low resolution graphics to reward students for correct answers to 10 questions…

  10. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    PubMed

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  12. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the Registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  13. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  14. Integrated and Multi-Function Navigation (Les Systemes de Navigation Integres Multifunctions)

    DTIC Science & Technology

    1992-11-01

    assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field. The...SARMCS is aimed at the motion compensation of experience in the development and applications radar returns to achieve high resolution, high of Integrated...development project such as the essentially the same technology and utilize Synthetic Aperture Radar Motion Compensation similar sensors, the mission

  15. Scanning instrumentation for measuring magnetic field trapping in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.; Helton, A. J.

    1993-01-01

    Computerized scanning instrumentation measures and displays trapped magnetic fields across the surface of high Tc superconductors at 77 K. Data are acquired in the form of a raster scan image utilizing stepping motor stages for positioning and a cryogenic Hall probe for magnetic field readout. Flat areas up to 45 mm in diameter are scanned with 0.5-mm resolution and displayed as false color images.

  16. Advances in HgCdTe APDs and LADAR Receivers

    NASA Technical Reports Server (NTRS)

    Bailey, Steven; McKeag, William; Wang, Jinxue; Jack, Michael; Amzajerdian, Farzin

    2010-01-01

    Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain i.e. APDs with very low noise Readout Integrated Circuits. Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In this presentation we will review progress in high resolution scanning, staring and ultra-high sensitivity photon counting LADAR sensors.

  17. A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, R.; Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstrasse 2, 86135 Augsburg; Stingl, C.

    2016-07-15

    Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm){sup 2}. We describe design andmore » performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.« less

  18. Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5

    NASA Astrophysics Data System (ADS)

    Olesen, M.; Christensen, J. H.; Boberg, F.

    2016-12-01

    Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5Climate change affects the Greenlandic society both advantageously and disadvantageously. Changes in temperature and precipitation patterns may result in changes in a number of derived society related climate indices, such as the length of growing season or the number of annual dry days or a combination of the two - indices of substantial importance to society in a climate adaptation context.Detailed climate indices require high resolution downscaling. We have carried out a very high resolution (5 km) simulation with the regional climate model HIRHAM5, forced by the global model EC-Earth. Evaluation of RCM output is usually done with an ensemble of downscaled output with multiple RCM's and GCM's. Here we have introduced and tested a new technique; a translation of the robustness of an ensemble of GCM models from CMIP5 into the specific index from the HIRHAM5 downscaling through a correlation between absolute temperatures and its corresponding index values from the HIRHAM5 output.The procedure is basically conducted in two steps: First, the correlation between temperature and a given index for the HIRHAM5 simulation by a best fit to a second order polynomial is identified. Second, the standard deviation from the CMIP5 simulations is introduced to show the corresponding standard deviation of the index from the HIRHAM5 run. The change of specific climate indices due to global warming will then be possible to evaluate elsewhere corresponding to the change in absolute temperature.Results based on selected indices with focus on the future climate in Greenland calculated for the rcp4.5 and rcp8.5 scenarios will be presented.

  19. Cometary particulate analyzer. [mass spectrometry of laser plasmas

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.

    1979-01-01

    A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.

  20. The utility of ultrasound in the assessment of traumatic peripheral nerve lesions: report of 4 cases.

    PubMed

    Zeidenberg, Joshua; Burks, S Shelby; Jose, Jean; Subhawong, Ty K; Levi, Allan D

    2015-09-01

    Ultrasound technology continues to improve with better image resolution and availability. Its use in evaluating peripheral nerve lesions is increasing. The current review focuses on the utility of ultrasound in traumatic injuries. In this report, the authors present 4 illustrative cases in which high-resolution ultrasound dramatically enhanced the anatomical understanding and surgical planning of traumatic peripheral nerve lesions. Cases include a lacerating injury of the sciatic nerve at the popliteal fossa, a femoral nerve injury from a pseudoaneurysm, an ulnar nerve neuroma after attempted repair with a conduit, and, finally, a spinal accessory nerve injury after biopsy of a supraclavicular fossa lesion. Preoperative ultrasound images and intraoperative pictures are presented with a focus on how ultrasound aided with surgical decision making. These cases are set into context with a review of the literature on peripheral nerve ultrasound and a comparison between ultrasound and MRI modalities.

  1. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera

    PubMed Central

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-01-01

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167

  2. Utility of Early Post-operative High Resolution Volumetric MR Imaging after Transsphenoidal Pituitary Tumor Surgery

    PubMed Central

    Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.

    2014-01-01

    Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (<10 days) and late (>30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (p<.001, Fisher’s exact test). The average percent decrease in cavity volume from pre-operative MRI (tumor volume) to early post-operative imaging was 45% with decreases in all but 3 patients. There was no correlation between the size of the early cavity and the visual outcome. Conclusions Early high resolution volumetric MRI is valuable in determining the presence or absence of residual tumor. Cavity volume almost always decreases after surgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791

  3. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2010-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.

  4. Kinematic functions for redundancy resolution using configuration control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1994-01-01

    The invention fulfills new goals for redundancy resolution based on manipulator dynamics and end-effector characteristics. These goals are accomplished by employing the recently developed configuration control approach. Redundancy resolution is achieved by controlling the joint inertia matrix of the end-effector mass matrix that affect the inertial torques or by reducing the joint torques due to gravity loading and payload. The manipulator mechanical-advantage and velocity-ratio are also used as performance measures to be improved by proper utilization of redundancy. Furthermore, end-effector compliance, sensitivity, and impulsive force at impact are introduced as redundancy resolution criteria. The new goals for redundancy resolution allow a more efficient utilization of the redundant joints based on the desired task requirements.

  5. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Shikaku, Ryuji; Yagi, Naoto

    2017-10-01

    An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  6. A novel super-resolution camera model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  7. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS's parallel subsetting capabilities including challenges in the design and implementation of a scientific data subsetter.

  8. Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling

    PubMed Central

    Baker, Matthew L.; Hryc, Corey F.; Zhang, Qinfen; Wu, Weimin; Jakana, Joanita; Haase-Pettingell, Cameron; Afonine, Pavel V.; Adams, Paul D.; King, Jonathan A.; Jiang, Wen; Chiu, Wah

    2013-01-01

    High-resolution structures of viruses have made important contributions to modern structural biology. Bacteriophages, the most diverse and abundant organisms on earth, replicate and infect all bacteria and archaea, making them excellent potential alternatives to antibiotics and therapies for multidrug-resistant bacteria. Here, we improved upon our previous electron cryomicroscopy structure of Salmonella bacteriophage epsilon15, achieving a resolution sufficient to determine the tertiary structures of both gp7 and gp10 protein subunits that form the T = 7 icosahedral lattice. This study utilizes recently established best practice for near-atomic to high-resolution (3–5 Å) electron cryomicroscopy data evaluation. The resolution and reliability of the density map were cross-validated by multiple reconstructions from truly independent data sets, whereas the models of the individual protein subunits were validated adopting the best practices from X-ray crystallography. Some sidechain densities are clearly resolved and show the subunit–subunit interactions within and across the capsomeres that are required to stabilize the virus. The presence of the canonical phage and jellyroll viral protein folds, gp7 and gp10, respectively, in the same virus suggests that epsilon15 may have emerged more recently relative to other bacteriophages. PMID:23840063

  9. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  10. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  11. The Hippocampus Supports High-Resolution Binding in the Service of Perception, Working Memory and Long-Term Memory

    PubMed Central

    Yonelinas, Andrew P.

    2013-01-01

    It is well established that the hippocampus plays a critical role in our ability to recollect past events. A number of recent studies have indicated that the hippocampus may also play a critical role in working memory and perception, but these results have been highly controversial because other similar studies have failed to find evidence for hippocampal involvement. Thus, the precise role that the hippocampus plays in cognition is still debated. In the current paper, I propose that the hippocampus supports the generation and utilization of complex high-resolution bindings that link together the qualitative aspects that make up an event; these bindings are essential for recollection, and they can also contribute to performance across a variety of tasks including perception and working memory. An examination of the existing patient literature provides support for this proposal by showing that hippocampal damage leads to impairments on perception and working memory tasks that require complex high-resolution bindings. Conversely, hippocampal damage is much less likely to lead to impairments on tasks that require only low-resolution or simple associations/relations. The current proposal can be distinguished from earlier accounts of hippocampal function, and it generates a number of novel predictions that can be tested in future studies. PMID:23721964

  12. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  13. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction

    PubMed Central

    XU, PENG; LV, LULU; LI, SHAODONG; GE, HAITAO; RONG, YUTAO; HU, CHUNFENG; XU, KAI

    2015-01-01

    The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI. PMID:26668651

  14. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  15. Temporal Dynamics of Motivation-Cognitive Control Interactions Revealed by High-Resolution Pupillometry

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control. PMID:23372557

  16. A High-Frequency Linear Ultrasonic Array Utilizing an Interdigitally Bonded 2-2 Piezo-Composite

    PubMed Central

    Cannata, Jonathan M.; Williams, Jay A.; Zhang, Lequan; Hu, Chang-Hong; Shung, K. Kirk

    2011-01-01

    This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2–2 IB composites outperformed 1–3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2–2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-μm-wide pillars separated by 6-μm-wide kerfs. The array had a 50 μm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and −6-dB band-width was 61%. The measured single-element transmit −6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The −6-dB lateral and axial resolutions were estimated to be 125 and 68 μm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 μm in diameter. PMID:21989884

  17. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy J.; Duncan, Alastair; Sampson, Christopher C.; Neal, Jeffrey C.; Bates, Paul D.

    2011-01-01

    This paper describes benchmark testing of a diffusive and an inertial formulation of the de St. Venant equations implemented within the LISFLOOD-FP hydraulic model using high resolution terrestrial LiDAR data. The models are applied to a hypothetical flooding scenario in a section of Alcester, UK which experienced significant surface water flooding in the June and July floods of 2007 in the UK. The sensitivity of water elevation and velocity simulations to model formulation and grid resolution are analyzed. The differences in depth and velocity estimates between the diffusive and inertial approximations are within 10% of the simulated value but inertial effects persist at the wetting front in steep catchments. Both models portray a similar scale dependency between 50 cm and 5 m resolution which reiterates previous findings that errors in coarse scale topographic data sets are significantly larger than differences between numerical approximations. In particular, these results confirm the need to distinctly represent the camber and curbs of roads in the numerical grid when simulating surface water flooding events. Furthermore, although water depth estimates at grid scales coarser than 1 m appear robust, velocity estimates at these scales seem to be inconsistent compared to the 50 cm benchmark. The inertial formulation is shown to reduce computational cost by up to three orders of magnitude at high resolutions thus making simulations at this scale viable in practice compared to diffusive models. For the first time, this paper highlights the utility of high resolution terrestrial LiDAR data to inform small-scale flood risk management studies.

  18. Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100,000 full width at half maximum.

    PubMed

    Kaufmann, Anton

    2010-07-30

    Elemental compositions (ECs) can be elucidated by evaluating the high-resolution mass spectra of unknown or suspected unfragmented analyte ions. Classical approaches utilize the exact mass of the monoisotopic peak (M + 0) and the relative abundance of isotope peaks (M + 1 and M + 2). The availability of high-resolution instruments like the Orbitrap currently permits mass resolutions up to 100,000 full width at half maximum. This not only allows the determination of relative isotopic abundances (RIAs), but also the extraction of other diagnostic information from the spectra, such as fully resolved signals originating from (34)S isotopes and fully or partially resolved signals related to (15)N isotopes (isotopic fine structure). Fully and partially resolved peaks can be evaluated by visual inspection of the measured peak profiles. This approach is shown to be capable of correctly discarding many of the EC candidates which were proposed by commercial EC calculating algorithms. Using this intuitive strategy significantly extends the upper mass range for the successful elucidation of ECs. Copyright 2010 John Wiley & Sons, Ltd.

  19. Print-to-pattern dry film photoresist lithography

    NASA Astrophysics Data System (ADS)

    Garland, Shaun P.; Murphy, Terrence M., Jr.; Pan, Tingrui

    2014-05-01

    Here we present facile microfabrication processes, referred to as print-to-pattern dry film photoresist (DFP) lithography, that utilize the combined advantages of wax printing and DFP to produce micropatterned substrates with high resolution over a large surface area in a non-cleanroom setting. The print-to-pattern methods can be performed in an out-of-cleanroom environment making microfabrication much more accessible to minimally equipped laboratories. Two different approaches employing either wax photomasks or wax etchmasks from a solid ink desktop printer have been demonstrated that allow the DFP to be processed in a negative tone or positive tone fashion, respectively, with resolutions of 100 µm. The effect of wax melting on resolution and as a bonding material was also characterized. In addition, solid ink printers have the capacity to pattern large areas with high resolution, which was demonstrated by stacking DFP layers in a 50 mm × 50 mm woven pattern with 1 mm features. By using an office printer to generate the masking patterns, the mask designs can be easily altered in a graphic user interface to enable rapid prototyping.

  20. Aberration control in 4Pi nanoscopy: definitions, properties, and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Allgeyer, Edward S.; Velasco, Mary Grace M.; Booth, Martin J.; Bewersdorf, Joerg

    2016-03-01

    The development of fluorescence microscopy, which allows live-cell imaging with high labeling specificity, has made the visualization of cellular architecture routine. However, for centuries, the spatial resolution of optical microscopy was fundamentally limited by diffraction. The past two decades have seen a revolution in far-field optical nanoscopy (or "super-resolution" microscopy). The best 3D resolution is achieved by optical nanoscopes like the isoSTED or the iPALM/4Pi-SMS, which utilize two opposing objective lenses in a coherent manner. These system are, however, also more complex and the required interference conditions demand precise aberration control. Our research involves developing novel adaptive optics techniques that enable high spatial and temporal resolution imaging for biological applications. In this talk, we will discuss how adaptive optics can enhance dual-objective lens nanoscopes. We will demonstrate how adaptive optics devices provide unprecedented freedom to manipulate the light field in isoSTED nanoscopy, allow to realize automatic beam alignment, suppress the inherent side-lobes of the point-spread function, and dynamically compensate for sample-induced aberrations. We will present both the theoretical groundwork and the experimental confirmations.

  1. qSR: a quantitative super-resolution analysis tool reveals the cell-cycle dependent organization of RNA Polymerase I in live human cells.

    PubMed

    Andrews, J O; Conway, W; Cho, W -K; Narayanan, A; Spille, J -H; Jayanth, N; Inoue, T; Mullen, S; Thaler, J; Cissé, I I

    2018-05-09

    We present qSR, an analytical tool for the quantitative analysis of single molecule based super-resolution data. The software is created as an open-source platform integrating multiple algorithms for rigorous spatial and temporal characterizations of protein clusters in super-resolution data of living cells. First, we illustrate qSR using a sample live cell data of RNA Polymerase II (Pol II) as an example of highly dynamic sub-diffractive clusters. Then we utilize qSR to investigate the organization and dynamics of endogenous RNA Polymerase I (Pol I) in live human cells, throughout the cell cycle. Our analysis reveals a previously uncharacterized transient clustering of Pol I. Both stable and transient populations of Pol I clusters co-exist in individual living cells, and their relative fraction vary during cell cycle, in a manner correlating with global gene expression. Thus, qSR serves to facilitate the study of protein organization and dynamics with very high spatial and temporal resolutions directly in live cell.

  2. Magnetic resonance spectroscopic imaging at superresolution: Overview and perspectives

    NASA Astrophysics Data System (ADS)

    Kasten, Jeffrey; Klauser, Antoine; Lazeyras, François; Van De Ville, Dimitri

    2016-02-01

    The notion of non-invasive, high-resolution spatial mapping of metabolite concentrations has long enticed the medical community. While magnetic resonance spectroscopic imaging (MRSI) is capable of achieving the requisite spatio-spectral localization, it has traditionally been encumbered by significant resolution constraints that have thus far undermined its clinical utility. To surpass these obstacles, research efforts have primarily focused on hardware enhancements or the development of accelerated acquisition strategies to improve the experimental sensitivity per unit time. Concomitantly, a number of innovative reconstruction techniques have emerged as alternatives to the standard inverse discrete Fourier transform (DFT). While perhaps lesser known, these latter methods strive to effect commensurate resolution gains by exploiting known properties of the underlying MRSI signal in concert with advanced image and signal processing techniques. This review article aims to aggregate and provide an overview of the past few decades of so-called "superresolution" MRSI reconstruction methodologies, and to introduce readers to current state-of-the-art approaches. A number of perspectives are then offered as to the future of high-resolution MRSI, with a particular focus on translation into clinical settings.

  3. Triangulation-based 3D surveying borescope

    NASA Astrophysics Data System (ADS)

    Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.

    2016-04-01

    In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.

  4. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  5. A fast MEMS scanning photoacoustic microscopy system and its application in glioma study

    NASA Astrophysics Data System (ADS)

    Bi, Renzhe; Balasundaram, Ghayathri; Jeon, Seungwan; Pu, Yang; Tay, Hui Chien; Kim, Chulhong; Olivo, Malini

    2018-02-01

    We present a water-proof Microelectromechanical systems (MEMS) based scanning optical resolution Photoacoustic Microscopy (OR-PAM) system and its application in glioma tumor mouse model study. The presented OR-PAM system has high optical resolution ( 3 μm) and high scanning speed (up to 50 kHz A-scan rate), which is ideal for cerebral vascular imaging. In this study, the mice with glioma tumor are treated with vascular disrupting agent (VDA). OR-PAM system is utilized to image the cerebral with the whole skull intact before and after the injection of VDA. By image registration, the response of every single blood vessel can be traced. This will provide us deeper understanding of the drug effect.

  6. Redundancy management of multiple KT-70 inertial measurement units applicable to the space shuttle

    NASA Technical Reports Server (NTRS)

    Cook, L. J.

    1975-01-01

    Results of an investigation of velocity failure detection and isolation for 3 inertial measuring units (IMU) and 2 inertial measuring units (IMU) configurations are presented. The failure detection and isolation algorithm performance was highly successful and most types of velocity errors were detected and isolated. The failure detection and isolation algorithm also included attitude FDI but was not evaluated because of the lack of time and low resolution in the gimbal angle synchro outputs. The shuttle KT-70 IMUs will have dual-speed resolvers and high resolution gimbal angle readouts. It was demonstrated by these tests that a single computer utilizing a serial data bus can successfully control a redundant 3-IMU system and perform FDI.

  7. Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2012-01-01

    We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.

  8. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  9. Utility of fluorescence microscopy in embryonic/fetal topographical analysis.

    PubMed

    Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M

    1995-06-01

    For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.

  10. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  11. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less

  12. Real-time high-resolution PC-based system for measurement of errors on compact disks

    NASA Astrophysics Data System (ADS)

    Tehranchi, Babak; Howe, Dennis G.

    1994-10-01

    Hardware and software utilities are developed to directly monitor the Eight-to-Fourteen (EFM) demodulated data bytes at the input of a CD player's Cross-Interleaved Reed-Solomon Code (CIRC) block decoder. The hardware is capable of identifying erroneous data with single-byte resolution in the serial data stream read from a Compact Disc by a CDD 461 Philips CD-ROM drive. In addition, the system produces graphical maps that show the physical location of the measured errors on the entire disc, or via a zooming and planning feature, on user selectable local disc regions.

  13. Superconducting transition detectors for low-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Kurfess, J. D.; Johnson, W. N.; Fritz, G. G.; Strickman, M. S.; Kinzer, R. L.; Jung, G.; Drukier, A. K.; Chmielowski, M.

    1990-08-01

    A program to investigate superconducting devices such as STDs for use in high-resolution Compton telescopes and coded-aperture detectors is presented. For higher energy applications, techniques are investigated with potential for scaling to large detectors, while also providing excellent energy and positional resolution. STDs are discussed, utilizing a uniform array of spherical granules tens of microns in diameter. The typical temperature-magnetic field phase for a low-temperature superconductor, the signal produced by the superconducting-normal transition in the 32-m diameter Sn granule, and the temperature history of an STD granule following heating by an ionizing particle are illustrated.

  14. Rise time measurement for ultrafast X-ray pulses

    DOEpatents

    Celliers, Peter M [Berkeley, CA; Weber, Franz A [Oakland, CA; Moon, Stephen J [Tracy, CA

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  15. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  16. Real-time Full-spectral Imaging and Affinity Measurements from 50 Microfluidic Channels using Nanohole Surface Plasmon Resonance†

    PubMed Central

    Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun

    2012-01-01

    With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607

  17. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  18. Assessment and Prediction of Natural Hazards from Satellite Imagery

    PubMed Central

    Gillespie, Thomas W.; Chu, Jasmine; Frankenberg, Elizabeth; Thomas, Duncan

    2013-01-01

    Since 2000, there have been a number of spaceborne satellites that have changed the way we assess and predict natural hazards. These satellites are able to quantify physical geographic phenomena associated with the movements of the earth’s surface (earthquakes, mass movements), water (floods, tsunamis, storms), and fire (wildfires). Most of these satellites contain active or passive sensors that can be utilized by the scientific community for the remote sensing of natural hazards over a number of spatial and temporal scales. The most useful satellite imagery for the assessment of earthquake damage comes from high-resolution (0.6 m to 1 m pixel size) passive sensors and moderate resolution active sensors that can quantify the vertical and horizontal movement of the earth’s surface. High-resolution passive sensors have been used to successfully assess flood damage while predictive maps of flood vulnerability areas are possible based on physical variables collected from passive and active sensors. Recent moderate resolution sensors are able to provide near real time data on fires and provide quantitative data used in fire behavior models. Limitations currently exist due to atmospheric interference, pixel resolution, and revisit times. However, a number of new microsatellites and constellations of satellites will be launched in the next five years that contain increased resolution (0.5 m to 1 m pixel resolution for active sensors) and revisit times (daily ≤ 2.5 m resolution images from passive sensors) that will significantly improve our ability to assess and predict natural hazards from space. PMID:25170186

  19. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  20. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  1. Resolutions Approved at Governor's Conference on Aging.

    ERIC Educational Resources Information Center

    1975

    This paper presents the resolutions adopted at Ohio's 1975 Governor's Conference on Aging. The Commission on Aging views these resolutions as a blueprint for action and includes resolutions on such topics as rural and urban transportation, medical services, utilities and housing. (Author/HMV)

  2. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  3. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng

    2016-05-01

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.

  4. Feasibility and clinical utility of ultra-widefield indocyanine green angiography.

    PubMed

    Klufas, Michael A; Yannuzzi, Nicolas A; Pang, Claudine E; Srinivas, Sowmya; Sadda, Srinivas R; Freund, K Bailey; Kiss, Szilárd

    2015-03-01

    To evaluate the feasibility and clinical utility of a novel noncontact scanning laser ophthalmoscope-based ultra-widefield indocyanine green angiographic system. Ultra-widefield indocyanine green angiographic images were captured using a modified Optos P200Tx that produced high-resolution images of the choroidal vasculature with up to a 200° field. Ultra-widefield indocyanine green angiography was performed on patients with a variety of retinal conditions to assess utility of this imaging technique for diagnostic purposes and disease treatment monitoring. Ultra-widefield indocyanine green angiography was performed on 138 eyes of 69 patients. Mean age was 58 ± 16.9 years (range, 24-85 years). The most common ocular pathologies imaged included central serous chorioretinopathy (24 eyes), uveitis (various subtypes, 16 eyes), age-related macular degeneration (12 eyes), and polypoidal choroidal vasculopathy (4 eyes). In all eyes evaluated with ultra-widefield indocyanine green angiography, high-resolution images of choroidal and retinal circulation were obtained with sufficient detail out to 200° of the fundus. In this series of 138 eyes, scanning laser ophthalmoscope-based ultra-widefield indocyanine green angiography was clinically practical and provided detailed images of both the central and peripheral choroidal circulation. Future studies are needed to refine the clinical value of this imaging modality and the significance of peripheral choroidal vascular changes in the diagnosis, monitoring, and treatment of ocular diseases.

  5. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe.

    PubMed

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2016-06-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  6. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    PubMed Central

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K.; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W.; Cremer, Christoph; Birk, Udo

    2016-01-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei. PMID:27054149

  7. High Efficiency, Low Distortion 3D Diffusion Tensor Imaging with Variable Density Spiral Fast Spin Echoes (3D DW VDS RARE)

    PubMed Central

    Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.

    2009-01-01

    We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618

  8. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  9. High-resolution study of dynamical diffraction phenomena accompanying the Renninger (222/113) case of three-beam diffraction in silicon

    PubMed Central

    Kazimirov, A.; Kohn, V. G.

    2010-01-01

    X-ray optical schemes capable of producing a highly monochromatic beam with high angular collimation in both the vertical and horizontal planes have been evaluated and utilized to study high-resolution diffraction phenomena in the Renninger (222/113) case of three-beam diffraction in silicon. The effect of the total reflection of the incident beam into the nearly forbidden reflected beam was observed for the first time with the maximum 222 reflectivity at the 70% level. We have demonstrated that the width of the 222 reflection can be varied many times by tuning the azimuthal angle by only a few µrad in the vicinity of the three-beam diffraction region. This effect, predicted theoretically more than 20 years ago, is explained by the enhancement of the 222 scattering amplitude due to the virtual two-stage 000 113 222 process which depends on the azimuthal angle. PMID:20555185

  10. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver.

    PubMed

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-21

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  11. Large laser projection displays utilizing all-solid-state RGB lasers

    NASA Astrophysics Data System (ADS)

    Xu, Zuyan; Bi, Yong

    2005-01-01

    RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.

  12. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, Billy W.; Goulding, Frederick S.

    1991-01-01

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons Compton backscattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to monimize systematic errors due to the presence of the chestwall and multiple scattering.

  13. An update of commercial infrared sensing and imaging instruments

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    A classification of infrared sensing instruments by type and application, listing commercially available instruments, from single point thermal probes to on-line control sensors, to high speed, high resolution imaging systems is given. A review of performance specifications follows, along with a discussion of typical thermographic display approaches utilized by various imager manufacturers. An update report on new instruments, new display techniques and newly introduced features of existing instruments is given.

  14. UWB Tracking Algorithms: AOA and TDOA

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, D.; Ngo, P.; Gross, J.; Refford, Melinda

    2006-01-01

    Ultra-Wideband (UWB) tracking prototype systems are currently under development at NASA Johnson Space Center for various applications on space exploration. For long range applications, a two-cluster Angle of Arrival (AOA) tracking method is employed for implementation of the tracking system; for close-in applications, a Time Difference of Arrival (TDOA) positioning methodology is exploited. Both AOA and TDOA are chosen to utilize the achievable fine time resolution of UWB signals. This talk presents a brief introduction to AOA and TDOA methodologies. The theoretical analysis of these two algorithms reveal the affecting parameters impact on the tracking resolution. For the AOA algorithm, simulations show that a tracking resolution less than 0.5% of the range can be achieved with the current achievable time resolution of UWB signals. For the TDOA algorithm used in close-in applications, simulations show that the (sub-inch) high tracking resolution is achieved with a chosen tracking baseline configuration. The analytical and simulated results provide insightful guidance for the UWB tracking system design.

  15. Application of a MODIS Soil Moisture-Evapotranspiration (MOD-SMET) Model to Evaluate Landscape and Hydrologic Recovery after the High Park Fire in Colorado, USA

    NASA Astrophysics Data System (ADS)

    Blount, W. K.; Hogue, T. S.; Franz, K.; Knipper, K. R.

    2017-12-01

    Accurate estimation of evapotranspiration (ET) is critical for the management of water resources, especially in water-stressed regions. ET accounts for approximately 60% of terrestrial precipitation globally and approaches 100% of annual rainfall in arid ecosystems, where transpiration becomes the dominant term. ET is difficult to measure due to its spatiotemporal variation, which requires adequate data coverage. While new remote sensing-based ET products are available at a 1 km spatial resolution, including the Operational Simplified Surface Energy Balance model (SSEBop) and the MODIS Global Evapotranspiration Project (MOD16), these products are available at monthly and 8-day temporal resolutions, respectively. To better understand the changing dynamics of hydrologic fluxes and the partitioning of water after land cover disturbances and to identify statically significant trends, more frequent observations are necessary. Utilizing the recently developed MODIS Soil Moisture-Evapotranspiration (MOD-SMET) model, daily temporal resolution is achieved. This presentation outlines the methodology of the MOD-SMET model and compares SSEBop, MOD16, and MOD-SMET ET estimates over the High Park Fire burn scar in Colorado, USA. MOD-SMET estimates are used to identify changes in fluxes and partitioning of the water cycle after a wildfire and during recovery in the High Park Fire near Fort Collins, Colorado. Initial results indicate greenness and ET from all three models decrease post-fire, with higher statistical confidence in high burn areas and spatial patterns that closely align with burn severity. MOD-SMET improves the ability to resolve statistically significant changes in ET following wildfires and better understand changes in the post-fire water budget. Utilizing this knowledge, water resource managers can better plan for, and mitigate, the short- and long-term impacts of wildfire on regional water supplies.

  16. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Thomas; Pausch, Johanna

    2017-04-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  17. Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive

    DOE Data Explorer

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-01-27

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at http://www.the-cryosphere-discuss.net/tc-2016-29/. Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  18. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography.

    PubMed

    Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A

    2017-04-01

    Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.

  19. Image super-resolution via adaptive filtering and regularization

    NASA Astrophysics Data System (ADS)

    Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming

    2014-11-01

    Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.

  20. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms.

    PubMed

    Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-12-15

    The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. High Resolution Time Series Observations of Bio-Optical and Physical Variability in the Arabian Sea

    DTIC Science & Technology

    1998-09-30

    1995-October 20, 1995). Multi-variable moored systems ( MVMS ) were deployed by our group at 35 and 80m. The MVMS utilizes a VMCM to measure currents...similar to that of the UCSB MVMSs. WORK COMPLETED Our MVMS interdisciplinary systems with sampling intervals of a few minutes were placed on a mooring

  2. Three-dimension imaging lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J. (Inventor)

    2007-01-01

    This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.

  3. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, L.; Muelder, S.

    1999-10-22

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at themore » time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography.« less

  4. Differentiation of minute virus of mice and mouse parvovirus by high resolution melting curve analysis.

    PubMed

    Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-12-01

    Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    PubMed Central

    Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David

    2016-01-01

    Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175

  6. A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure

    NASA Astrophysics Data System (ADS)

    Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.

    2014-02-01

    The pressure dependence of oxygen A-band absorption enables the retrieval of the vertical profiles of aerosol and cloud properties from oxygen A-band spectrometry. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July 2011. The HABS has the ability to measure solar direct-beam and zenith diffuse radiation through a telescope automatically. It exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high spectrum resolution (0.16 nm), and high Out-of-Band Rejection (10-5). To evaluate the spectra performance of HABS, a HABS simulator has been developed by combing the discrete ordinates radiative transfer (DISORT) code with the High Resolution Transmission (HTRAN) database HITRAN2008. The simulator uses double-k approach to reduce the computational cost. The HABS measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the confidence intervals (95%) of relative difference between measurements and simulation are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27° and 72°, respectively. The main differences between them occur at or near the strong oxygen absorption line centers. They are mainly caused by the noise/spikes of HABS measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration and absorption line parameters. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties, particularly for multi-layer clouds and for mixed-phase clouds.

  7. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes.

    PubMed

    Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Gratz, Jean; Banu, Sayera; Rahman, S M Mazidur; Ferdous, Sara Sabrina; Foongladda, Suporn; Boonlert, Duangjai; Ogarkov, Oleg; Zhdanova, Svetlana; Kibiki, Gibson; Heysell, Scott; Houpt, Eric

    2015-02-24

    Genotypic methods for drug susceptibility testing of Mycobacterium tuberculosis are desirable to speed the diagnosis and proper therapy of tuberculosis (TB). However, the numbers of genes and polymorphisms implicated in resistance have proliferated, challenging diagnostic design. We developed a microfluidic TaqMan array card (TAC) that utilizes both sequence-specific probes and high-resolution melt analysis (HRM), providing two layers of detection of mutations. Twenty-seven primer pairs and 40 probes were designed to interrogate 3,200 base pairs of critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The method was evaluated on 230 clinical M. tuberculosis isolates from around the world, and it yielded 96.1% accuracy (2,431/2,530) in comparison to that of Sanger sequencing and 87% accuracy in comparison to that of the slow culture-based susceptibility testing. This TAC-HRM method integrates assays for 10 genes to yield fast, comprehensive, and accurate drug susceptibility results for the 9 major antibiotics used to treat TB and could be deployed to improve treatment outcomes. Multidrug-resistant tuberculosis threatens global tuberculosis control efforts. Optimal therapy utilizes susceptibility test results to guide individualized treatment regimens; however, the susceptibility testing methods in use are technically difficult and slow. We developed an integrated TaqMan array card method with high-resolution melt analysis that interrogates 10 genes to yield a fast, comprehensive, and accurate drug susceptibility result for the 9 major antituberculosis antibiotics. Copyright © 2015 Pholwat et al.

  8. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  9. Clinical evaluation of CR versus plain film for neonatal ICU applications

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Huang, H. K.

    1995-05-01

    The clinical utility of computed radiography (CR) versus screen-film for neonatal intensive care unit (ICU) applications is investigated. The latest versions of standard ST-V and high- resolution HR-V CR imaging plates were compared via measurements of image contrast, spatial resolution and signal-to-noise. The ST-V imaging plate was found to have equivalent spatial resolution and object detectability at a lower required dose than the HR-V, and was therefore chosen as the CR plate to use in clinical trials in which a modified film cassette containing the CR imaging plate, a conventional screen and film was utilized. For 50 portable neonatal chest examinations, plain film was subjectively compared to the perfectly matched, simultaneously obtained CR hardcopy and softcopy images. Grading of overall image quality was on a scale of one (poor) to five (excellent). Readers rated the visualization of various structures in the chest (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) as well as the visualization of pathologic findings. Preliminary results indicate that the image quality of both CR soft and hardcopy are comparable to plain film and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest x rays.

  10. FPGA-Based Front-End Electronics for Positron Emission Tomography

    PubMed Central

    Haselman, Michael; DeWitt, Don; McDougald, Wendy; Lewellen, Thomas K.; Miyaoka, Robert; Hauck, Scott

    2010-01-01

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA’s low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm. PMID:21961085

  11. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  12. Ultrahigh-resolution imaging of the human brain with phase-cycled balanced steady-state free precession at 7 T.

    PubMed

    Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K

    2014-05-01

    The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short phase cycles can be acquired separately, improving examination tolerability. These images may be beneficial for studies of the hippocampus, iron-containing structures such as the subthalamic nucleus and line of Gennari, and the basal cisterns and their contents.

  13. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†

    PubMed Central

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya

    2015-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810

  14. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  15. The Impact of an Online Crowdsourcing Diagnostic Tool on Health Care Utilization: A Case Study Using a Novel Approach to Retrospective Claims Analysis.

    PubMed

    Juusola, Jessie L; Quisel, Thomas R; Foschini, Luca; Ladapo, Joseph A

    2016-06-01

    Patients with difficult medical cases often remain undiagnosed despite visiting multiple physicians. A new online platform, CrowdMed, uses crowdsourcing to quickly and efficiently reach an accurate diagnosis for these patients. This study sought to evaluate whether CrowdMed decreased health care utilization for patients who have used the service. Novel, electronic methods of patient recruitment and data collection were utilized. Patients who completed cases on CrowdMed's platform between July 2014 and April 2015 were recruited for the study via email and screened via an online survey. After providing eConsent, participants provided identifying information used to access their medical claims data, which was retrieved through a third-party web application program interface (API). Utilization metrics including frequency of provider visits and medical charges were compared pre- and post-case resolution to assess the impact of resolving a case on CrowdMed. Of 45 CrowdMed users who completed the study survey, comprehensive claims data was available via API for 13 participants, who made up the final enrolled sample. There were a total of 221 health care provider visits collected for the study participants, with service dates ranging from September 2013 to July 2015. Frequency of provider visits was significantly lower after resolution of a case on CrowdMed (mean of 1.07 visits per month pre-resolution vs. 0.65 visits per month post-resolution, P=.01). Medical charges were also significantly lower after case resolution (mean of US $719.70 per month pre-resolution vs. US $516.79 per month post-resolution, P=.03). There was no significant relationship between study results and disease onset date, and there was no evidence of regression to the mean influencing results. This study employed technology-enabled methods to demonstrate that patients who used CrowdMed had lower health care utilization after case resolution. However, since the final sample size was limited, results should be interpreted as a case study. Despite this limitation, the statistically significant results suggest that online crowdsourcing shows promise as an efficient method of solving difficult medical cases.

  16. ISED: Constructing a high-resolution elevation road dataset from massive, low-quality in-situ observations derived from geosocial fitness tracking data.

    PubMed

    McKenzie, Grant; Janowicz, Krzysztof

    2017-01-01

    Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM) but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.

  17. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  18. A High Resolution Tropical Cyclone Power Outage Forecasting Model for the Continental United States

    NASA Astrophysics Data System (ADS)

    Pino, J. V.; Quiring, S. M.; Guikema, S.; Shashaani, S.; Linger, S.; Backhaus, S.

    2017-12-01

    Tropical cyclones cause extensive damage to the power infrastructure system throughout the United States. This damage can leave millions without power for extended periods of time, as most recently seen with Hurricane Matthew (2016). Accurate and timely prediction of power outages are essential for utility companies, emergency management agencies, and governmental organizations. Here we present a high-resolution (250 m x 250 m) hurricane power outage model for the United States. The model uses only publicly-available data to make predictions. It uses forecasts of storm variables such as maximum 3-second wind gust, duration of strong winds > 20 m s-2, soil moisture, and precipitation. It also incorporates static environmental variables such as elevation characteristics, land cover type, population density, tree species data, and root zone depth. A web tool was established for use by the Department of Energy (DOE) so that the model can be used for real-time outage forecasting or for synthetic tropical cyclones as an exercise in emergency management. This web tool provides DOE decision-makers with high impact analytic results and products that can be disseminated to federal, local, and state agencies. The results then aid utility companies in their pre- and post-storm activities, thus decreasing restoration times and lowering costs.

  19. Unmixing of spectral components affecting AVIRIS imagery of Tampa Bay

    NASA Astrophysics Data System (ADS)

    Carder, Kendall L.; Lee, Z. P.; Chen, Robert F.; Davis, Curtiss O.

    1993-09-01

    According to Kirk's as well as Morel and Gentili's Monte Carlo simulations, the popular simple expression, R approximately equals 0.33 bb/a, relating subsurface irradiance reflectance (R) to the ratio of the backscattering coefficient (bb) to absorption coefficient (a), is not valid for bb/a > 0.25. This means that it may no longer be valid for values of remote-sensing reflectance (above-surface ratio of water-leaving radiance to downwelling irradiance) where Rrs4/ > 0.01. Since there has been no simple Rrs expression developed for very turbid waters, we developed one based in part on Monte Carlo simulations and empirical adjustments to an Rrs model and applied it to rather turbid coastal waters near Tampa Bay to evaluate its utility for unmixing the optical components affecting the water- leaving radiance. With the high spectral (10 nm) and spatial (20 m2) resolution of Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) data, the water depth and bottom type were deduced using the model for shallow waters. This research demonstrates the necessity of further research to improve interpretations of scenes with highly variable turbid waters, and it emphasizes the utility of high spectral-resolution data as from AVIRIS for better understanding complicated coastal environments such as the west Florida shelf.

  20. X-ray phase contrast tomography from whole organ down to single cells

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim

    2014-09-01

    We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.

  1. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  2. Monochromatic X-ray-induced thermal effect on four-reflection “nested” meV-monochromators: dynamical diffraction theory and finite-element analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ling-Fei; Gao, Li-Dan; Li, Zhen-Jie; Wang, Shan-Feng; Sheng, Wei-Fan; Liu, Peng; Xu, Wei

    2015-09-01

    The high energy resolution monochromator (HRM) is widely used in inelastic scattering programs to detect phonons with energy resolution, down to the meV level. Although the large amount of heat from insertion devices can be reduced by a high heat-load monochromator, the unbalanced heat load on the inner pair of crystals in a nested HRM can affect its overall performance. Here, a theoretical analysis of the unbalanced heat load using dynamical diffraction theory and finite element analysis is presented. By utilizing the ray-tracing method, the performance of different HRM nesting configurations is simulated. It is suggested that the heat balance ratio, energy resolution, and overall spectral transmission efficiency are the figures of merit for evaluating the performance of nested HRMs. Although the present study is mainly focused on nested HRMs working at 57Fe nuclear resonant energy at 14.4 keV, it is feasible to extend this to other nested HRMs working at different energies.

  3. Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data

    NASA Astrophysics Data System (ADS)

    Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.

    2015-04-01

    In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.

  4. Utility of high-resolution accurate MS to eliminate interferences in the bioanalysis of ribavirin and its phosphate metabolites.

    PubMed

    Wei, Cong; Grace, James E; Zvyaga, Tatyana A; Drexler, Dieter M

    2012-08-01

    The polar nucleoside drug ribavirin (RBV) combined with IFN-α is a front-line treatment for chronic hepatitis C virus infection. RBV acts as a prodrug and exerts its broad antiviral activity primarily through its active phosphorylated metabolite ribavirin 5´-triphosphate (RTP), and also possibly through ribavirin 5´-monophosphate (RMP). To study RBV transport, diffusion, metabolic clearance and its impact on drug-metabolizing enzymes, a LC-MS method is needed to simultaneously quantify RBV and its phosphorylated metabolites (RTP, ribavirin 5´-diphosphate and RMP). In a recombinant human UGT1A1 assay, the assay buffer components uridine and its phosphorylated derivatives are isobaric with RBV and its phosphorylated metabolites, leading to significant interference when analyzed by LC-MS with the nominal mass resolution mode. Presented here is a LC-MS method employing LC coupled with full-scan high-resolution accurate MS analysis for the simultaneous quantitative determination of RBV, RMP, ribavirin 5´-diphosphate and RTP by differentiating RBV and its phosphorylated metabolites from uridine and its phosphorylated derivatives by accurate mass, thus avoiding interference. The developed LC-high-resolution accurate MS method allows for quantitation of RBV and its phosphorylated metabolites, eliminating the interferences from uridine and its phosphorylated derivatives in recombinant human UGT1A1 assays.

  5. Re-engineering the stereoscope for the 21st Century

    NASA Astrophysics Data System (ADS)

    Kollin, Joel S.; Hollander, Ari J.

    2007-02-01

    While discussing the current state of stereo head-mounted and 3D projection displays, the authors came to the realization that flat-panel LCD displays offer higher resolution than projection for stereo display at a low (and continually dropping) cost. More specifically, where head-mounted displays of moderate resolution and field-of-view cost tens of thousands of dollars, we can achieve an angular resolution approaching that of the human eye with a field-of-view (FOV) greater than 90° for less than $1500. For many immersive applications head tracking is unnecessary and sometimes even undesirable, and a low cost/high quality wide FOV display may significantly increase the application space for 3D display. After outlining the problem and potential of this solution we describe the initial construction of a simple Wheatstone stereoscope using 24" LCD displays and then show engineering improvements that increase the FOV and usability of the system. The applicability of a high-immersion, high-resolution display for art, entertainment, and simulation is presented along with a content production system that utilizes the capabilities of the system. We then discuss the potential use of the system for VR pain control therapy, treatment of post-traumatic stress disorders and other serious games applications.

  6. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps.

    PubMed

    Greenwood, J B; Kelly, O; Calvert, C R; Duffy, M J; King, R B; Belshaw, L; Graham, L; Alexander, J D; Williams, I D; Bryan, W A; Turcu, I C E; Cacho, C M; Springate, E

    2011-04-01

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components. © 2011 American Institute of Physics

  7. High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease.

    PubMed

    Meyer, Carsten; Strach, Katharina; Thomas, Daniel; Litt, Harold; Nähle, Claas P; Tiemann, Klaus; Schwenger, Ulrich; Schild, Hans H; Sommer, Torsten

    2008-02-01

    To implement a high-resolution first-pass myocardial perfusion imaging protocol (HRPI) at 3 T, and to evaluate the feasibility, image quality and accuracy of this approach prospectively in patients with suspected CAD. We hypothesized that utilizing the gain in SNR at 3 T to increase spatial resolution would reduce partial volume effects and subendocardial dark rim artifacts in comparison to 1.5 T. HRPI studies were performed on 60 patients using a segmented k-space gradient echo sequence (in plane resolution 1.97 x 1.94 mm(2)). Semiquantitative assessment of dark rim artifacts was performed for the stress studies on a slice-by-slice basis. Qualitative visual analysis was compared to quantitative coronary angiography (QCA) results; hemodynamically significant CAD was defined as stenosis >or=70% at QCA. Dark rim artifacts appeared in 108 of 180 slices (average extent 1.3 +/- 1.2 mm representing 11.8 +/- 10.8% of the transmural myocardial thickness). Sensitivity, specifity, and test accuracy for the detection of significant CAD were 89%,79%, and 85%. HRPI studies at 3 T are feasible in a clinical setting, providing good image quality and high accuracy for detection of significant CAD. The presence of dark rim artifacts does not appear to represent a diagnostic problem when using a HRPI approach.

  8. Three-dimensional patterning in polymer optical waveguides using focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher

    2016-07-01

    Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.

  9. Fundamental Characteristics of Bioprint on Calcium Alginate Gel

    NASA Astrophysics Data System (ADS)

    Umezu, Shinjiro; Hatta, Tatsuru; Ohmori, Hitoshi

    2013-05-01

    The goal of this study is to fabricate precision three-dimensional (3D) biodevices those are micro fluidics and artificial organs utilizing digital fabrication. Digital fabrication is fabrication method utilizing inkjet technologies. Electrostatic inkjet is one of the inkjet technologies. The electrostatic inkjet method has following two merits; those are high resolution to print and ability to eject highly viscous liquid. These characteristics are suitable to print biomaterials precisely. We are now applying for bioprint. In this paper, the electrostatic inkjet method is applied for fabrication of 3D biodevices that has cave like blood vessel. When aqueous solution of sodium alginate is printed to aqueous solution of calcium chloride, calcium alginate is produced. 3D biodevices are fabricated in case that calcium alginate is piled.

  10. A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ye; Thornber, Ben

    2016-04-12

    Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology andmore » wind tunnel experiments.« less

  11. Utility of a scanning densitometer in analyzing remotely sensed imagery

    NASA Technical Reports Server (NTRS)

    Dooley, J. T.

    1976-01-01

    The utility of a scanning densitometer for analyzing imagery in the NASA Lewis Research Center's regional remote sensing program was evaluated. Uses studied include: (1) quick-look screening of imagery by means of density slicing, magnification, color coding, and edge enhancement; (2) preliminary category classification of both low- and high-resolution data bases; and (3) quantitative measurement of the extent of features within selected areas. The densitometer was capable of providing fast, convenient, and relatively inexpensive preliminary analysis of aerial and satellite photography and scanner imagery involving land cover, water quality, strip mining, and energy conservation.

  12. Recent results and new hardware developments for protein crystal growth in microactivity

    NASA Technical Reports Server (NTRS)

    Delucas, L. J.; Long, M. M.; Moore, K. M.; Smith, C.; Carson, M.; Narayana, S. V. L.; Carter, D.; Clark, A. D., Jr.; Nanni, R. G.; Ding, J.

    1993-01-01

    Protein crystal growth experiments have been performed on 16 space shuttle missions since April, 1985. The initial experiments utilized vapor diffusion crystallization techniques similar to those used in laboratories for earth-based experiments. More recent experiments have utilized temperature induced crystallization as an alternative method for growing high quality protein crystals in microgravity. Results from both vapor diffusion and temperature induced crystallization experiments indicate that proteins grown in microgravity may be larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  13. Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model

    NASA Astrophysics Data System (ADS)

    Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.

    2009-12-01

    Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on how low-impact development strategies are assessed. Rerouting flows to delay the time of entry into the combined sewage is the primary goal of stormwater source controls which may be better differentiated in a high resolution as opposed to low resolution model. The preliminary hypothesis is that the low resolution model simplifies watershed by defining attributes uniformly across the watershed. In the high resolution model, the physical flow can be more accurate depicted by connected the various subcatchments. For example, the runoff from buildings can directly be routed to the backyard. The main drawback to the high resolution model is the risk of adding uncertainty due to the number of parameters.

  14. Hyperspectral imaging from space: Warfighter-1

    NASA Astrophysics Data System (ADS)

    Cooley, Thomas; Seigel, Gary; Thorsos, Ivan

    1999-01-01

    The Air Force Research Laboratory Integrated Space Technology Demonstrations (ISTD) Program Office has partnered with Orbital Sciences Corporation (OSC) to complement the commercial satellite's high-resolution panchromatic imaging and Multispectral imaging (MSI) systems with a moderate resolution Hyperspectral imaging (HSI) spectrometer camera. The program is an advanced technology demonstration utilizing a commercially based space capability to provide unique functionality in remote sensing technology. This leveraging of commercial industry to enhance the value of the Warfighter-1 program utilizes the precepts of acquisition reform and is a significant departure from the old-school method of contracting for government managed large demonstration satellites with long development times and technology obsolescence concerns. The HSI system will be able to detect targets from the spectral signature measured by the hyperspectral camera. The Warfighter-1 program will also demonstrate the utility of the spectral information to theater military commanders and intelligence analysts by transmitting HSI data directly to a mobile ground station that receives and processes the data. After a brief history of the project origins, this paper will present the details of the Warfighter-1 system and expected results from exploitation of HSI data as well as the benefits realized by this collaboration between the Air Force and commercial industry.

  15. Development of instrumentation for measurements of two components of velocity with a single sensing element

    NASA Astrophysics Data System (ADS)

    Byers, C. P.; Fu, M. K.; Fan, Y.; Hultmark, M.

    2018-02-01

    A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.

  16. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, B.W.; Goulding, F.S.

    1988-03-11

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons compton back-scattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to minimize systematic errors due to the presence of the chestwall and multiple scattering. 11 figs., 1 tab.

  17. Spatial resolution study and power calibration of the high-k scattering system on NSTX.

    PubMed

    Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C

    2008-10-01

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  18. Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution1

    NASA Astrophysics Data System (ADS)

    Beyer, Claus; Feldmann, Ingo; Gilmour, Dave; Hoffmann, Volker; Jakubowski, Norbert

    2002-10-01

    A Grimm-type glow discharge ion source has been developed and was coupled to a commercial inductively coupled plasma mass spectrometer (ICP-MS) with high mass resolution (Axiom, ThermoElemental, Winsford, UK) by exchanging the front plate of the ICP-MS interface system only. In addition to high discharge powers of up to 70 W, which are typical for a Grimm-type design, this source could be operated with relative high gas flow rates of up to 240 ml min -1. In combination with a high discharge voltage the signal intensities are reaching a constant level within the first 20 s after the discharge has started. An analytical characterization of this source is given utilizing a calibration using the steel standard reference material NIST 1261A-1265A. The sensitivity for the investigated elements measured with a resolution of 4000 is in the range of 500-6000 cps μg -1 g -1, and a relative standard deviation (R.S.D.) of the measured isotope relative to Fe of less than 8% for the major and minor components of the sample has been achieved. Limits of detection at ng g -1 levels could be obtained.

  19. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review

    PubMed Central

    Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C.

    2016-01-01

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics. PMID:27642265

  20. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  1. High resolution, MRI-based, segmented, computerized head phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less

  2. Continuous-tone applications in digital hard-copy output devices

    NASA Astrophysics Data System (ADS)

    Saunders, Jeffrey C.

    1990-11-01

    Dye diffusion technology has made a recent entry into the hardcopy printer arena making it now possible to achieve near-photographic quality images from digital raster image data. Whereas the majority of low cost printers utilizing ink-jet, thermal wax, or dotmatrix technologies advertise high resolution printheads, the restrictions which dithering algorithms apply to these inherently binary printing systems force them to sacrifice spatial resolution capability for tone scale reproduction. Dye diffusion technology allows a fully continuous range of density at each pixel location thus preserving the full spatial resolution capability of the printhead; spatial resolution is not sacrificed for tone scale. This results in images whose quality is far superior to the ink-jet or wax-transfer products; image quality so high in fact, to the unaided eye, dye diffusion images are indistinguishable from their silver-halide counterparts. Eastman Kodak Co. offers a highly refined application of dye diffusion technology in the Kodak XL 7700 Digital Continuous Tone Printer and Kodak EKTATHERM media products. The XL . 7700 Printer represents a serious alternative to expensive laser-based film recorders for applications which require high quality image output from digital data files. This paper presents an explanation of dye diffusion printing, what distinguishes it from other technologies, sensitometric control and image quality parameters, and applications within the industry, particularly that of Airborne Reconnaissance and Remote Sensing.

  3. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.

    PubMed

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-05-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This 'on-line' system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R 2 = 0.69) than the traditional method (R 2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method.

  4. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  5. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  6. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  7. Propagation phasor approach for holographic image reconstruction

    PubMed Central

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-01-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671

  8. Fabrication of 3D SiO x structures using patterned PMMA sacrificial layer

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Xiang, Quan; Zheng, Mengjie; Bi, Kaixi; Chen, Yiqin; Chen, Keqiu; Duan, Huigao

    2018-02-01

    Three-dimensional (3D) nanofabrication based on electron-beam lithography (EBL) has drawn wide attention for various applications with its high patterning resolution and design flexibility. In this work, we present a bilayer EBL process to obtain 3D freestanding SiO x structures via the release of the bottom sacrificial layer. This new kind of bilayer process enables us to define various 3D freestanding SiO x structures with high resolution and low edge roughness. As a proof of concept for applications, metal-coated freestanding SiO x microplates with an underlying air gap were fabricated to form asymmetric Fabry-Perot resonators, which can be utilized for colorimetric refractive index sensing and thus also have application potential for biochemical detection, anti-counterfeiting and smart active nano-optical devices.

  9. Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue

    NASA Astrophysics Data System (ADS)

    Li, Xu; Xu, Yuan; He, Bin

    2006-03-01

    An experimental feasibility study was conducted on magnetoacoustic tomography with magnetic induction (MAT-MI). It is demonstrated that the two-dimensional MAT-MI system can detect and image the boundaries between regions of different electrical conductivities with high spatial resolution. Utilizing a magnetic stimulation coil, MAT-MI evokes magnetically induced eddy current in an object which is placed in a static magnetic field. Because of the existence of Lorenz forces, the eddy current in turn causes acoustic vibrations, which are measured around the object in order to reconstruct the electrical impedance distribution of the object. The present experimental results from the saline and gel phantoms are promising and suggest the merits of MAT-MI in imaging electrical impedance of biological tissue with high spatial resolution.

  10. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  11. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  12. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  13. Improved Ultrasonic Imaging of the Breast

    DTIC Science & Technology

    2005-08-01

    differentiation of benign and malignant lesions. This method yields high resolution images with minimal statistical variability. We have formed images in... and malignant masses often exhibit only subtle image differences. We have invented a new technique that uses modified ultrasound equipment to form...between malignant and benign lesions. The utility of ultrasound is limited because microcalcifications (MCs) are not typically visible and because benign

  14. Improved Ultrasonic Imaging of the Breast

    DTIC Science & Technology

    2002-08-01

    differentiation of benign and malignant lesions. This method yields high resolution images with minimal statistical variability. In this first year of... and malignant masses often exhibit only subtle image differences. We have invented a new technique that uses modified ultrasound equipment to form...between malignant and benign lesions. The utility of ultrasound is limited because microcalcifications (MCs) are not typically visible and because benign

  15. Improved Ultrasonic Imaging of the Breast

    DTIC Science & Technology

    2004-08-01

    differentiation of benign and malignant lesions. This method yields high resolution images with minimal statistical variability. We have formed images in... and malignant masses often exhibit only subtle image differences. We have invented a new technique that uses modified ultrasound equipment to form...between malignant and benign lesions. The utility of ultrasound is limited because microcalcifications (MCs) are not typically visible and because benign

  16. Advanced Neuroscience Interface Research

    DTIC Science & Technology

    2002-05-01

    in vitro. Herein, we also report on the utilization of in vitro high -resolution MRS of a specimen of the same tumor with the ... The prior use of VEs to treat phobias has centered on the repeated presentation of the fear- inducing stimulus to the patient in such a manner that the ...inherent in pneumatic headphones (as sound propagates from the driver unit into the

  17. High Resolution Imaging Testbed Utilizing Sodium Laser Guide Star Adaptive Optics: The Real Time Wavefront Reconstructor Computer

    DTIC Science & Technology

    2008-07-31

    Unlike the Lyrtech, each DSP on a Bittware board offers 3 MB of on-chip memory and 3 GFLOPs of 32-bit peak processing power. Based on the performance...Each NVIDIA 8800 Ultra features 576 GFLOPS on 128 612-MHz single-precision floating-point SIMD processors, arranged in 16 clusters of eight. Each

  18. Utility of remotely sensed imagery for assessing the impact of salvage logging after forest fires

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak; Brian Austin; Robert J. Liebermann

    2012-01-01

    Remotely sensed imagery provides a useful tool for land managers to assess the extent and severity of post-wildfire salvage logging disturbance. This investigation uses high resolution QuickBird and National Agricultural Imagery Program (NAIP) imagery to map soil exposure after ground-based salvage operations. Three wildfires with varying post-fire salvage activities...

  19. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  20. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGES

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  1. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less

  2. Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.

    2017-07-01

    Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.

  3. Enhancing sensitivity of high resolution optical coherence tomography using an optional spectrally encoded extended source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Wang, Xianghong; Liu, Linbo

    2016-03-01

    High-resolution optical coherence tomography (OCT) is of critical importance to disease diagnosis because it is capable of providing detailed microstructural information of the biological tissues. However, a compromise usually has to be made between its spatial resolutions and sensitivity due to the suboptimal spectral response of the system components, such as the linear camera, the dispersion grating, and the focusing lenses, etc. In this study, we demonstrate an OCT system that achieves both high spatial resolutions and enhanced sensitivity through utilizing a spectrally encoded source. The system achieves a lateral resolution of 3.1 μm and an axial resolution of 2.3 μm in air; when with a simple dispersive prism placed in the infinity space of the sample arm optics, the illumination beam on the sample is transformed into a line source with a visual angle of 10.3 mrad. Such an extended source technique allows a ~4 times larger maximum permissible exposure (MPE) than its point source counterpart, which thus improves the system sensitivity by ~6dB. In addition, the dispersive prism can be conveniently switched to a reflector. Such flexibility helps increase the penetration depth of the system without increasing the complexity of the current point source devices. We conducted experiments to characterize the system's imaging capability using the human fingertip in vivo and the swine eye optic never disc ex vivo. The higher penetration depth of such a system over the conventional point source OCT system is also demonstrated in these two tissues.

  4. The NEAR laser ranging investigation

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Smith, D. E.; Cheng, A. F.; Cole, T. D.

    1997-10-01

    The objective of the NEAR-Earth Asteriod Rendezvous (NEAR) laser ranging investigation is to obtain high integrity profiles and grids of topography for use in geophysical, geodetic and geological studies of asteroid 433 Eros. The NEAR laser rangefinder (NLR) will determine the slant range of the NEAR spacecraft to the asteroid surface by measuring precisely the round trip time of flight of individual laser pulses. Ranges will be converted to planetary radii measured with respect to the asteroid center of mass by subtracting the spacecraft orbit determined from X band Doppler tracking. The principal components of the NLR include a 1064 nm Cr:Nd:YAG laser, a gold-coated aluminum Dall-Kirkham Cassegrain telescope, an enhanced silicon avalanche photodiode hybrid detector, a 480-MHz crystal oscillator, and a digital processing unit. The instrument has a continuous in-flight calibration capability using a fiber-optic delay assembly. The single shot vertical resolution of the NLR is <6m, and the absolute accuracy of the global grid will be ~10m with respect to the asteroid center of mass. For the current mission orbital scenario, the laser spot size on the surface of Eros will vary from ~4-11m, and the along-track resolution for the nominal pulse repetition rate of 1 Hz will be approximately comparable to the spot size, resulting in contiguous along-track profiles. The across-track resolution will depend on the orbital mapping scenario, but will likely be <500m, which will define the spatial resolution of the global topographic model. Planned science investigations include global-scale analyses related to collisional and impact history and internal density distribution that utilize topographic grids as well as spherical harmonic topographic models that will be analyzed jointly with gravity at commensurate resolution. Attempts will be made to detect possible subtle time variations in internal structure that may be present if Eros is not a single coherent body, by analysis of low degree and order spherical harmonic coefficients. Local- to regional-scale analyses will utilize high-resolution three-dimensional topographic maps of specific surface structures to address surface geologic processes. Results from the NLR investigation will contribute significantly to understanding the origin, structure, and evolution of Eros and other asteroidal bodies.

  5. Multistep modeling of protein structure: application to bungarotoxin

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Rein, R.

    1986-01-01

    Modelling of bungarotoxin in atomic details is presented in this article. The model-building procedure utilizes the low-resolution crystal coordinates of the c-alpha atoms of bungarotoxin, sequence homology within the neurotoxin family, as well as high-resolution x-ray diffraction data of cobratoxin and erabutoxin. Our model-building procedure involves: (a) principles of comparative modelling, (b) embedding procedures of distance geometry, and (c) use of molecular mechanics for optimizing packing. The model is not only consistent with the c-alpha coordinates of crystal structure, but also agrees with solution conformational features of the triple-stranded beta sheet as observed by NOE measurements.

  6. Relativistic astrophysics. [design analysis and performance tests of Cerenkov counters for detection of iron isotopes

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1976-01-01

    The design, experimental testing, and calibration (error analysis) of a high resolution Cerenkov-scintillation detector is presented. The detector is capable of detecting iron isotopes and heavy ions of cosmic rays, and of performing direct measurements of individual neighboring isotopes at charge resolution 26. It utilizes Lexan (trademark) sheets, and has been used in flight packages of balloons and on the Skylab. The detector will be able to provide more information on violet astrophysical processes, such as thermonuclear reactions on neutron stars. Ground support and display equipment which are to be used in conjunction with the detector are also discussed.

  7. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.

    PubMed

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2018-06-15

    The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.

  8. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  9. Recent advances in flexible low power cholesteric LCDs

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  10. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter

    PubMed Central

    McVey, Mark J.; Spring, Christopher M.; Kuebler, Wolfgang M.

    2018-01-01

    ABSTRACT Improvements in identification and assessment of extracellular vesicles (EVs) have fuelled a recent surge in EV publications investigating their roles as biomarkers and mediators of disease. Meaningful scientific comparisons are, however, hampered by difficulties in accurate, reproducible enumeration and characterization of EVs in biological fluids. High-sensitivity flow cytometry (FCM) is presently the most commonly applied strategy to assess EVs, yet its utility is limited by variant ability to resolve smaller EVs. Here, we propose the use of 405 nm (violet) wavelength lasers in place of 488 nm (blue) for side scatter (SSC) detection to obtain greater resolution of EVs using high-sensitivity FCM. To test this hypothesis, we modelled EV resolution by violet versus blue SSC in silico and compared resolution of reference beads and biological EVs from plasma and bronchoalveolar lavage (BAL) fluid using either violet or blue wavelength SSC EV detection. Mie scatter modelling predicted that violet as compared to blue SSC increases resolution of small (100–500 nm) spherical particles with refractive indices (1.34–1.46) similar to EVs by approximately twofold in terms of light intensity and by nearly 20% in SSC signal quantum efficiency. Resolution of reference beads was improved by violet instead of blue SSC with two- and fivefold decreases in coefficients of variation for particles of 300–500 nm and 180–240 nm size, respectively. Resolution was similarly improved for detection of EVs from plasma or BAL fluid. Violet SSC detection for high-sensitivity FCM allows for significantly greater resolution of EVs in plasma and BAL compared to conventional blue SSC and particularly improves resolution of smaller EVs. Notably, the proposed strategy is readily implementable and inexpensive for machines already equipped with 405 nm SSC or the ability to accommodate 405/10 nm bandpass filters in their violet detector arrays. PMID:29696076

  11. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  12. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3 μm Region: Role of Periphery

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-11-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.

  13. Diagnostic and Prognostic Utility of Fluorescence In situ Hybridization (FISH) Analysis in Acute Myeloid Leukemia.

    PubMed

    Gonzales, Patrick R; Mikhail, Fady M

    2017-12-01

    Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33-50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML. Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH. FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.

  14. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

    PubMed

    Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun

    2002-06-01

    Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

  15. California coastal processes study: Skylab. [San Pablo and San Francisco Bays

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.

  16. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution

    PubMed Central

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662

  17. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution.

    PubMed

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D; Rainey, Paul B; de Visser, J Arjan G M; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes-via growth-over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.

  18. An integral design strategy combining optical system and image processing to obtain high resolution images

    NASA Astrophysics Data System (ADS)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  19. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  20. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  1. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  2. Magnetic resonance spectroscopic imaging at superresolution: Overview and perspectives.

    PubMed

    Kasten, Jeffrey; Klauser, Antoine; Lazeyras, François; Van De Ville, Dimitri

    2016-02-01

    The notion of non-invasive, high-resolution spatial mapping of metabolite concentrations has long enticed the medical community. While magnetic resonance spectroscopic imaging (MRSI) is capable of achieving the requisite spatio-spectral localization, it has traditionally been encumbered by significant resolution constraints that have thus far undermined its clinical utility. To surpass these obstacles, research efforts have primarily focused on hardware enhancements or the development of accelerated acquisition strategies to improve the experimental sensitivity per unit time. Concomitantly, a number of innovative reconstruction techniques have emerged as alternatives to the standard inverse discrete Fourier transform (DFT). While perhaps lesser known, these latter methods strive to effect commensurate resolution gains by exploiting known properties of the underlying MRSI signal in concert with advanced image and signal processing techniques. This review article aims to aggregate and provide an overview of the past few decades of so-called "superresolution" MRSI reconstruction methodologies, and to introduce readers to current state-of-the-art approaches. A number of perspectives are then offered as to the future of high-resolution MRSI, with a particular focus on translation into clinical settings. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 20 CFR 667.500 - What procedures apply to the resolution of findings arising from audits, investigations...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., monitoring and oversight reviews? (a) Resolution of subrecipient-level findings. (1) The Governor is... recipient level OMB Circular A-133 audits. (2) The Secretary uses the DOL audit resolution process... (including OMB Circular A-133 audits) of subrecipients. (2) A State must utilize the audit resolution, debt...

  4. Noncontact photoacoustic imaging by using a modified optical-fiber Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Jiao; Gao, Yingzhe; Ma, Zhenhe; Wang, Bo; Wang, Yi

    2016-03-01

    We demonstrate a noncontact photoacoustic imaging (PAI) system in which an optical interferometer is used for ultrasound detection. The system is based on a modified optical-fiber Michelson interferometer that measures the surface displacement caused by photoacoustic pressure. A synchronization method is utilized to keep its high sensitivity to reduce the influence of ambient vibrations. The system is experimentally verified by imaging of a phantom. The experimental results indicate that the proposed system can be used for noncontact PAI with high resolution and high bandwidth.

  5. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    PubMed

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  6. A new GIS-based tsunami risk evaluation: MeTHuVA (METU tsunami human vulnerability assessment) at Yenikapı, Istanbul

    NASA Astrophysics Data System (ADS)

    Cankaya, Zeynep Ceren; Suzen, Mehmet Lutfi; Yalciner, Ahmet Cevdet; Kolat, Cagil; Zaytsev, Andrey; Aytore, Betul

    2016-07-01

    Istanbul is a mega city with various coastal utilities located on the northern coast of the Sea of Marmara. At Yenikapı, there are critical vulnerable coastal utilities, structures, and active metropolitan life. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, waterfront commercial and/or recreational structures with residential/commercial areas and public utility areas are some examples of coastal utilization that are vulnerable to marine disasters. Therefore, the tsunami risk in the Yenikapı region is an important issue for Istanbul. In this study, a new methodology for tsunami vulnerability assessment for areas susceptible to tsunami is proposed, in which the Yenikapı region is chosen as a case study. Available datasets from the Istanbul Metropolitan Municipality and Turkish Navy are used as inputs for high-resolution GIS-based multi-criteria decision analysis (MCDA) evaluation of tsunami risk in Yenikapı. Bathymetry and topography database is used for high-resolution tsunami numerical modeling where the tsunami hazard, in terms of coastal inundation, is deterministically computed using the NAMI DANCE numerical code, considering earthquake worst case scenarios. In order to define the tsunami human vulnerability of the region, two different aspects, vulnerability at location and evacuation resilience maps were created using the analytical hierarchical process (AHP) method of MCDA. A vulnerability at location map is composed of metropolitan use, geology, elevation, and distance from shoreline layers, whereas an evacuation resilience map is formed by slope, distance within flat areas, distance to buildings, and distance to road networks layers. The tsunami risk map is then computed by the proposed new relationship which uses flow depth maps, vulnerability at location maps, and evacuation resilience maps.

  7. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE PAGES

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; ...

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10 4 achieved routinely today to well above 10 5. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations inmore » matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less

  8. Modeling soil temperature change in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.

    2017-12-01

    Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate and future climate change scenarios.

  9. High Data Rate Satellite Communications for Environmental Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  10. Multiview boosting digital pathology analysis of prostate cancer.

    PubMed

    Kwak, Jin Tae; Hewitt, Stephen M

    2017-04-01

    Various digital pathology tools have been developed to aid in analyzing tissues and improving cancer pathology. The multi-resolution nature of cancer pathology, however, has not been fully analyzed and utilized. Here, we develop an automated, cooperative, and multi-resolution method for improving prostate cancer diagnosis. Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The TMAs include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples (TMA2), 70 benign and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), and 72 benign and 86 cancer samples (TMA5). The tissue specimen images are segmented using intensity- and texture-based features. Using the segmentation results, a number of morphological features from lumens and epithelial nuclei are computed to characterize tissues at different resolutions. Applying a multiview boosting algorithm, tissue characteristics, obtained from differing resolutions, are cooperatively combined to achieve accurate cancer detection. In segmenting prostate tissues, the multiview boosting method achieved≥ 0.97 AUC using TMA1. For detecting cancers, the multiview boosting method achieved an AUC of 0.98 (95% CI: 0.97-0.99) as trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed method was superior to single-view approaches, utilizing features from a single resolution or merging features from all the resolutions. Moreover, the performance of the proposed method was insensitive to the choice of the training dataset. Trained on TMA3, TMA4, and TMA5, the proposed method obtained an AUC of 0.97 (95% CI: 0.96-0.98), 0.98 (95% CI: 0.96-0.99), and 0.97 (95% CI: 0.96-0.98), respectively. The multiview boosting method is capable of integrating information from multiple resolutions in an effective and efficient fashion and identifying cancers with high accuracy. The multiview boosting method holds a great potential for improving digital pathology tools and research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Parameterization of MARVELS Spectra Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Gilda, Sankalp; Ge, Jian; MARVELS

    2018-01-01

    Like many large-scale surveys, the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) was designed to operate at a moderate spectral resolution ($\\sim$12,000) for efficiency in observing large samples, which makes the stellar parameterization difficult due to the high degree of blending of spectral features. Two extant solutions to deal with this issue are to utilize spectral synthesis, and to utilize spectral indices [Ghezzi et al. 2014]. While the former is a powerful and tested technique, it can often yield strongly coupled atmospheric parameters, and often requires high spectral resolution (Valenti & Piskunov 1996). The latter, though a promising technique utilizing measurements of equivalent widths of spectral indices, has only been employed with respect to FKG dwarfs and sub-giants and not red-giant branch stars, which constitute ~30% of MARVELS targets. In this work, we tackle this problem using a convolution neural network (CNN). In particular, we train a one-dimensional CNN on appropriately processed PHOENIX synthetic spectra using supervised training to automatically distinguish the features relevant for the determination of each of the three atmospheric parameters – T_eff, log(g), [Fe/H] – and use the knowledge thus gained by the network to parameterize 849 MARVELS giants. When tested on the synthetic spectra themselves, our estimates of the parameters were consistent to within 11 K, .02 dex, and .02 dex (in terms of mean absolute errors), respectively. For MARVELS dwarfs, the accuracies are 80K, .16 dex and .10 dex, respectively.

  12. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  13. Synthesis of Enantiomerically Pure Lignin Dimer Models for Catalytic Selectivity Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njiojob, Costyl N.; Rhinehart, Jennifer L.; Bozell, Joseph J.

    2015-02-06

    A series of highly enantioselective transformations, such as the Sharpless asymmetric epoxidation and Jacobsen hydrolytic kinetic resolution, were utilized to achieve the complete stereoselective synthesis of β-O-4 lignin dimer models containing the S, G, and H subunits with excellent ee (>99%) and moderate to high yields. This unprecedented synthetic method can be exploited for enzymatic, microbial, and chemical investigations into lignin’s degradation and depolymerization as related to its stereochemical constitution. Preliminary degradation studies using enantiopure Co(salen) catalysts are also reported.

  14. Use of Electronic Tag Data and Associated Analytical Tools to Identify and Predict Habitat Utilization of Marine Predators

    DTIC Science & Technology

    2013-09-30

    fin, sperm and humpback whales). RESULTS The tracking data reveal that the California Current Large Marine Ecosystem (CCLME; Supplementary...within 1u31u grid cells. b, Density of large marine predators within the CCLME at a 0.25 º 30.25º resolution. The CCLME is a highly retentive area...sooty shearwaters). The retention with and attraction to the CCLME is consistent with the high productivity of this region that supports large

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less

  16. The effect of positive affect on conflict resolution: Modulated by approach-motivational intensity.

    PubMed

    Liu, Ya; Wang, Zhenhong; Quan, Sixiang; Li, Mingjun

    2017-01-01

    The motivational dimensional model of affect proposes that the influence of positive affect on cognitive processing is modulated by approach-motivational intensity. The present research extended this model by examining the influence of positive affect varying in approach-motivational intensity on conflict resolution-the ability to resolve interference from task-irrelevant distractors in order to focus on the target. The global-local task (Experiment 1) and letter-Flanker task (Experiment 2) were used to measure conflict resolution. Additionally, the 4:2 mapping design that assigns two kinds of task-relevant stimuli to one response key and two more to another response key was used in these two tasks to dissociate stimulus and response conflict. Results showed that positive affect varying in approach motivation had opposite influences on conflict resolution. The opposite influences are primarily reflected in low approach-motivated positive affect impairing, while high approach-motivated positive affect facilitating the resolution of response conflict. Conversely, the stimulus conflict was slightly influenced. These findings highlight the utility of distinguishing stimulus and response conflict in future research.

  17. Improvement of resolution in full-view linear-array photoacoustic computed tomography using a novel adaptive weighting method

    NASA Astrophysics Data System (ADS)

    Omidi, Parsa; Diop, Mamadou; Carson, Jeffrey; Nasiriavanaki, Mohammadreza

    2017-03-01

    Linear-array-based photoacoustic computed tomography is a popular methodology for deep and high resolution imaging. However, issues such as phase aberration, side-lobe effects, and propagation limitations deteriorate the resolution. The effect of phase aberration due to acoustic attenuation and constant assumption of the speed of sound (SoS) can be reduced by applying an adaptive weighting method such as the coherence factor (CF). Utilizing an adaptive beamforming algorithm such as the minimum variance (MV) can improve the resolution at the focal point by eliminating the side-lobes. Moreover, invisibility of directional objects emitting parallel to the detection plane, such as vessels and other absorbing structures stretched in the direction perpendicular to the detection plane can degrade resolution. In this study, we propose a full-view array level weighting algorithm in which different weighs are assigned to different positions of the linear array based on an orientation algorithm which uses the histogram of oriented gradient (HOG). Simulation results obtained from a synthetic phantom show the superior performance of the proposed method over the existing reconstruction methods.

  18. High-frame-rate full-vocal-tract 3D dynamic speech imaging.

    PubMed

    Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P

    2017-04-01

    To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  20. Single Crystal Faceplate Evaluation

    DTIC Science & Technology

    1993-10-25

    conventional powder phosphor. The utility of garnets is amplified by the high state of the art of liquid phase epitaxy ( LPE ). Liquid phase epitaxy of...7]. Much the research at Allied-Signal, Inc. in garnet layer growth has been involved with the kinetics of crystallization of garnet from LPE melts...acceptable resolution and light output characteristics. Single crystal faceplates being evaluated are composed of yttrium aluminum garnet (YAG) with an

  1. Predicting plot basal area and tree density in mixed-conifer forest from lidar and Advanced Land Imager (ALI) data

    Treesearch

    Andrew T. Hudak; Jeffrey S. Evans; Michael J. Falkowski; Nicholas L. Crookston; Paul E. Gessler; Penelope Morgan; Alistair M. S. Smith

    2005-01-01

    Multispectral satellite imagery are appealing for their relatively low cost, and have demonstrated utility at the landscape level, but are typically limited at the stand level by coarse resolution and insensitivity to variation in vertical canopy structure. In contrast, lidar data are less affected by these difficulties, and provide high structural detail, but are less...

  2. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  3. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  4. Optical coherence tomography for embryonic imaging: a review

    PubMed Central

    Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    Abstract. Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development. PMID:27228503

  5. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deriving Daily Time Series Evapotranspiration, Evaporation and Transpiration Maps With Landsat Data

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Marek, T.; Xiao, X.; Basara, J. B.

    2014-12-01

    Mapping high resolution evapotranspiration (ET) over large region at daily time step is complex and computationally intensive. Utility of high resolution daily ET maps are large ranging from crop water management to watershed management. The aim of this work is to generate daily time series (10 years) ET and its components vegetation transpiration (T) and soil water evaporation (E) maps using Landsat 5 satellite data for Southern Great Plains forage-rangeland-winter wheat production system in Oklahoma (OK). Framework for generating these products included the two source energy balance (TSEB) algorithm and other important features were: (a) atmospheric correction algorithm; (b) spatially interpolated weather inputs; (c) functions for varying Priestley-Taylor coefficient; and (d) ET, E and T extrapolating algorithm utilizing reference ET. An extensive network of 140 weather stations managed by Oklahoma Mesonet was utilized to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. Validation of the ET maps were done against eddy covariance data from two grassland sites at El Reno, OK suggested good performance (Table 1). Figure 1 illustrates a daily ET map for a very small subset of 18thJuly 2006 ET map, where difference in ET among different land uses such as the irrigated cropland, vegetation along drainage, and grassland is very distinct. Results indicated that the proposed ET mapping framework is suitable for deriving high resolution time series daily ET maps at regional scale with Landsat Thematic Mapper data. . Table 1: Daily actual ET performance statistics for two grassland locations at El Reno OK for year 2005 . Management Type Mean (obs) (mm d-1) Mean (est) (mm d-1) MBE (mm d-1) % MBE (%) RMSE (mm d-1) RMSE (%) MAE (mm d-1) MAPD (%) NSE R2 Control 2.2 1.8 -0.43 -19.4 0.87 38.9 0.65 29.5 0.71 0.79 Burnt 2.0 1.8 -0.15 -7.7 0.80 39.8 0.62 30.7 0.73 0.77

  7. A study of the effects of strong magnetic fields on the image resolution of PET scanners

    NASA Astrophysics Data System (ADS)

    Burdette, Don J.

    Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. In such systems using detectors with sub-millimeter intrinsic resolutions, the range of the positron is the largest contribution to the image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as 68Ga and 94mTc, the variation of the annihilation point dominates the spatial resolution. In this study two techniques are investigated to improve the image resolution of PET scanners limited by the range of the positron. One, the positron range can be reduced by embedding the PET field of view in a strong magnetic field. We have developed a silicon pad detector based PET instrument that can operate in strong magnetic fields with an image resolution of 0.7 mm FWHM to study this effect. Two, iterative reconstruction methods can be used to statistically correct for the range of the positron. Both strong magnetic fields and iterative reconstruction algorithms that statistically account for the positron range distribution are investigated in this work.

  8. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  9. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  10. Integrated Sedimentological Approach to Assess Reservoir Quality and Architecture of Khuff Carbonates: Outcrop Analog, Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Osman, Mutsim; Abdullatif, Osman

    2017-04-01

    The Permian to Triassic Khuff carbonate reservoirs (and equivalents) in the Middle East are estimated to contain about 38.4% of the world's natural gas reserves. Excellent exposed outcrops in central Saudi Arabia provide good outcrop equivalents to subsurface Khuff reservoirs. This study conduct high resolution outcrop scale investigations on an analog reservoir for upper Khartam of Khuff Formation. The main objective is to reconstruct litho- and chemo- stratigraphic outcrop analog model that may serve to characterize reservoir high resolution (interwell) heterogeneity, continuity and architecture. Given the fact of the limitation of subsurface data and toolsin capturing interwell reservoir heterogeneity, which in turn increases the value of this study.The methods applied integrate sedimentological, stratigraphic petrographic, petrophysical data and chemical analyses for major, trace and rare earth elements. In addition, laser scanning survey (LIDAR) was also utilized in this study. The results of the stratigraphic investigations revealed that the lithofacies range from mudstone, wackestone, packestone and grainstone. These lithofacies represent environments ranging from supratidal, intertidal, subtidal and shoal complex. Several meter-scale and less high resolution sequences and composite sequences within 4th and 5th order cycles were also recognized in the outcrop analog. The lithofacies and architectural analysis revealed several vertically and laterally stacked sequences at the outcrop as revealed from the stratigraphic sections and the lidar scan. Chemostratigraphy is effective in identifying lithofacies and sequences within the outcrop analog. Moreover, different chemical signatures were also recognized and allowed establishing and correlating high resolution lithofacies, reservoir zones, layers and surfaces bounding reservoirs and non-reservoir zones at scale of meters or less. The results of this high resolution outcrop analog study might help to understand and evaluate Khuff reservoir heterogeneity, quality and architecture. It might also help to fill the gap in knowledge in reservoir characterization models based on low resolution subsurface data alone.

  11. Morphodynamic Impacts of Hurricane Sandy on the Inner-shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Beaudoin, J. D.; DuVal, C.; Schmidt, V. E.; Mayer, L. A.

    2013-12-01

    Through the careful execution of precision high-resolution acoustic sonar surveys over the period of October 2012 through July 2013, we have obtained a unique set of high-resolution before and after storm measurements of seabed morphology and in situ hydrodynamic conditions (waves and currents) capturing the impact of the storm at an inner continental shelf field site known as the 'Redbird reef' (Raineault et al., 2013). Understanding the signature of this storm event is important for identifying the impacts of such events and for understanding the role that such events have in the transport of sediment and marine debris on the inner continental shelf. In order to understand and characterize the ripple dynamics and scour processes in an energetic, heterogeneous inner-shelf setting, a series of high-resolution geoacoustic surveys were conducted before and after Hurricane Sandy. Our overall goal is to improve our understanding of bedform dynamics and spatio-temporal length scales and defect densities through the application of a recently developed fingerprint algorithm technique (Skarke and Trembanis, 2011). Utilizing high-resolution swath sonar collected by an AUV and from surface vessel multibeam sonar, our study focuses both on bedforms in the vicinity of manmade seabed objects (e.g. shipwrecks and subway cars) and dynamic natural ripples on the inner-shelf in energetic coastal settings with application to critical military operations such as mine countermeasures. Seafloor mapping surveys were conducted both with a ship-mounted multibeam echosounder (200 kHz and 400 kHz) and an Autonomous Underwater Vehicle (AUV) configured with high-resolution side-scan sonar (900 and 1800 kHz) and a phase measuring bathymetric sonar (500 kHz). These geoacoustic surveys were further augmented with data collected by in situ instruments placed on the seabed that recorded measurements of waves and currents at the site before, during, and after the storm. Multibeam echosounder map of the Redbird reef site after Hurricane Sandy. Image resolution is 25 cm/pixel.

  12. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  13. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  14. Probing the Spatio-Temporal Characteristics of Temporal Aliasing Errors and their Impact on Satellite Gravity Retrievals

    NASA Astrophysics Data System (ADS)

    Wiese, D. N.; McCullough, C. M.

    2017-12-01

    Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.

  15. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  16. Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE)

    USGS Publications Warehouse

    Delamere, W.A.; Tornabene, L.L.; McEwen, A.S.; Becker, K.; Bergstrom, J.W.; Bridges, N.T.; Eliason, E.M.; Gallagher, D.; Herkenhoff, K. E.; Keszthelyi, L.; Mattson, S.; McArthur, G.K.; Mellon, M.T.; Milazzo, M.; Russell, P.S.; Thomas, N.

    2010-01-01

    HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE. ?? 2009 Elsevier Inc.

  17. Effect of gender on glucose utilization rates in healthy humans: A positron emission tomography study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, S.A.; Schapiro, M.B.; Grady, C.L.

    Positron emission tomography (PET) was used with 18fluorodeoxyglucose to see if gender differences in resting cerebral glucose utilization could be detected. Thirty-two healthy subjects (15 women and 17 men; age range: 21-38 yr) were examined using a high-resolution PET scanner to determine the regional cerebral metabolic rate for glucose (CMRglc) in 65 gray matter regions of interest. Whole brain CMRglc did not differ significantly between the two genders, nor did any of the regional CMRglc values. Only 1 of 65 ratios of regional-to-whole brain CMRglc differed significantly between men and women, which is consistent with chance. These results indicate thatmore » there are no differences in resting regional cerebral glucose utilization between young men and women.« less

  18. A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure

    NASA Astrophysics Data System (ADS)

    Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.

    2014-06-01

    Various studies indicate that high-resolution oxygen A-band spectrum has the capability to retrieve the vertical profiles of aerosol and cloud properties. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July, 2011. By using a single telescope, the HABS instrument measures the direct solar and the zenith diffuse radiation subsequently. HABS exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high-spectrum resolution (0.016 nm), and high out-of-band rejection (10-5). For the spectral retrievals of HABS measurements, a simulator is developed by combining a discrete ordinates radiative transfer code (DISORT) with the High Resolution Transmission (HITRAN) database HITRAN2008. The simulator uses a double-k approach to reduce the computational cost. The HABS-measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the discrepancies between measurements and simulations, indicated by confidence intervals (95%) of relative difference, are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27 and 72°, respectively. For zenith diffuse spectra, the related discrepancies between measurements and simulations are (-0.06, 0.05) and (-0.08, 0.07) for solar zenith angles of 27 and 72°, respectively. The main discrepancies between measurements and simulations occur at or near the strong oxygen absorption line centers. They are mainly due to two kinds of causes: (1) measurement errors associated with the noise/spikes of HABS-measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration; (2) modeling errors in the simulation, including the error of model parameters setting (e.g., oxygen absorption line parameters, vertical profiles of temperature and pressure) and the lack of treatment of the rotational Raman scattering. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties (e.g., cloud optical depth, effective radius), particularly for multi-layer clouds and for mixed-phase clouds.

  19. A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix

    PubMed Central

    Zhang, Min; Wang, Hai; Liu, Yan

    2017-01-01

    In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time. PMID:28420121

  20. Restoring defect structures in 3C-SiC/Si (001) from spherical aberration-corrected high-resolution transmission electron microscope images by means of deconvolution processing.

    PubMed

    Wen, C; Wan, W; Li, F H; Tang, D

    2015-04-01

    The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. First on-sky demonstration of the piezoelectric adaptive secondary mirror.

    PubMed

    Guo, Youming; Zhang, Ang; Fan, Xinlong; Rao, Changhui; Wei, Ling; Xian, Hao; Wei, Kai; Zhang, Xiaojun; Guan, Chunlin; Li, Min; Zhou, Luchun; Jin, Kai; Zhang, Junbo; Deng, Jijiang; Zhou, Longfeng; Chen, Hao; Zhang, Xuejun; Zhang, Yudong

    2016-12-15

    We propose using a piezoelectric adaptive secondary mirror (PASM) in the medium-sized adaptive telescopes with a 2-4 m aperture for structure and control simplification by utilizing the piezoelectric actuators in contrast with the voice-coil adaptive secondary mirror. A closed-loop experimental setup was built for on-sky demonstration of the 73-element PASM developed by our laboratory. In this Letter, the PASM and the closed-loop adaptive optics system are introduced. High-resolution stellar images were obtained by using the PASM to correct high-order wavefront errors in May 2016. To the best of our knowledge, this is the first successful on-sky demonstration of the PASM. The results show that with the PASM as the deformable mirror, the angular resolution of the 1.8 m telescope can be effectively improved.

  2. A semiparametric spatio-temporal model for solar irradiance data

    DOE PAGES

    Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.

    2016-03-01

    Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less

  3. A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix.

    PubMed

    Zhang, Min; Wang, Hai; Liu, Yan

    2017-04-14

    In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time.

  4. Practical application of in silico fragmentation based residue screening with ion mobility high-resolution mass spectrometry.

    PubMed

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathry; Walker, Stephan; Widmer, Mirjam

    2017-07-15

    A screening concept for residues in complex matrices based on liquid chromatography coupled to ion mobility high-resolution mass spectrometry LC/IMS-HRMS is presented. The comprehensive four-dimensional data (chromatographic retention time, drift time, mass-to-charge and ion abundance) obtained in data-independent acquisition (DIA) mode was used for data mining. An in silico fragmenter utilizing a molecular structure database was used for suspect screening, instead of targeted screening with reference substances. The utilized data-independent acquisition mode relies on the MS E concept; where two constantly alternating HRMS scans (low and high fragmentation energy) are acquired. Peak deconvolution and drift time alignment of ions from the low (precursor ion) and high (product ion) energy scan result in relatively clean product ion spectra. A bond dissociation in silico fragmenter (MassFragment) supplied with mol files of compounds of interest was used to explain the observed product ions of each extracted candidate component (chromatographic peak). Two complex matrices (fish and bovine liver extract) were fortified with 98 veterinary drugs. Out of 98 screened compounds 94 could be detected with the in silico based screening approach. The high correlation among drift time and m/z value of equally charged ions was utilized for an orthogonal filtration (ranking). Such an orthogonal ion mobility based filter removes multiply charged ions (e.g. peptides and proteins from the matrix) as well as noise and artefacts. Most significantly, this filtration dramatically reduces false positive findings but hardly increases false negative findings. The proposed screening approach may offer new possibilities for applications where reference compounds are hardly or not at all commercially available. Such areas may be the analysis of metabolites of drugs, pyrrolizidine alkaloids, marine toxins, derivatives of sildenafil or novel designer drugs (new psychoactive substances). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    2009-03-06

    The indirect secondary electron contrast (ISEC) condition of the scanning electron microscopy (SEM) produces high contrast detection with minimal damage of unstained biological samples mounted under a thin carbon film. The high contrast image is created by a secondary electron signal produced under the carbon film by a low acceleration voltage. Here, we show that ISEC condition is clearly able to detect unstained bacteriophage T4 under a thin carbon film (10-15 nm) by using high-resolution field emission (FE) SEM. The results show that FE-SEM provides higher resolution than thermionic emission SEM. Furthermore, we investigated the scattered electron area within themore » carbon film under ISEC conditions using Monte Carlo simulation. The simulations indicated that the image resolution difference is related to the scattering width in the carbon film and the electron beam spot size. Using ISEC conditions on unstained virus samples would produce low electronic damage, because the electron beam does not directly irradiate the sample. In addition to the routine analysis, this method can be utilized for structural analysis of various biological samples like viruses, bacteria, and protein complexes.« less

  6. Quantifying human-environment interactions using videography in the context of infectious disease transmission.

    PubMed

    Julian, Timothy R; Bustos, Carla; Kwong, Laura H; Badilla, Alejandro D; Lee, Julia; Bischel, Heather N; Canales, Robert A

    2018-05-08

    Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual's movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  7. Urban Modelling Performance of Next Generation SAR Missions

    NASA Astrophysics Data System (ADS)

    Sefercik, U. G.; Yastikli, N.; Atalay, C.

    2017-09-01

    In synthetic aperture radar (SAR) technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX) and Cosmo-SkyMed (CSK) since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM) acquisition for urban areas utilizing interferometric SAR (InSAR) technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS) InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS) DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8-10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  8. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    NASA Astrophysics Data System (ADS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  9. Modeling and measurement of tissue elastic moduli using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Oldenburg, Amy L.; Crecea, Vasilica; Kalyanam, Sureshkumar; Insana, Michael F.; Boppart, Stephen A.

    2008-02-01

    Mechanical forces play crucial roles in tissue growth, patterning and development. To understand the role of mechanical stimuli, biomechanical properties are of great importance, as well as our ability to measure biomechanical properties of developing and engineered tissues. To enable these measurements, a novel non-invasive, micron-scale and high-speed Optical Coherence Elastography (OCE) system has been developed utilizing a titanium:sapphire based spectral-domain Optical Coherence Tomography (OCT) system and a mechanical wave driver. This system provides axial resolution of 3 microns, transverse resolution of 13 microns, and an acquisition rate as high as 25,000 lines per second. External lowfrequency vibrations are applied to the samples in the system. Step and sinusoidal steady-state responses are obtained to first characterize the OCE system and then characterize samples. Experimental results of M-mode OCE on silicone phantoms and human breast tissues are obtained, which correspond to biomechanical models developed for this analysis. Quantified results from the OCE system correspond directly with results from an indentation method from a commercial. With micron-scale resolution and a high-speed acquisition rate, our OCE system also has the potential to rapidly measure dynamic 3-D tissue biomechanical properties.

  10. Increasing the electron-transfer ability of Cyanidioschyzon merolae ferredoxin by a one-point mutation – A high resolution and Fe-SAD phasing crystal structure analysis of the Asp58Asn mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Yuko; Matsumoto, Takashi; Yamano, Akihito

    2013-07-12

    Highlights: •A single amino acid change on the ferredoxin surface affects electron transfer. •Precise positions of amide atoms were located utilizing no prior structural data. •Ultra high resolution and SAD phasing may be used for bias-free model building. -- Abstract: Cyanidioschyzon merolae (Cm) is a single cell red algae that grows in rather thermophilic (40–50 °C) and acidic (pH 1–3) conditions. Ferredoxin (Fd) was purified from this algae and characterized as a plant-type [2Fe–2S] Fd by physicochemical techniques. A high resolution (0.97 Å) three-dimensional structure of the CmFd D58N mutant molecule has been determined using the Fe-SAD phasing method tomore » clarify the precise position of the Asn58 amide, as this substitution increases the electron-transfer ability relative to wild-type CmFd by a factor of 1.5. The crystal structure reveals an electro-positive surface surrounding Asn58 that may interact with ferredoxin NADP{sup +} reductase or cytochrome c.« less

  11. Ashra (All-sky Survey High Resolution Air-shower detector)Current Status on Mauna Loa, Hawai`i

    NASA Astrophysics Data System (ADS)

    Hamilton, John; Fox, R. A.; Sasaki, M.; Asaoka, Y.; Ashra Collaboration

    2008-09-01

    Now in its third year of on-site activities, Ashra is commencing full testing of its array of Cherenkov and Nitrogen Fluorescence detectors. The All-sky Survey High Resolution Air-shower detector is located on the northern upper slopes of Mauna Loa at the 11,000 ft elevation level. Utilizing a clear view of 80% of the sky and an unobstructed view of Mauna Kea, anglular resolution of 1.2 arcmin, sensitive to the blue to UV light with the use of image intensifier and CMOS technology, Ashra is in a unique position for studying the sources of High Energy Cosmic Ray sources (GRB, etc) as well as potential observations of earth-grazing neutrino interactions. 2004 saw the successful deployment of a prototype detector on Haleakala, with confirmed detection of several GRBs. Since the summer of 2005, steady progress was made in constructing and installation of detectors and their weather-proofed housings. UH-Hilo undergraduate students provided summer interns for this international collaboration between ICRR Univ. Tokyo, Univ. Hawai`i-Hilo, Univ Hawai`i-Manoa, Ibaraki Univ., Toho Univ. Chiba Univ., Kanagawa Univ., Nagoya Univ. & Tokyo Institute of Technology.

  12. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  13. Detection of sub-kilometer craters in high resolution planetary images using shape and texture features

    NASA Astrophysics Data System (ADS)

    Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.

    2012-01-01

    Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.

  14. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactionsmore » either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO +), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.« less

  15. Determination of 2,3,7,8-chlorine-substituted dibenzo-p-dioxins and -furans at the part per trillion level in United States beef fat using high-resolution gas chromatography/high-resolution mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ferrario, J.; Byrne, C.; McDaniel, D.; Dupuy, A. Jr; Harless, R.

    1996-01-01

    As part of the U.S. EPA Dioxin Reassessment Program, the 2,3,7,8-chlorine-substituted dibenzo-p-dioxins and furans were measured at part per trillion (ppt) levels in beef fat collected from slaughter facilities in the United States. This is the first statistically designed national survey of these compounds in the U.S. beef supply. Analyte concentrations were determined by high-resolution gas chromatography/high-resolution mass spectrometry, using isotope dilution methodology. Method limits of detection on a whole weight basis were 0.05 ppt for TCDD and 0.10 ppt for TCDF, 0.50 ppt for the pentas (PeCDDs/PeCDFs)/hexas (HxCDDs/HxCDFs)/heptas (HpCDDs/HpCDFs), and 3.00 ppt for the octas (OCDD/OCDF). Method detection and quantitation limits were established on the basis of demonstrated performance criteria utilizing fortified samples rather than by conventional signal-to-noise or variability of response methods. The background subtraction procedures developed for this study minimized the likelihood of false positives and increased the confidence associated with reported values near the detection limits. Mean and median values for each of the 2,3,7,8-Cl-substituted dioxins and furans are reported, along with the supporting information required for their interpretation. The mean toxic equivalence values for the samples are 0.35 ppt (nondetects = 0) and 0.89 ppt (nondetects = 1/2 LOD).

  16. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographicallymore » scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.« less

  17. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H.more » Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.« less

  18. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  19. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  20. Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Huszar, P.; Belda, M.

    2012-04-01

    Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.

Top