Exploratory investigations of hypervelocity intact capture spectroscopy
NASA Technical Reports Server (NTRS)
Tsou, P.; Griffiths, D. J.
1993-01-01
The ability to capture hypervelocity projectiles intact opens a new technique available for hypervelocity research. A determination of the reactions taking place between the projectile and the capture medium during the process of intact capture is extremely important to an understanding of the intact capture phenomenon, to improving the capture technique, and to developing a theory describing the phenomenon. The intact capture of hypervelocity projectiles by underdense media generates spectra, characteristic of the material species of projectile and capture medium involved. Initial exploratory results into real-time characterization of hypervelocity intact capture techniques by spectroscopy include ultra-violet and visible spectra obtained by use of reflecting gratings, transmitting gratings, and prisms, and recorded by photographic and electronic means. Spectrometry proved to be a valuable real-time diagnostic tool for hypervelocity intact capture events, offering understanding of the interactions of the projectile and the capture medium during the initial period and providing information not obtainable by other characterizations. Preliminary results and analyses of spectra produced by the intact capture of hypervelocity aluminum spheres in polyethylene (PE), polystyrene (PS), and polyurethane (PU) foams are presented. Included are tentative emission species identifications, as well as gray body temperatures produced in the intact capture process.
Hypervelocity High Speed Projectile Imagery and Video
NASA Technical Reports Server (NTRS)
Henderson, Donald J.
2009-01-01
This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.
Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress
2016-05-27
surface ships to defend themselves against enemy missiles—solid state lasers (SSLs), the electromagnetic railgun (EMRG), and the hypervelocity... electromagnetic railgun (EMRG), and the hypervelocity projectile (HVP). 1 Any one of these new weapon technologies, if successfully developed and deployed...Number: N00024-15-R-4132, FedBizOpps.gov, July 29, 2015. See also Justin Doubleday, “Navy Developing Integrated Mount For Electromagnetic Railgun
Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress
2016-10-21
surface ships to defend themselves against enemy missiles—solid state lasers (SSLs), the electromagnetic railgun (EMRG), and the hypervelocity...SSLs), the electromagnetic railgun (EMRG), and the hypervelocity projectile (HVP). 1 Any one of these new weapon technologies, if successfully...Integrated Mount For Electromagnetic Railgun,” Inside the Navy, July 31, 2015.) 12 Sources for cost of HVP: David Martin, “Navy’s Newest Weapon Kills at
Three-phase hypervelocity projectile launcher
Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.
1994-01-01
A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
Projectile-target mixing in melted ejecta formed during a hypervelocity impact cratering event
NASA Technical Reports Server (NTRS)
Evans, Noreen Joyce; Ahrens, Thomas J.; Shahinpoor, M.; Anderson, W. W.
1993-01-01
Tektites contain little to no projectile contamination while, in contrast, some distal ejecta deposits can be relatively projectile-rich (e.g. the Cretaceous-Tertiary (K-T) boundary clay). This compositional difference motivated an experimental study of hypervelocity target-projectile mixing processes. We hope to scale up the results from these experiments and apply them to terrestrial impact structures like the Chicxulub Crater, Yucutan, Mexico, the leading contender as the site for the impact that caused the mass extinction that marks the K-T boundary. Shock decomposition of the approximately 500m thickness of anhydrite, or greater thickness of limestone, in the target rocks at Chicxulub may have been a critical mechanism for either global cooling via SO3, and subsequently H2SO4, formation, or possibly, global warming via increased CO2 formation. Understanding target-projectile mixing processes during hypervelocity impact may permit more accurate estimates of the amount of potentially toxic, target-derived material reaching stratospheric heights.
Intact capture of hypervelocity projectiles
NASA Technical Reports Server (NTRS)
Tsou, P.
1990-01-01
The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.
Intact capture of hypervelocity projectiles.
Tsou, P
1990-01-01
The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.
Hypervelocity impacts into graphite
NASA Astrophysics Data System (ADS)
Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.
2011-03-01
Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.
Hypervelocity cutting machine and method
Powell, J.R.; Reich, M.
1996-11-12
A method and machine are provided for cutting a workpiece such as concrete. A gun barrel is provided for repetitively loading projectiles therein and is supplied with a pressurized propellant from a storage tank. A thermal storage tank is disposed between the propellant storage tank and the gun barrel for repetitively receiving and heating propellant charges which are released in the gun barrel for repetitively firing projectiles therefrom toward the workpiece. In a preferred embodiment, hypervelocity of the projectiles is obtained for cutting the concrete workpiece by fracturing thereof. 10 figs.
Ablative shielding for hypervelocity projectiles
NASA Technical Reports Server (NTRS)
Rucker, Michelle A. (Inventor)
1993-01-01
A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.
Ultrahigh-speed X-ray imaging of hypervelocity projectiles
NASA Astrophysics Data System (ADS)
Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.
2011-08-01
High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.
Hypervelocity impact of mm-size plastic projectile on thin aluminum plate
NASA Astrophysics Data System (ADS)
Poniaev, S. A.; Kurakin, R. O.; Sedov, A. I.; Bobashev, S. V.; Zhukov, B. G.; Nechunaev, A. F.
2017-06-01
The experimental studies of the process of hypervelocity (up to 6 km/s) impact of a mm-size projectile on a thin aluminum plate is described. The numerical simulation of this process is presented. The data on the evolution, structure, and composition of the debris cloud formed as a result of the impact are reported. Basic specific features of the debris cloud formation are revealed.
Hypervelocity impact testing of spacecraft optical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive thanmore » the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.« less
Hypervelocity cutting machine and method
Powell, James R.; Reich, Morris
1996-11-12
A method and machine 14 are provided for cutting a workpiece 12 such as concrete. A gun barrel 16 is provided for repetitively loading projectiles 22 therein and is supplied with a pressurized propellant from a storage tank 28. A thermal storage tank 32,32A is disposed between the propellant storage tank 28 and the gun barrel 16 for repetitively receiving and heating propellant charges which are released in the gun barrel 16 for repetitively firing projectiles 22 therefrom toward the workpiece 12. In a preferred embodiment, hypervelocity of the projectiles 22 is obtained for cutting the concrete workpiece 12 by fracturing thereof.
Hypervelocity gun. [using both electric and chemical energy for projectile propulsion
NASA Technical Reports Server (NTRS)
Ford, F. C.; Biehl, A. J. (Inventor)
1965-01-01
A velocity amplifier system which uses both electric and chemical energy for projectile propulsion is provided in a compact hypervelocity gun suitable for laboratory use. A relatively heavy layer of a tamping material such as concrete encloses a loop of an electrically conductive material. An explosive charge at least partially surrounding the loop is adapted to collapse the loop upon detonation of the charge. A source of electricity charges the loop through two leads, and an electric switch which is activated by the charge explosive charge, disconnects the leads from the source of electricity and short circuits them. An opening in the tamping material extends to the loop and forms a barrel. The loop, necked down in the opening, forms the sabot on which the projectile is located. When the loop is electrically charged and the explosive detonated, the loop is short circuited and collapsed thus building up a magnetic field which acts as a sabot catcher. The sabot is detached from the loop and the sabot and projectile are accelerated to hypervelocity.
NASA Technical Reports Server (NTRS)
Chakrapani, B.; Rand, J. L.
1971-01-01
The material strength and strain rate effects associated with the hypervelocity impact problem were considered. A yield criterion involving the second and third invariants of the stress deviator and a strain rate sensitive constitutive equation were developed. The part of total deformation which represents change in shape is attributable to the stress deviator. Constitutive equation is a means for analytically describing the mechanical response of a continuum under study. The accuracy of the yield criterion was verified utilizing the published two and three dimensional experimental data. The constants associated with the constitutive equation were determined from one dimensional quasistatic and dynamic experiments. Hypervelocity impact experiments were conducted on semi-infinite targets of 1100 aluminum, 6061 aluminum alloy, mild steel, and commercially pure lead using spherically shaped and normally incident pyrex projectiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de
2015-11-14
A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signalmore » to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.« less
Geng, Sheng; Verkhoturov, Stanislav V; Eller, Michael J; Della-Negra, Serge; Schweikert, Emile A
2017-02-07
We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au 400 4+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C 1-10 ± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au 1-3 ± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ∼15% of its initial kinetic energy (∼0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ∼450-500 eV (∼4400-4900 K) after the impact and then undergoes a ∼90-100 step fragmentation with the ejection of Au 1 atoms in the experimental time range of ∼0.1 μs.
NASA Astrophysics Data System (ADS)
Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.
2017-02-01
We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.
Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.
NASA Technical Reports Server (NTRS)
Glass, I. I.
1972-01-01
A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.
Superconducting Magnetic Projectile Launcher
NASA Technical Reports Server (NTRS)
Jan, Darrell L.; Lawson, Daniel D.
1991-01-01
Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.
Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities
NASA Technical Reports Server (NTRS)
Medina, David F.; Allahdadi, Firooz A.
1992-01-01
A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.
Mass distribution of orbiting man-made space debris
NASA Technical Reports Server (NTRS)
Bess, T. D.
1975-01-01
Three ways of producing space debris were considered, and data were analyzed to determine mass distributions for man-made space debris. Hypervelocity (3.0 to 4.5 km/sec) projectile impact with a spacecraft wall, high intensity explosions and low intensity explosions were studied. For hypervelocity projectile impact of a spacecraft wall, the number of fragments fits a power law. The number of fragments for both high intensity and low intensity explosions fits an exponential law. However, the number of fragments produced by low intensity explosions is much lower than the number of fragments produced by high intensity explosions. Fragment masses down to 10 to the -7 power gram were produced from hypervelocity impact, but the smallest fragment mass resulting from an explosion appeared to be about 10 mg. Velocities of fragments resulting from hypervelocity impact were about 10 m/sec, and those from low intensity explosions were about 100 m/sec. Velocities of fragments from high intensity explosions were about 3 km/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Weidong, E-mail: swdgh@bit.edu.cn; Lv, Yangtao; Li, Jianqiao
2016-07-15
For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with differentmore » projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.« less
Local and distant trauma after hypervelocity ballistic impact to the pig hind limb.
Chen, Jin; Zhang, Bo; Chen, Wei; Kang, Jian-Yi; Chen, Kui-Jun; Wang, Ai-Min; Wang, Jian-Min
2016-01-01
The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.
Chemical fractionation resulting from the hypervelocity impact process on metallic targets
NASA Astrophysics Data System (ADS)
Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko
2016-10-01
In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter-sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.
Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets
NASA Astrophysics Data System (ADS)
Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.
1996-03-01
We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.
Trajectory And Heating Of A Hypervelocity Projectile
NASA Technical Reports Server (NTRS)
Tauber, Michael E.
1992-01-01
Technical paper presents derivation of approximate, closed-form equation for relationship between velocity of projectile and density of atmosphere. Results of calculations based on approximate equation agree well with results from numerical integrations of exact equations of motion. Comparisons of results presented in series of graphs.
NASA Technical Reports Server (NTRS)
Lyons, Frankel
2013-01-01
A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
Hypervelocity impact on shielded plates
NASA Technical Reports Server (NTRS)
Smith, James P.
1993-01-01
A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.
Flash characteristics of plasma induced by hypervelocity impact
NASA Astrophysics Data System (ADS)
Zhang, Kai; Long, Renrong; Zhang, Qingming; Xue, Yijiang; Ju, Yuanyuan
2016-08-01
Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperature comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0-6.3 km/s.
Flash characteristics of plasma induced by hypervelocity impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Beijing Automotive Technology Center, Beijing 100021; Long, Renrong, E-mail: longrenrong@bit.edu.cn, E-mail: qmzhang@bit.edu.cn
2016-08-15
Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperaturemore » comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0–6.3 km/s.« less
Correlation of new hypervelocity impact data by threshold penetration relations
NASA Technical Reports Server (NTRS)
Hayduk, R. J.; Gough, P. S.; Alfaro-Bou, E.
1973-01-01
Threshold penetration data are established by impacting spherical projectiles onto 2024 aluminum single-wall targets. Nylon and cadmium projectiles were used at impacting velocities from 3.0 to 6.8 km/s and 7.9 to 8.5 km/s respectively. These data are combined with existing data and compared with three threshold relations to assess their respective validities over a wide range of projectile densities. Two of these relations were validated over the extended range of projectile densities.
Laser-photodetector timing station instruction and maintenance manual
NASA Technical Reports Server (NTRS)
Strader, E. A.
1986-01-01
A laser photodetector station is used for detecting the arrival of a projectile at a specific point along a ballistic range. The system can be employed on either an open or evacuated range, with small projectiles, and at hypervelocities. The setup procedures, maintenance, and system components are described.
Explosively driven hypervelocity launcher: Second-stage augmentation techniques
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.
Impact decapitation from laboratory to basin scales
NASA Technical Reports Server (NTRS)
Schultz, P. H.; Gault, D. E.
1991-01-01
Although vertical hypervelocity impacts result in the annihilation (melting/vaporization) of the projectile, oblique impacts (less than 15 deg) fundamentally change the partitioning of energy with fragments as large as 10 percent of the original projectile surviving. Laboratory experiments reveal that both ductile and brittle projectiles produce very similar results where limiting disruption depends on stresses proportional to the vertical velocity component. Failure of the projectile at laboratory impact velocities (6 km/s) is largely controlled by stresses established before the projectile has penetrated a significant distance into the target. The planetary surface record exhibits numerous examples of oblique impacts with evidence fir projectile failure and downrange sibling collisions.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Bogdanoff, D. W.
2015-01-01
The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).
Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi
2010-11-01
A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.
Applications of the ram accelerator to hypervelocity aerothermodynamic testing
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Knowlen, C.; Hertzberg, A.
1992-01-01
A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi
2010-11-01
A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt installing projectile & powder charge
Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress
2016-03-18
1 Railgun is also spelled as rail gun ; EMRG is also abbreviated as EM railgun; hypervelocity is also...controlled Gatling gun . Employing all these measures reflects a long-standing Navy approach of creating a multi-layered defense against enemy...fact that Navy surface ships can use surface-to-air missiles (SAMs) and their Close-in Weapon System (CIWS) Gatling guns to shoot down only a certain
Comparison of fragments created by low- and hyper-velocity impacts
NASA Astrophysics Data System (ADS)
Hanada, T.; Liou, J.-C.
This paper summarizes two new satellite impact experiments. The objective of the experiments was to investigate the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low-velocity of 1.5 km/s using a 40-g aluminum alloy sphere. The second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-g aluminum alloy sphere. The target satellites were 15 cm × 15 cm × 15 cm in size and 800 g in mass. The ratios of impact energy to target mass for the two experiments were approximately the same. The target satellites were completely fragmented in both experiments, although there were some differences in the characteristics of the fragments. The projectile of the low-velocity impact experiment was partially fragmented while the projectile of the hyper-velocity impact experiment was completely fragmented beyond recognition. To date, approximately 1500 fragments from each impact experiment have been collected for detailed analysis. Each piece has been weighed, measured, and analyzed based on the analytic method used in the NASA Standard Breakup Model (2000 revision). These fragments account for about 95% of the target mass for both impact experiments. Preliminary analysis results will be presented in this paper.
Oblique hypervelocity impact response of dual-sheet structures
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.
1989-01-01
The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are given. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricochet and penetration damage phenomena in a multi-sheet structure as functions of geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is observed that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original particle diameter and can travel at speeds between 24 percent and 36 percent of the original projectile impact velocity. The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft.
Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact
NASA Technical Reports Server (NTRS)
Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.
2000-01-01
This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.
Atomistic Modeling of the Hypervelocity Impact of Electrosprayed Nanodroplets
NASA Astrophysics Data System (ADS)
Saiz Poyatos, Fernan
Uniform beams of nanodroplets can be electrosprayed in a vacuum by applying strong electric fields at the tip of an emitter fed with an ionic liquid. These projectiles can be electrostatically accelerated up to velocities of several kilometers per second, and directed towards the surface of a crystalline solid to produce a hypervelocity impact. The phenomenology of these nanodroplet impacts is diverse: for example, it has been observed that the associated sputtering yield is of order one; and that at high enough projectile velocity the bombardment amorphizes the surface of silicon. However there is no detailed understanding of the physical mechanisms behind these observations. The goal of this doctoral research is to correct this situation. Molecular Dynamics (MD) are employed to simulate a number of nanodroplet impacts, which in turn yields accurate thermodynamic and structural information of the target. This information reveals that the amorphization is caused by the fast cooling of the liquid layer produced on the impact face, and the sputtering is caused by the evaporation of the melt. A collection of sensitivity analysis gauges how both phenomena are influenced by the silicon interaction potential, and the projectile's velocity, size, angle of incidence, dose, and composition. The projectile's velocity plays the most significant role. The thickness of the melt becomes comparable to the droplet's diameter at around 3 km/s, as reported by the experiments. Sputtering is first observed approximately at 3 km/s in agreement with the evaporation mechanism. The projectile's composition plays a major role. By using droplets with molecules of larger size and weight, the temperatures and sputtering near the impact interface increase considerably.
Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Bruckner, A. P.; Mattick, A. T.; Knowlen, C.
1992-01-01
New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report.
Apparatus and method for the acceleration of projectiles to hypervelocities
Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.
1990-01-01
A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.
Orbital Debris Assesment Tesing in the AEDC Range G
NASA Technical Reports Server (NTRS)
Polk, Marshall; Woods, David; Roebuck, Brian; Opiela, John; Sheaffer, Patti; Liou, J.-C.
2015-01-01
The space environment presents many hazards for satellites and spacecraft. One of the major hazards is hypervelocity impacts from uncontrolled man-made space debris. Arnold Engineering Development Complex (AEDC), The National Aeronautics and Space Administration (NASA), The United States Air Force Space and Missile Systems Center (SMC), the University of Florida, and The Aerospace Corporation configured a large ballistic range to perform a series of hypervelocity destructive impact tests in order to better understand the effects of space collisions. The test utilized AEDC's Range G light gas launcher, which is capable of firing projectiles up to 7 km/s. A non-functional full-scale representation of a modern satellite called the DebriSat was destroyed in the enclosed range enviroment. Several modifications to the range facility were made to ensure quality data was obtained from the impact events. The facility modifcations were intended to provide a high impact energy to target mass ratio (>200 J/g), a non-damaging method of debris collection, and an instrumentation suite capable of providing information on the physics of the entire imapct event.
Craters formed in mineral dust by hypervelocity microparticles.
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1972-01-01
As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.
Applied Impact Physics Research
NASA Astrophysics Data System (ADS)
Wickert, Matthias
2013-06-01
Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.
Survival of the impactor during hypervelocity collisions - II. An analogue for high-porosity targets
NASA Astrophysics Data System (ADS)
Avdellidou, C.; Price, M. C.; Delbo, M.; Cole, M. J.
2017-01-01
We investigated how a target's porosity affects the outcome of a collision, with respect to the impactor's fate. Laboratory impact experiments using peridot projectiles were performed at a speed range between 0.3 and 3.0 km s-1, on to high-porosity water-ice (40 per cent) and fine-grained calcium carbonate (70 per cent) targets. We report that the amount of implanted material in the target body increases with increasing target's porosity, while the size frequency distribution of the projectile's ejecta fragments becomes steeper. A supplementary Raman study showed no sign of change of the Raman spectra of the recovered olivine projectile fragments indicate minimal physical change.
Asteroid deflection using a kinetic impactor: Insights from hypervelocity impact experiments
NASA Astrophysics Data System (ADS)
Hoerth, Tobias; Schäfer, Frank
2016-04-01
Within the framework of the planned AIDA mission [1], an impactor spacecraft (DART) hits the second component of the asteroid Didymos at hypervelocity. The impact crater will be observed from the AIM spacecraft and an observation of the ejecta plume is possible [1]. This allows conclusions to be drawn about the physical properties of the target material, and the momentum transfer will be studied [1]. In preparation for this mission, hypervelocity impact experiments can provide valuable information about the outcome of an impact event as a function of impactor and target material properties and, thus, support the interpretation of the data from the DART impact. In addition, these impact experiments provide an important means to validate numerical impact simulations required to simulate large-scale impacts that cannot be studied in laboratory experiments. Impact experiments have shown that crater morphology and size, crater growth and ejecta dynamics strongly depend on the physical properties of the target material [2]. For example, porous materials like sandstone lead to a shallower and slower ejection than low-porous materials like quartzite, and the cratering efficiency is reduced in porous targets leading to a smaller amount of ejected mass [3]. These phenomena result in a reduced momentum multiplication factor (often called "beta-value"), i.e. the ratio of the change in target momentum after the impact and the momentum of the projectile is smaller for porous materials. Hypervelocity impact experiments into target materials with different porosities and densities such as quartzite (2.9 %, 2.6 g/cm3), sandstone (25.3 %, 2 g/cm3), limestone (31 %, 1.8 g/cm3), and highly porous aerated concrete (87.5 %, 0.4 g/cm3) were conducted. Projectile velocities were varied between about 3 km/s and almost 7 km/s. A ballistic pendulum was used to measure the momentum transfer. The material strength required for scaling laws was determined for all target materials. The highest beta values were measured for the low-porous quartzite (e.g., beta ~ 3 for a projectile velocity of about 4.05 km/s). Porous materials like sandstone, on the other hand, show lower beta values (e.g., beta ~ 1.8 for a projectile velocity of about 4.11 km/s). [1] Cheng A. F. et al. 2015 Acta Astronaut 115:262-269 [2] Hoerth T. et al. 2013 Meteorit Planet Sci 48:23-32 [3] Hoerth T. et al. 2015 Proc Engin 103:197-204
Hypervelocity impact response of aluminum multi-wall structures
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Bean, Alan J.
1991-01-01
The results of an investigation in which the perforation resistance of aluminum multiwall structures is analyzed under a variety of hypervelocity impact loading conditions are presented. A comparative analysis of the impact damage in structural systems with two or more bumpers and the damage in single-bumper systems of similar weight is performed to determine the advantages and disadvantages of employing more than one bumper in structural wall systems for long-duration spacecraft. A significant increase in protection against perforation by hypervelocity projectiles can be achieved if a single bumper is replaced by two bumpers of similar weight while the total wall spacing is kept constant. It is found that increasing the number of bumpers beyond two while keeping the total stand-off distance constant does not result in a substantial increase in protection over that offered by two bumpers of similar weight.
Down-Bore Two-Laser Heterodyne Velocimetry of an Implosion-Driven Hypervelocity Launcher
NASA Astrophysics Data System (ADS)
Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.
2015-06-01
The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 10 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photonic Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single-laser PDV is limited to approximately 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s. The two laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These continuous velocity data are used to validate models of the launcher cycle and compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.
NASA Astrophysics Data System (ADS)
Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.
2013-09-01
Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.
Characteristics of Whipple Shield Performance in the Shatter Regime
NASA Technical Reports Server (NTRS)
Ryan, S.; Bjorkman, M.; Christiansen, E. L.
2010-01-01
Ballistic limit equations define the failure of metallic Whipple shields in three parts: low velocity, shatter, and hypervelocity. Failure limits in the shatter regime are based on a linear interpolation between the onset of projectile fragmentation, and impulsive rupture of the shield rear wall. A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield BLE following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0-5.0 km/s, with a subsequent decrease in performance for velocities up to 6.0 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, however a number of underlying assumptions such as the occurrence of complete projectile fragmentation and the effect on performance of incipient projectile melt were found to be inaccurate. A cratering relationship based on the largest residual fragment size has been derived for application at velocities between 3.0-4.0 km/s, and was shown to accurately reproduce the trends of the experimental data. Further investigation is required to allow a full analytical description of shatter regime performance for metallic Whipple shields.
Predicting multi-wall structural response to hypervelocity impact using the hull code
NASA Technical Reports Server (NTRS)
Schonberg, William P.
1993-01-01
Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.
Spacecraft outer thermal blankets as hypervelocity impact bumpers
NASA Astrophysics Data System (ADS)
Cour-Palais, B. G.
1996-05-01
A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.
Impact cratering calculations. Part 1: Early time results
NASA Technical Reports Server (NTRS)
Thomsen, J. M.; Sauer, F. N.; Austin, M. G.; Ruhl, S. F.; Shultz, P. H.; Orphal, D. L.
1979-01-01
Early time two dimensional finite difference calculations of laboratory scale hypervelocity impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed. Analysis of resulting material motions showed that energy and momentum were coupled quickly from the aluminum projectile to the target material. In the process of coupling, some of the plasticene clay target was vaporized while the projectile become severely deformed. The velocity flow field developed within the target was shown to have features similar to those found in calculations of near surface explosion cratering. Specific application of Maxwell's analytic Z-Model showed that this model can be used to describe the early time flow fields resulting from the impact cratering calculations as well, provided the flow field centers are located beneath the target surface and most of the projectile momentum is dissipated before the model is applied.
NASA Astrophysics Data System (ADS)
Badyukov, Dmitrii D.; Bezaeva, Natalia S.; Rochette, Pierre; Gattacceca, Jérôme; Feinberg, Joshua M.; Kars, Myriam; Egli, Ramon; Raitala, Jouko; Kuzina, Dilyara M.
2018-01-01
Hypervelocity impacts occur on bodies throughout our solar system, and play an important role in altering the mineralogy, texture, and magnetic properties in target rocks at nanometer to planetary scales. Here we present the results of hypervelocity impact experiments conducted using a two-stage light-gas gun with 5 mm spherical copper projectiles accelerated toward basalt targets with 6 km s-1 impact velocities. Four different types of magnetite- and titanomagnetite-bearing basalts were used as targets for seven independent experiments. These laboratory impacts resulted in the formation of agglutinate-like particles similar in texture to lunar agglutinates, which are an important fraction of lunar soil. Materials recovered from the impacts were examined using a suite of complementary techniques, including optical and scanning electron microscopy, micro-Raman spectroscopy, and high- and low-temperature magnetometry, to investigate the texture, chemistry, and magnetic properties of newly formed agglutinate-like particles and were compared to unshocked basaltic parent materials. The use of Cu-projectiles, rather than Fe- and Ni-projectiles, avoids magnetic contamination in the final shock products and enables a clearer view of the magnetic properties of impact-generated agglutinates. Agglutinate-like particles show shock features, such as melting and planar deformation features, and demonstrate shock-induced magnetic hardening (two- to seven-fold increases in the coercivity of remanence Bcr compared to the initial target materials) and decreases in low-field magnetic susceptibility and saturation magnetization.
Study of hypervelocity projectile impact on thick metal plates
Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; ...
2016-01-01
Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less
A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators
NASA Technical Reports Server (NTRS)
Spight, C.
1976-01-01
A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.
Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher
NASA Astrophysics Data System (ADS)
Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.
2017-01-01
The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 15 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photon Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single laser system sampled at 40 GS/s with a 13 GHz detector/scope bandwidth is limited to 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s with the same bandwidth and sampling rate. The two-laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These internal ballistics trajectories are used to compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.
The intact capture of hypervelocity dust particles using underdense foams
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.
1994-01-01
The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the probability of survival for the impacting particle. The primary objectives of the experiment are to (1) Examine the morphology of primary and secondary hypervelocity impact craters. Primary attention will be paid to craters caused by ejecta during hypervelocity impacts of different substrates. (2) Determine the size distribution of ejecta by means of witness plates and collect fragments of ejecta from craters by means of momentum-sensitive mcropore foam. (3) Assess the directionality of the flux by means of penetration-hole alignment of thin films placed above the cells. (4) Capture intact the particles that perforated the thin film and entered the cell. Capture media consisted of both previously flight-tested micropore foams and aerogel. The foams had different latent heats of fusion and, accordingly, will capture particles over a range of momenta. Aerogel was incorporated into the cells to determine the minimum diameter than can be captured intact.
Chemical modification of projectile residues and target material in a MEMIN cratering experiment
NASA Astrophysics Data System (ADS)
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas
2013-01-01
In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.
NASA Astrophysics Data System (ADS)
Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.
2009-06-01
Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.
Imaging the interiors of near-earth objects with radio reflection tomography
NASA Technical Reports Server (NTRS)
Safaeinili, A.; Ostro, S. J.
2002-01-01
Scenarios for mitigation of asteroid comet collisions include the use of explosives to deflect or destroythe projectile. However, as demonstrated by Asphaug et al.( 1998), the outcome of explosive energy transfer to an asteroid or comet (via a bomb or a hypervelocity impact) is extremely sensitive to the pre-existing configuration of fractures and voids.
1994-05-01
1979. 110 42. Williams, A.E., and Saravane, I., Debris Chlaraiatiaon SUt&y NRL Letter Rleport 4680-196,1990. 43. Weanzel, A.B., and Dean , J.K., Behind...Commerce, National Bureau of Standards, Washington, D.C., 1971. 52. Stull , D.X, and Sinke, G.C., *Thermodynamic Properties of the Elements", in Advances in
A New Energy Source for Organic Synthesis in Europa's Surface Ice
NASA Technical Reports Server (NTRS)
Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.
Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile
Xia, Kang; Zhan, Haifei; Hu, De’an; Gu, Yuantong
2016-01-01
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989
Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile
NASA Astrophysics Data System (ADS)
Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong
2016-09-01
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.
Basic and applied studies of the ram accelerator as a hypervelocity projectile launcher
NASA Astrophysics Data System (ADS)
Bruckner, Adam P.; Knowlen, Carl
1993-12-01
The potential of using ram accelerator technology for an impulsive launcher of autonomously guided interceptors, such as the LEAP, has been studied during this contract period. In addition, fundamental investigations on some of the engineering issues which must be addressed for enabling ram accelerator propulsive modes to operate at 4 km/sec have been undertaken. An experimental investigation of the gas dynamic limits of ram accelerator operation has demonstrated the existence of two distinct limiting mechanisms that must be accounted for when designing projectiles for these launchers. Other experiments were conducted to make detailed pressure measurements of the flow fields at the tube walls to study the effects of projectile canting. Results from this LEAP launcher study and the experimental investigations indicate that the ram accelerator technology is well suited for applications as a transportable launcher capable of meeting the needs of theater ballistic missile defense missions.
Calibration of a magnetic induction system for measurement of hypervelocities
NASA Astrophysics Data System (ADS)
Breeze, S. P.
1993-03-01
A device to measure the velocity and to determine the character of a material launched in a flight tube during the execution of an experiment has been constructed. This measurement device provides a self generating signal, is nonintrusive, compact, and accurate. The signals are reproducible, and it is relatively inexpensive to procure. The MAgnetic Velocity Induction System (MAVIS) has been the technique used to measure projectile velocities in the two-stage light gas gun at Sandia for many years. Several experiments were conducted to study the MAVIS data signatures produced by various metal projectiles at velocities raging from 0.8 km/sec to nearly 7.0 km/sec, as well as fragmented metal projectiles, and a highly conductive carbon plasma. This report deals with the results of those calibration experiments. The data signature study may be used as an aid in the interpretation of the other test data records.
FTIR Analyses of Hypervelocity Impact Deposits: DebriSat Tests
2015-03-27
Aerospace Concept Design Center advised on selection of materials for various subsystems. • Test chamber lined with “soft catch” foam panels to trap...C-0001 Authorized by: Space Systems Group Distribution Statement A: Approved for public release; distribution unlimited Report...Pre Preshot target was a multi-shock shield supplied by NASA designed to catch the projectile. It consisted of seven bumper panels consisting of
LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.
1992-01-01
The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.
Material property for designing, analyzing, and fabricating space structures
NASA Technical Reports Server (NTRS)
Kolkailah, Faysal A.
1991-01-01
An analytical study was made of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite-epoxy composite projectile that will achieve hypervelocity of 6 to 10 Km/s. The feasibility was determined of dialectics to monitor cure of graphite-epoxies. Several panels were fabricated, cured, and tested with encouraging results of monitoring the cure of graphite-epoxies. The optimum cure process for large structures was determined. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.
Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies
NASA Technical Reports Server (NTRS)
Cooper, George W.
1998-01-01
Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.
Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts
NASA Astrophysics Data System (ADS)
Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.
2017-12-01
A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Operation of polycarbonate projectiles in the ram accelerator
NASA Astrophysics Data System (ADS)
Elder, Timothy
The ram accelerator is a hypervelocity launcher with direct space launch applications in which a sub-caliber projectile, analogous to the center-body of a ramjet engine, flies through fuel and oxidizer that have been premixed in a tube. Shock interactions in the tube ignite the propellant upon entrance of the projectile and the combustion travels with it, creating thrust on the projectile by stabilizing a high pressure region of gas behind it. Conventional ram accelerator projectiles consist of aluminum, magnesium, or titanium nosecones and bodies. An experimental program has been undertaken to determine the performance of polycarbonate projectiles in ram accelerator operation. Experimentation using polycarbonate projectiles has been divided into two series: determining the lower limit for starting velocity (i.e., less than 1100 m/s) and investigating the upper velocity limit. To investigate the influence of body length and starting velocity, a newly developed "combustion gun" was used to launch projectiles to their initial velocities. The combustion gun uses 3-6 m of ram accelerator test section as a breech and 4-6 m of the ram accelerator test section as a launch tube. A fuel-oxidizer mix is combusted in the breech using a spark plug or electric match and bursts a diaphragm, accelerating the ram projectile to its entrance velocity. The combustion gun can be operated at modest fill pressures (20 bar) but can only launch to relatively low velocities (approximately 1000 m/s) without destroying the projectile and obturator upon launch. Projectiles were successfully started at entrance velocities as low as 810 m/s and projectile body lengths as long as 91 mm were used. The tests investigating the upper Mach number limits of polycarbonate projectiles used the conventional single-stage light-gas gun because of its ability to reach higher velocities with a lower acceleration launch. It was determined that polycarbonate projectiles have an upper velocity limit in the range of 1500-1550 m/s which is lower than that of magnesium projectiles.
Hypervelocity impact testing of L-band truss cable meteoroid shielding on Skylab
NASA Technical Reports Server (NTRS)
Jex, D. W.
1973-01-01
A series of tests was performed to determine the protection provided by the L-band truss cable meteoroid shielding installed on Skylab space station at space environment temperatures of minus 180 F. The damage sustained when three test specimens were impacted by spherical projectiles at hypersonic speed was investigated. It is concluded that the L-band truss cable meteoroid shielding provides adequate protection at the indicated temperature.
Hypervelocity Impact Test Results for a Metallic Thermal Protection System
NASA Technical Reports Server (NTRS)
Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.
2003-01-01
Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.
Survival of fossils under extreme shocks induced by hypervelocity impacts.
Burchell, M J; McDermott, K H; Price, M C; Yolland, L J
2014-08-28
Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon.
Survival of fossils under extreme shocks induced by hypervelocity impacts
Burchell, M. J.; McDermott, K. H.; Price, M. C.; Yolland, L. J.
2014-01-01
Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s−1, corresponding to mean peak pressures of 0.2–19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234
Hypervelocity impact testing above 10 km/s of advanced orbital debris shields
NASA Astrophysics Data System (ADS)
Christiansen, Eric L.; Crews, Jeanne Lee; Kerr, Justin H.; Chhabildas, Lalit C.
1996-05-01
NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel™ ceramic fabric and Kevlar™ high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ("hypervelocity launcher") and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at ˜11.5 km/s. The >10 km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel™/Kevlar™ shield provides superior protection performance compared to an all-aluminum shield alternative.
Investigation of Hypervelocity Impact Phenomena Using Real-Time Concurrent Diagnostics
NASA Astrophysics Data System (ADS)
Mihaly, Jonathan Michael
Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.
Hypervelocity Impact Studies of Carbon Nanotubes and Fiber-Reinforced Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Khatiwada, Suman
This dissertation studies the hypervelocity impact characteristics of carbon nanotubes (CNTs), and investigates the use of CNTs as reinforcements in ultra-high molecular weight polyethylene (UHMWPE) fiber composites for hypervelocity impact shielding applications. The first part of this dissertation is aimed at developing an understanding of the hypervelocity impact response of CNTs--at the nanotube level. Impact experiments are designed with CNTs as projectiles to impact and crater aluminum plates. The results show that carbon nanotubes are resistant to the high-energy shock pressures and the ultra-high strain loading during hypervelocity impacts. Under our experimental conditions, single-walled carbon nanotubes survive impacts up to 4.07 km/s, but transform to graphitic ribbons and nanodiamonds at higher impact velocities. The nanodiamonds are metastable and transform to onion-like nanocarbon over time. Double-walled carbon nanotubes retain their form and structure even at impacts over 7 km/s. Higher hypervelocity impact resistance of DWCNTs could be attributed to the absorption of additional energy due to relative motion between the layers in the transverse direction of these coaxial nanotubes. The second part of this dissertation researches the effect of reinforcement of carbon nanotubes and their buckypapers on the hypervelocity impact shielding properties of UHMWPE-fiber composites arranged in a Whipple Shield configuration (a shield design used for the protection of the international space station from hypervelocity impacts by orbital debris). Composite laminates were prepared via compression molding and nanotube buckypapers via vacuum filtration. Dispersed nanotubes were introduced to the composite laminates via direct spraying onto the fabric prior to composite processing. The experimental results show that nanotubes dispersed in polymer matrix do not affect the hypervelocity impact resistance of the composite system. Nanotube buckypapers, however, improve the impact resistance of the composite, owing to the collective dampening of the shock wave amplitudes by the interconnected nanotube network in a buckypaper. The location of the buckypaper inside the composite, its thickness, and its surface modification with metals, all affect its hypervelocity impact shielding properties. Buckypaper coated with nickel and placed on the top surface of the UHMWPE-fiber composite provides the best impact resistance. Physical properties such as high bulk speed of sound in the nanotubes, and a combination of high density and high bulk speed of sound in nickel make the nickel-coated buckypaper a good hypervelocity impact shielding material. In addition, an explorative study on the use of nanograin metals for hypervelocity impact shielding was conducted.
NASA Astrophysics Data System (ADS)
Ryan, Shannon; Christiansen, Eric L.
2013-02-01
A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.
Racemization of Valine by Impact-Induced Heating
NASA Astrophysics Data System (ADS)
Furukawa, Yoshihiro; Takase, Atsushi; Sekine, Toshimori; Kakegawa, Takeshi; Kobayashi, Takamichi
2018-03-01
Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at 0.8 km/s, both d- and l-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.
2011-07-01
a reactive and a non reactive shaped charge liner is in the energy release of the combustion ... reactive shaped charge jets the reaction is explained and the possible energy release of the metal combustion is estimated. Addition- ally the...Charges In a shaped charge a -in most cases- conical cavity in the explosive is covered with a liner. If the explosive detonates , a small portion
Analysis of the vibration environment induced on spacecraft components by hypervelocity impact
NASA Astrophysics Data System (ADS)
Pavarin, Daniele
2009-06-01
This paper reports the result achieved within the study ``Spacecraft Disturbances from Hypervelocity Impact'', performed by CISAS and Thales-Alenia Space Italia under European Space Agency contract. The research project investigated the perturbations produced on spacecraft internal components as a consequence of hypervelocity impacts of micrometeoroids and orbital debris on the external walls of the vehicle. Objective of the study was: (i) to set-up a general numerical /experimental procedure to investigate the vibration induced by hypervelocity impact, (ii) to analyze the GOCE mission in order to asses whether the vibration environment induce by the impact of orbital debris and micrometeoroids could jeopardize the mission. The research project was conducted both experimentally and numerically, performing a large number of impact tests on GOCE-like structural configurations and extrapolating the experimental results via numerical simulations based on hydrocode calculations, finite element and statistical energy analysis. As a result, a database was established which correlates the impact conditions in the experimental range (0.6 to 2.3 mm projectiles at 2.5 to 5 km/s) with the shock spectra on selected locations on various types of structural models.The main out coming of the study are: (i) a wide database reporting acceleration values on a wide range of impact condition, (ii) a general numerical methodology to investigate disturbances induced by space debris and micrometeoroids on general satellite structures.
Shock-induced Plasticity and Brittle Cracks in Aluminum Nitride
NASA Astrophysics Data System (ADS)
Branicio, Paulo; Kalia, Rajiv
2005-03-01
Two hundred and nine million atom molecular-dynamics simulation of hypervelocity projectile impact in aluminum nitride reveals strong interplay between shock-induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics.
NASA Technical Reports Server (NTRS)
Tauber, Michael E.
1986-01-01
A simple, approximate equation describing the velocity-density relationship (or velocity-altitude) has been derived from the flight of large ballistic coefficient projectiles launched at high speeds. The calculations obtained by using the approximate equation compared well with results for numerical integrations of the exact equations of motion. The flightpath equation was used to parametrically calculate maximum body decelerations and stagnation pressures for initial velocities from 2 to 6 km/s. Expressions were derived for the stagnation-point convective heating rates and total heat loads. The stagnation-point heating was parametrically calculated for a nonablating wall and an ablating carbon surface. Although the heating rates were very high, the pulse decayed quickly. The total nose-region heat shield weight was conservatively estimated to be only about 1 percent of the body mass.
Basic and Applied Studies of the RAM Accelerator as a Hypervelocity Projectile Launcher
1993-12-10
The quasi-steady, one-dimensional "blackbox" model of thermally choked ram accelerator performance 18 that has been widely used by the authors and...the thermal choke point is assumed to be in equilibrium, the conditions can be determined by an equilibrium chemistry combustion routine. This model ...to operation, the details of the flow field must be examined. I The simplest model of the thermally choked ram accelerator flow field treats the flow
Flash Radiographic Studies of Hypervelocity Projectile Interactions with Explosives
1992-07-01
radiography . Explosive/metal target assemblies were designed to be representative of various aspects of explosive filled ordnance or components. The...with Explosives 1. Introduction Flash radiography (flash X-ray) is an effective instrumentation technique that can be used to record ultra high speed...firing chamber and provide a stable mount for the X-ray tubehead. i_ 11 611 Fmim A \\.\\\\ / \\,\\\\ // "-.. .•\\ /i--" " "’ ’i Xray source ColliatorBase X-ray
Compressed gas combined single- and two-stage light-gas gun
NASA Astrophysics Data System (ADS)
Lamberson, L. E.; Boettcher, P. A.
2018-02-01
With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.
Compressed gas combined single- and two-stage light-gas gun.
Lamberson, L E; Boettcher, P A
2018-02-01
With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 10 1 and 10 3 m/s in a single, relatively small, cost effective instrument.
Multimaterial lamination as a means of retarding penetration and spallation failures in plates
NASA Technical Reports Server (NTRS)
Dibattista, J. D.; Humes, D. H.
1972-01-01
Experimental data are presented which show that hypervelocity impact spallation and penetration failures of a single solid aluminum plate and of a solid aluminum plate spaced a distance behind a Whipple meteor bumper may be retarded by replacing the solid aluminum plate with a laminated plate. Four sets of experiments were conducted. The first set of experiments was conducted with projectile mass and velocity held constant and with polycarbonate cylinders impacted into single plates of different construction. The second set of experiments was done with single plates of various construction and aluminum spherical projectiles of similar mass but different velocities. These two experiments showed that a laminated plate of aluminum and polycarbonate or aluminum and methyl methacrylate could prevent spallation and penetration failures with a lower areal density than either an all-aluminum laminated plate or a solid aluminum plate. The aluminum laminated plate was in turn superior to the solid aluminum plate in resisting spallation and penetration failures. In addition, through an example of 6061-T6 aluminum and methyl methacrylate, it is shown that a laminated structure ballistically superior to its parent materials may be built. The last two sets of experiments were conducted using bumper-protected main walls of solid aluminum and of laminated aluminum and polycarbonate. Again, under hypervelocity impact conditions, the laminated main walls were superior to the solid aluminum main walls in retarding spallation and penetration failures.
NASA Astrophysics Data System (ADS)
Harriss, Kathryn H.; Burchell, Mark J.
2017-07-01
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.
Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station
NASA Astrophysics Data System (ADS)
Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.
2006-07-01
The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.
Optimum structure of Whipple shield against hypervelocity impact
NASA Astrophysics Data System (ADS)
Lee, M.
2014-05-01
Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.
Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eller, Michael J.; Della-Negra, Serge; Liang, Chao-Kai
The study of the interaction of hypervelocity nano-particles with a 2D material and ultra-thin targets (single layer graphene, multi-layer graphene, and amorphous carbon foils) has been performed using mass selected gold nano-particles produced from a liquid metal ion source. During these impacts, a large number of atoms are ejected from the graphene, corresponding to a hole of ∼60 nm{sup 2}. Additionally, for the first time, secondary ions have been observed simultaneously in both the transmission and reflection direction (with respect to the path of the projectile) from a 2D target. The ejected area is much larger than that predicted bymore » molecular dynamic simulations and a large ionization rate is observed. The mass distribution and characteristics of the emitted secondary ions are presented and offer an insight into the process to produce the large hole observed in the graphene.« less
IADC Vulnerability Report, IT32-21
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Miller, J. E.; Hyde, J.
2016-01-01
Numerous mission support hardware systems and their spares are maintained outside of the habitable volume of the International Space Station (ISS), and are arranged covered by a multi-layer insulation (MLI) thermal blanket which provides both thermal control and a measure of protection from micrometeoroids and orbital debris (MMOD). The NASA Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center in Houston Texas has assessed the protection provided by MLI in a series of hypervelocity impact tests using a 1 mm thick aluminum 6061-T6 rear wall to simulate the actual hardware behind the MLI. HVIT has also evaluated methods to enhance the protection provided by MLI thermal blankets. The impact study used both aluminum and steel spherical projectiles accelerated to speeds of 7 km/s using a 4.3 mm, two-stage, light-gas gun at the NASA White Sands Test Facility (WSTF).
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1991-01-01
Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.
NASA Astrophysics Data System (ADS)
Buckingham, A. C.; Hawke, R. S.
1982-09-01
Experimental and theoretical research was conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams were launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressure in the tens of megabars range are obtained for high pressure equations of state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The beating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined.
Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.
1995-01-01
The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Steinetz, Bruce M.
2009-01-01
While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.
Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Steinetz, Bruce M.
2009-01-01
While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Schultz, P. H.
1993-01-01
The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient magnetic field production mechanism in its own right.
Determination of parameters for hypervelocity dust grains encountered in near-Earth space
NASA Technical Reports Server (NTRS)
Tanner, William G.; Maag, Carl R.; Alexander, W. Merle; Sappenfield, Patricia
1993-01-01
Primarily interest was in the determination of the population of micrometeoroids and space debris and interpretation of the hole size in a thin film or in a micropore foam returned from space with theoretical calculations describing the event. In order to augment the significance of the theoretical calculations of the impact event, an experiment designed to analyze the charge production due to hypervelocity impacts on thin films also produced data which described the penetration properties of micron and sub-micron sized projectiles. The thin film penetration sites in the 500 A and 1000 A aluminum films were counted and a size distribution function was derived. In the case of the very smallest dust grains, there were no independent measurements of velocities like that which existed for the larger dust grains (d(sub p) is less than or equal to 1 micron). The primary task then became to assess the relationship between the penetration hole and the particle diameter of the projectile which made the hole. The most promising means to assess the measure of the diameters of impacting grains came in the form of comparing cratering mechanics to penetration mechanics. Future experimentation will produce measurements of the cratering as opposed to the penetrating event. Particles encountered by surfaces while being flown in space will degrade that surface in a systematic manner even when the impact is with small hypervelocity particles, d(sub p) is less than or equal to 10 microns. Though not to a degree which would precipitate a catastrophic failure of a system, the degradation of the materials comprising the interconnected system will occur. It is the degradation of the optical system and the subsequent embrittlement of other materials that can lead to degradation if not to failure. It is to this end that research was conducted to compare the primary consequences for experiments which will be flown to those which have been returned.
NASA Astrophysics Data System (ADS)
Niimi, Rei; Kadono, Toshihiko; Arakawa, Masahiko; Yasui, Minami; Dohi, Koji; Nakamura, Akiko M.; Iida, Yosuke; Tsuchiyama, Akira
2011-02-01
A large number of cometary dust particles were captured with low-density silica aerogels by NASA's Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm -3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ˜4 km s -1 and ˜200 m s -1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 ( v: projectile velocity) during the faster penetration process (˜4 km s -1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (˜200 m s -1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).
Two-stage light-gas magnetoplasma accelerator for hypervelocity impact simulation
NASA Astrophysics Data System (ADS)
Khramtsov, P. P.; Vasetskij, V. A.; Makhnach, A. I.; Grishenko, V. M.; Chernik, M. Yu; Shikh, I. A.; Doroshko, M. V.
2016-11-01
The development of macroparticles acceleration methods for high-speed impact simulation in a laboratory is an actual problem due to increasing of space flights duration and necessity of providing adequate spacecraft protection against micrometeoroid and space debris impacts. This paper presents results of experimental study of a two-stage light- gas magnetoplasma launcher for acceleration of a macroparticle, in which a coaxial plasma accelerator creates a shock wave in a high-pressure channel filled with light gas. Graphite and steel spheres with diameter of 2.5-4 mm were used as a projectile and were accelerated to the speed of 0.8-4.8 km/s. A launching of particle occurred in vacuum. For projectile velocity control the speed measuring method was developed. The error of this metod does not exceed 5%. The process of projectile flight from the barrel and the process of a particle collision with a target were registered by use of high-speed camera. The results of projectile collision with elements of meteoroid shielding are presented. In order to increase the projectile velocity, the high-pressure channel should be filled with hydrogen. However, we used helium in our experiments for safety reasons. Therefore, we can expect that the range of mass and velocity of the accelerated particles can be extended by use of hydrogen as an accelerating gas.
Laboratory simulation of intact capture of cometary and asteroidal dust particles in ISAS
NASA Technical Reports Server (NTRS)
Fujiwara, A.; Nakamura, A.; Kadono, T.
1994-01-01
In order to develop a collector for intact capturing of cometary dust particles in the SOCCER mission and regolith dust particles released from asteroid surfaces by the impact of projectiles launched from a flying-by spacecraft, various kinds of materials as the collector candidates have been exposed to hypervelocity projectiles in our laboratory. Data based on the penetration characteristics of various materials (penetration depth, hole profile, effectiveness for intact capturing) are greatly increased. The materials tested for these simulation experiments include various kinds of low-density media and multisheet stacks; these are foamed plastics (polystyrene 0.01 g/cc), silica aerogels (0.04 g/cc), air (0.001 g/cc), liquid, and multisheet stack consisting of thin Al sheets (thickness 0.002 to 0.1 mm) or polyethylene sheets. Projectiles used are spheres or cylinders of nylon, polycarbonate, basalt, copper, iron, and volatile organics (e.g.,paradichlorobenzene) of size ranging from 30 micrometers to 1 cm launched by a two-stage light gas gun and a rail gun in ISAS at velocity up to about 7 km/s. Some results obtained by using nylon projectiles of velocity less than about 5 km/s are presented; the penetration depth vs. bulk density of the collector material for several kinds of materials and the velocity at which the projectiles begin to fragment vs. material density for foamed polystyrene.
Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress
2017-03-17
Congressional Research Service 3 it would be cost effective to spend money spreading offensive weapons across a wider array of Navy surface ships might...different kind of laser, called the free electron laser (FEL). In recent years, Navy research and development work on potential shipboard lasers has...We are going to say [to the next administration] ‘Look, we believe this is the place where you want to put your money , but we’re going to have
Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.
Symposium on Electromagnetic Launcher Technology, 5th, Sandestin, FL, Apr. 3-5, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Gooden, Clarence E.
1991-01-01
The present conference on electromagnetic accelerators (EMAs) and railguns (RGs) discusses active-current management for four-rail RGs, the design of a compulsator-drive 60-caliber RG, EMA studies with augmented rails, muzzle-shunt augmentation of conventional RGs, effect of in-bore gas on RG performance, the distributed-energy store RG, plasma diagnostics for high power ignitron development, a review of EMA armature research, RG hybrid armatures, a new solid-armature design concept, and the electrodynamics of RG plasma armatures. Also discussed is RG modeling at speed using three-dimensional finite elements, power supply technology for EMAs, rotating machine power supplies for next-generation EMAs, advanced EMA power supplies with magnetic-flux compression, metal-to-metal switches for large currents, lightweight high-effiency energy-storage transformers, hypervelocity projectile development for EMAs, structural design issues for EMA projectiles, stiff RGs, a reinforced Al conductor for cryogenic applications, mass-stabilized projectile designs for EMA launch, indictively-commutated coilguns, an actively switched pulsed induction accelerator, a plasma gun-augmented electrothermal accelerator, a symmetrical rail accelerator, and a travelling-wave synchronous coil gun.
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Zook, H. A.; Blanford, G. E.
1986-01-01
The physical properties of impact features observed in the Solar Max main electronics box (MEB) thermal blanket generally suggest an origin by hypervelocity impact. The chemistry of micrometeorite material suggests that a wide variety of projectile materials have survived impact with retention of varying degrees of pristinity. Impact features that contain only spacecraft paint particles are on average smaller than impact features caused by micrometeorite impacts. In case both types of materials co-occur, it is belevied that the impact feature, generally a penetration hole, was caused by a micrometeorite projectile. The typically smaller paint particles were able to penetrate though the hole in the first layer and deposit in the spray pattern on the second layer. It is suggested that paint particles have arrived with a wide range of velocities relative to the Solar Max satellite. Orbiting paint particles are an important fraction of materials in the near-Earth environment. In general, the data from the Solar Max studies are a good calibration for the design of capture cells to be flown in space and on board Space Station. The data also suggest that development of multiple layer capture cells in which the projectile may retain a large degree of pristinity is a feasible goal.
Toughened Thermal Blanket for MMOD Protection
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Lear, Dana M.
2014-01-01
Thermal blankets are used extensively on spacecraft to provide passive thermal control of spacecraft hardware from thermal extremes encountered in space. Toughened thermal blankets have been developed that greatly improve protection from hypervelocity micrometeoroid and orbital debris (MMOD) impacts. These blankets can be outfitted if so desired with a reliable means to determine the location, depth and extent of MMOD impact damage by incorporating an impact sensitive piezoelectric film. Improved MMOD protection of thermal blankets was obtained by adding selective materials at various locations within the thermal blanket. As given in Figure 1, three types of materials were added to the thermal blanket to enhance its MMOD performance: (1) disrupter layers, near the outside of the blanket to improve breakup of the projectile, (2) standoff layers, in the middle of the blanket to provide an area or gap that the broken-up projectile can expand, and (3) stopper layers, near the back of the blanket where the projectile debris is captured and stopped. The best suited materials for these different layers vary. Density and thickness is important for the disrupter layer (higher densities generally result in better projectile breakup), whereas a highstrength to weight ratio is useful for the stopper layer, to improve the slowing and capture of debris particles.
Cutting Silica Aerogel for Particle Extraction
NASA Technical Reports Server (NTRS)
Tsou, P.; Brownlee, D. E.; Glesias, R.; Grigoropoulos, C. P.; Weschler, M.
2005-01-01
The detailed laboratory analyses of extraterrestrial particles have revolutionized our knowledge of planetary bodies in the last three decades. This knowledge of chemical composition, morphology, mineralogy, and isotopics of particles cannot be provided by remote sensing. In order to acquire these detail information in the laboratories, the samples need be intact, unmelted. Such intact capture of hypervelocity particles has been developed in 1996. Subsequently silica aerogel was introduced as the preferred medium for intact capturing of hypervelocity particles and later showed it to be particularly suitable for the space environment. STARDUST, the 4th NASA Discovery mission to capture samples from 81P/Wild 2 and contemporary interstellar dust, is the culmination of these new technologies. In early laboratory experiments of launching hypervelocity projectiles into aerogel, there was the need to cut aerogel to isolate or extract captured particles/tracks. This is especially challenging for space captures, since there will be many particles/tracks of wide ranging scales closely located, even collocated. It is critical to isolate and extract one particle without compromising its neighbors since the full significance of a particle is not known until it is extracted and analyzed. To date, three basic techniques have been explored: mechanical cutting, lasers cutting and ion beam milling. We report the current findings.
Characteristics of Whipple Shield Performance in the Shatter Regime
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Bjorkman, Michael; Christiansen, Eric L.
2009-01-01
Between the onset of projectile fragmentation and the assumption of rear wall failure due to an impulsive load, multi-wall ballistic limit equations are linearly interpolated to provide reasonable yet conservative predictions of perforation thresholds with conveniently simple mathematics. Although low velocity and hypervelocity regime predictions are based on analytical expressions, there is no such scientific foundation for predictions in the intermediate (or shatter) regime. As the debris flux in low earth orbit (LEO) becomes increasingly dominated by manmade pollution, the profile of micrometeoroid and orbital debris (MMOD) risk shifts continually towards lower velocities. For the International Space Station (ISS), encounter velocities below 7 km/s now constitute approximately 50% of the penetration risk. Considering that the transition velocity from shatter to hypervelocity impact regimes described by common ballistic limit equations (e.g. new non-optimum Whipple shield equation [1]) occurs at 7 km/s, 50% of station risk is now calculated based on failure limit equations with little analytical foundation. To investigate projectile and shield behavior for impact conditions leading to projectile fragmentation and melt, a series of hypervelocity impact tests have been performed on aluminum Whipple shields. In the experiments projectile diameter, bumper thickness, and shield spacing were kept constant, while rear wall thickness was adjusted to determine spallation and perforation limits at various impact velocities and angles. The results, shown in Figure 1 for normal and 45 impacts, demonstrated behavior that was not sufficiently described by the simplified linear interpolation of the NNO equation (also shown in Figure 1). Hopkins et al. [2] investigated the performance of a nominally-identical aluminum Whipple shield, identifying the effects of phase change in the shatter regime. The results (conceptually represented in Figure 2) were found to agree well with those obtained in this study at normal incidence, suggesting that shielding performance in the shatter regime could be well described by considering more complex phase conditions than currently implemented in most BLEs. Furthermore, evidence of these phase effects were found in the oblique test results, providing the basis for an empirical description of these effects that can be applied in MMOD risk assessment software. In this paper, results of the impact experiments are presented, and characteristics of target damage are evaluated. A comparison of intermediate velocity impact failure mechanisms in current BLEs are discussed and compared to the findings of the experimental study. Risk assessment calculations have been made on a simplified structure using currently implemented penetration equations and predicted limits from the experimental program, and the variation in perceived mission risk is discussed. It was found that ballistic limit curves that explicitly incorporated phase change effects within the intermediate regime lead to a decrease in predicted MMOD risk for ISS-representative orbits. When considered for all Whipple-based shielding configurations onboard the ISS, intermediate phase change effects could lead to significant variations in predicted mission risk.
A Comparison of the SOCIT and DebriSat Experiments
NASA Technical Reports Server (NTRS)
Ausay, Erick; Blake, Brandon; Boyle, Colleen; Cornejo, Alex; Horn, Alexa; Palma, Kirsten; Pistella, Frank; Sato, Taishi; Todd, Naromi; Zimmerman, Jeffrey;
2017-01-01
This paper explores the differences between, and shares the lessons learned from, two hypervelocity impact experiments critical to the update of orbital debris environment models. The procedures and processes of the fourth Satellite Orbital Debris Characterization Impact Test (SOCIT) were analyzed and related to the ongoing DebriSat experiment. SOCIT was the first hypervelocity impact test designed specifically for satellites in Low Earth Orbit (LEO). It targeted a 1960's U.S. Navy satellite, from which data was obtained to update pre-existing NASA and DOD breakup models. DebriSat is a comprehensive update to these satellite breakup models- necessary since the material composition and design of satellites have evolved from the time of SOCIT. Specifically, DebriSat utilized carbon fiber, a composite not commonly used in satellites during the construction of the US Navy Transit satellite used in SOCIT. Although DebriSat is an ongoing activity, multiple points of difference are drawn between the two projects. Significantly, the hypervelocity tests were conducted with two distinct satellite models and test configurations, including projectile and chamber layout. While both hypervelocity tests utilized soft catch systems to minimize fragment damage to its post-impact shape, SOCIT only covered 65% of the projected area surrounding the satellite, whereas, DebriSat was completely surrounded cross-range and downrange by the foam panels to more completely collect fragments. Furthermore, utilizing lessons learned from SOCIT, DebriSat's post-impact processing varies in methodology (i.e., fragment collection, measurement, and characterization). For example, fragment sizes were manually determined during the SOCIT experiment, while DebriSat utilizes automated imaging systems for measuring fragments, maximizing repeatability while minimizing the potential for human error. In addition to exploring these variations in methodologies and processes, this paper also presents the challenges DebriSat has encountered thus far and how they were addressed. Accomplishing DebriSat's goal of collecting 90% of the debris, which constitutes well over 100,000 fragments, required addressing many challenges stemming from the very large number of fragments. One of these challenges arose in identifying the foam-embedded fragments. DebriSat addressed this by X-raying all of the panels once the loose debris were removed, and applying a detection algorithm developed in-house to automate the embedded fragment identification process. It is easy to see how the amount of data being compiled would be outstanding. Creating an efficient way to catalog each fragment, as well as archiving the data for reproducibility also posed a great challenge for DebriSat. Barcodes to label each fragment were introduced with the foresight that once the characterization process began, the datasheet for each fragment would have to be accessed again quickly and efficiently. The DebriSat experiment has benefited significantly by leveraging lessons learned from the SOCIT experiment along with the technological advancements that have occurred during the time between the experiments. The two experiments represent two ages of satellite technology and, together, demonstrate the continuous efforts to improve the experimental techniques for fragmentation debris characterization.
Calculational investigation of impact cratering dynamics - Early time material motions
NASA Technical Reports Server (NTRS)
Thomsen, J. M.; Austin, M. G.; Ruhl, S. F.; Schultz, P. H.; Orphal, D. L.
1979-01-01
Early time two-dimensional finite difference calculations of laboratory-scale hypervelocity (6 km/sec) impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed and the resulting material motions analyzed. Results show that the initial jetting of vaporized target material is qualitatively similar to experimental observation. The velocity flow field developed within the target is shown to have features quite similar to those found in calculations of near-surface explosion cratering. Specific application of Maxwell's analytic Z-Model (developed to interpret the flow fields of near-surface explosion cratering calculations), shows that this model can be used to describe the flow fields resulting from the impact cratering calculations, provided that the flow field center is located beneath the target surface, and that application of the model is made late enough in time that most of the projectile momentum has been dissipated.
Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition
NASA Astrophysics Data System (ADS)
Robinson, Tessa
Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.
NASA Astrophysics Data System (ADS)
Badziak, J.; Kucharik, M.; Liska, R.
2018-02-01
The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.
Characterization of Hypervelocity Impact Debris from the DebriSat Tests
NASA Astrophysics Data System (ADS)
Adams, P. M.; Sheaffer, P. M.; Lingley, Z.; Radhakrishnan, G.
The DebriSat program consisted of 3 hypervelocity impact tests conducted in 2 Torr of air with 7 km/s, 600 g aluminum projectiles. In the first test, Pre Preshot, the target consisted of multiple layers of fiberglass, stainless steel and Kevlar fabric. No soft catch foam was used. The subsequent two tests, DebrisLV and DebriSat, were designed to simulate hypervelocity impacts with a launch vehicle upper stage and a modern LEO satellite, respectively. The interior of the chamber was lined with soft catch foam to trap break-up fragments. In all three tests, witness plates were placed near the target to sample impact debris and determine its reflectance, composition and spectral properties. Reflectance measurements are important for calculating the size of orbital hypervelocity impact fragments. The debris from the Pre Preshot test consisted of a two-phase mixture formed from solidified molten silicate and steel droplets. Individual droplets ranged from 100 μm to 10 nm. The reflectance of witness plates dropped from 95% to 20-30% as a result of the debris. Debris collected on witness plates in the DebrisLV and DebriSat tests consisted of μm to nm-sized solidified molten metallic droplets in a matrix of condensed vaporized soft catch. Disordered graphitic carbon was also detected. The reflectance of debris-covered witness plates dropped from 95% to 5%. The dramatic decrease in reflectance for hypervelocity impact debris is attributed to the effect of scattering from μm to nm sized solidified molten metallic droplets and the presence of graphitic carbon, when organics are present. The presence of soft catch in the later tests and the high organic content with graphitic carbon in the debris appear to be responsible for this much lower post-test reflectance. Understanding orbital debris reflectance is critical for estimating size and determining debris detectability.
Target-projectile interaction during impact melting at Kamil Crater, Egypt
NASA Astrophysics Data System (ADS)
Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi
2016-05-01
In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as an immiscible liquid and did not interact with the projectile. During the excavation stage dark glass melt engulfed and coated the white glass melt, target fragments, and got stuck to iron meteorite shrapnel fragments. This model could also explain the common formation of white and dark glasses in small impact craters generated by iron bodies (e.g., Wabar).
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Hedman, Troy; Christiansen, Eric L.
2009-01-01
The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration.
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Gray, Barry
1993-01-01
The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Technical Reports Server (NTRS)
Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.
1992-01-01
The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed above, is also discussed. Wherever possible, these results are compared to those obtained by LDEF investigators and future experiments suggested which could help to explain unique features associated with LDEF impacts.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Astrophysics Data System (ADS)
Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.
1992-06-01
The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed above, is also discussed. Wherever possible, these results are compared to those obtained by LDEF investigators and future experiments suggested which could help to explain unique features associated with LDEF impacts.
Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells
NASA Technical Reports Server (NTRS)
Frate, David T.; Nahra, Henry K.
1996-01-01
Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.
NASA Technical Reports Server (NTRS)
Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William
2011-01-01
Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.
Analytic Ballistic Performance Model of Whipple Shields
NASA Technical Reports Server (NTRS)
Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.
2014-01-01
The dual-wall Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum pressure generated under threat particle impact of the sacrificial wall and the amount of void that is available for expansion. Ensuring the minimum pressure is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the minimum pressure achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs and dynamic concerns making it important to have an understanding of the effects of density contrast and impact speed. In this paper a fourth key parameter is identified related to fragmentation, which corresponds to the ratio of the size of the projectile relative to the transition from brittle to ductile hole growth in the projectile. Ballistic limit equations have been developed to define the failure limits of a MMOD shield, generally in terms of projectile diameter (or mass), impact velocity, and angle. Within the range of impact velocities relevant for Earth-orbiting spacecraft, three distinct regions of penetration phenomenology have been identified for Whipple shields: center dot Low velocity: the projectile is eroded (and possibly deformed) during its passage through the bumper plate, but is not fragmented. Thus, perforation of the rear wall is by a fragment with a mass and speed equal to or less than the original impactor. center dot Intermediate (shatter) velocity: impact velocities are sufficient to induce projectile fragmentation upon impact with the bumper plate, resulting in a coarse debris cloud with large solid fragments. Increasing velocity within the shatter regime results in increased fragmentation, and eventually melting, of the projectile and bumper fragments, generating a finer and more evenly dispersed debris cloud. Failure of the rear wall is a complicated combination of modes observed at low- and hypervelocity. center dot Hypervelocity: the projectile and holed-out bumper material is completely, or nearly completely, melted and/or vaporized by the initial impact. The resultant debris cloud impacts over a dispersed area of the rear wall, loading it impulsively and inducing failure through rupture or petalling. While each of these regimes are well observed with extensive empirical methods to describe these regions, differences in impactor materials, configurations of shields and questions about the limitations of the attainable impact speeds have left questions that are difficult to answer from completely empirical methods.
Fielding, Lee A; Hillier, Jon K; Burchell, Mark J; Armes, Steven P
2015-12-11
Over the last decade or so, a range of polypyrrole-based particles have been designed and evaluated for space science applications. This electrically conductive polymer enables such particles to efficiently acquire surface charge, which in turn allows their acceleration up to the hypervelocity regime (>1 km s(-1)) using a Van de Graaff accelerator. Either organic latex (e.g. polystyrene or poly(methyl methacrylate)) or various inorganic materials (such as silica, olivine or pyrrhotite) can be coated with polypyrrole; these core-shell particles are useful mimics for understanding the hypervelocity impact ionisation behaviour of micro-meteorites (a.k.a. cosmic dust). Impacts on metal targets at relatively low hypervelocities (<10 km s(-1)) generate ionic plasma composed mainly of molecular fragments, whereas higher hypervelocities (>10 km s(-1)) generate predominately atomic species, since many more chemical bonds are cleaved if the particles impinge with higher kinetic energy. Such fundamental studies are relevant to the calibration of the cosmic dust analyser (CDA) onboard the Cassini spacecraft, which was designed to determine the chemical composition of Saturn's dust rings. Inspired by volcanism observed for one of the Jupiter's moons (Io), polypyrrole-coated sulfur-rich latexes have also been designed to help space scientists understand ionisation spectra originating from sulfur-rich dust particles. Finally, relatively large (20 μm diameter) polypyrrole-coated polystyrene latexes have proven to be useful for understanding the extent of thermal ablation of organic projectiles when fired at ultralow density aerogel targets at up to 6.1 km s(-1) using a Light Gas Gun. In this case, the sacrificial polypyrrole overlayer simply provides a sensitive spectroscopic signature (rather than a conductive overlayer), and the scientific findings have important implications for the detection of organic dust grains during the Stardust space mission.
A holographic technique for recording a hypervelocity projectile with front surface resolution.
Kurtz, R L; Loh, H Y
1970-05-01
Any motion of the scene during the exposure of a hologram results in a spatial modulation of the recorded fringe contrast. On reconstruction, this produces a spatial amplitude modulation of the reconstructed wavefront, which results in a blurring of the image, not unlike that of a conventional photograph. For motion of the scene sufficient to change the path length of the signal arm by a half wavelength, this blurring is generally prohibitive. This paper describes a proposed holographic technique which offers promise for front light resolution of targets moving at high speeds, heretofore unobtainable by conventional methods.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.
1992-01-01
The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.
The Survival of Meteorite Organic Compounds with Increasing Impact Pressure
NASA Technical Reports Server (NTRS)
Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.
Influence of plasticity models upon the outcome of simulated hypervelocity impacts
NASA Astrophysics Data System (ADS)
Thomas, John N.
1994-07-01
This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.
Experimental Evaluation of the Canadarm2 Residual Flexural Strength After an Orbital Debris Impact
NASA Astrophysics Data System (ADS)
Lanouette, Anne-Marie; Potvin, Marie-Josee; Martin, Francis; Mondor, Sylvain; Houle, Dany; Therriault, Daniel
2014-06-01
The risk for spacecraft structures of being hit by an orbital debris is constantly increasing due to the steadily augmenting number of objects sent to space while only a fraction of them are deorbited after use. Numerous studies have taken place to characterize the damage of a hypervelocity impact on a space structure; however the structural effect of such impact usually isn't investigated. Four cylindrical samples 35cm in diameter and 2.7mm in thickness of carbon fibers IM7/PEEK, representative of the Canadarm2 structure, covered by thermal blankets, have been subjected to hypervelocity impacts. Projectiles with diameters between 5.0 and 8.0mm and velocities between 6.9 and 7.2km/s were used for the tests. The visible and internal damage on the booms and on the thermal blankets was characterized. The damaged cylinders underwent fatigue bending loading with two different amplitudes to study the residual resistance of a laminate space structure after an orbital debris impact. Damage propagation was detected with the higher amplitude fatigue loading only.
NASA Astrophysics Data System (ADS)
Kurosawa, Kosuke; Okamoto, Takaya; Genda, Hidenori
2018-02-01
Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid- and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in strongly shocked matter, were used to study the hydrodynamic-thermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity veject and peak pressure Ppeak was also derived. Our approach shows that "late-stage acceleration" in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., veject > 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when Ppeak = 30-50 GPa. Although the mass of such ejecta is limited to 0.1-1 wt% of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.
Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera
NASA Technical Reports Server (NTRS)
Parker, Vance C.; Crews, Jeanne Lee
1988-01-01
The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.
A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Erie
2010-01-01
A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.
NASA Astrophysics Data System (ADS)
Lanouette, Anne-Marie
Space structures are more and more likely to be impacted at hypervelocities, velocities greater than 3km/s, as the number of orbital debris has rapidly grown in the last two decades. These debris are mostly composed of pieces jettisoned from a launcher or a satellite during the deployment of a structure, dead spacecrafts and fragmentation debris. Collision between two debris, generating many smaller new debris, are more likely to happen. Large space debris (diameter over 10cm) are tracked by different space organizations and their position at all time is known. It is however impossible to track the smaller debris while several studies have already demonstrated that they can also cause significant damage to structures. It is now more and more common to add a kind of protection against collisions to the space structures, but the great majority of space structures currently in orbit, as the Canadarm2, are not protected against hypervelocity impacts. Damage caused by such impacts to different space materials such as aluminum, sandwich panels and laminates has already been characterized during different studies since the end of the 1980s while no study, dedicated to the experimental evaluation of the mechanical properties of a space structure after an impact, relevant to the case of the Canadarm2, has been published. It is only possible to find, in the literature, studies determining the residual mechanical properties after an impact at much lower velocities; the energy of impact is generally three orders of magnitude smaller. The Canadarm2, or Space Station Remote Manipulator System (SSRMS), is installed on the International Space Station (ISS) since 2001. It had an initial 10-year lifespan, but it is still very useful today for maintenance operations and to capture and release incoming space capsules. Understanding the effects of an orbital debris impact on the Canadarm2 structure is now primordial in order to adequately redefine the load levels that can be applied on the arm as a function of the observable damage on the thermal blankets. The main objectives of this study are: first, to obtain a correlation between the visible damage on the booms and the corresponding internal damage of the structure, second to study the cracks caused by the impact growth under different cyclic loads, and finally to provide considerations on the load levels to be applied on the robotic arm as a function of the observable damage. To achieve these objectives, samples representative of the Canadarm2 structure, four cylindrical samples of carbon fibers IM7/PEEK with an external diameter of 35cm and a thickness of 2.7mm, were obtained and covered by pieces of thermal blankets also representative of the Canadarm2. These four samples were impacted at the University of New Brunswick hypervelocity facility, HIT Dynamics. Two samples were impacted by projectiles 5.556mm in diameter and the two remaining samples were impacted with 7.938mm in diameter projectiles. All projectiles were aluminum spheres travelling at ˜7km/s. The samples underwent ultrasonic scanning thereafter to obtain images of their internal damage. In the case of the 5.556mm diameter projectiles, the damage left on the front side was an entry crater 6.2cm in diameter on the thermal blanket and a crater 14.8mm in diameter on the composite wall accompanied by no visual damage on the opposite side of the cylinder. In the case of the 7.938mm diameter projectiles, the damage left on the front side was an entry crater 9.2cm in diameter on the thermal blanket and a crater 17.0mm in diameter on the composite wall accompanied by visible damage on the opposite side in a zone 25.5cm in diameter. The suggestions given for the utilization of the Canadarm2 after an impact are thus the followings. If a crater ≤ 14mm on the composite wall is visible on one side accompanied by no damage on the opposite side of the structure, then the flight and emergency load levels can be maintained. However, if a crater ≤ 17.0mm on the composite wall is visible on one side accompanied by damage in a zone ≤ 25.5cm on the opposite side of the cylinder, only the flight load level can still be used for any position of the damaged zones. If the emergency level must be used, then the damaged zones must absolutely be positioned close to the bending neutral plan, otherwise the applied loads will aggravate the damage caused by the orbital debris impact. (Abstract shortened by ProQuest.).
Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nicolas; Close, Sigrid; Goel, Ashish
2013-03-15
Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using amore » Van de Graaff dust accelerator. Iron projectiles ranging from 10{sup -16} g to 10{sup -11} g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather anomalies and failures.« less
Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials
NASA Astrophysics Data System (ADS)
Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf
2013-03-01
Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather anomalies and failures.
Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).
NASA Astrophysics Data System (ADS)
Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.
2012-04-01
The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe, Cr, Co and V (experiment with the steel projectile). An enrichment of W and Mo in the shocked quartzes could not be observed. It is suggested that two types of geochemical mixing processes between projectile and target occur during the impact process: (i) After shock compression with formation of PDF in Qtz and diaplectic quartz glass, up to about 1 % of projectile matter is added to these phases without detectable fractionation between the meteoritic tracer elements (except W and Mo). We suggest that projectile material was introduced to shocked quartz from a metallic vapour phase, which was formed near the projectile-target interface. The lack of W and Mo enrichment in shocked target material probably results from the relatively high melting and boiling points of these elements. (ii) In addition heterogeneous melting of sandstone and projectile and subsequent mixing of both melts inter-element fractionation occurred according to the chemical properties of the elements. Fractionation processes similar to our type (ii) are known from natural impactites [3]. We acknowledge support by the German Science Foundation (DFG FOR 887)
The electromagnetic properties of plasma produced by hypervelocity impact
NASA Astrophysics Data System (ADS)
Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng
2018-02-01
The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.
Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures
NASA Technical Reports Server (NTRS)
Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.
2010-01-01
Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.
Enhanced hypervelocity launcher: Capabilities to 16 km/s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabildas, L.C.; Kmetyk, L.N.; Reinhart, W.D.
1993-12-31
A systematic study is described which has led to the successful launch of thin flier plates to velocities of 16 km/s. The energy required to launch a flier plant to 16 km/s is approximately 10 to 15 times the energy required to melt and vaporize the plate. The energy must, therefore, be deposited in a well-controlled manner to prevent melt or vaporation. This is achieved by using a graded-density assembly to impact a stationary flier-plate upon impact time dependent, structure, high pressure pulses are generated and used to propel the plantes plates to hypervelocities without melt or fracture. In previousmore » studies, a graded density impact of 7.3 km/s was used to launch a 0.5 mm thick plate to a velocity of over 12 km/s. If impact techniques alone were to be used to achieve flier-plate velocities approaching 16 km/s, this would require that the graded-density impact occur at {approximately} 10 km/s. In this paper, we describe a new technique that has been implemented to enhance the performance of the Sandia hypervelocity launcher. This technique of creating an impact-generated acceleration reservoir, has allowed the launch of 0.5 mm to 1.0 mm thick plates to record velocities up to 15.8 km/s. In these experiments, both titanium (Ti-6A1-4V) and aluminum (6061-T6) alloy were used for the flier-plate material. These are the highest metallic projectile plate velocities ever achieved for masses in the range of 0.1 g to 1 g.« less
Compositional analysis and classification of projectile residues in LDEF impact craters
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Bernhard, Ronald P.
1992-01-01
This catalog contains preliminary analyses of residues of hypervelocity projectiles that encountered gold substrates exposed by instrument A0187-1 on the Long Duration Exposure Facility (LDEF). This instrument was on LDEF's trailing edge where relative encounter speeds should be lowest for any non-spinning platform in low Earth orbit (LEO). Approximately 0.6 m(exp 2) of Au substrates yielded 198 impact craters greater than 20 micrometers in diameter. Some 30 percent of the craters were made by natural cosmic dust particles and some 15 percent by man-made objects. Some 50 percent of all features, however, have residues, if any, that are beyond the detection threshold of the SEM-EDXA method used. The purpose of this catalog is to provide detailed evidence and criteria that may be used to arrive at specific particle types on a case-by-case basis and to group such particles into compositional classes. Clearly this is a somewhat interpretative undertaking. For that reason, we encourage and solicit critique and comments from those interested in the systematic analysis of all impact features on LDEF.
Penetration experiments in aluminum and Teflon targets of widely variable thickness
NASA Technical Reports Server (NTRS)
Hoerz, F.; Cintala, Mark J.; Bernhard, R. P.; See, T. H.
1994-01-01
The morphologies and detailed dimensions of hypervelocity craters and penetration holes on space-exposed surfaces faithfully reflect the initial impact conditions. However, current understanding of this postmortem evidence and its relation to such first-order parameters as impact velocity or projectile size and mass is incomplete. While considerable progress is being made in the numerical simulation of impact events, continued impact simulations in the laboratory are needed to obtain empirical constraints and insights. This contribution summarizes such experiments with Al and Teflon targets that were carried out in order to provide a better understanding of the crater and penetration holes reported from the Solar Maximum Mission (SMM) and the Long Duration Exposure Facility (LDEF) satellites. A 5-mm light gas gun was used to fire spherical soda-lime glass projectiles from 50 to 3175 microns in diameter (D(sub P)), at a nominal 6 km/s, into Al (1100 series; annealed) and Teflon (Teflon(sup TFE)) targets. Targets ranged in thickness (T) from infinite halfspace targets (T approx. equals cm) to ultrathin foils (T approx. equals micron), yielding up to 3 degrees of magnitude variation in absolute and relative (D(sub P)/T) target thickness. This experimental matrix simulates the wide range in D(sub P)/T experienced by a space-exposed membrane of constant T that is being impacted by projectiles of widely varying sizes.
Double-Plate Penetration Equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
2000-01-01
This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.
NASA Astrophysics Data System (ADS)
Daly, T.; Call, S.; Austin, D. E.
2010-12-01
Electrospray is a soft ionization technique commonly used to charge large biomolecules; it has, however, also been applied to inorganic compounds. We are extending this technique to mineral microparticles. Electrospray-charged mineral microparticles are interesting in the context of surface science because surface chemistry dictates where and how charge carriers can bond to mineral surfaces. In addition, using electrospray to charge mineral particles allows these particles to be electrostatically accelerated as projectiles in high- and hyper-velocity impacts. Since current techniques for producing high- and hyper-velocity microparticle impacts are largely limited to metal or metal-coated projectiles, using minerals as projectiles is a significant innovation. Electrospray involves three steps: creation of charged droplets containing solute/particles, evaporation and bifurcation of droplets, and desolvation of the solute/particles. An acidified solution is slowly pumped through a needle in a strong DC field, which causes the solution to break into tiny, charged droplets laden with protons. Solvent evaporates from the electrosprayed droplets as they move through the electric field toward a grounded plate, causing the charge on the droplet to increase relative to its mass. When the electrosprayed droplet’s charge becomes such that the droplet is no longer stable, it bifurcates, and each of the resulting droplets carries some of the original droplet’s charge. Evaporation and bifurcation continues until the solute particle is completely desolvated. The result is a protonated solute molecule or particle. We built an instrument that electrosprays particles into vacuum and measures them using an image charge detector. Mineral microparticles were prepared by grinding natural mineral samples to ~2 µm diameter. These microparticles are then added to a 4:1 methanol:water solution to create a 0.005% w/v suspension. The suspension is electrosprayed into vacuum, where the charge detector measures the electrosprayed mineral particles’ speed and charge. Quartz microparticles have been successfully electrosprayed. Variation in quartz microparticles’ charge as a function of pH is being evaluated. In addition, we are studying how to completely desolvate electrosprayed mineral particles. Desolvation is not trivial and often requires more than the passive passage of the droplets from the needle to the grounded plate and into vacuum. We are testing two desolvation methods: a heated beam tube and a heated capillary. Preliminary data suggests we have achieved complete desolvation with a hot beam tube. Although quartz’s surface chemistry is rather unique, successful electrospray of quartz microparticles strongly suggests that other minerals may also be electrosprayed. We are preparing olivine samples for electrospray. In addition, an instrument that creates high-velocity microparticle impacts using electrospray-charged mineral microparticles is being developed. This instrument will not only permit minerals to be used as projectiles, but also allows direction characterization of chemical speciation occurring during microparticle impacts.
NASA Astrophysics Data System (ADS)
Kuznik, Frank
1993-09-01
A development history and current status evaluation is presented for large-bore, hypervelocity-range projectile acceleration 'cannon', giving attention to the various operating principles that may be employed; these range from ordinary, breech-charge propelled guns and ramjet-effect tubes to electromechanical accelerators and light-gas guns. Attention is given to the pioneering work of the late Gerald Bull and the role of the SDI program in launcher development during the 1980s. All of the devices discussed are characterized by payload accelerations of the order of 1000 Gs, and are therefore restricted to the most rugged cargo; they compensate for this with the promise of very inexpensive operation relative to rockets, and may be ideal for lofting space station construction materials into orbit.
Railgun armature velocity improvement, SBIR phase 2
NASA Astrophysics Data System (ADS)
Thurmond, Leo E.; Bauer, David P.
1992-08-01
Railgun hypervelocity performance has not been repeatably demonstrated at velocities over 6 km/s. A significant performance limiting phenomena is the formation of secondary current paths in parallel with the main projectile accelerating plasma. A confined plasma armature technique was developed to prevent secondary armature formation. Confinement prevents loss of ionized material from the plasma armature and thereby prevents formation of a low rail-to-rail conductance. We controlled pressure in the confined armature via controlled venting through ports in the rails. Railgun tests with the confined armature show that sealing at the rail-confinement vessel interface is critical and difficult to achieve. Our tests show that during low seal leakage operation secondaries are prevented. However, maintaining good seal for the entire launch is very difficult.
HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane
NASA Technical Reports Server (NTRS)
Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce
2015-01-01
The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.
NASA Technical Reports Server (NTRS)
Cornelison, C. J.; Watts, Eric T.
1998-01-01
Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis
2015-09-01
Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.
Hypervelocity Impact Testing of Space Station Freedom Solar Cells
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Best, Steve R.; Myhre, Craig A.
1994-01-01
Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.
Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John
2014-06-01
The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies.
Penetration scaling in atomistic simulations of hypervelocity impact
NASA Astrophysics Data System (ADS)
Ruestes, C. J.; Bringa, E. M.; Fioretti, F.; Higginbotham, A.; Taylor, E. A.; Graham, G.
2011-06-01
We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km/s on copper films ranging in thickness from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimeter scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/d < 1.5, where f is the film thickness and d is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account. Penetration in films with pre-existing nanocracks is qualitatively similar to penetration in perfect films, including the lack of back-spall. Simulations using ``peridynamics'' are also described and compared to the atomistic simulations. Work supported by PICT2007-PRH, PICT-2008 1325, and SeCTyP.
NASA Astrophysics Data System (ADS)
Goldsworthy, B. J.; Burchell, M. J.; Cole, M. J.; Armes, S. P.; Khan, M. A.; Lascelles, S. F.; Green, S. F.; McDonnell, J. A. M.; Srama, R.; Bigger, S. W.
2003-10-01
The ionic plasma produced by a hypervelocity particle impact can be analysed to determine compositional information for the original particle by using a time-of-flight mass spectrometer. Such methods have been adopted on interplanetary dust detectors to perform in-situ analyses of encountered grains, for example, the Cassini Cosmic Dust Analyser (CDA). In order to more fully understand the data returned by such instruments, it is necessary to study their response to impacts in the laboratory. Accordingly, data are shown here for the mass spectra of ionic plasmas, produced through the acceleration of microparticles via a 2 MV van de Graaff accelerator and their impact on a dimensionally correct CDA model with a rhodium target. The microparticle dusts examined have three different chemical compositions: metal (iron), organic (polypyrrole and polystyrene latex) and mineral (aluminosilicate clay). These microparticles have mean diameters in the range 0.1 to 1.6 mu m and their velocities range from 1-50 km s-1. They thus cover a wide range of compositions, sizes and speeds expected for dust particles encountered by spacecraft in the Solar System. The advent of new low-density, microparticles with highly controllable attributes (composition, size) has enabled a number of new investigations in this area. The key is the use of a conducting polymer, either as the particle itself or as a thin overlayer on organic (or inorganic) core particles. This conductive coating permits efficient electrostatic charging and acceleration. Here, we examine how the projectile's chemical composition influences the ionic plasma produced after the hypervelocity impact. This study thus extends our understanding of impact plasma formation and detection. The ionization yield normalized to particle mass was found to depend on impact speed to the power (3.4 +/- 0.1) for iron and (2.9 +/- 0.1) for polypyrrole coated polystyrene and aluminosilicate clay. The ioization signal rise time was found to fall for all projectile materials from a few microseconds at low impact speeds (3 km s-1) to a few tenths of a microsecond at higher speeds (approximately 16 km s-1 for aluminosilicate particles and approximately 28 km s-1 for iron and polystyrene particles). At speeds greater than these the rise time was a constant few tenths of a microsecond independent of impact speed. The mass resolution of the time of flight spectrometer was found to be non-linear at high masses above 100 amu. It was Delta m/m = 5 for m = 1 amu and 40 for m = 200 amu. However, although at high masses most mass peaks had the resolution quoted, there were also occasional much narrower mass peaks observed, suggesting that at 250 to 280 amu Delta m/m = 80 to 100. The lower resolutions may be due to closely spaced mass peak signals effectively merging into one observed peak due to the (greater but still finite) resolution found for the isolated mass peaks. Complex mass spectra have been reproducibly obtained from a number of different projectiles that display many charged molecular fragments with masses up to 250 amu and with periodicities of 12-14 amu. These new studies reveal an extremely strong dependence of the time-of-flight mass spectra on the impact speed, particularly at low velocities (1-20 km s-1). In some impact velocity regimes it is possible to distinguish time-of-flight spectra originating from organic microparticles from those obtained from iron microparticles. However, such discrimination was not possible at high impact speeds, nor was it possible to distinguish between the time-of-flight spectra obtained for aluminosilicate particles from those obtained for iron projectiles.
Multi-factor Analysis of Pre-control Fracture Simulations about Projectile Material
NASA Astrophysics Data System (ADS)
Wan, Ren-Yi; Zhou, Wei
2016-05-01
The study of projectile material pre-control fracture is helpful to improve the projectile metal effective fragmentation and the material utilization rate. Fragments muzzle velocity and lethality can be affected by the different explosive charge and the way of initiation. The finite element software can simulate the process of projectile explosive rupture which has a pre-groove in the projectile shell surface and analysis of typical node velocity change with time, to provides a reference for the design and optimization of precontrol frag.
Feasibility of Obtaining Hypervelocity Acceleration Using Propellant Lined Launch Tubes
1970-10-01
Pog dt V1 rD 2 t i but dt -dsv Therefore V2 4M S 2 V I + PVTi Jdv f Pogk-I TD 2 1 SI1 v or V 2 4M V S2 [ a--- + pV2Ti] d v = Pog ds V 1 210D...ignition lag time, T i" This equation is plotted in Figure 11.2 for the following valves: P = 20,000 psi 0 g = 32,174 lbm ft lb 2 z sec 11 M = 150 mgP D ...uniform during acceleration, then the motion of the projectile is given by: P = (pd) v dx Thus V dv P - (pd) v dx 0 V d Integrating P V 0 Y )Pf o o0
Multi-Shock Shield Performance at 15 MJ for Catalogued Debris
NASA Technical Reports Server (NTRS)
Miller, J. E.; Davis, B. A.; Christiansen, E. L.; Lear, D. M.
2015-01-01
While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, the assessment of the feasibility of protecting a spacecraft from this catalogued debris is described using numerical simulations and a test of a multi-shock shield system against a cylindrical projectile impacting normal to the surface with approximately 15 MJ of kinetic energy. The hypervelocity impact test has been conducted at the Arnold Engineering Development Complex (AEDC) with a 598 g projectile at 6.905 km/s on a NASA supplied multi-shock shield. The projectile used is a hollow aluminum and nylon cylinder with an outside diameter of 8.6 cm and length of 10.3 cm. Figure 1 illustrates the multi-shock shield test article, which consisted of five separate bumpers, four of which are fiberglass fabric and one of steel mesh, and two rear walls, each consisting of Kevlar fabric. The overall length of the test article was 2.65 m. The test article was a 5X scaled-up version of a smaller multi-shock shield previously tested using a 1.4 cm diameter aluminum projectile for an inflatable module project. The distances represented by S1 and S1/2 in the figure are 61 cm and 30.5 cm, respectively. Prior to the impact test, hydrodynamic simulations indicated that some enhancement to the standard multi-shock system is needed to address the effects of the cylindrical shape of the projectile. Based on the simulations, a steel mesh bumper has been added to the shield configuration to enhance the fragmentation of the projectile. The AEDC test occurred as planned, and the modified NASA multi-shock shield successfully stopped 598 g projectile using 85.6 kg/m(exp 2). The fifth bumper layer remained in tact, although it was torn free from its support structure and thrown into the first rear wall. The outer Kevlar layer of the first rear wall tore likely from the impact of the fifth bumper's support structure, but the back of the rear wall was intact. No damage occurred to the second rear wall, or to the witness plate behind the target.
Hypervelocity impact testing of cables
NASA Technical Reports Server (NTRS)
Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.
1973-01-01
The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.
A dynamic study of fragmentation and energy loss during high velocity impact
NASA Technical Reports Server (NTRS)
Zee, Ralph H.
1992-01-01
Research conducted under this contract can be divided into two main areas: hypervelocity (in the range up to 7 km/s) and high velocity (less than 1 km/s). Work in the former was performed at NASA-MSFC using the Light Gas Gun Facility. The lower velocity studies were conducted at Auburn University using the ballistic gun. The emphasis of the project was on the hypervelocity phenomenon especially in the characterization of the debris cloud formed by the primary impact events. Special devices were made to determine the angular distributions of momentum and energy of the debris cloud as a function of impact conditions. After several iteration processes, it was decided to concentrate on the momentum effort. Prototype devices were designed, fabricated, and tested. These devices were based on the conservation of momentum. Distributions of the debris cloud formed were measured by determining the amount of momentum transferred from the debris cloud to strategically placed pendulum measurement devices. The motion of the pendula was monitored using itegrated opto-interrupters. The distribution of momentum in the debris cloud was found to be a strong function of the impact condition. Small projectiles at high velocities were observed to produce finely dispersed debris whereas large projectiles generated discrete particles in the debris. Results also show that the momentum in the forward direction was enhanced due to the impact. This phenomenon of momentum multiplication was also observed in other studies and in computer simulations. It was initially planned to determine the energy distribution using deformation energy in a rod with strain gauges. Results from preliminary studies show that this technique is acceptable but too tedious. A new technique was explored based on measuring the heating effect of the debris cloud using an IR camera. The feasibility and sensitivity was established at Auburn University. This type of energy distribution measurement method can easily be adapted to the gas gun facility at MSFC. The objective of the lower velocity studies at Auburn was to simulate the damage produced in advanced materials by the lower energy debris cloud.
NASA Technical Reports Server (NTRS)
Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.
2008-01-01
The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.
Bowden, Stephen A.; Cole, Michael; Parnell, John
2014-01-01
Abstract The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ∼2 and ∼4 km s−1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s−1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. Key Words: Organic—Hypervelocity—Shock—Biomarkers. Astrobiology 14, 473–485. PMID:24901745
Igneous rocks formed by hypervelocity impact
NASA Astrophysics Data System (ADS)
Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.
2018-03-01
Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.
Shock melting and vaporization of lunar rocks and minerals.
NASA Technical Reports Server (NTRS)
Ahrens, T. J.; O'Keefe, J. D.
1972-01-01
The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.
Low voltage arc formation in railguns
Hawke, R.S.
1985-08-05
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.
Low voltage arc formation in railguns
Hawke, Ronald S.
1987-01-01
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.
Low voltage arc formation in railguns
Hawke, R.S.
1987-11-17
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.
Acceleration of objects to high velocity by electromagnetic forces
Post, Richard F
2017-02-28
Two exemplary approaches to the acceleration of projectiles are provided. Both approaches can utilize concepts associated with the Inductrack maglev system. Either of them provides an effective means of accelerating multi-kilogram projectiles to velocities of several kilometers per second, using launchers of order 10 meters in length, thus enabling the acceleration of projectiles to high velocities by electromagnetic forces.
Using PVDF to locate the debris cloud impact position
NASA Astrophysics Data System (ADS)
Pang, Baojun; Liu, Zhidong
2010-03-01
With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.
Engineering Polymer Blends for Impact Damage Mitigation
NASA Technical Reports Server (NTRS)
Gordon, Keith L.; Smith, Russell W.; Working, Dennis C.; Siochi, Emilie J.
2016-01-01
Structures containing polymers such as DuPont's Surlyn® 8940, demonstrate puncture healing when impacted by a 9 millimeter projectile traveling from speeds near 300 meters per second (1,100 feet per second) to hypervelocity impacts in the micrometeoroid velocity range of 5 kilometers per second (16,000 feet per second). Surlyn® 8940 puncture heals over a temperature range of minus 30 degrees Centigrade to plus 70 degrees Centigrade and shows potential for use in pressurized vessels subject to impact damage. However, such polymers are difficult to process and limited in applicability due to their low thermal stability, poor chemical resistance and overall poor mechanical properties. In this work, several puncture healing engineered melt formulations were developed. Moldings of melt blend formulations were impacted with a 5.56 millimeter projectile with a nominal velocity of 945 meters per second (3,100 feet per second) at about 25 degrees Centigrade, 50 degrees Centigrade and 100 degrees Centigrade, depending upon the specific blend being investigated. Self-healing tendencies were determined using surface vacuum pressure tests and tensile tests after penetration using tensile dog-bone specimens (ASTM D 638-10). For the characterization of tensile properties both pristine and impacted specimens were tested to obtain tensile modulus, yield stress and tensile strength, where possible. Experimental results demonstrate a range of new puncture healing blends which mitigate damage in the ballistic velocity regime.
Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact
NASA Technical Reports Server (NTRS)
Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.
2008-01-01
The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Miller, W O; Levatin, J L
Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition onmore » the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.« less
Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L
2009-09-01
Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.
Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Miller, Robert J.
1995-01-01
Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.
Projectile compositions and modal frequencies on the chemistry of micrometeoroids LDEF experiment
NASA Technical Reports Server (NTRS)
Bernhard, Ronald P.; See, Thomas H.; Hoerz, Friedrich
1993-01-01
The Chemistry of Micrometeoroids Experiment (LDEF instrument A0187-1) exposed witness plates of high-purity gold (greater than 99.99 percent Au) and commercial aluminum (greater than 99 percent Al) with the objective of analyzing the residues of cosmic-dust and orbital-debris particles associated with hypervelocity impact craters. The gold substrates were located approximately 8 deg off LDEF's trailing edge (Bay A03), while the aluminum surfaces resided in Bay A11, approximately 52 deg from LDEF's leading edge. SEM-EDX techniques were employed to analyze the residues associated with 199 impacts on the gold and 415 impacts on the aluminum surfaces. The residues that could be analyzed represent natural or man-made materials. The natural particles dominate at all particle sizes less than 5 micron. It is possible to subdivide both particle populations into subclasses. Chondritic compositions dominate the natural impactors (71 percent), followed by monomineralic, mafic-silicate compositions (26 percent), and by Fe-Ni rich sulfides (approximately 3 percent). Approximately 30 percent of all craters on the gold collectors were caused by man-made debris such as aluminum, paint flakes, and other disintegrated, structural and electronic components. Equations-of-state and associated calculations of shock stresses for typical LDEF impacts into the gold and aluminum substrates suggest that substantial vaporization may have occurred during many of the impacts and is the reason why approximately 50 percent of all craters did not contain sufficient residue to permit analysis by the SEM-EDX technique. After converting the crater diameters into projectile sizes using encounter speeds typical for the trailing-edge and forward-facing (Row 11) directions, and accounting for normalized exposure conditions of the CME collectors, we derived the absolute and relative fluxes of specific projectile classes. The natural impactors encounter all LDEF pointing directions with comparable, modal frequencies suggesting compositional (and dynamic) homogeneity of the interplanetary-dust environment in near-Earth orbit.
Hypervelocity Impact Initiation of Explosive Transfer Lines
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Christiansen, Eric L.
2012-01-01
The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an aluminum ball onto a Whipple shield covering SMDC is problematic due to the hydrocode fracture models. Regardless, two simulations were performed resulting in a 5 mm ball initiating the SMDC and a 4 mm ball failing to initiate the SMDC.
Surveys of ISS Returned Hardware for MMOD Impacts
NASA Technical Reports Server (NTRS)
Hyde, James; Christiansen, E.; Lear, D.; Nagy, K.
2017-01-01
Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center in Houston has performed 26 post-flight inspections on space exposed hardware that have been returned from the International Space Station. Data on 1,024 observations of MMOD damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of Scanning Electron Microscopy (SEM) analysis to discern impactor source is included in the database. This paper will summarize the post-flight MMOD inspections, and focus on two inspections in particular: (1) Pressurized Mating Adapter-2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed damages, and (2) Airlock shield panels returned in 2010 after 8.7 years exposure with 58 MMOD damages. Feature sizes from the observed data are compared to predictions using the Bumper risk assessment code.
Surveys of Returned ISS Hardware for MMMOD Impacts
NASA Technical Reports Server (NTRS)
Hyde, J. L.; Christiansen, E. L.; Lear, D. M.; Nagy, K.; Berger, E. L.
2017-01-01
Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center (JSC) in Houston has performed 35 post-flight inspections on space exposed hardware returned from the International Space Station (ISS). Data on 1,188 observations of micrometeoroid and orbital debris (MMOD) damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of energy dispersive X-ray spectroscopic analysis to discern impactor source are included in the database when available. This paper will focus on two inspections, the Pressurized Mating Adapter 2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed impact features, and two Airlock shield panels returned in 2010 after 8.75 years exposure with 58 MMOD impacts. Feature sizes from the observed data are compared to predictions using the Bumper 3 risk assessment code.
Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick
2009-01-01
Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters
Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating
NASA Astrophysics Data System (ADS)
Kurosawa, Kosuke; Genda, Hidenori
2018-01-01
Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (<10 km s-1). This additional heat reduces the impact-velocity thresholds required to heat the targets with the 0.1 projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.
NASA Technical Reports Server (NTRS)
Morrison, R. H.
1972-01-01
Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.
Modeling of gun barrel surface erosion: Historic perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, A.C.
1996-08-01
Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given tomore » cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.« less
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.
Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon
NASA Astrophysics Data System (ADS)
Hermalyn, B.; Schultz, P. H.
2011-12-01
Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging from 11,000 to 500,000 frames per second) to allow measurement of particle velocity over the large dynamic range required for early-time, high-speed components of ejecta. Preliminary results for impacts into sand (Hermalyn and Schultz, 2010, 2011) reveal that early in the cratering process, ejection velocities are higher than assumed by dimensional scaling laws (Housen, et al., 1983). Moreover, the ejection angles of this early-time component are initially low (~30°) and gradually increase to reach nominal ejection angles (~45° for impacts into sand). In this study, we assess the expected ejecta velocities on the moon from the current impact flux and the possible effects of the secondary impacts of ejecta dust particles. By convolving these ejecta measurements with the lunar impact flux rate, an estimate can be derived for the amount and ballistic flight time of dust lofted above the surface of the moon over a given year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabildas, Lalit Chandra; Orphal, Dennis L.
HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources comparedmore » to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being made that is beneficial for continuous development of hypervelocity impact technology and applications even with the relatively limited resources that are being directed in this field.« less
Underwater Acoustic Tracer System
2009-03-13
for controlling and utilizing supercavitating projectile dynamics to produce a distinctive radiated noise signal. (2) Description of the Prior Art...metallic objects which travel relatively closely to a magnetic pickup. For larger, high speed, underwater projectiles, supercavitating underwater vehicles...have been proposed for use. The conditions for supercavitation are known in the art. Supercavitation allows for higher speeds to be sustainable
New Laboratory-Based Satellite Impact Experiments for Breakup Fragment Characterization
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Fitz-Coy, N.; Dikova, R.; Wilson, M.; Huynh, T.; Sorge, M.; Sheaffer, P.; Opiela, J.; Cowardin, H.; Krisko, P.;
2014-01-01
A consortium consisting of the NASA Orbital Debris Program Office, U.S. Air Force's Space and Missile Systems Center, the Aerospace Corporation, and University of Florida is planning a series of hypervelocity impact experiments on mockup targets at the U.S. Air Force's Arnold Engineering Development Complex (AEDC) in early 2014. The target for the first experiment resembles a rocket upper stage whereas the target for the second experiment represents a typical 60-cm/50-kg class payload that incorporates modern spacecraft materials and components as well as exterior wrap of multi-layer insulation and three solar panels. The projectile is designed with the maximum mass that AEDC's Range G two-stage light gas gun can accelerate to an impact speed of 7 km/sec. The impact energy is expected to be close to 15 MJ to ensure catastrophic destruction of the target after the impact. Low density foam panels are installed inside the target chamber to slow down and soft-catch the fragments for post-impact processing. Diagnostic instruments, such as x-ray and high speed optical cameras, will also be used to record the breakup process. The main goal of this "DebriSat" project is to characterize the physical properties, including size, mass, shape, and density distributions, of orbital debris that would be generated by a hypervelocity collision involving an upper stage or a modern satellite in the low Earth orbit environment. In addition, representative fragments will be selected for laboratory optical and radar measurements to allow for better interpretation of data obtained by telescope and radar observations. This paper will provide a preliminary report of the impact results and the plans to process, measure, and analyze the fragments.
Liu, Menglong; Wang, Kai; Lissenden, Cliff J.; Wang, Qiang; Zhang, Qingming; Long, Renrong; Su, Zhongqing; Cui, Fangsen
2017-01-01
Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence. PMID:28772908
NASA Astrophysics Data System (ADS)
Springer, H.; Miller, W.; Levatin, J.; Pertica, A.; Olivier, S.
2010-09-01
Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.
Hypervelocity impact testing of the Space Station utility distribution system carrier
NASA Technical Reports Server (NTRS)
Lazaroff, Scott
1993-01-01
A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.
Supercavitating Projectile Tracking System and Method
2009-12-30
Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.
2006-01-01
Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.
NASA Astrophysics Data System (ADS)
Hurst, A.; Bowden, S. A.; Parnell, J.; Burchell, M. J.; Ball, A. J.
2007-12-01
There are a number of measurements relevant to planetary geology that can only be adequately performed by physically contacting a sample. This necessitates landing on the surface of a moon or planetary body or returning samples to earth. The need to physically contact a sample is particularly important in the case of measurements that could detect medium to low concentrations of large organic molecules present in surface materials. Large organic molecules, although a trace component of many meteoritic materials and rocks on the surface of earth, carry crucial information concerning the processing of meteoritic material in the surface and subsurface environments, and can be crucial indicators for the presence of life. Unfortunately landing on the surface of a small planetary body or moon is complicated, particularly if surface topography is only poorly characterised and the atmosphere thin thus requiring a propulsion system for a soft landing. One alternative to a surface landing may be to use an impactor launched from an orbiting spacecraft to launch material from the planets surface and shallow sub-surface into orbit. Ejected material could then be collected by a follow-up spacecraft and analyzed. The mission scenario considered in the Europa-Ice Clipper mission proposal included both sample return and the analysis of captured particles. Employing such a sampling procedure to analyse large organic molecules is only viable if large organic molecules present in ices survive hypervelocity impacts (HVIs). To investigate the survival of large organic molecules in HVIs with icy bodies a two stage light air gas gun was used to fire steel projectiles (1-1.5 mm diameter) at samples of water ice containing large organic molecules (amino acids, anthracene and beta-carotene a biological pigment) at velocities > 4.8 km/s.UV-VIS spectroscopy of ejected material detected beta-carotene indicating large organic molecules can survive hypervelocity impacts. These preliminary results are yet to be scaled up to a point where they can be accurately interpreted in the context of a likely mission scenario. However, they strongly indicate that in a low mass payload mission scenario where a lander has been considered unfeasible, such a sampling strategy merits further consideration.
The NASA JSC Hypervelocity Impact Test Facility (HIT-F)
NASA Technical Reports Server (NTRS)
Crews, Jeanne L.; Christiansen, Eric L.
1992-01-01
The NASA Johnson Space Center Hypervelocity Impact Test Facility was created in 1980 to study the hypervelocity impact characteristics of composite materials. The facility consists of the Hypervelocity Impact Laboratory (HIRL) and the Hypervelocity Analysis Laboratory (HAL). The HIRL supports three different-size light-gas gun ranges which provide the capability of launching particle sizes from 100 micron spheres to 12.7 mm cylinders. The HAL performs three functions: (1) the analysis of data collected from shots in the HIRL, (2) numerical and analytical modeling to predict impact response beyond test conditions, and (3) risk and damage assessments for spacecraft exposed to the meteoroid and orbital debris environments.
Bio-inspired Armor Protective Material Systems for Ballistic Shock Mitigation
2011-01-01
Coupon testing a b s t r a c t Severe transient ballistic shocks from projectile impacts, mine blasts , or overhead artillery attacks can incapacitate an...past two decades [1]. A ballistic shock results from a significant amount of concentrated energy deposited from caliber projectile impacts, mine blasts ...LS- Dyna , has been predominately utilized to calculate the target shock responses including acceleration histo- ries, shock response spectra
Cratering and penetration experiments in teflon targets at velocities from 1 to 7 km/s
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Cintala, Mark; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Knight, Jeffrey
1994-01-01
Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility after the spacecraft spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments to reproduce such features and to understand the relationships between projectile size and the resulting crater or penetration hole diameter over a wide range of impact velocities. Such relationships are needed to derive the size and mass frequency distribution and flux of natural and man-made particles in low-earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres into pure Teflon targets at velocities ranging from 1 to 7 km/s. Target thickness varied over more than three orders of magnitude from finite halfspace targets to very thin films. Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration hole diameter can become larger than that of a standard crater. The crater diameter in infinite halfspace Teflon targets increases, at otherwise constant impact conditions, with encounter velocity by a factor of V (exp 0.44). In contrast, the penetration hole size in very thin foils is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations apply to all impacts in which the shock-pulse duration of the projectile is shorter than that assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.
Performance of Waterless Concrete
NASA Technical Reports Server (NTRS)
Toutanji, Houssam; Evans, Steve; Grugel, Richard N.
2010-01-01
The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.
Micrometeoroids and debris on LDEF
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude
1992-01-01
Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.
Honeycomb vs. Foam: Evaluating Potential Upgrades to ISS Module Shielding
NASA Technical Reports Server (NTRS)
Ryan, Shannon J.; Christiansen, Eric L.
2009-01-01
The presence of honeycomb cells in a dual-wall structure is advantageous for mechanical performance and low weight in spacecraft primary structures but detrimental for shielding against impact of micrometeoroid and orbital debris particles (MMOD). The presence of honeycomb cell walls acts to restrict the expansion of projectile and bumper fragments, resulting in the impact of a more concentrated (and thus lethal) fragment cloud upon the shield rear wall. The Multipurpose Laboratory Module (MLM) is a Russian research module scheduled for launch and ISS assembly in 2011 (currently under review). Baseline shielding of the MLM is expected to be predominantly similar to that of the existing Functional Energy Block (FGB), utilizing a baseline triple wall configuration with honeycomb sandwich panels for the dual bumpers and a thick monolithic aluminum pressure wall. The MLM module is to be docked to the nadir port of the Zvezda service module and, as such, is subject to higher debris flux than the FGB module (which is aligned along the ISS flight vector). Without upgrades to inherited shielding, the MLM penetration risk is expected to be significantly higher than that of the FGB module. Open-cell foam represents a promising alternative to honeycomb as a sandwich panel core material in spacecraft primary structures as it provides comparable mechanical performance with a minimal increase in weight while avoiding structural features (i.e. channeling cells) detrimental to MMOD shielding performance. In this study, the effect of replacing honeycomb sandwich panel structures with metallic open-cell foam structures on MMOD shielding performance is assessed for an MLM-representative configuration. A number of hypervelocity impact tests have been performed on both the baseline honeycomb configuration and upgraded foam configuration, and differences in target damage, failure limits, and derived ballistic limit equations are discussed.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Finchum, Andy; Hubbs, Whitney; Evans, Steve
2008-01-01
Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.
NASA Technical Reports Server (NTRS)
1992-01-01
Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.
1992-01-01
The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.
NASA Technical Reports Server (NTRS)
Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.
1993-01-01
Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Gallo, Christopher A.; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA s program requirements.
Analysis of Cometary Dust Impact Residues in the Aluminum Foil Craters of Stardust
NASA Technical Reports Server (NTRS)
Graham, G. A.; Kearsley, A. T.; Vicenzi, E. P.; Teslich, N.; Dai, Z. R.; Rost, D.; Horz, F.; Bradley, J. P.
2007-01-01
In January 2006, the sample return capsule from NASA s Stardust spacecraft successfully returned to Earth after its seven year mission to comet Wild-2. While the principal capture medium for comet dust was low-density graded silica aerogel, the 1100 series aluminum foil (approximately 100 m thick) which wrapped around the T6064 aluminum frame of the sample tray assembly (STA) contains micro-craters that constitute an additional repository for Wild-2 dust. Previous studies of similar craters on spacecraft surfaces, e.g. the Long Duration Exposure Facility (LDEF), have shown that impactor material can be preserved for elemental and mineralogical characterization, although the quantity of impact residue in Stardust craters far exceeds previous missions. The degree of shock-induced alteration experienced by the Wild-2 particles impacting on foil will generally be greater than for those captured in the low-density aerogel. However, even some of the residues found in LDEF craters showed not only survival of crystalline silicates but even their solar flare tracks, which are extremely fragile structures and anneal at around 600 C. Laboratory hypervelocity experiments, using analogues of Wild-2 particles accelerated into flight-grade foils under conditions close to those of the actual encounter, showed retention of abundant projectile residues at the Stardust encounter velocity of 6.1 km/s. During the preliminary examination (PE) of the returned foils, using optical and electron microscopy studies, a diverse range in size and morphologies of micro-craters was identified. In this abstract we consider the state of residue preservation in a diverse range of craters with respect to their elemental composition and inferred mineralogy of the original projectiles.
Hypervelocity Impact (HVI). Volume 7; WLE High Fidelity Specimen RCC16R
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target RCC16R was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Oblique impacts into low impedance layers
NASA Astrophysics Data System (ADS)
Stickle, A. M.; Schultz, P. H.
2009-12-01
Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA allows a clear view of failure patterns within the target, providing a 3D picture of the final damage, as well as damage formation and propagation. Secondly, PMMA has mechanical properties similar to those of brittle rocks in the upper crust, making it an appropriate material for comparison to geologic materials. An impact into a PMMA target with a one-projectile-diameter thick plasticine layer causes damage distinct from an impact into a PMMA target without a low impedance layer. The extent of the final damage is much less in the target with the low impedance layer and begins to form at later times, there is little to no crater visible on the surface, and the formation and propagation of the damage is completely different, creating distinct subsurface damage patterns. Three-dimensional CTH hydrocode models show that the pressure history of material around and underneath the impact point is also different when a low impedance layer is present, leading to the variations in damage forming within the targets.
Hypervelocity Launching and Frozen Fuels as a Major Contribution to Spaceflight
NASA Astrophysics Data System (ADS)
Cocks, F. H.; Harman, C. M.; Klenk, P. A.; Simmons, W. N.
Acting as a virtual first stage, a hypervelocity launch together with the use of frozen hydrogen/frozen oxygen propellant, offers a Single-Stage-To-Orbit (SSTO) system that promises an enormous increase in SSTO mass-ratio. Ram acceleration provides hypervelocity (2 km/sec) to the orbital vehicle with a gas gun supplying the initial velocity required for ram operation. The vehicle itself acts as the center body of a ramjet inside a launch tube, filled with gaseous fuel and oxidizer, acting as an engine cowling. The high acceleration needed to achieve hypervelocity precludes a crew, and it would require greatly increased liquid fuel tank structural mass if a liquid propellant is used for post-launch vehicle propulsion. Solid propellants do not require as much fuel- chamber strengthening to withstand a hypervelocity launch as do liquid propellants, but traditional solid fuels have lower exhaust velocities than liquid hydrogen/liquid oxygen. The shock-stability of frozen hydrogen/frozen oxygen propellant has been experimentally demonstrated. A hypervelocity launch system using frozen hydrogen/frozen oxygen propellant would be a revolutionary new development in spaceflight.
NASA Technical Reports Server (NTRS)
Poteet, Carl C.; Blosser, Max L.
2001-01-01
A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.
Similkameen River Multipurpose Project Feasibility Study, Cultural Resource Reconnaissance
1987-04-01
fill below the vicinity of Nighthawk. Soil survey data and well drilling logs suggest that a large block of ice occupied the western half of Palmer Lake...granodiorite on the south side of the river opposite the staging gauge at R.M. 15.3 (Rinehart and Fox 1972); the north side of the river does not...Utilized 7 Penetration Drilling Drill 1 Projectile Impact Projectile Point 10 Percussion Chopping Chopper 2 Flaking Complete Flake 84 Broken Flake 40
Construction and characterization of a single stage dual diaphragm gas gun
NASA Astrophysics Data System (ADS)
Helminiak, Nathaniel Steven
In the interest of studying the propagation of shock waves, this work sets out to design, construct, and characterize a pneumatic accelerator that performs high-velocity flyer plate impact tests. A single stage gas gun with a dual diaphragm breach allows for a non-volatile, reliable experimental testing platform for shock phenomena. This remotely operated gas gun utilizes compressed nitrogen to launch projectiles down a 14 foot long, 2 inch diameter bore barrel, which subsequently impacts a target material of interest. A dual diaphragm firing mechanism allows the 4.5 liter breech to reach a total pressure differential of 10ksi before accelerating projectiles to velocities as high as 1,000 m/s (1570-2240 mph). The projectile's velocity is measured using a series of break pin circuits. The target response can be measured with Photon Doppler Velocimetry (PDV) and/or stress gauge system. A vacuum system eliminates the need for pressure relief in front of the projectile, while additionally allowing the system to remain closed over the entire firing cycle. Characterization of the system will allow for projectile speed to be estimated prior to launching based on initial breach pressure.
The Double Asteroid Redirection Test (DART)
NASA Astrophysics Data System (ADS)
Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.
2017-12-01
The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.
NASA Astrophysics Data System (ADS)
Hendrix, Roy E.; Dugger, Paul H.
1983-03-01
Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.
Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1
NASA Astrophysics Data System (ADS)
Pasini, D.
2014-04-01
Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.
Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Hypervelocity Impact (HVI). Volume 6; WLE High Fidelity Specimen Fg(RCC)-2
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-2 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Hypervelocity Impact (HVI). Volume 5; WLE High Fidelity Specimen Fg(RCC)-1
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-1 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Shenoy, Rajiv R.; Passe, Bradley J.; Baurle, Robert A.; Drummond, J. Philip
2017-01-01
In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations.
New Hypervelocity Terminal Intercept Guidance Systems for Deflecting/Disrupting Hazardous Asteroids
NASA Astrophysics Data System (ADS)
Lyzhoft, Joshua Richard
Computational modeling and simulations of visual and infrared (IR) sensors are investigated for a new hypervelocity terminal guidance system of intercepting small asteroids (50 to 150 meters in diameter). Computational software tools for signal-to-noise ratio estimation of visual and IR sensors, estimation of minimum and maximum ranges of target detection, and GPU (Graphics Processing Units)-accelerated simulations of the IR-based terminal intercept guidance systems are developed. Scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/C-G, NASA's OSIRIS-REx Bennu, and asteroid 433 Eros, are utilized in developing a GPU-based simulation tool for the IR-based terminal intercept guidance systems. A parallelized-ray tracing algorithm for simulating realistic surface-to-surface shadowing of irregular-shaped asteroids or comets is developed. Polyhedron solid-angle approximation is also considered. Using these computational models, digital image processing is investigated to determine single or multiple impact locations to assess the technical feasibility of new planetary defense mission concepts of utilizing a Hypervelocity Asteroid Intercept Vehicle (HAIV) or a Multiple Kinetic-energy Interceptor Vehicle (MKIV). Study results indicate that the IR-based guidance system outperforms the visual-based system in asteroid detection and tracking. When using an IR sensor, predicting impact locations from filtered images resulted in less jittery spacecraft control accelerations than conducting missions with a visual sensor. Infrared sensors have also the possibility to detect asteroids at greater distances, and if properly used, can aid in terminal phase guidance for proper impact location determination for the MKIV system. Emerging new topics of the Minimum Orbit Intersection Distance (MOID) estimation and the Full-Two-Body Problem (F2BP) formulation are also investigated to assess a potential near-Earth object collision risk and the proximity gravity effects of an irregular-shaped binary-asteroid target on a standoff nuclear explosion mission.
Element fracture technique for hypervelocity impact simulation
NASA Astrophysics Data System (ADS)
Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui
2015-05-01
Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.
Morphology correlation of craters formed by hypervelocity impacts
NASA Technical Reports Server (NTRS)
Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.
1993-01-01
Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.
Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta
NASA Technical Reports Server (NTRS)
Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.
1975-01-01
Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.
NASA Astrophysics Data System (ADS)
Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei
2018-05-01
The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.
NASA Technical Reports Server (NTRS)
Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John
2017-01-01
Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.
Modeling the capillary discharge of an electrothermal (ET) launcher
NASA Astrophysics Data System (ADS)
Least, Travis
Over the past few decades, different branches of the US Department of Defense (DoD) have invested at improving the field ability of electromagnetic launchers. One such focus has been on achieving hypervelocity launch velocities in excess of 7 km/s for direct launch to space applications [1]. It has been shown that pre-injection is required for this to be achieved. One method of pre-injection which has promise involves using an electro-thermal (ET) due to its ability to achieve the desired velocities with a minimal amount of hot plasma injected into the launcher behind the projectile. Despite the demonstration of pre-injection using this method, polymer ablation is not very well known and this makes it challenging to predict how the system will behave for a given input of electrical power. In this work, the rate of ablation has been studied and predicted using different models to generate the best possible characteristic curve. [1] - Wetz, David A., Francis Stefani, Jerald V. Parker, and Ian R. McNab. "Advancements in the Development of a Plasma-Driven Electromagnetic Launcher." IEEE TRANSACTIONS ON MAGNETICS 45.1 (2009): 495--500. IEEE Xplore. Web. 18 Aug. 2012.
An approach to achieve progress in spacecraft shielding
NASA Astrophysics Data System (ADS)
Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.
2004-01-01
Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.
Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields
NASA Astrophysics Data System (ADS)
Ryan, Shannon; Christiansen, Eric
2009-06-01
Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ˜30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.
Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Christiansen, E.; Lear, D.; Ryan, S.
2009-01-01
Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional 30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.
NASA Astrophysics Data System (ADS)
Jeanloz, Raymond
2011-03-01
Thomas J. Ahrens, a leader in the study of high-pressure shock wave and planetary impact phenomena, died at his home in Pasadena, Calif., on 24 November 2010 at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, emeritus since 2005 but professionally active to the end. He had been president of AGU's Tectonophysics section, editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of the Earth's Deep Interior focus groups, and editor—more like key driving force—for AGU's Handbook of Physical Constants. Tom was a pioneer in experimental and numerical studies of the effects of projectiles hitting a target at velocities exceeding the speed of sound (hypervelocity impact), arguably the most important geophysical process in the formation, growth, and, in many cases, surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science, and other disciplines. Previously, high-pressure shock experiments were conducted primarily in national laboratories, where they were initially associated with the development of nuclear weapons.
Analysis of Computational Models of Shaped Charges for Jet Formation and Penetration
NASA Astrophysics Data System (ADS)
Haefner, Jonah; Ferguson, Jim
2016-11-01
Shaped charges came into use during the Second World War demonstrating the immense penetration power of explosively formed projectiles and since has become a tool used by nearly every nation in the world. Penetration is critically dependent on how the metal liner is collapsed into a jet. The theory of jet formation has been studied in depth since the late 1940s, based on simple models that neglect the strength and compressibility of the metal liner. Although attempts have been made to improve these models, simplifying assumptions limit the understanding of how the material properties affect the jet formation. With a wide range of material and strength models available for simulation, a validation study was necessary to guide code users in choosing models for shaped charge simulations. Using PAGOSA, a finite-volume Eulerian hydrocode designed to model hypervelocity materials and strong shock waves developed by Los Alamos National Laboratory, and experimental data, we investigated the effects of various equations of state and material strength models on jet formation and penetration of a steel target. Comparing PAGOSA simulations against modern experimental data, we analyzed the strengths and weaknesses of available computational models. LA-UR-16-25639 Los Alamos National Laboratory.
NASA Astrophysics Data System (ADS)
Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian
2013-01-01
Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.
Optical-model abrasion cross sections for high-energy heavy ions
NASA Technical Reports Server (NTRS)
Townsend, L. W.
1981-01-01
Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.
Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene
NASA Astrophysics Data System (ADS)
Bonner, David
2010-05-01
Connecting physics concepts with real-world events allows students to establish a strong conceptual foundation. When such events are particularly interesting to students, it can greatly impact their engagement and enthusiasm in an activity. Activities that involve studying real-world events of high interest can provide students a long-lasting understanding and positive memorable experiences, both of which heighten the learning experiences of those students. One such activity, described in depth in this paper, utilizes a murder mystery and crime scene investigation as an application of basic projectile motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zouros, T.J.; Wong, K.L.; Grabbe, S.
Double-differential cross sections (DDCS{close_quote}s) for the production of binary encounter electrons (BEE{close_quote}s) were measured for collisions of 30-MeV O{sup {ital q}+} projectiles with H{sub 2}, He, O{sub 2}, Ne, and Ar targets with {ital q}=4{endash}8 and an electron ejection angle of {theta}=0{degree} with respect to the beam direction. Particular interest focused on (a) the evaluation of the contributions of the different electron subshells of the multielectron targets, O{sub 2}, Ne, and Ar; (b) the study of the well-known enhancement of the BEE DDCS{close_quote}s with decreasing projectile charge-state {ital q}; here this dependence was tested for higher collision energies and newmore » targets; (c) the study of the dependence of the BEE {ital peak} {ital energy} on the particular target and projectile charge state. Results were analyzed in terms of the impulse approximation, in which target electrons in the projectile frame undergo 180{degree} elastic scattering in the field of the projectile ion. The electron scattering calculations were performed in a partial-wave treatment using the Hartree-Fock model. Good agreement with the data was found for the H{sub 2} and He targets, while for the multielectron targets O{sub 2}, Ne, and Ar only electrons whose velocity was lower than the projectile velocity needed to be included for good agreement. All measured BEE DDCS{close_quote}s were found to increase with decreasing projectile charge state, in agreement with other recent BEE results. The BEE peak energies were found to be independent of the projectile charge state for all targets utilized. {copyright} {ital 1996 The American Physical Society.}« less
Hypervelocity Impact (HVI). Volume 1; General Introduction
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.
Hypervelocity impact simulations of Whipple shields
NASA Technical Reports Server (NTRS)
Segletes, Steven B.; Zukas, Jonas A.
1992-01-01
The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.
Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions
NASA Astrophysics Data System (ADS)
Parkar, V. V.; Jha, V.; Kailas, S.
2017-11-01
We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.
Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields
NASA Technical Reports Server (NTRS)
Carrasquilla, Maria J.; Miller, Joshua E.
2017-01-01
The informed design with respect to hypervelocity collisions involving micrometeoroid and orbital debris (MMOD) is influential to the success of space missions. For an orbit comparable to that of the International Space Station, velocities for MMOD can range from 1 to 15 km/s, with an average velocity around 10 km/cu s. The high energy released during collisions at these speeds can result in damage to a spacecraft, or worst-case, loss of the spacecraft, thus outlining the importance of methods to predict the likelihood and extent of damage due to an impact. Through experimental testing and numerical simulations, substantial work has been conducted to better understand the effects of hypervelocity impacts (HVI) on spacecraft systems and shields; however, much of the work has been focused on spherical impacting particles. To improve environment models for the analysis of MMOD, a large-scale satellite break-up test was performed at the Arnold Engineering and Development Complex to better understand the varied impactor geometries that could be generated from a large impact. As a part of the post-experiment analysis, an undertaking to characterize the irregular fragments generated is currently being performed by the University of Florida under the management of NASA's Orbital Debris Program Office at Johnson Space Center (JSC). DebriSat was a representative, modern LEO satellite that was catastrophically broken up in a HVI test. The test chamber was lined with a soft-catch system of foam panels that captured the fragments after impact. Initial predictions put the number of fragments larger than 2mm generated from the HVI at roughly 85,000. The number of fragments thus far extracted from the foam panels has exceeded 100,000, with that number continuously increasing. The shapes of the fragments vary dependent upon the material. Carbon-fiber reinforced polymer pieces, for instance, are abundantly found as thin, flat slivers. The characterization of these fragments with respect to their mass, size, and material composition needs to be summarized in a form that can be used in MMOD analysis. The mechanism that brings these fragment traits into MMOD analysis is through ballistic limit equations (BLE) that have been developed largely for a few types of materials1. As a BLE provides the failure threshold for a shield or spacecraft component based on parameters such as the projectile impact velocity and size, and the target's materials, thickness, and configuration, it is used to design protective shields for spacecraft such as Whipple shields (WS) to an acceptable risk level. The majority of experiments and simulations to test shields and validate BLEs have, heretofore, largely used spheres as the impactor, not properly reflecting the irregular shapes of MMOD. This shortfall has motivated a numerical impact analysis study of HVI involving non-spherical geometries to identify key parameters that environment models should provide.
The utilization of tachymetry in forensic medicine.
Hagara, M; Sidlo, J; Stuparin, J; Siget, V; Soral, A; Valent, D
2009-01-01
Tachymetry is a geodetic method enabling to measure angles and distances. The aim of the work was to demonstrate alternatives of its utilization in daily forensic medicine practice. The work is dealing with confusing cases of gunshot injuries. It is impossible to determine the trajectory of the projectile, the sequence of gunshots, to identify shooting person etc. in these cases only on the base of autopsy findings and investigated circumstances. In these cases the investigation experiments on the crime scene in collaboration with the land surveyors were realized. The work presents two case reports. For our measurements the electronic tachymeter TOPCON 211D was used. These were performed by the means of polar method in local coordinate system with relative heights. In the first case the position of victim was simulated by a figurant according to testimonies of witnesses and the accused. The second case dealed with suicide. In the first case there were two gunshots. The trajectory of the first gunshot was determined and the projectile was found. Hereby the most authentic testimony could be estimated. Also high grade probability of the relative position of the victim and the accused was figured out. In the case of suicide also the projectile was found and the position of the victim in the time of gunshot was determined. In the both case reports demonstrated the projectiles were not found by ballistics expert investigations. All questions of expert opinions could be answered only with the help of tachymetry. The advantage of this method is its good regional availability even at places far from specialized criminal investigation workplaces.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the LMC. When this speed is combined with the orbital velocity of the LMC itself (another ~380 km/s relative to the Milky Way), this could result in hypervelocity stars moving faster than the escape speed of the Milky Way, as observed.Predicted distribution of hypervelocity stars ejected from the LMC, in galactic coordinates. The red crosses show locations of detected hypervelocity stars, and the green arrow marks the path of the LMC over the last 350 million years. [Boubert Evans 2016]If the LMC is indeed ejecting hypervelocity stars along its orbit, this could explain an observed anisotropy in the hypervelocity stars weve detected, with many of these stars clustering in the constellations of Leo and Sextans. This clustering is consistent with stars ejected ahead of the LMCs orbit.How can we test this model for the production of hypervelocity stars? The authors model predicts the presence of a significant number of hypervelocity stars near the LMC in the southern hemisphere, a region which has been poorly surveyed before now. Surveys such as SkyMapper and Gaia, however, will observe this region and their discoveries (or lack thereof) should provide a useful test of whether hypervelocity stars are accelerated by the LMC.CitationDouglas Boubert and N. Wyn Evans 2016 ApJ 825 L6. doi:10.3847/2041-8205/825/1/L6
Physics of Intact Capture of Cometary Coma Dust Samples
NASA Astrophysics Data System (ADS)
Anderson, William
2011-06-01
In 1986, Tom Ahrens and I developed a simple model for hypervelocity capture in low density foams, aimed in particular at the suggestion that such techniques could be used to capture dust during flyby of an active comet nucleus. While the model was never published in printed form, it became known to many in the cometary dust sampling community. More sophisticated models have been developed since, but our original model still retains superiority for some applications and elucidates the physics of the capture process in a more intuitive way than the more recent models. The model makes use of the small value of the Hugoniot intercept typical of highly distended media to invoke analytic expressions with functional forms common to fluid dynamics. The model successfully describes the deceleration and ablation of a particle that is large enough to see the foam as a low density continuum. I will present that model, updated with improved calculations of the temperature in the shocked foam, and show its continued utility in elucidating the phenomena of hypervelocity penetration of low-density foams.
Multimillion to billion atom simulations of nanosystems under extreme conditions
NASA Astrophysics Data System (ADS)
Vashishta, P.
2008-12-01
Advanced materials and devices with nanometer grain/feature sizes are being developed to achieve higher strength and toughness in ceramic materials and greater speeds in electronic devices. Below 100 nm, however, continuum description of materials and devices must be supplemented by atomistic descriptions. Current state of the art atomistic simulations involve 10 million - 1 billion atoms. We investigate initiation, growth and healing of wing cracks in confined silica glass by multimillion atom molecular dynamics (MD) simulations. Under dynamic compression, frictional sliding of pre-crack surfaces nucleates nanovoids, which evolve into nanocrack columns at the pre-crack tip. Nanocrack columns merge to form a wing crack, which grows via coalescence with nanovoids in the direction of maximum compression. Lateral confinement arrests the growth and partially heals the wing crack. Growth and arrest of the wing crack occur repeatedly, as observed in dynamic compression experiments on brittle solids under lateral confinement. MD simulation of hypervelocity projectile impact in aluminum nitride and alumina has also been studied. The simulations reveal strong interplay between shock- induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics. Initiation of chemical reactions at shock fronts prior to detonation and dynamic transition in the shock structure of an energetic material (RDX) and reaction of aluminium nanoparticles in oxygen atmosphere followed by explosive burning is also discussed.
Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, Heather
2016-01-01
The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.
Breeze, John; Clasper, J C
2013-12-01
Explosively propelled fragments are the most common cause of injury to soldiers on current operations. Researchers desire models to predict their injurious effects so as to refine methods of potential protection. Well validated physical and numerical models based on the penetration of standardised fragment simulating projectiles (FSPs) through muscle exist but not for skin, thereby reducing the utility of such models. A systematic review of the literature was undertaken using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology to identify all open source information quantifying the effects of postmortem human subject (PMHS) and animal skin on the retardation of metallic projectiles. Projectile sectional density (mass over presented cross-sectional area) was compared with the velocity required for skin perforation or penetration, with regard to skin origin (animal vs PMHS), projectile shape (sphere vs cylinder) and skin backing (isolated skin vs that backed by muscle). 17 original experimental studies were identified, predominantly using skin from the thigh. No statistical difference in the velocity required for skin perforation with regard to skin origin or projectile shape was found. A greater velocity was required to perforate intact skin on a whole limb than isolated skin alone (p<0.05). An empirical relationship describing the velocity required to perforate skin by metallic FSPs of a range of sectional densities was generated. Skin has a significant effect on the retardation of FSPs, necessitating its incorporation in future injury models. Perforation algorithms based on animal and PMHS skin can be used interchangeably as well as spheres and cylinders of matching sectional density. Future numerical simulations for skin perforation must match the velocity for penetration and also require experimental determination of mechanical skin properties, such as tensile strength, strain and elasticity at high strain rates.
Robust Extraction and Multi-Technique Analysis of Micrometeoroids Captured in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Graham, G. A.; Bench, G.; Brennan, S.; Luening, K.; Pianetta, P.; Keller, L. P.; Flynn, G. J.; Snead, C.; Dominquez, G.
2003-01-01
The use of low-density silica aerogel as the primary capture cell technology for the NASA Discovery mission Stardust to Comet Wild-2 [1] is a strong motivation for researchers within the Meteoritics community to develop techniques to handle this material. The unique properties of silica aerogel allow dust particles to be captured at hypervelocity speeds and to remain partially intact. The same unique properties present difficulties in the preparation of particles for analysis. Using tools borrowed from microbiologists, we have developed techniques for robustly extracting captured hypervelocity dust particles and their residues from aerogel collectors[2-3]. It is important not only to refine these extraction techniques but also to develop protocols for analyzing the captured particles. Since Stardust does not return material to Earth until 2006, researchers must either analyze particles that are impacted in the laboratory using light-gasgun facilities [e.g. 41 or examine aerogel collectors that have been exposed in low-Earth orbit (LEO) [5]. While there are certainly benefits in laboratory shots, i.e. accelerating known compositions of projectiles into aerogel, the LEO capture particles offer the opportunity to investigate real particles captured under real conditions. The aerogel collectors used in this research are part of the NASA Orbital Debris Collection Experiment that was exposed on the MIR Space Station for 18 months [5]. We have developed the capability at the UCB Space Sciences Laboratory to extract tiny volumes of aerogel that completely contain each impact event, and to mount them on micromachined fixtures so that they can be analyzed with no interfering support (Fig.1). These aerogel keystones simultaneously bring the terminal particle and the particle track to within 10 m (15 g cm- ) of the nearest aerogel surface. The extracted aerogel wedges containing both the impact tracks and the captured particles have been characterized using the synchrotron total external reflection X-ray fluorescence (TXRF) microprobe at SSRL, the Nuclear Microprobe at LLNL, synchrotron infrared microscopy at the ALS facility at LBL and the NSLS at BNL, and the Total Reflection X-ray Fluorescence (TXRF) facility at SLAC.
Demonstration of Hazardous Hypervelocity Test Capability
NASA Technical Reports Server (NTRS)
Rodriquez, Karen M.
1991-01-01
NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) participated in a joint test program with NASA JSC Hypervelocity Impact Research Laboratory (HIRL) to determine if JSC was capable of performing hypervelocity impact tests on hazardous targets. Seven pressurized vessels were evaluated under hypervelocity impact conditions. The vessels were tested with various combinations of liquids and gasses at various pressures. Results from the evaluation showed that vessels containing 100-percent pressurized gas sustained more severe damage and had a higher potential for damaging nearby equipment, than vessels containing 75-percent liquid, 25-percent inert pressurized gas. Two water-filled test vessels, one of which was placed behind an aluminum shield, failed by bulging and splitting open at the impact point; pressure was relieved without the vessel fragmenting or sustaining internal damage. An additional water-filled test vessel, placed a greater distance behind an aluminum shield, sustained damage that resembled a shotgun blast, but did not bulge or split open; again, pressure was relieved without the vessel fragmenting. Two test vessels containing volatile liquids (nitro methane and hydrazine) also failed by bulging and splitting open; neither liquid detonated under hypervelocity test conditions. A test vessel containing nitrogen gas failed by relieving pressure through a circular entry hole; multiple small penetrations opposite the point of entry provided high velocity target debris to surrounding objects. A high-pressure oxygen test vessel fragmented upon impact; the ensuing fire and high velocity fragments caused secondary damage to surrounding objects. The results from the evaluation of the pressurized vessels indicated that JSC is capable of performing hypervelocity impact tests on hazardous targets.
Carbonaceous Survivability on Impact
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Becker, Luann; Morrison, David (Technical Monitor)
1994-01-01
In order to gain knowledge about the potential contributions of comets and cosmic dust to the origin of life on Earth, we need to explore the survivability of their potential organic compounds on impact and the formation of secondary products that may have arisen from the chaotic events sustained by the carriers as they fell to Earth. We have performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, kerogens, PAH crystals, and Murchison and Nogoya meteorites) into Al plate targets at velocities - 6 km/s. Estimated peak shock pressures probably did not exceed 120 GPa and peak shock temperatures were probably less than 4000 K for times of nano- to microsecs. Nominal crater dia. are less than one mm. The most significant results of these experiments are the preservation of the higher mass PAHs (e. g., pyrene relative to napthalene) and the formation of additional alkylated PAHs. We have also examined the residues of polystyrene projectiles impacted by a microparticle accelerator into targets at velocities up to 15 km/s. This talk will discuss the results of these experiments and their implications with respect to the survival of carbonaceous deliverables to early Earth. The prospects of survivability of organic molecules on "intact" capture of cosmic dust in space via soft: and hard cosmic dust collectors will also be discussed.
Capabilities of the Impact Testing Facility at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.
2011-01-01
The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.
A Method to have Multi-Layer Thermal Insulation Provide Damage Detection
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald
2007-01-01
Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.
1995-01-01
Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.
Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s
NASA Astrophysics Data System (ADS)
Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.
1995-02-01
Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.
A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors
Zhu, Jianliang; Wu, Panlong; Bo, Yuming
2016-01-01
Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389
Hypervelocity impact cratering calculations
NASA Technical Reports Server (NTRS)
Maxwell, D. E.; Moises, H.
1971-01-01
A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.
Karr, T.J.; Pittenger, L.C.
1996-11-26
A projectile interceptor launches a projectile catcher into the path of a projectile. In one embodiment, signals indicative of the path of a projectile are received by the projectile interceptor. A flinger mechanism has a projectile catcher releasably attached thereto, such that the projectile catcher can be released and launched from the flinger mechanism. A controller connected to the flinger mechanism uses the signals indicative of the path of the projectile to determine the launch parameters of the projectile catcher. The controller directs the flinger mechanism to release the projectile catcher such that the projectile catcher is launched into the path of the projectile and intercepts the projectile. 13 figs.
Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
NASA Technical Reports Server (NTRS)
Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.
2007-01-01
Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.
Crusader solid propellant best technical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, V.; Bader, G.; Dolecki, M.
1995-12-01
The goal of the Solid Propellant Resupply Team is to develop Crusader system concepts capable of automatically handling 155mm projectiles and Modular Artillery Charges (MACs) based on system requirements. The system encompasses all aspects of handling from initial input into a resupply vehicle (RSV) to the final loading into the breech of the self-propelled howitzer (SPH). The team, comprised of persons from military and other government organizations, developed concepts for the overall vehicles as well as their interior handling components. An intermediate review was conducted on those components, and revised concepts were completed in May 1995. A concept evaluation wasmore » conducted on the finalized concepts, from both a systems level and a component level. The team`s Best Technical Approach (BTA) concept was selected from that evaluation. Both vehicles in the BTA have a front-engine configuration with the crew situated behind the engine-low in the vehicles. The SPH concept utilizes an automated reload port at the rear of the vehicle, centered high. The RSV transfer boom will dock with this port to allow automated ammunition transfer. The SPH rearm system utilizes fully redundant dual loaders. Active magazines are used for both projectiles and MACs. The SPH also uses a nonconventional tilted ring turret configuration to maximize the available interior volume in the vehicle. This configuration can be rearmed at any elevation angle but only at 0{degree} azimuth. The RSV configuration is similar to that of the SPH. The RSV utilizes passive storage racks with a pick-and-place manipulator for handling the projectiles and active magazines for the MACs. A telescoping transfer boom extends out the front of the vehicle over the crew and engine.« less
NASA Astrophysics Data System (ADS)
Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua
2018-04-01
Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming a plasma discharge channel. With the increasing of the gaps among the high and low-potential targets, the peak values of the discharge current decreased first then increased. When the gaps of split targets reached a certain value, the peak values of the discharge current decreased again. Meanwhile, the gaps among high and low-potential targets was 5mm, the peak value of the discharge current was the smallest. With the increasing of the gaps among the split targets, a primary discharge duration also increased. However, when the gaps among the split targets were greater than 5mm, increasing trend of discharge duration would slow down. When the gaps among the split targets were greater than 7mm, there was a secondary discharge phenomenon, and the physical explanations were given about the influence of different gaps among the split targets on the discharge effects created by hypervelocity impact.
Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material
NASA Technical Reports Server (NTRS)
Humes, D. H.
1977-01-01
Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.
IADC Vulnerability Report, IT32-13
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Miller, J. E.; Hyde, Jimx
2016-01-01
This section provides hypervelocity impact test data for two types of batteries: Lithium-Ion (Li-Ion) and Nickel Hydrogen (Ni-H2) batteries. The impact tests were directed by the NASA Johnson Space Center Hypervelocity Impact Technology (HVIT) group in Houston Texas, and were performed at the NASA White Sands Test Facility (WSTF).
Structural Damage Prediction and Analysis for Hypervelocity Impact: Consulting
NASA Technical Reports Server (NTRS)
1995-01-01
A portion of the contract NAS8-38856, 'Structural Damage Prediction and Analysis for Hypervelocity Impacts,' from NASA Marshall Space Flight Center (MSFC), included consulting which was to be documented in the final report. This attachment to the final report contains memos produced as part of that consulting.
Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing
NASA Technical Reports Server (NTRS)
Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.
2001-01-01
New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.
A Study of Premixed, Shock-Induced Combustion With Application to Hypervelocity Flight
NASA Technical Reports Server (NTRS)
Axdahl, Erik L.
2013-01-01
One of the current goals of research in hypersonic, airbreathing propulsion is access to higher Mach numbers. A strong driver of this goal is the desire to integrate a scramjet engine into a transatmospheric vehicle airframe in order to improve performance to low Earth orbit (LEO) or the performance of a semiglobal transport. An engine concept designed to access hypervelocity speeds in excess of Mach 10 is the shock-induced combustion ramjet (i.e. shcramjet). This dissertation presents numerical studies simulating the physics of a shcramjet vehicle traveling at hypervelocity speeds with the goal of understanding the physics of fuel injection, wall autoignition mitigation, and combustion instability in this flow regime.
Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2004-01-01
This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.
Computational modeling of electrostatic charge and fields produced by hypervelocity impact
Crawford, David A.
2015-05-19
Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less
Momentum Enhancement from Hypervelocity Crater Ejecta: Implications for the AIDA Target
NASA Astrophysics Data System (ADS)
Flynn, G. J.; Durda, D. D.; Patmore, E. B.; Jack, S. J.; Molesky, M. J.; Strait, M. M.; Macke, R. M.
2017-09-01
We performed hypervelocity impact cratering of porous meteorites and terrestrial pumice and found higher values of the momentum enhancement factor due to ejecta than found in hydrocode modeling. This has important implications for kinetic impact deflection of small, hazardous asteroids and on the Asteroid Impact and Deflection Assessment mossion.
Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures
NASA Technical Reports Server (NTRS)
Yasensky, John; Christiansen, Eric L.
2007-01-01
A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.
High spatial resolution measurements in a single stage ram accelerator
NASA Technical Reports Server (NTRS)
Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.
1992-01-01
High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.
Simulating plasma production from hypervelocity impacts
NASA Astrophysics Data System (ADS)
Fletcher, Alex; Close, Sigrid; Mathias, Donovan
2015-09-01
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.
Simulating plasma production from hypervelocity impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid; Mathias, Donovan
2015-09-15
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-producedmore » plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.« less
Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.
The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.
Weisenbach, Charles A; Logsdon, Katie; Salzar, Robert S; Chancey, Valeta Carol; Brozoski, Fredrick
2018-03-01
Military combat helmets protect the wearer from a variety of battlefield threats, including projectiles. Helmet back-face deformation (BFD) is the result of the helmet defeating a projectile and deforming inward. Back-face deformation can result in localized blunt impacts to the head. A method was developed to investigate skull injury due to BFD behind-armor blunt trauma. A representative impactor was designed from the BFD profiles of modern combat helmets subjected to ballistic impacts. Three post-mortem human subject head specimens were each impacted using the representative impactor at three anatomical regions (frontal bone, right/left temporo-parietal regions) using a pneumatic projectile launcher. Thirty-six impacts were conducted at energy levels between 5 J and 25 J. Fractures were detected in two specimens. Two of the specimens experienced temporo-parietal fractures while the third specimen experienced no fractures. Biomechanical metrics, including impactor acceleration, were obtained for all tests. The work presented herein describes initial research utilizing a test method enabling the collection of dynamic exposure and biomechanical response data for the skull at the BFD-head interface.
2004-12-01
29 Figure 6. Flash Radiography Images of the Debris Cloud and Ejecta...hand, are not predictable. Explosions can occur because of the inadvertent mixing of propellant and oxidizer or the over-pressurization of...residual propellant due to spacecraft heating. Over-pressurized batteries may also cause explosions. Based on statistical analysis of known hypervelocity
Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure
NASA Technical Reports Server (NTRS)
Zwitter, James G.; Adams, Marc A.
2011-01-01
A document describes a series of models created for the determination of the probability of survival of critical spacecraft components from particle strike damage caused by hypervelocity impact of meteoroids and/or orbital debris. These models were integrated with both shield design and hypervelocity impact testing to develop adequate protection of said components to meet mission survivability requirements.
Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth
2013-01-01
In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.
Impact Flash Physics: Modeling and Comparisons With Experimental Results
NASA Astrophysics Data System (ADS)
Rainey, E.; Stickle, A. M.; Ernst, C. M.; Schultz, P. H.; Mehta, N. L.; Brown, R. C.; Swaminathan, P. K.; Michaelis, C. H.; Erlandson, R. E.
2015-12-01
Hypervelocity impacts frequently generate an observable "flash" of light with two components: a short-duration spike due to emissions from vaporized material, and a long-duration peak due to thermal emissions from expanding hot debris. The intensity and duration of these peaks depend on the impact velocity, angle, and the target and projectile mass and composition. Thus remote sensing measurements of planetary impact flashes have the potential to constrain the properties of impacting meteors and improve our understanding of impact flux and cratering processes. Interpreting impact flash measurements requires a thorough understanding of how flash characteristics correlate with impact conditions. Because planetary-scale impacts cannot be replicated in the laboratory, numerical simulations are needed to provide this insight for the solar system. Computational hydrocodes can produce detailed simulations of the impact process, but they lack the radiation physics required to model the optical flash. The Johns Hopkins University Applied Physics Laboratory (APL) developed a model to calculate the optical signature from the hot debris cloud produced by an impact. While the phenomenology of the optical signature is understood, the details required to accurately model it are complicated by uncertainties in material and optical properties and the simplifications required to numerically model radiation from large-scale impacts. Comparisons with laboratory impact experiments allow us to validate our approach and to draw insight regarding processes that occur at all scales in impact events, such as melt generation. We used Sandia National Lab's CTH shock physics hydrocode along with the optical signature model developed at APL to compare with a series of laboratory experiments conducted at the NASA Ames Vertical Gun Range. The experiments used Pyrex projectiles to impact pumice powder targets with velocities ranging from 1 to 6 km/s at angles of 30 and 90 degrees with respect to horizontal. High-speed radiometer measurements were made of the time-dependent impact flash at wavelengths of 350-1100 nm. We will present comparisons between these measurements and the output of APL's model. The results of this validation allow us to determine basic relationships between observed optical signatures and impact conditions.
Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils
NASA Technical Reports Server (NTRS)
Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.
2006-01-01
The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.
Effects of High-Density Impacts on Shielding Capability
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Lear, Dana M.
2014-01-01
Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.
Shock wave induced vaporization of porous solids
NASA Astrophysics Data System (ADS)
Shen, Andy H.; Ahrens, Thomas J.; O'Keefe, John D.
2003-05-01
Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s.
Electromagnetic Meissner effect launcher
NASA Technical Reports Server (NTRS)
Robertson, Glen A. (Inventor)
1991-01-01
An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.
A new technique for ground simulation of hypervelocity debris
NASA Astrophysics Data System (ADS)
Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.
1995-02-01
A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.
Composite Aerogel Multifoil Protective Shielding
NASA Technical Reports Server (NTRS)
Jones, Steven M.
2013-01-01
New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.
NASA Technical Reports Server (NTRS)
Arnold, James O.; Deiwert, G. S.
1997-01-01
The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.
NASA Technical Reports Server (NTRS)
Rule, W. K.; Hayashida, K. B.
1992-01-01
The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.
Do we detect interplanetary dust with Faraday cups?
NASA Astrophysics Data System (ADS)
Kočiščák, S.; Pavlů, J.; Šafránková, J.; Němeček, Z.; Přech, L.
2018-07-01
Transient clouds of a plasma generated by hypervelocity dust particles impacting onto the spacecraft were observed in-situ by many experiments over the last 20 years. The reported observations analyze sensitive measurements of plasma waves that are transmitted to the Earth with a sufficient time resolution. The detection is based on a fact that hypervelocity impacts generate plumes of the ionized gas expanding into a space. The present paper analyzes five years of the operation of the Bright Monitor of the Solar Wind (BMSW) onboard the Spektr-R spacecraft with a motivation to demonstrate that such type of the instruments is capable to observe the dust impacts into its detectors. The results of analysis are compared with Wind electric field measurements used for a detection of hypervelocity dust impacts.
Prevention of breakdown behind railgun projectiles
Hawke, R.S.
1992-10-13
An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.
Prevention of breakdown behind railgun projectiles
Hawke, R.S.
1992-09-01
An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.
In-flight dynamics of volcanic ballistic projectiles
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.
2017-09-01
Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.
DebriSat Hypervelocity Impact Test
2015-08-01
material. The foam was also color coded to assist in determining the location of various loose foam pieces found posttest . Details on the layer... pretest and posttest shots. AEDC-TR-15-S-2 23 Statement A: Approved by public release; distribution unlimited. APPENDIX B. SOFT CATCH FOAM CONFIGURATION ...spacecraft. One of the major hazards is hypervelocity impacts from uncontrolled, man-made space debris. Arnold Engineering Development Complex
Multimillion Atom Simulations and Visualization of Hypervelocity Impact Damage and Oxidation
2004-01-01
MULTIMILLION ATOM SIMULATIONS AND VISUALIZATION OF HYPERVELOCITY IMPACT DAMAGE AND OXIDATION Priya Vashishta*, Rajiv K. Kalia, and Aiichiro Nakano...number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 00 DEC 2004 N/A 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multimillion Atom Simulations And...Collaboratory for Advanced Computing and Simulations Department of Materials Science & Engineering, Department of Physics & Astronomy, Department of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin
2011-03-15
The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less
The Double Asteroid Redirection Test in the AIDA Mission
NASA Astrophysics Data System (ADS)
Cheng, Andrew; Reed, Cheryl; Rivkin, Andrew
2016-07-01
The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, consisting of the ESA Asteroid Impact Mission (AIM) rendezvous mission and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The DART spacecraft is designed to impact the Didymos secondary at 7 km/s and demonstrate the ability to modify its trajectory through momentum transfer. DART and AIM are currently Phase A studies supported by NASA and ESA respectively. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts based on measured physical properties of the asteroid surface and sub-surface, and including long-term dynamics of impact ejecta. The primary DART objectives are to demonstrate a hyper-velocity impact on the Didymos moon and to determine the resulting deflection from ground-based observations. The DART impact on the Didymos secondary will change the orbital period of the binary which can be measured by supporting Earth-based optical and radar observations. The baseline DART mission launches in December, 2020 to impact the Didymos secondary in September,2022. There are multiple launch opportunities for DART leading to impact around the 2022 Didymos close approach to Earth. The AIM spacecraft will be launched in Dec. 2020 and arrive at Didymos in spring, 2022, several months before the DART impact. AIM will characterize the Didymos binary system by means of remote sensing and in-situ instruments both before and after the DART impact. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in detail by the AIM mission. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. The DART impact on the Didymos secondary is predicted to cause a 4.4 minute change in the binary orbit period, assuming unit momentum transfer efficiency. The predicted transfer efficiency would be in the range 1.1 to 1.3 for a porous target material based on a variety of numerical and analytical methods, but may be much larger if the target is non-porous. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Passive infrared bullet detection and tracking
Karr, Thomas J.
1997-01-01
An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.
Passive infrared bullet detection and tracking
Karr, T.J.
1997-01-21
An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.
Application of a flux-split algorithm to chemically relaxing, hypervelocity blunt-body flows
NASA Technical Reports Server (NTRS)
Balakrishnan, A.
1987-01-01
Viscous, nonequilibrium, hypervelocity flow fields over two axisymmetric configurations are numerically simulated using a factored, implicit, flux-split algorithm. The governing gas-dynamic and species-continuity equations for laminar flow are presented. The gas-dynamics/nonequilibrium-chemistry coupling procedure is developed as part of the solution procedure and is described in detail. Numerical solutions are presented for hypervelocity flows over a hemisphere and over an axisymmetric aeroassisted orbital transfer vehicle using three different chemistry models. The gas models considered are those for an ideal gas, for a frozen gas, and for chemically relaxing air consisting of five species. The calculated results are compared with existing numerical solutions in the literature along the stagnation line of the hemisphere. The effects of free-stream Reynolds number on the nonequilibrium flow field are discussed.
Detecting dust hits at Enceladus, Saturn and beyond using CAPS / ELS data from Cassini
NASA Astrophysics Data System (ADS)
Vandegriff, J. D.; Stoneberger, P. J.; Jones, G.; Waite, J. H., Jr.
2016-12-01
It has recently been shown (1) that the impact of hypervelocity dust grains on the Cassini spacecraft can be detected by the Cassini Plasma Spectrometer (CAPS) Electron Spectrometer (ELS) instrument. For multiple Enceladus flybys, fine scale features in the lower energy regime of ELS energy spectra can be explained as short-duration, isotropic plasma clouds due to dust impacts. We have developed an algorithm for detecting these hypervelocity dust impacts, and the list of such impacts during Enceladus flybys will be presented. We also present preliminary results obtained when using the algorithm to search for dust impacts in other regions of Saturn's magnetosphere as well as in the solar wind. (1) Jones, Geraint, Hypervelocity dust impact signatures detected by Cassini CAPS-ELS in the Enceladus plume, MOP Meeting, June 1-5, 2015, Atlanta, GA
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Bean, Alan J.; Darzi, Kent
1991-01-01
All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database.
A research study for the preliminary definition of an aerophysics free-flight laboratory facility
NASA Technical Reports Server (NTRS)
Canning, Thomas N.
1988-01-01
A renewed interest in hypervelocity vehicles requires an increase in the knowledge of aerodynamic phenomena. Tests conducted with ground-based facilities can be used both to better understand the physics of hypervelocity flight, and to calibrate and validate computer codes designed to predict vehicle performance in the hypervelocity environment. This research reviews the requirements for aerothermodynamic testing and discusses the ballistic range and its capabilities. Examples of the kinds of testing performed in typical high performance ballistic ranges are described. We draw heavily on experience obtained in the ballistics facilities at NASA Ames Research Center, Moffett Field, California. Prospects for improving the capabilities of the ballistic range by using advanced instrumentation are discussed. Finally, recent developments in gun technology and their application to extend the capability of the ballistic range are summarized.
Review of 166 Gunshot Injury Cases in Dogs.
Capak, Hrvoje; Brkljaca Bottegaro, Nika; Manojlovic, Ana; Smolec, Ozren; Vnuk, Drazen
2016-12-01
The study is aimed to establish predilection signalment and history data, and to investigate clinical findings and risk factors associated with a poor outcome in dogs with projectile injuries. A retrospective study was undertaken of 166 canine cases in which a projectile was found on radiograph in a university׳s diagnostic imaging center more than a 4-year period. The study included dogs with both apparent (obvious recent traumatic event) and incidental (traumatic event unknown to the owner) projectile injury. Radiographs were reviewed and data regarding projectile position according to body region, number and type of projectile(s), bone fracture(s), and wound(s) related to projectile were recorded. The dogs were divided into groups according to owner address, hunting accident vs. shooting unrelated to hunting, and projectile type found on radiographs. Overall, 160 dogs met the inclusion criteria, making 0.76% the incidence of gunshot injuries. Further, 91 dogs were received with incidental projectile injury, and 75 dogs had apparent projectile injury. Male dogs were overrepresented (74.1%). Hunting accidents were the cause of projectile injury in 12.7% of cases. Fractures were observed in 20.5% of dogs. Most of the dogs (62%) were from an urban area, and the most common projectile type was airgun projectile (62%). The risk of fatal outcome was 14.4 times higher in dogs with thoracic injuries. Projectile injuries are still a real cause of trauma, especially in urban areas and in male dogs. Most gunshot injuries do not cause fatalities, although the thoracic projectile injury was associated with a greater fatality risk. Copyright © 2016 Elsevier Inc. All rights reserved.
Skin-friction gauge for use in hypervelocity impulse facilities
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Simmons, J. M.; Paull, A.
1992-01-01
A transducer is presented which can measure as rise-time of about 20 microsec, and is thereby applicable to measurements in the high-enthalpy flows associated with hypervelocity impulse facilities. Results are presented which demonstrate the effectiveness of the concept in the case of skin-friction measurements conducted on a flat plate at Mach 3.2. The calibration used was against theoretical skin-friction values in a simple flow.
NASA Astrophysics Data System (ADS)
Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo
2009-02-01
The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.
Subcaliber discarding sabot airgun projectiles.
Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta
2014-03-01
Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E < 7.5 J). While the velocity of the discarded Sussex Sabo core projectile was very close to the velocity of a diabolo-type reference projectile (RWS Meisterkugel), energy density was up to 60 % higher. To conclude, this work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.
Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.
Debord, J Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A; Verkhoturov, Stanislav V; Schweikert, Emile A
2012-04-12
Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.
Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils
DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.
2012-01-01
Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au100q+q (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au+) and projectile disintegration occurs at the exit of even a 5 nm thick foil. PMID:22888385
NASA Astrophysics Data System (ADS)
Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.
2017-04-01
In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.
Forensic and clinical issues in the use of frangible projectile.
Komenda, Jan; Hejna, Petr; Rydlo, Martin; Novák, Miroslav; Krajsa, Jan; Racek, František; Rejtar, Pavel; Jedlička, Luděk
2013-08-01
Frangible projectiles for firearms, which break apart on impact, are mainly used by law enforcement agencies for training purposes, but can also be used for police interventions. Apart from the usual absence of lead in the projectiles, the main advantage of using frangible projectiles is the reduced risk of ricochet after impact with a hard target. This article describes the design and function of frangible projectiles, and describes gunshot wounds caused by ultra-frangible projectiles which fragment after penetration of soft tissues. Shooting experiments performed by the authors confirmed that differences in the geometry and technology of frangible projectiles can significantly modify their wounding effects. Some frangible projectiles have minimal wounding effects because they remain compact after penetration of soft tissues, comparable to standard fully jacketed projectiles. However, a number of ultra-frangible projectiles disintegrate into very small fragments after impact with a soft tissue substitute. In shooting experiments, we found that the terminal behavior of selected ultra-frangible projectiles was similar in a block of ballistic gel and the soft tissues of the hind leg of a pig, except that the degree of disintegration was less in the gel. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.
Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K
2008-04-18
Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.
Distributed energy store powered railguns for hypervelocity launch
NASA Astrophysics Data System (ADS)
Maas, Brian L.; Bauer, David P.; Marshall, Richard A.
1993-01-01
Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.
A method for simulating the atmospheric entry of long-range ballistic missiles
NASA Technical Reports Server (NTRS)
Eggers, A J , Jr
1958-01-01
It is demonstrated with the aid of similitude arguments that a model launched from a hypervelocity gun upstream through a special supersonic nozzle should experience aerodynamic heating and resulting thermal stresses like those encountered by a long-range ballistic missile entering the earth's atmosphere. This demonstration hinges on the requirements that model and missile be geometrically similar and made of the same material, and that they have the same flight speed and Reynolds number (based on conditions just outside the boundary layer) at corresponding points in their trajectories. The hypervelocity gun provides the model with the required initial speed, while the nozzle scales the atmosphere, in terms of density variation, to provide the model with speeds and Reynolds numbers over its entire trajectory. Since both the motion and aerodynamic heating of a missile tend to be simulated in the model tests, this combination of hypervelocity gun and supersonic nozzle is termed an atmosphere entry simulator.
Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations
NASA Astrophysics Data System (ADS)
Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul
2017-10-01
Hypervelocity micro particles, including meteoroids and space debris with masses <1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.
Revisiting hypervelocity stars after Gaia DR2
NASA Astrophysics Data System (ADS)
Boubert, D.; Guillochon, J.; Hawkins, K.; Ginsburg, I.; Evans, N. W.; Strader, J.
2018-06-01
Hypervelocity stars are intriguing rare objects traveling at speeds large enough to be unbound from the Milky Way. Several mechanisms have been proposed for producing them, including the interaction of the Galaxy's super-massive black hole (SMBH) with a binary; rapid mass-loss from a companion to a star in a short-period binary; the tidal disruption of an infalling galaxy and finally ejection from the Large Magellanic Cloud. While previously discovered high-velocity early-type stars are thought to be the result of an interaction with the SMBH, the origin of high-velocity late type stars is ambiguous. The second data release of Gaia (DR2) enables a unique opportunity to resolve this ambiguity and determine whether any late-type candidates are truly unbound from the Milky Way. In this paper, we utilize the new proper motion and velocity information available from DR2 to re-evaluate a collection of historical data compiled on the newly-created Open Fast Stars Catalog. We find that almost all previously-known high-velocity late-type stars are most likely bound to the Milky Way. Only one late-type object (LAMOST J115209.12+120258.0) is unbound from the Galaxy. Performing integrations of orbital histories, we find that this object cannot have been ejected from the Galactic centre and thus may be either debris from the disruption of a satellite galaxy or a disc runaway.
Prediction of projectile ricochet behavior after water impact.
Baillargeon, Yves; Bergeron, Guy
2012-11-01
Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.
Penetration of multiple thin films in micrometeorite capture cells
NASA Technical Reports Server (NTRS)
Simon, Charles G.
1994-01-01
As part of a continuing effort to develop cosmic dust detectors/collectors for use in space, we performed a series of hypervelocity impact experiments on combined sensor/capture-cell assemblies using 10-200-micron-diameter glass projectiles and olivine crystals at velocities of 0.9-14.4 km/s. The design objective of the space-flight instrument is to measure the trajectories of individual particles with sufficient accuracy to permit identification of their parent bodies and to capture enough impactor material to allow chemical and isotopic analyses of samples returned to Earth. Three different multiple-film small-particle capture cell designs (0.1-100-micron-thick Al foils with approx. 10, 100, and 1800 micron spacing) were evaluated for their ability to capture impactor fragments and residue. Their performances were compared to two other types of capture cells, foil covered Ge crystals, and 0.50 and 0.120 g/cu cm aerogels. All capture cells were tested behind multifilm (1.4-6.0-micron-thick) polyvinylidene fluoride (PVDF) velocity/trajectory sensor devices. Several tests were also done without the PVDF sensors for comparison. The results of this study were reported by Simon in a comprehensive report in which the morphology of impacts and impactor residues in various types of capture cells after passage through two PVDF sensor films is discussed. Impactor fragments in selected capture cells from impacts at velocities up to 6.4 km/s were identified using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS).
NASA Astrophysics Data System (ADS)
Jutzi, Martin; Michel, Patrick
2014-02-01
In this paper, we investigate numerically the momentum transferred by impacts of small (artificial) projectiles on asteroids. The study of the momentum transfer efficiency as a function of impact conditions and of the internal structure of an asteroid is crucial for performance assessment of the kinetic impactor concept of deflecting an asteroid from its trajectory. The momentum transfer is characterized by the so-called momentum multiplication factor β, which has been introduced to define the momentum imparted to an asteroid in terms of the momentum of the impactor. Here we present results of code calculations of the β factor for porous targets, in which porosity takes the form of microporosity and/or macroporosity. The results of our study using a large range of impact conditions indicate that the momentum multiplication factor β is small for porous targets even for very high impact velocities (β<2 for vimp⩽15 km/s), which is consistent with published scaling laws and results of laboratory experiments (Holsapple, K.A., Housen, K.R. [2012]. Icarus 221, 875-887; Holsapple, K.A., Housen, K.R. [2013]. Proceedings of the IAA Planetary Defense Conference 2013, Flagstaff, USA). It is found that both porosity and strength can have a large effect on the amount of transferred momentum and on the scaling of β with impact velocity. On the other hand, the macroporous inhomogeneities considered here do not have a significant effect on β.
NASA Technical Reports Server (NTRS)
Chase, Thomas D.; Splawn, Keith; Christiansen, Eric L.
2007-01-01
The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.
A Plasma Drag Hypervelocity Particle Accelerator (HYPER)
NASA Technical Reports Server (NTRS)
Best, Steve R.; Rose, M. Frank
1998-01-01
Current debris models are able to predict the growth of the space debris problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now and that the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The velocity distribution of the man-made component peaks at 9-10 km/s with maximum velocity in the 14-16 km/s range. Experience in space has verified that the "high probability of impact" particles are in the microgram to milligram range. These particles can have very significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the impact events. In this paper, the HYPER facility is described which produces a reasonable simulation of the man-made space debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility has been used to study impact phenomena on Space Station Freedom's solar array structure, the calibration of space debris collectors, other solar array materials, potential structural materials for use in space, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on surfaces which have been exposed in space.
Wound ballistics of injuries caused by handguns with different types of projectiles.
von See, Constantin; Stuehmer, Alexander; Gellrich, Nils-Claudius; Blum, Katrin S; Bormann, Kai-Hendrik; Rücker, Martin
2009-07-01
There are considerable differences in the shape and composition of military and civilian projectiles. Five different projectiles with the same kinetic energy were fired into the heads of freshly sacrificed pigs (n=30) through the submental region in the occipital direction. Computed tomography (CT) and 3D face scans of the animal skulls were obtained before and after firing. The image data sets were fused and provided the basis for a quantitative analysis of destruction patterns. As a result of the destruction of the parietal bone at the potential exit site, there were significant volume difference between the Action 4 (6.45 +/- 3.42 ml) and the Hydra-Shok projectile (12.71 +/- 2.86 ml). The partial metal-jacketed projectile showed a minor increase in volume (4.89 +/- 1.47 ml) and a partial loss of soft projectile components. Radiology showed differences between the various projectiles in fragmentation and bone and soft-tissue destruction. Although the projectiles had the same kinetic energy, there were considerable differences in injury patterns between full metal-jacketed projectiles, which are the only projectiles permitted for military use under the Geneva Conventions, and the other investigated projectiles. These injuries present a major medical challenge to both first responders and surgeons.
Fundamental Aerodynamic Investigations for Development of Arrow-Stabilized Projectiles
NASA Technical Reports Server (NTRS)
Kurzweg, Hermann
1947-01-01
The numerous patent applications on arrow-stabilized projectiles indicate that the idea of projectiles without spin is not new, but has appeared in various proposals throughout the last decades. As far as projectiles for subsonic speeds are concerned, suitable shapes have been developed for sometime, for example, numerous grenades. Most of the patent applications, though, are not practicable particularly for projectiles with supersonic speed. This is because the inventor usually does not have any knowledge of aerodynamic flow around the projectile nor any particular understanding of the practical solution. The lack of wind tunnels for the development of projectiles made it necessary to use firing tests for development. These are obviously extremely tedious or expensive and lead almost always to failures. The often expressed opinion that arrow-stabilized projectiles cannot fly supersonically can be traced to this condition. That this is not the case has been shown for the first time by Roechling on long projectiles with foldable fins. Since no aerodynamic investigations were made for the development of these projectiles, only tedious series of firing tests with systematic variation of the fins could lead to satisfactory results. These particular projectiles though have a disadvantage which lies in the nature cf foldable fins. They occasionally do not open uniformly in flight, thus causing unsymmetry in flow and greater scatter. The junctions of fins and body are very bad aerodynamically and increase the drag. It must be possible to develop high-performance arrow-stabilized projectiles based on the aerodynamic research conducted during the last few years at Peenemuende and new construction ideas. Thus the final shape, ready for operational use, could be developed in the wind tunnel without loss of expensive time in firing tests. The principle of arrow-stabilized performance has been applied to a large number of caliburs which were stabilized by various means Most promising was the development of a subcaliber wing-stabilized projectile with driving disc (Treibspiegel) where rigid control surfaces extend beyond the caliber of the projectile into the free stream. The stabilized projectiles of full-caliber, wing-stabilized projectiles with fins within the caliber is considerably more difficult. A completely satisfactory solution for the latter has not been found yet.
Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation
NASA Technical Reports Server (NTRS)
Rule, William K.
1992-01-01
Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.; Shivarama, Ravishankar
2004-01-01
The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.
NASA Astrophysics Data System (ADS)
Fair, Harry D.; Kiehne, Thomas M.; Anderson, Charles E., Jr.
1993-10-01
The 1992 Hypervelocity Impact Symposium was held in Austin, Texas on November 17-20, 1992. The proceedings are published in three volumes. Seventy-six papers were unclassified, and published together as Volume 14, Numbers 1-4 of the International Journal of Impact Engineering, which can be obtained from Pergamon Press, Maxwell House, Fairview Park, Elmsford, NY 10523. Nine papers were selected for presentation and publication in the Classified Proceedings, and eight papers were selected for presentation and publication in the NOFORN Proceedings.
Ballistic projectile trajectory determining system
Karr, Thomas J.
1997-01-01
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.
NASA Technical Reports Server (NTRS)
Collins, Rufus D., Jr.; Kinard, William H.
1960-01-01
The results of this investigation indicate that the penetration of projectiles into quasi-infinite targets can be correlated as a function of the maximum momentum per unit area possessed by the projectiles. The penetration of projectiles into aluminum, copper, and steel targets was found to be a linear function while the penetration into lead targets was a nonlinear function of the momentum per unit area of the impacting projectiles. Penetration varied inversely as the projectile density and the elastic modulus of the target material for a given projectile momentum per unit area. Crater volumes were found to be a linear function of the kinetic energy of the projectile, the greater volumes being obtained in the target materials which had the lowest yield strength and the lowest speed of sound.
NASA Technical Reports Server (NTRS)
Kinard, William H.; Lambert, C. H., Jr.; Schryer, David R.; Casey, Francis W., Jr.
1958-01-01
In order to determine the effects of target thickness on the penetration and cratering of a target resulting from impacts by high-velocity projectiles, a series of experimental tests have been run. The projectile-target material combinations investigated were aluminum projectiles impacting aluminum targets and steel projectiles impacting aluminum and copper targets. The velocity spectrum ranged from 4,000 ft/sec to 13,000 ft/sec. It has been found that the penetration is a function of target thickness provided that the penetration is greater than 20 percent of the target thickness. Targets of a thickness such that the penetration amounts to less than 20 percent of the thickness may be regarded as quasi-infinite. An empirical formula has been established relating the penetration to the target thickness and to the penetration of a projectile of the same mass, configuration, and velocity into a quasi- infinite target. In particular, it has been found that a projectile can completely penetrate a target whose thickness is approximately one and one-half times as great as the penetration of a similar projectile into a quasi-infinite target. The diameter of a crater has also been found to be a function of the target thickness provided that the target thickness is not greater than the projectile length in the case of cylindrical projectiles and not greater than two to three times the projectile diameter in the case of spherical projectiles.
Sonic Simulation of Near Projectile Hits
NASA Technical Reports Server (NTRS)
Statman, J. I.; Rodemich, E. R.
1988-01-01
Measured frequencies identify projectiles and indicate miss distances. Developmental battlefield-simulation system for training soldiers uses sounds emitted by incoming projectiles to identify projectiles and indicate miss distances. Depending on projectile type and closeness of each hit, system generates "kill" or "near-kill" indication. Artillery shell simulated by lightweight plastic projectile launched by compressed air. Flow of air through groove in nose of projectile generates acoustic tone. Each participant carries audio receiver measure and process tone signal. System performs fast Fourier transforms of received tone to obtain dominant frequency during each succeeding interval of approximately 40 ms (an interval determined from practical signal-processing requirements). With modifications, system concept applicable to collision-warning or collision-avoidance systems.
Electromagnetic Meissner-Effect Launcher
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1990-01-01
Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.
Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles
NASA Astrophysics Data System (ADS)
Gaite, José
2017-09-01
The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) with John Bluck (Ames PAO) and Chuck Cornelison Ames Engineer
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - Wayne Freedman, ABC Channel 7 news inerviews Jeff Brown of Ames
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - Gary Reyes, San Jose mercury New interviews Chuck Cornelison
1979-03-01
AFOsk- -33 3 and the National Research Council of Canada. k I Abstract The UTIAS 10 cm x 18 cm Hypervelocity Shock.-Tube has) been used in recent...Ref. 2) reported on further modifications and improvements. Since then, further modifications and changes were made by various researchers who have used...discharged through a triggered gas-type spark gap and the wire to ground. Poor ignition is minimized by adequately insulating the high voltage connection
Meteor Crater: Energy of formation - Implications of centrifuge scaling
NASA Technical Reports Server (NTRS)
Schmidt, R. M.
1980-01-01
Recent work on explosive cratering has demonstrated the utility of performing subscale experiments on a geotechnic centrifuge to develop scaling rules for very large energy events. The present investigation is concerned with an extension of this technique to impact cratering. Experiments have been performed using a projectile gun mounted directly on the centrifuge rotor to launch projectiles into a suitable soil container undergoing centripetal accelerations in excess of 500 G. The pump tube of a two-stage light-gas gun was used to attain impact velocities of approximately 2 km/sec. The results of the experiments indicate that the energy of formation of any large impact crater depends upon the impact velocity. This dependence, shown for the case of Meteor Crater, is consistent with analogous results for the specific energy dependence of explosives and is expected to persist to impact velocities in excess of 25 km/sec.
A Study Of High Speed Friction Behavior Under Elastic Loading Conditions
NASA Astrophysics Data System (ADS)
Crawford, P. J.; Hammerberg, J. E.
2005-03-01
The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.
The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field
NASA Technical Reports Server (NTRS)
Anderson, Jennifer L. B.; Schultz, P. H.
2005-01-01
The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.
Ballistic projectile trajectory determining system
Karr, T.J.
1997-05-20
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.
Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François
2015-01-01
The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.
Visualization of Projectile Flying at High Speed in Dusty Atmosphere
NASA Astrophysics Data System (ADS)
Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro
2017-10-01
Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.
Shuttle Hypervelocity Impact Database
NASA Technical Reports Server (NTRS)
Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.
2011-01-01
With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.
The Double Asteroid Redirection Test in the AIDA Project
NASA Astrophysics Data System (ADS)
Cheng, Andrew; Rivkin, Andrew; Michel, Patrick
2016-04-01
The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, that includes the ESA Asteroid Impact Mission (AIM) rendezvous mission and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The ~300-kg DART spacecraft is designed to impact the Didymos secondary at 7 km/s and demonstrate the ability to modify its trajectory through momentum transfer. DART and AIM are currently Phase A studies supported by NASA and ESA respectively. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid, by targeting an object larger than ~100 m and large enough to qualify as a Potentially Hazardous Asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the period change of the binary orbit; (3) understand the hyper-velocity collision effects on an asteroid, including the long-term dynamics of impact ejecta; and validate models for momentum transfer in asteroid impacts, based on measured physical properties of the asteroid surface and sub-surface. The primary DART objectives are to demonstrate a hyper-velocity impact on the Didymos moon and to determine the resulting deflection from ground-based observatories. The DART impact on the Didymos secondary will cause a measurable change in the orbital period of the binary. Supporting Earth-based optical and radar observations and numerical simulation studies are an integral part of the DART mission. The baseline DART mission launches in December, 2020 to impact the Didymos secondary in September, 2022. There are multiple launch opportunities for DART leading to impact around the 2022 Didymos close approach to Earth. The AIM spacecraft will be launched in Dec. 2020 and arrive at Didymos in spring, 2022, several months before the DART impact. AIM will characterize the Didymos binary system by means of remote sensing and in-situ instruments both before and after the DART impact. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in great detail by the AIM mission. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency β from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. The DART impact on the Didymos secondary is predicted to cause a ~4.4 minute change in the binary orbit period, assuming β=1, and is expected to be observable within a few days. The predicted β would be in the range 1.1 to 1.3 for a porous target material based on a variety of numerical and analytical methods, but may be much larger if the target is non-porous. The DART kinetic impact is predicted to make a crater of ~6 to ~17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.
High School Students' Understanding of Projectile Motion Concepts
ERIC Educational Resources Information Center
Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin
2009-01-01
The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…
Recent results from the University of Washington's 38 mm ram accelerator
NASA Technical Reports Server (NTRS)
De Turenne, J. A.; Chew, G.; Bruckner, A. P.
1992-01-01
The ram accelerator is a propulsive device that accelerates projectiles using gasdynamic cycles similar to those which generate thrust in airbreathing ramjets. The projectile, analogous to the centerbody of a ramjet, travels supersonically through a stationary tube containing a gaseous fuel and oxidizer mixture. The projectile itself carries no onboard propellant. A combustion zone follows the projectile and stabilizes the shock structure. The resulting pressure distribution continuously accelerates the projectile. Several modes of ram accelerator operation have been investigated experimentally and theoretically. At velocities below the Chapman-Jouguet (C-J) detonation speed of the propellant mixture, the thermally choked propulsion mode accelerates the projectiles. At projectile velocities between approximately 90 and 110 percent of the C-J speed, a transdetonative propulsion mode occurs. At velocities beyond 110 percent of the C-J speed, projectiles experience superdetonative propulsion. This paper presents recent experimental results from these propulsion modes obtained with the University of Washington's 38-mm bore ram accelerator. Data from investigations with hydrogen diluted-gas mixtures are also introduced.
Characterization of Debris from the DebriSat Hypervelocity Test
NASA Technical Reports Server (NTRS)
Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.
2015-01-01
The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.
Method of and apparatus for accelerating a projectile
Goldstein, Yeshayahu S. A.; Tidman, Derek A.
1986-01-01
A projectile is accelerated along a confined path by supplying a pulsed high pressure, high velocity plasma jet to the rear of the projectile as the projectile traverses the path. The jet enters the confined path at a non-zero angle relative to the projectile path. The pulse is derived from a dielectric capillary tube having an interior wall from which plasma forming material is ablated in response to a discharge voltage. The projectile can be accelerated in response to the kinetic energy in the plasma jet or in response to a pressure increase of gases in the confined path resulting from the heat added to the gases by the plasma.
Microcraters formed in glass by projectiles of various densities
NASA Technical Reports Server (NTRS)
Vedder, J. F.; Mandeville, J.-C.
1974-01-01
An experiment was conducted investigating the effect of projectile density on the structure and size of craters in soda lime glass and fused quartz. The projectiles were spheres of polystyrene-divinylbenzene (PS-DVB), aluminum, and iron with velocities between 0.5 and 15 km/sec and diameters between 0.4 and 5 microns. The projectile densities spanned the range expected for primary and secondary particles of micrometer size at the lunar surface, and the velocities spanned the lower range of micrometeoroid velocities and the upper range of secondary projectile velocities. There are changes in crater morphology as the impact velocity increases, and the transitions occur at lower velocities for the projectiles of higher density. The sequence of morphological features of the craters found for PS-DVB impacting soda lime glass for increasing impact velocity, described in a previous work (Mandeville and Vedder, 1971), also occurs in fused quartz and in both targets with the more dense aluminum and iron projectiles. Each transition in morphology occurs at impact velocities generating a certain pressure in the target. High density projectiles require a lower velocity than low-density projectiles to generate a given shock pressure.
Projectile-generating explosive access tool
Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N
2013-06-11
A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.
Photon emission from massive projectile impacts on solids.
Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A
2011-01-01
First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.
Photon emission from massive projectile impacts on solids
Fernandez-Lima, F. A.; Pinnick, V. T.; Della-Negra, S.; Schweikert, E. A.
2011-01-01
First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Aun+q (1 ≤ n ≤ 400; q = 1–4) projectiles with impact energies in the range of 28–136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact. PMID:21603128
Fackler, M L; Bellamy, R F; Malinowski, J A
1988-01-01
In 1976 a paper appeared which forecast "significant increases in velocities of projectiles from guns and fragments from warheads." It was postulated that the higher velocity projectiles would cause shallow wounds with wide tissue destruction on the surface--especially when striking velocity exceeded the speed of sound in tissue (about 1.5 km/sec). Other studies have not dealt with projectiles in this velocity range; the conclusions and assumptions stated in this 1976 paper have been quoted by others and accepted as fact. In a previous study, we shot blunt fragments into gelatin, but our findings did not support the proposed hypothesis that temporary cavity shape in tissue changes at velocities above the sonic speed. The temporary cavity becomes larger with increasing velocity but it does not become shallow unless the projectile fragments on impact. In the present study, we shot a series of blunt projectiles into animal tissue at velocities of 764 to 2,049 m/s. The stellate skin and muscle disruption splits from temporary cavity stretch we observed in this study are not apparent on entrance wounds from individual explosive device fragments in the living wounded. We suggest, therefore, that studies using blunt projectiles at striking velocities above 700 m/s are lacking in clinical relevance. We also compared wounds produced by pointed projectiles with those produced by blunt projectiles. The marked difference in wound morphology showed the fallacy of doing a study with blunt missiles and applying conclusions from that study to tissue disruption caused by all projectiles.
Ballistic Experiments with Titanium and Aluminum Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogolewski, R.; Morgan, B.R.
1999-11-23
During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballisticmore » limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.« less
Ballistics for the neurosurgeon.
Jandial, Rahul; Reichwage, Brett; Levy, Michael; Duenas, Vincent; Sturdivan, Larry
2008-02-01
Craniocerebral injuries from ballistic projectiles are qualitatively different from injuries in unconfined soft tissue with similar impact. Penetrating and nonpenetrating ballistic injuries are influenced not only by the physical properties of the projectile, but also by its ballistics. Ballistics provides information on the motion of projectiles while in the gun barrel, the trajectory of the projectile in air, and the behavior of the projectile on reaching its target. This basic knowledge can be applied to better understand the ultimate craniocerebral consequences of ballistic head injuries.
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - ABC Camerman in forground, Wayne Freedman ABC reporter, Jeff Brown (Ames-ASA), John Bluck (AMES PAO)
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - NBC Channel 11 Technology/Business reporter Scott Budman at the gun range (w/C Acosta in bkgrd)
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - Cesar Acosta, NASA photographer in forground and a news camera men taking shot of the gun facility
An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.
2016-08-01
7 2.1. DYNAMIC DART GUN EXPERIMENTS...penetration, and cavity formation associated with high-speed projectile penetration of sand. A new half-inch gun was constructed for this project. A...inch gun with them. Data was collected utilizing NSWC’s Cordin 550, 64 frame, high-speed camera. In addition, several student participated in the
Sequential injection gas guns for accelerating projectiles
Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID
2011-11-15
Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.
Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array
NASA Astrophysics Data System (ADS)
Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih
2011-08-01
This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.
Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array.
Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih
2011-08-01
This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.
Trajectory Control of Small Rotating Projectiles by Laser Sparks
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard
2015-09-01
The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.
Veterinary Forensics: Firearms and Investigation of Projectile Injury.
Bradley-Siemens, N; Brower, A I
2016-09-01
Projectile injury represents an estimated 14% of reported animal cruelty cases in the United States. Cases involving projectiles are complicated by gross similarities to other common types of injury, including bite wounds and motor vehicle injuries, by weapons and ammunition not commonly recognized or understood by veterinary medical professionals, and by required expertise beyond that employed in routine postmortem examination. This review describes the common types of projectile injuries encountered within the United States, as well as firearms and ammunition associated with this form of injury. The 3 stages of ballistics-internal, external, and terminal-and wounding capacity are discussed. A general understanding of firearms, ammunition, and ballistics is necessary before pursuing forensic projectile cases. The forensic necropsy is described, including gunshot wound examination, projectile trajectories, different imaging procedures, collection and storage of projectile evidence, and potential advanced techniques for gunpowder analysis. This review presents aspects of projectile injury investigation that must be considered in tandem with standard postmortem practices and procedures to ensure reliable conclusions are reached for medicolegal as well as diagnostic purposes. © The Author(s) 2016.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-05-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-01-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Magnetic reconnection launcher
Cowan, Maynard
1989-01-01
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.
NASA Astrophysics Data System (ADS)
Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping
2017-12-01
This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.
On high explosive launching of projectiles for shock physics experiments
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul
2007-06-01
The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements are likely to be insensitive to porous regions caused by damaged or recollected material.
Projectile Combustion Effects on Ram Accelerator Performance
NASA Astrophysics Data System (ADS)
Chitale, Saarth Anjali
University of Washington Abstract Projectile Combustion Effects on Ram Accelerator Performance Saarth Anjali Chitale Chair of the Supervisory Committee: Prof. Carl Knowlen William E. Boeing Department of Aeronautics and Astronautics The ram accelerator facility at the University of Washington is used to propel projectiles at supersonic velocities. This concept is similar to an air-breathing ramjet engine in that sub-caliber projectiles, shaped like the ramjet engine center-body, are shot through smooth-bore steel-walled tubes having an internal diameter of 38 mm. The ram accelerator propulsive cycles operate between Mach 2 to 10 and have the potential to accelerate projectile to velocities greater than 8 km/s. The theoretical thrust versus Mach number characteristics can be obtained using knowledge of gas dynamics and thermodynamics that goes into the design of the ram accelerator. The corresponding velocity versus distance profiles obtained from the test runs at the University of Washington, however, are often not consistent with the theoretical predictions after the projectiles reach in-tube Mach numbers greater than 4. The experimental velocities are typically greater than the expected theoretical predictions; which has led to the proposition that the combustion process may be moving up onto the projectile. An alternative explanation for higher than predicted thrust, which is explored here, is that the performance differences can be attributed to the ablation of the projectile body which results in molten metal being added to the flow of the gaseous combustible mixture around the projectile. This molten metal is assumed to mix uniformly and react with the gaseous propellant; thereby enhancing the propellant energy release and altering the predicted thrust-Mach characteristics. This theory predicts at what Mach number the projectile will first experience enhanced thrust and the corresponding velocity-distance profile. Preliminary results are in good agreement with projectiles operating in methane/oxygen/nitrogen propellants. Effects of projectile surface to volume ratio are also explored by applying the model to experimental results from smaller (Tohoku University, 25-mm-bore) and larger (Institute of Saint-Louis 90-mm-bore) bore ram accelerators. Due to lower surface-to-volume ratio, large diameter projectiles are predicted to need to reach higher Mach numbers than smaller diameter projectiles before thrust enhancement due to metal ablation and burning would be experienced. This proposition was supported by published experimental data. The theoretical modeling of projectile ablation, metal combustion, and subsequent ram accelerator thrust characteristics are presented along comparisons to experiments from three different sized ram accelerator facilities.
2009-09-16
dispersing a plurality of relatively small, supercavitating projectiles in the water over a wide spatial field at long ranges from an underwater gun...or surface gun. (2) Description of the Prior Art [0004] One major technical challenge related to employing supercavitating projectiles against...accordingly is more limited. [0005] A second problem common to supercavitating projectiles is the configuration of the projectile itself. The primary
2009-03-13
geometry results in a controllable supercavitation produced vaporous cavity that reduces projectile drag resistance while maximizing projectile range...to point the gun towards the target. [0005] Referring now to FIG. 1, there is shown a typical prior art tapered supercavitating projectile...phenomenon known as the supercavitation effect. Supercavitation occurs when projectile body 12 travels through water 14 at very high speeds and a
NASA Astrophysics Data System (ADS)
Ke, Fa-wei; Huang, Jie; Wen, Xue-zhong; Ma, Zhao-xia; Liu, Sen
2016-10-01
In order to study the cracking and intercepting mechanism of stuffed layer configuration on the debris cloud and to develop stuffed layer configuration with better performance, the hypervelocity impact tests on shielding configurations with stuffed layer were carried out. Firstly, the hypervelocity impact tests on the shielding configuration with stuffed layer of 3 layer ceramic fibre and 3 layer aramid fibre were finished, the study results showed that the debris cloud generated by the aluminum sphere impacting bumper at the velocity of about 6.2 km/s would be racked and intercepted by the stuffed layer configuration efficiently when the ceramic fibre layers and aramid fibre layers were jointed together, however, the shielding performance would be declined when the ceramic fibre layers and aramid fibre layers were divided by some distance. The mechanism of stuffed layer racking and intercepting the debris cloud was analyzed according to the above test results. Secondly, based on the mechanism of the stuffed layer cracking and intercepint debirs cloud the hypervelocity impact tests on the following three stuffed layer structures with the equivalent areal density to the 1 mm-thick aluminum plate were also carried out to compare their performance of cracking and intercepting debris cloud. The mechanisms of stuffed layer racking and intercepting the debris cloud were validated by the test result. Thirdly, the influence of the stuffed layer position on the shielding performance was studied by the test, too. The test results would provide reference for the design of better performance shielding configuration with stuffed layer.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Technical Reports Server (NTRS)
Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.
1993-01-01
As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.
Experimental Simulation of Shock Reequilibration of Fluid Inclusions During Meteorite Impact
NASA Technical Reports Server (NTRS)
Madden, M. E. Elwood; Hoerz, R. J.; Bodnar, R. J.
2003-01-01
Fluid inclusions are microscopic volumes of fluid trapped within minerals as they precipitate. Fluid inclusions are common in terrestrial minerals formed under a wide array of geological settings from surface evaporite deposits to kimberlite pipes. While fluid inclusions in terrestrial rocks are the rule rather than the exception, only few fluid inclusion-bearing meteorites have been documented. The rarity of fluid inclusions in meteoritic material may be explained in two ways. First, it may reflect the absence of fluids (water?) on meteorite parent bodies. Alternatively, fluids may have been present when the rock formed, but any fluid inclusions originally trapped on the parent body were destroyed by the extreme P-T conditions meteorites often experience during impact events. Distinguishing between these two possibilities can provide significant constraints on the likelihood of life on the parent body. Just as textures, structures, and compositions of mineral phases can be significantly altered by shock metamorphism upon hypervelocity impact, fluid inclusions contained within component minerals may be altered or destroyed due to the high pressures, temperatures, and strain rates associated with impact events. Reequilibration may occur when external pressure-temperature conditions differ significantly from internal fluid isochoric conditions, and result in changes in fluid inclusion properties and/or textures. Shock metamorphism and fluid inclusion reequilibration can affect both the impacted target material and the meteoritic projectile. By examining the effects of shock deformation on fluid inclusion properties and textures we may be able to better constrain the pressure-temperature path experienced by shocked materials and also gain a clearer understanding of why fluid inclusions are rarely found in meteoritic samples.
Aluminum/water reactions under extreme conditions
NASA Astrophysics Data System (ADS)
Hooper, Joseph
2013-03-01
We discuss mechanisms that may control the reaction of aluminum and water under extreme conditions. We are particularly interested in the high-temperature, high-strain regime where the native oxide layer is destroyed and fresh aluminum is initially in direct contact with liquid or supercritical water. Disparate experimental data over the years have suggested rapid oxidation of aluminum is possible in such situations, but no coherent picture has emerged as to the basic oxidation mechanism or the physical processes that govern the extent of reaction. We present theoretical and computational analysis of traditional metal/water reaction mechanisms that treat diffusion through a dynamic oxide layer or reaction limited by surface kinetics. Diffusion through a fresh solid oxide layer is shown to be far too slow to have any effect on the millisecond timescale (even at high temperatures). Quantum molecular dynamics simulations of liquid Al and water surface reactions show rapid water decomposition at the interface, catalyzed by adjacent water molecules in a Grotthus-like relay mechanism. The surface reaction barriers are far too low for this to be rate-limiting in any way. With these straightforward mechanisms ruled out, we investigate two more complex possibilities for the rate-limiting factor; first, we explore the possibility that newly formed oxide remains a metastable liquid well below its freezing point, allowing for diffusion-limited reactions through the oxide shell but on a much faster timescale. The extent of reaction would then be controlled by the solidification kinetics of alumina. Second, we discuss preliminary analysis on surface erosion and turbulent mixing, which may play a prominent role during hypervelocity penetration of solid aluminum projectiles into water.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Peck, Jeffrey A.
1992-01-01
Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.
NASA Technical Reports Server (NTRS)
Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon
2011-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.
NASA Technical Reports Server (NTRS)
Sakuraba, K.; Tsuruda, Y.; Hanada, T.; Liou, J.-C.; Akahoshi, Y.
2007-01-01
This paper summarizes two new satellite impact tests conducted in order to investigate on the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low velocity of 1.5 km/s using a 40-gram aluminum alloy sphere, whereas the second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-gram aluminum alloy sphere by two-stage light gas gun in Kyushu Institute of Technology. To date, approximately 1,500 fragments from each impact test have been collected for detailed analysis. Each piece was analyzed based on the method used in the NASA Standard Breakup Model 2000 revision. The detailed analysis will conclude: 1) the similarity in mass distribution of fragments between low and hyper-velocity impacts encourages the development of a general-purpose distribution model applicable for a wide impact velocity range, and 2) the difference in area-to-mass ratio distribution between the impact experiments and the NASA standard breakup model suggests to describe the area-to-mass ratio by a bi-normal distribution.
Having Fun with a 3-D Projectile
ERIC Educational Resources Information Center
Lammi, Matthew; Greenhalgh, Scott
2011-01-01
The use of projectiles is a concept familiar to most students, whether it is a classic slingshot, bow and arrow, or even a spit wad through a straw. Perhaps the last thing a teacher wants is more projectiles in the classroom. However, the concept of projectiles is relevant to most students and may provide a means of bringing more authenticity into…
The Effective Mass of a Ball in the Air
ERIC Educational Resources Information Center
Messer, J.; Pantaleone, J.
2010-01-01
The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…
Initiation of combustion in the thermally choked ram accelerator
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Burnham, E. A.; Knowlen, C.; Hertzberg, A.; Bogdanoff, D. W.
1992-01-01
The methodology for initiating stable combustion in a ram accelerator operating in the thermally choked mode is presented in this paper. The ram accelerator is a high velocity ramjet-in-tube projectile launcher whose principle of operation is similar to that of an airbreathing ramjet. The subcaliber projectile travels supersonically through a stationary tube filled with a premixed combustible gas mixture. In the thermally choked propulsion mode subsonic combustion takes place behind the base of the projectile and leads to thermal choking, which stabilizes a normal shock system on the projectile, thus producing forward thrust. Projectiles with masses in the 45-90 g range have been accelerated to velocities up to 2650 m/sec in a 38 mm bore, 16 m long accelerator tube. Operation of the ram accelerator is started by injecting the projectile into the accelerator tube at velocities in the 700 - 1300 m/sec range by means of a conventional gas gun. A specially designed obturator, which seals the bore of the gun during this initial acceleration, enters the ram accelerator together with the projectile. The interaction of the obturator with the propellant gas ignites the gas mixture and establishes stable combustion behind the projectile.
Development of high velocity gas gun with a new trigger system-numerical analysis
NASA Astrophysics Data System (ADS)
Husin, Z.; Homma, H.
2018-02-01
In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.
Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact
Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo
2018-01-01
This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed. PMID:29522479
Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact.
Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo
2018-03-09
This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.
Orientation estimation algorithm applied to high-spin projectiles
NASA Astrophysics Data System (ADS)
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background
NASA Astrophysics Data System (ADS)
Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu
2018-05-01
With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.
Compilation of Safety Separation Data on Bulk Explosives and Munitions
1988-05-01
Feet p M374 HE Single round 0.61 2.0 projectile, 81 mm Single round with shieldŕ 0.22** 0.73** 72 per pallet 9.14 30.0, XM78) HEDP 2 each PBXN -5...of TNT 14 Boxes of TNT 15 TNT in Tote Bins 16 Munitions 17 8-inch M 106 HE Projectile 17 8-Inch M509 HE Projectile 18 155 mm M 107 HE Projectile 19...maintained. MUNITIONS 8-Inch M106 HE Projectile (ref 14) Objective The objective was to determine the safe separation distance betwen single 8-inch M 106 HE
ERIC Educational Resources Information Center
Schnick, Jeffrey W.
1994-01-01
Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)
30MM GAU-8/A Plastic Frangible Projectile
1977-03-01
20. ABSTRACT fContlnuo on rmvert» tld» 11 nacaaaary and Idontlly by block numbmr) ■feA 30mm target practice (TP) projectile, designed to break...contract to solve these problems. As a result, the Air Force has decided to delay further development of this projectile design concept...Section Title I INTRODUCTION II TECHNICAL DISCUSSION Design Parameters Final Projectile Design Design Evolution Acceptance Testing III
Status Report for the Hypervelocity Free-Flight Aerodynamic Facility
NASA Technical Reports Server (NTRS)
Cornelison, Charles J.; Arnold, James O. (Technical Monitor)
1997-01-01
The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.
NASA Technical Reports Server (NTRS)
Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III
2011-01-01
We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.
Design and Testing of Braided Composite Fan Case Materials and Components
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.
2009-01-01
Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.
Turbulent Flow past High Temperature Surfaces
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald
2014-11-01
Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.
Impact of projectiles of different geometries on dry granular media using DEM simulations
NASA Astrophysics Data System (ADS)
Vajrala, Spandana; Bagheri, Hosain; Emady, Heather; Marvi, Hamid; Particulate Process; Product Design Group Team; Birth Lab Collaboration
Recently, several studies involving numerical and experimental methods have focused on the study of impact dynamics in both dry and wet granular media. Most of these studies considered the impact of spherical projectiles under different conditions, while representative models could involve more complex shapes. Examples include such things as an animal's foot impacting sand or an asteroid hitting the ground. Dropping different shaped geometries with conserved density, volume and velocity on a granular bed may experience contrasting drag forces upon penetration. This is the result of the difference in the surface areas coming in contact with the granular media. Therefore, this work will utilize three-dimensional Discrete Element Modelling (DEM) simulations to observe and compare the impact of different geometries like cylinder and cuboid of same material properties and volume. These geometries will be impacted on a loosely packed non-cohesive dry granular bed with the same impact velocities where the effect of surface area in contact with the granular media will be analyzed upon impact and penetration.
A Laboratory Impact Study of Simulated Edgeworth-Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Ryan, Eileen V.; Davis, Donald R.; Giblin, Ian
1999-11-01
This paper reports on a series of laboratory impact experiments designed to provide basic data on how simulated Edgeworth-Kuiper belt objects (EKOs) fragment in an impact event. In September-October 1997 we carried out 20 low-velocity airgun shots at the Ames Vertical Gun Range into porous and homogeneous ice spheres using aluminum, fractured ice, and solid ice projectiles. We found that the porous ice targets behaved as strongly as solid ice in collision. Energy is apparently well dissipated by the void spaces within the target, such that these fragile ice structures respond as if they were strong in impacts. Therefore, it would appear that if EKOs are porous, they are not collisionally weak. Also, our data show that collisional outcomes for low-velocity impacts into ice targets depend on the type of projectile used as well as the properties of the target. We observed that the degree of fragmentation for a given type of target increases as the strength of the projectile increases. Aluminum projectiles are far more damaging to the target at the same collisional energy than are solid ice projectiles, which, in turn, are more damaging than fractured ice projectiles. One possible explanation for this behavior is the variable depth of penetration of the projectile for the different cases—stronger projectiles penetrate more deeply and couple more energy into the target than do weak projectiles. Based on this, if we assume that there has not been significant heating or differentiation in the Edgeworth-Kuiper (E-K) belt, the most applicable impact strength for the low-velocity E-K belt collisions is likely to be that derived from similar target/projectile materials impacting each other. The laboratory data from this analysis indicate that a value for impact strength>5×10 5 erg/cm 3 is appropriate for porous ice targets impacted with solid/porous ice projectiles.
Magnetic reconnection launcher
Cowan, M.
1987-04-06
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.
Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal
2013-01-01
Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.
Impact Interaction of Projectile with Conducting Wall at the Presence of Electric Current
NASA Astrophysics Data System (ADS)
Chemerys, Volodymyr T.; Raychenko, Aleksandr I.; Karpinos, Boris S.
2002-07-01
The paper introduces with schemes of possible electromagnetic armor augmentation. The interaction of projectile with a main wall of target after penetration across the pre-defense layer is of interest here. The same problem is of interest for the current-carrying elements of electric guns. The theoretical analysis is done in the paper for the impact when the kinetic energy of projectile is enough to create the liquid layer in the crater of the wall's metal. Spherical head of projectile and right angle of inclination have been taken for consideration. The solution of problem for the liquid layer of metal around the projectile head has resulted a reduction of the resistant properties of wall material under current influence, in view of electromagnetic pressure appearance, what is directed towards the wall likely the projectile velocity vector.
NASA Astrophysics Data System (ADS)
Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.
2015-08-01
During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.
Highly Integrated Spinning Projectile (HISP)
1992-02-06
At A A , AlAA 92-1214 HIGHLY INTEGRATED SPINNING PROJECTILE (HISP) G.R. Legters D.P. Lianos R.G. Brosch Senior Scientist, SAIC Senior Engineer...Integrated Spinning Projectile (HISP) Personal Author: Legters , G.R.; Lianos, D.P.; Brosch, R.G. Corporate Author Or Publisher: SAIC, Melbourne Beach...000001 Record ID: 26099 Source of Document: AIAA AIAA-92-1214 HIGHLY INTEGRATED SPINNING PROJECTILE (HISP) 3» en ZO O G. R. Legters Senior
NASA Technical Reports Server (NTRS)
Greiner, D. E.; Lindstrom, P. J.; Heckman, H. H.; Cork, B.; Bieser, F. S.
1975-01-01
The fragment momentum distributions in the projectile rest frame are, typically, Gaussian shaped, narrow, consistent with isotropy, depend on fragment and projectile, and have no significant correlation with target mass or beam energy. The nuclear temperature is inferred from the momentum distributions of the fragments and is approximately equal to the projectile nuclear binding energy, indicative of small energy transfer between target and fragment.
Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack
2017-08-07
ARL-TR-8082 ● AUG 2017 US Army Research Laboratory Experimental Flight Characterization of Spin- Stabilized Projectiles at High ...Experimental Flight Characterization of Spin- Stabilized Projectiles at High Angle of Attack by Frank Fresconi and Ilmars Celmins Weapons and Materials...June 2016–June 2017 4. TITLE AND SUBTITLE Experimental Flight Characterization of Spin-Stabilized Projectiles at High Angle of Attack 5a. CONTRACT
Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles
2010-03-01
Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles by Gene R. Cooper ARL-TR-5118 March 2010...Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles Gene R. Cooper Weapons and Materials Research Directorate, ARL...September 2007 4. TITLE AND SUBTITLE Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles 5a. CONTRACT NUMBER 5b. GRANT
Acquisition of the Navy Rapid Airborne Mine Clearance System
2007-04-11
will fire a supercavitating * projectile from the MH-60S helicopter using laser targeting. By supercavitating , the projectile maintains its...258 Mod 1 Armor Piercing Fin Stabilized Discarding Sabot Tracer cartridge (the Mod 1 incorporates a modified projectile nose to allow supercavitation ... Supercavitation is the use of cavitation (forcing water to move at extremely high speed) effects to create a bubble of air around the projectile, which enables
Projectile-generating explosive access tool
Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Tijeras, NM; Todd, Steven N [Rio Rancho, NM
2011-10-18
An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.
Non-invasive timing of gas gun projectiles with light detection and ranging
NASA Astrophysics Data System (ADS)
Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.
2014-05-01
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.
Ballistic impact response of lipid membranes.
Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan
2018-03-08
Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.
Electric rail gun projectile acceleration to high velocity
NASA Technical Reports Server (NTRS)
Bauer, D. P.; Mccormick, T. J.; Barber, J. P.
1982-01-01
Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.
Stopping power: Effect of the projectile deceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kompaneets, Roman, E-mail: kompaneets@mpe.mpg.de; Ivlev, Alexei V.; Morfill, Gregor E.
2014-11-15
The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force ismore » due to the protons.« less
Microcraters formed in glass by low density projectiles
NASA Technical Reports Server (NTRS)
Mandeville, J.-C.; Vedder, J. F.
1971-01-01
Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.
System and method for bullet tracking and shooter localization
Roberts, Randy S [Livermore, CA; Breitfeller, Eric F [Dublin, CA
2011-06-21
A system and method of processing infrared imagery to determine projectile trajectories and the locations of shooters with a high degree of accuracy. The method includes image processing infrared image data to reduce noise and identify streak-shaped image features, using a Kalman filter to estimate optimal projectile trajectories, updating the Kalman filter with new image data, determining projectile source locations by solving a combinatorial least-squares solution for all optimal projectile trajectories, and displaying all of the projectile source locations. Such a shooter-localization system is of great interest for military and law enforcement applications to determine sniper locations, especially in urban combat scenarios.
Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus
NASA Astrophysics Data System (ADS)
Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas
2017-11-01
Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.
Research on vibration characteristics of gun barrel based on contact model
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhou, Qizheng; Yue, Pengfei
2017-04-01
In order to study vibration characteristics of the gun barrel under the action of moving projectile, the gun barrel is simplified to cross sectional cantilever beam such as Euler. Considering contact conditions of inertia effect and projectile with the gun barrel, the equation of lateral vibration of the gun barrel is established under the projectile-gun coupling effect; the modal analysis method is used to give the analytic solutions of equation series. The effect of the motion parameters the projectile on the vibration of gun barrel is discussed, and characteristics of vibration of gun barrel are further studied under two conditions of repeating and projectile with mass eccentricity. The research results show that reasonable control of the acceleration of the projectile in the gun bore, and reduction of projectile mass eccentricity can help reduce the muzzle vibration at the gun firing. The research results can provide reference for overall design of the gun, and the modeling and analysis method used in the paper can be promoted for the solution of vibration of other related projects under the moving excitation.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Qi, Yafei; Huang, Wei; Gao, Yubo
2017-01-01
The investigation on free-surface impact of projectiles has last for more than one hundred years due to its noticeable significance on improving defensive weapon technology. Laboratory-scaled water entry experiments for trajectory stability had been performed with four kinds of projectiles at a speed range of 20˜200 m/s. The nose shapes of the cylindrical projectiles were designed into flat, ogive, hemi-sphere and cone to make comparisons on the trajectory deviation when they were launched into water at a certain angle of 0˜20°. Two high-speed cameras positioned orthogonal to each other and normal to the water tank were employed to capture the entire process of projectiles' penetration. From the experimental results, the consecutive images in two planes were presented to display the general process of the trajectory deviation. Compared with the effect of impact velocities and nose shape on trajectory deviation, it merited conclude that flat projectiles had a better trajectory stability, while ogival projectiles experienced the largest attitude change. The characteristics of pressure waves were also investigated.
The effect of perforations on the ballistics of a flare-stabilized projectile
NASA Astrophysics Data System (ADS)
Mermagen, W. H.; Yalamanchili, R. J.
Flight tests of two 35/105 mm flare stabilized projectile configurations were conducted. The projectiles were fired from the M68 tank cannon at Mach 4.0 using a standard M735 sabot. Flight data were obtained with a doppler velocimeter. The perforated flare projectiles showed a reduced drag for M greater than 1.7, which increased significantly at velocities below M 1.7, while the solid flare rounds had a slightly higher drag above Mach 1.7. Below Mach 1.7, the solid flare rounds had less drag than the perforated flare round. Both solid and perforated flare projectiles had a maximum range of less than 8.0 kilometers. The effects of the perforations on the flight performance were small. The flight data are compared to previous tests of the German-made 'LKL' projectile. The differences in flight performance between solid flares, flares with perforations, and the LKL-perforated flare rounds were small and of no practical consequence. Dispersion tests of the solid-flare stabilized projectiles were conducted at one, two, and three kilometers with excellent results. Very low dispersions were observed at all ranges.
Impact resistance of fiber composite blades used in aircraft turbine engines
NASA Technical Reports Server (NTRS)
Friedrich, L. A.; Preston, J. L., Jr.
1973-01-01
Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.
NASA Astrophysics Data System (ADS)
Schultz, P. H.; Stickle, A. M.
2009-12-01
The absence of a clearly identified crater (or craters) for the proposed YDB impact has raised questions concerning the reality of such an event. Geologic studies have identified impact deposits well before recognizing a causative crater (e.g., Chicxulub and Chesapeake Bay); some have yet to be discovered (e.g., Australasian tektite strewnfields). The absence of a crater, therefore, cannot be used as an argument against the reality of the YDB impact (and its possible consequences). The study here addresses how a large on-land impact during the late Pleistocene or early Holocene could avoid easy detection today. It does not argue the case for a YDB impact, since such evidence must come from the rock record. During the late Pleistocene, the receding Laurentide ice sheet still covered a significant portion of Canada. While a large (1km) body impacting vertically (90°) would penetrate such a low-impedance ice layer and excavate the substrate, an oblique impact couples more of its energy into the surface layer, thereby partially shielding the substrate. Three approaches address the effectiveness of this flak-jacket effect. First, hypervelocity impact experiments at the NASA Ames Vertical Gun Range investigated the effectiveness of low-impedance layers of different thicknesses for mitigating substrate damage. Second, selected experiments were compared with hydrocode models (see Stickle and Schultz, this volume) and extended to large scales. Third, comparisons were made with relict craters found in eroding sediment and ice covers on Mars. Oblique impacts (30 degrees) into soft particulates (no. 24 sand) covering a solid substrate (aluminum) have no effect on the final crater diameter for layer thicknesses exceeding a projectile diameter and result in only plastic deformation in the substrate. In contrast, a vertical impact requires a surface layer at least 3 times the projectile diameter to achieve the same diameter (with significant substrate damage). Oblique impacts into ice and plasticene layers over clear acrylic blocks allow assessing internal damage. These experiments reveal that low-impedance surface layers approaching 1 to 2 projectile diameters effectively shield the substrate from shock damage for impact angles less than 30 degrees. Missing craters (and relict crater roots) within ice-rich deposits on Mars illustrate the rapid erasure the impact record. Numerous small pedestal craters (crater diameter < 5km) occur at high latitudes and reflect the cyclic expansion and disappearance of polar ice/dust deposits up to 0.5 km thick. Much larger examples (> 50km), however, occur at low latitudes but are localized in certain regions where even thicker deposits (locally >2km) have been removed, uncovering a preserved Noachian landscape. Crater statistics further document this missing cratering record. Thick Pleistocene ice sheets on Earth would have played a similar role for the removal of terrestrial cratering record. We calculate that a crater as large as 15km in diameter formed by an oblique impact could have been effectively erased, except for dispersed ejecta containing shocked impactor relicts and a disturbed substrate. While plausible, evidence for specific missing events (e.g., the proposed YB impact) must be found in still-preserved ice layers and sediments.
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.
2012-01-01
DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.
Production of exotic nuclei in projectile fragmentation at relativistic and Fermi energies
NASA Astrophysics Data System (ADS)
Ogul, R.; Ergun, A.; Buyukcizmeci, N.
2017-02-01
Isotopic distributions of projectile fragmentation in peripheral heavy ion collisions of 86Kr on 112Sn are calculated within the statistical multifragmentation model. Obtained data are compared to the experimental cross section measurements. We show the enhancement in the production of neutron-rich isotopes close to the projectile, observed in the experiments. Our results show the universality of the limitation of the excitation energy induced in the projectile residues.
The drag force on a subsonic projectile in a fluid complex plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivlev, A. V.; Zhukhovitskii, D. I.
2012-09-15
The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.
Assessment of gunshot bullet injuries with the use of magnetic resonance imaging.
Hess, U; Harms, J; Schneider, A; Schleef, M; Ganter, C; Hannig, C
2000-10-01
Magnetic resonance imaging (MRI) is rarely used for preoperative assessment of shotgun injuries because of concerns of displacing the possibly ferromagnetic foreign body within the surrounding tissue. A total of 56 different projectiles underwent MRI testing for ferromagnetism and imaging quality in vitro and in pig carcasses with a commercially available 1.5-MRI scan. Image quality was compared with that of computed tomographic scans. Projectiles with ferromagnetic properties can be distinguished easily from nonferromagnetic ones by pretesting the motion of an identical projectile within the MRI coil. When ferromagnetic projectiles were excluded, MRI yielded the more precise images compared with other imaging techniques. Projectile localization and associated soft tissue injuries were visualized without artifacts in all cases. When ferromagnetic foreign bodies are excluded by pretesting their properties within the MRI with a comparative projectile, MRI portends an excellent imaging procedure for assessing the extent of injury and planning the removal by surgery.
Earliest Stone-Tipped Projectiles from the Ethiopian Rift Date to >279,000 Years Ago
Sahle, Yonatan; Hutchings, W. Karl; Braun, David R.; Sealy, Judith C.; Morgan, Leah E.; Negash, Agazi; Atnafu, Balemwal
2013-01-01
Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology. PMID:24236011
NASA Astrophysics Data System (ADS)
Knott, C. N.; Albergo, S.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1996-01-01
This paper reports the elemental production cross sections for 17 projectile-energy combinations with energies between 338 and 894 MeV/nucleon interacting in a liquid hydrogen target. These results were obtained from two runs at the LBL Bevalac using projectiles ranging from 22Ne to 58Ni. Cross sections were measured for all fragment elements with charges greater than or equal to half the charge of the projectile. The results show that, over the energy and ion range investigated, the general decrease in cross section with decreasing fragment charge is strongly modified by the isospin of the projectile ion. Significant additional modifications of the cross sections due to the internal structure of the nucleus have also been seen. These include both pairing and shell effects. Differences in the cross sections due to the differing energies of the projectile are also considerable.
NASA Technical Reports Server (NTRS)
Preston, J. L., Jr.; Cook, T. S.
1975-01-01
An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.
2013-07-16
Twaron, etc., which are characterized by high specific strength and high specific stiffness. Fibers of this type are often referred to as ‘‘ballistic... high level of penetration resistance against large kinetic energy projectiles, such as bullets, detonated-mine-induced soil ejecta, improvised...increasingly being designed and developed through an extensive use of computer-aided engineering ( CAE ) methods and tools. The utility of these
Guiding supersonic projectiles using optically generated air density channels
NASA Astrophysics Data System (ADS)
Johnson, Luke A.; Sprangle, Phillip
2015-09-01
We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.
Projectile containing metastable intermolecular composites and spot fire method of use
Asay, Blaine W.; Son, Steven F.; Sanders, V. Eric; Foley, Timothy; Novak, Alan M.; Busse, James R.
2012-07-31
A method for altering the course of a conflagration involving firing a projectile comprising a powder mixture of oxidant powder and nanosized reductant powder at velocity sufficient for a violent reaction between the oxidant powder and the nanosized reductant powder upon impact of the projectile, and causing impact of the projectile at a location chosen to draw a main fire to a spot fire at such location and thereby change the course of the conflagration, whereby the air near the chosen location is heated to a temperature sufficient to cause a spot fire at such location. The invention also includes a projectile useful for such method and said mixture preferably comprises a metastable intermolecular composite.
2013-04-08
Details of 1D compression test Material: Florida coastal sand Mean diameter: 0.37(mm) Vessel: Stainless steel Vessel inner diameter 6.0(mm... turned out that the projectile deceleration behavior observed in the experiment is a consequence of the complicated compression behavior of sand...applicability of the proposed EOS into high-speed projectile impact experiment. It turned out that the projectile deceleration behavior observed in the
High Velocity Firings of Slug Projectiles in a Double-Travel 120-MM Gun System
1991-04-01
constraints presented by TBD. This charge configuration was then tested using aluminium slug projectiles to avoid the unnecessary expenditure of APFSDS...test projectile was a depleted uranium alloy (U-.75Ti) rod with a standard, four piece, aluminum sabot assembly. The launch package had a nominal...the rod is shown in Figure 2. Figure 2. Scaled, Long Rod Penetrator. Figure 3. Aluminium Slug Projectile. The aluminium slug rounds, fired at Range 18
Huerta, Joseph
1992-01-01
An elongate projectile for small arms use has a single unitary mass with a hollow nose cavity defined by a sharp rigid cutting edge adapted to make initial contact with the target surface and cut therethrough. The projectile then enters the target mass in an unstable flight mode. The projectile base is substantially solid such that the nose cavity, while relatively deep, does not extend entirely through the base and the projectile center of gravity is aft of its geometric center.
Solid-to-hybrid transitioning armature railgun with non-conforming-to-prejudice bore profile
Solberg, Jerome Michael
2012-12-04
An improved railgun, railgun barrel, railgun projectile, and railgun system for accelerating a solid-to-hybrid transitioning armature projectile using a barrel having a bore that does not conform to a cross-sectional profile of the projectile, to contact and guide the projectile only by the rails in a low pressure bore volume so as to minimize damage, failure, and/or underperformance caused by plasma armatures, insulator ablation, and/or restrikes.
Non-Invasive Timing of Gas Gun Projectiles with Light Detection and Ranging
NASA Astrophysics Data System (ADS)
Goodwin, Peter; Wu, Ming; Dattelbaum, Dana
2013-06-01
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of the gas gun barrel in real-time. This capability permits the generation of precisely timed trigger pulses useful for pre-triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore single-stage gas gun routinely used for dynamic research at Los Alamos National Laboratory. A 655-nm pulsed (~100 ps) diode laser operating at a pulse repetition rate of ~100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~3 meters prior to impact. The position record showed that the projectile moved at a constant velocity (483 m/s) prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry, and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The LIDAR return can be processed in real-time to generate pre-trigger pulses at preset separations between the projectile and target. Work funded by LANL Laboratory Directed Research Project 2011012DR. LA-UR-13-21121, approved for public release.
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-06-16
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Bogdanoff, D. W.
2005-01-01
A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.
ERIC Educational Resources Information Center
Lucie, Pierre
1979-01-01
Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)
Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion
NASA Technical Reports Server (NTRS)
Axdahl, Erik; Kumar, Ajay; Wilhite, Alan
2012-01-01
The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.
A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4
NASA Technical Reports Server (NTRS)
Park, Young-Keun; Fahrenthold, Eric P.
2004-01-01
An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.
NASA Technical Reports Server (NTRS)
Howe, John T.; Yang, Lily
1991-01-01
A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.
Advanced Hypervelocity Aerophysics Facility Workshop
NASA Technical Reports Server (NTRS)
Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)
1989-01-01
The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom
2013-01-01
The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure
Graphene Nano-Composites for Hypervelocity Impact Applications
NASA Astrophysics Data System (ADS)
Manasrah, Alharith
The Low Earth Orbit (LEO) is a harsh environment cluttered with natural meteoroids and man-made debris, which can travel at velocities approaching 15 km/s. Most space activities within the LEO will encounter this environment. Thus, the spacecraft and its hardware must be designed to survive debris impact. This research introduces new procedures to produce a nano-composite material with mortar-brick nano-structure inspired from nacre. Nacre-like composites were successfully manufactured, based on three host polymers, with a wide range of graphene concentrations. The manufactured exfoliated graphene nano-platelet, embedded in a host polymer, provided good potential for enhancement of the hypervelocity impact (HVI) shield resistance. The nano-composites are suggested for use as a coating. Moreover, explicit dynamic finite element studies were conducted for further investigation of the hypervelocity impact of the graphene-based coatings in order to understand the effect of the coating on the crater formation and the exit velocity. This dissertation presents the results of the characterization and numerical sensitivity study of the developed material parameters. The numerical simulations were performed by implementing Autodyn smooth particle hydrodynamics. This study provides innovative, low-weight shielding enhancements for spacecraft, as well as other promising applications for the manufactured nano-composites.
Fajardo-Cavazos, Patricia; Link, Lindsey; Melosh, H Jay; Nicholson, Wayne L
2005-12-01
An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145 degrees C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.
NASA Astrophysics Data System (ADS)
Fajardo-Cavazos, Patricia; Link, Lindsey; Melosh, H. Jay; Nicholson, Wayne L.
2005-12-01
An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145°C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.
Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes
NASA Astrophysics Data System (ADS)
Park, C.; Bowen, S. W.
1981-01-01
The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2003-01-01
Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
Cantilever Beam Design for Projectile Internal Moving Mass Systems
2010-09-01
instabilities. Soper (1) considered the stability of a projectile with a cylindrical mass fitted loosely within a cavity. Using a similar...oscillating beam configuration shows promise as a viable, cost-effective, reliable projectile control mechanism. 25 5. References 1. Soper , W
Microcraters formed in glass by low density projectiles
NASA Technical Reports Server (NTRS)
Mandeville, J.-C.; Vedder, J. F.
1971-01-01
Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene (p = 1.06 g/cu cm) with masses between 0.7 and 62 picograms and velocities between 2 and 14 km/s. The morphology of the craters depended on the velocity and the angle of incidence of the projectiles and these are discussed in detail. It was found that the transitions in morphology of the craters formed by polystyrene spheres occurred at higher velocities than they did for more dense projectiles.
Shahinpoor, Mohsen
1995-01-01
A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.
50th Annual Fuze Conference Session 5
2006-05-11
level •Underwater Shock NDIA Fuze Conf 2006 5 Warhead Lethality MOFN has two potential warheads EX 183 HE-MOFN •MK 64 PROJECTILE BODY • PBXN - 106 ...EXPLOSIVE FILL EX 184 HE-MOFN •HIFRAG PROJECTILE BODY • PBXN - 106 EXPLOSIVE FILL Warhead lethality effect is fragmentation NDIA Fuze Conf 2006 6 Warhead...NDIA Fuze Conf 2006 19 Min Engagement Hazard • Worst Case Operational Configuration: – Projectile = EX 184 HE-MOFN • MK 64 Projectile w PBXN - 106 fill
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-09-09
targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP
The Nature of Airbursts and their Contribution to the Impact Hazard (Invited)
NASA Astrophysics Data System (ADS)
Boslough, M. B.
2009-12-01
Ongoing simulations of low-altitude airbursts from hypervelocity asteroid impacts have led to a re-evaluation of the impact hazard that accounts for the enhanced damage potential relative to the standard point-source approximations. Computational models demonstrate that the altitude of maximum energy deposition is not a good estimate of the equivalent height of a point explosion, because the center of mass of an exploding projectile maintains a significant fraction of its initial momentum and is transported downward in the form of a high-temperature jet of expanding gas. This “fireball” descends to a depth well beneath the burst altitude before its velocity becomes subsonic. The time scale of this descent is similar to the time scale of the explosion itself, so the jet simultaneously couples both its translational and its radial kinetic energy to the atmosphere. Because of this downward flow, larger blast waves and stronger thermal radiation pulses are experienced at the surface than would be predicted for a nuclear explosion of the same yield at the same burst height. For impacts with a kinetic energy below some threshold value, the hot jet of vaporized projectile loses its momentum before it can make contact with the Earth's surface. The 1908 Tunguska explosion is the largest observed example of this first type of airburst. For impacts above the threshold, the fireball descends all the way to the ground, where it expands radially, driving supersonic winds and radiating thermal energy at temperatures that can melt silicate surface materials. The Libyan Desert Glass event, 29 million years ago, may be an example of this second, larger, and more destructive type of airburst. The kinetic energy threshold that demarcates these two airburst types depends on asteroid velocity, density, strength, and impact angle. There is no evidence that the Tunguska fireball descended all the way to the surface, suggesting that its yield was about 5 megatons or lower. Better understanding of airbursts, combined with the diminishing number of undiscovered large asteroids, leads to the conclusion that airbursts represent a large and growing fraction of the total impact threat. Sandia is a multiprogram laboratory operated by Sandia Corp, a Lockheed Martin Company, for the US DOE under Contract DE-AC04-94AL85000. At altitude of maximum energy deposition (9 km) for a 15-megaton stony asteroid, its mass continues to descend at 9 km/s (60% of initial velocity).
Electron Emission in Highly Charged Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Liao, Chunlei
1995-01-01
This dissertation addresses the problem of electron emission in highly charged ion-atom collisions. The study is carried out by measuring doubly differential cross sections (DDCS) of emitted electrons for projectiles ranging from fluorine up to gold at ejection angles (theta _{L}) from 0^circ to 70^circ with respect to the beam direction. Prominent features are a very strong forward peaked angular distribution of emitted electrons and the appearance of strong diffraction structures in the binary encounter electron (BEe) region for projectiles heavier than chlorine. This is in clear contradiction to the results found with fluorine projectiles, where the BEe production increases slightly with increasing theta_{L} and no structure is observed in the BEe region. Both can be understood in the impulse approximation as elastic scattering of quasi free target electrons in the projectile potential. Our measurements also show that the violation of q ^2 scaling of the DDCS previously established for 0^circ electron spectra persists for all emission angles and almost all electron energies. In ion-atom collisions, besides electrons from target, electrons from projectile ionization are also presented in the emitted electron spectra. Using electron-projectile coincidence technique, different collision channels can be separated. In order to eliminate the speculations of contributions from projectile related capture and loss channels, coincidence studies of diffraction structures are initiated. In the 0^circ electron spectrum of 0.3 MeV/u I^{6+} impacting on H_2, strong autoionization peaks are observed on the shoulders of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy, and collision mechanism is probed by electron-charge state selected projectile coincidence technique.
Patel, H D L; Dryden, S; Gupta, A; Stewart, N
2012-07-01
On 7 July 2005 four suicide bombings occurred on the London transport systems. In some of the injured survivors, bone fragments were embedded as biological foreign bodies. The aim of this study was to revisit those individuals who had sustained human projectile implantation injuries as a result of the bomb blasts at all scenes, review the process of body parts mapping and DNA identification at the scene, detail the management of such injuries and highlight the protocols that have been put in place for protection against blood borne pathogens. We retrospectively reviewed 12 instances of victims who sustained human body projectile implantation injuries. The Metropolitan Police and forensic scientists identified the human projectiles using DNA profiling and mapped these on the involved carriages and those found outside. All human projectiles included were greater than 3 cm(2). Twelve cases had human projectile implantation injuries. Of these, two died at the scene and ten were treated in hospital. Projectiles were mapped at three of the four bomb blast sites. Our findings show that victims within a 2m radius of the blast had human projectile injuries. Eight of the allogenic bony fragments that were identified in the survivors originated from the suicide bomber. All victims with an open wound should have prophylaxis against hepatitis B and serum stored for appropriate action against HIV and hepatitis C infection. All victims following a suicide bombing should be assumed to have human body projectile implantation injuries with blood products or bony fragments. All immediate care providers should receive prophylaxis against hepatitis B virus and appropriate action should be taken against HIV and hepatitis C infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohyung Lee.
This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less
NASA Astrophysics Data System (ADS)
Hruschka, R.; Klatt, D.
2018-03-01
The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.
Wounding potential of 4.4-mm (.173) caliber steel ball projectiles.
Kamphausen, Thomas; Janßen, Katharina; Banaschak, Sibylle; Rothschild, Markus Alexander
2018-03-06
From time to time, severe or fatal injuries caused by small caliber air rifle projectiles are seen. In forensic sciences, the theoretical wounding potential of these weapons and projectiles is widely known. Usually, shots against the skull were reported and, in these cases, penetrating the eyes or thin bone layers of the temporal region. Amongst a huge number of different projectiles available for air guns, sub-caliber 4.4-mm (.173) caliber steel ball projectiles were used in an unusual suicide case. This case led to fundamental questions concerning wound ballistics. An 82-year-old man shot once against his right temporal region and twice into his mouth with a 4.5-mm (.177) caliber air rifle. Because of the exceptionally deep penetration of the base of the skull and the use of spherical-shaped sub-caliber air rifle projectiles, terminal ballistic features were analyzed and compared to results published in forensic literature. Test shots using the same weapon and similar projectiles were fired into ballistic gelatin to measure and calculate basic wound ballistic variables of cal. 4.4-mm (.173) steel balls. In comparison, further test shots with cal. 4.5-mm (.177) steel balls BB (ball bearing), flat-headed and pointed air rifle pellets ("diabolos") were carried out. The theoretical penetration depth in solid bone was calculated with 36.4 mm, and test shots in gelatin from hard contact produced an on-average wound track of 120 mm underlining the potential wounding effect. Furthermore, spherical projectiles could roll back and forth within the barrel, and an air cushion between projectile and breechblock can reduce muzzle velocity by more than half, explaining the retained missile in the temporal region.
Projectile Motion Hoop Challenge
NASA Astrophysics Data System (ADS)
Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.
2018-04-01
Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.
NASA Technical Reports Server (NTRS)
Byers, Terry (Inventor); Gibbons, Frank L. (Inventor); Christiansen, Eric L. (Inventor)
2010-01-01
In an embodiment, an apparatus and method capable of determining the time and location of a projectile's impact is disclosed. In another embodiment, an apparatus and method capable of determining the time and location of a projectile's impact as well as the direction from whence the projectile came is disclosed.
43 CFR 423.30 - Weapons, firearms, explosives, and fireworks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... firearms, ammunition, bows and arrows, crossbows, or other projectile firing devices on Reclamation lands and waterbodies, provided the firearm, ammunition, or other projectile firing device is stowed... weapon unless you are: (1) Using a firearm or other projectile firing device lawfully for hunting or...
43 CFR 423.30 - Weapons, firearms, explosives, and fireworks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... firearms, ammunition, bows and arrows, crossbows, or other projectile firing devices on Reclamation lands and waterbodies, provided the firearm, ammunition, or other projectile firing device is stowed... weapon unless you are: (1) Using a firearm or other projectile firing device lawfully for hunting or...
43 CFR 423.30 - Weapons, firearms, explosives, and fireworks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... firearms, ammunition, bows and arrows, crossbows, or other projectile firing devices on Reclamation lands and waterbodies, provided the firearm, ammunition, or other projectile firing device is stowed... weapon unless you are: (1) Using a firearm or other projectile firing device lawfully for hunting or...
Graphical Method for Determining Projectile Trajectory
ERIC Educational Resources Information Center
Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.
2010-01-01
We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…
43 CFR 423.30 - Weapons, firearms, explosives, and fireworks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... firearms, ammunition, bows and arrows, crossbows, or other projectile firing devices on Reclamation lands and waterbodies, provided the firearm, ammunition, or other projectile firing device is stowed... weapon unless you are: (1) Using a firearm or other projectile firing device lawfully for hunting or...
43 CFR 423.30 - Weapons, firearms, explosives, and fireworks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... firearms, ammunition, bows and arrows, crossbows, or other projectile firing devices on Reclamation lands and waterbodies, provided the firearm, ammunition, or other projectile firing device is stowed... weapon unless you are: (1) Using a firearm or other projectile firing device lawfully for hunting or...
Sisk, Matthew L.; Shea, John J.
2011-01-01
Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed. PMID:21755048
Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics
Kohanoff, Jorge
2017-01-01
Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-01-01
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266
NASA Astrophysics Data System (ADS)
Wei, Gang; Zhang, Wei
2013-06-01
The deformation and fracture behavior of steel projectile impacting ceramic target is an interesting investigation topic. The deformation and failure behavior of projectile and target was investigated experimentally in the normal impact by different velocities. Lab-scale ballistic tests of AD95 ceramic targets with 20 mm thickness against two different hardness 38CrSi steel projectiles with 7.62 mm diameter have been conducted at a range of velocities from 100 to 1000 m/s. Experimental results show that, with the impact velocity increasing, for the soft projectiles, the deformation and fracture modes were mushrooming, shear cracking, petalling and fragmentation(with large fragments and less number), respectively; for the hard projectiles there are three deformation and fracture modes: mushrooming, shearing cracking and fragmentation(with small fragments and large number). All projectiles were rebound after impact. But, with the velocity change, the target failure modes have changed. At low velocity, only radial cracks were found; then circumferential cracks appeared with the increasing velocity; the ceramic cone occurred when the velocity reached 400 m/s above, and manifested in two forms: front surface intact at lower velocity and perforated at higher velocity. The higher velocity, the fragment size is smaller and more uniform distribution. The difference of ceramic target damage is not obvious after impacted by two kinds of projectiles with different hardness at the same velocity. National Natural Science Foundation of China (No.: 11072072).
1975-11-01
limitations. It must conform to severe weight restrictions in order to attain hover and maneuver capability. It is a sensitive, vibrating platform...simulations had to be performed utilizing assumed data generated with standard momentum theory based on the size of the rotor and gross helicopter weight ...downwash intersects the rocket’s flight path; 8 (C) the weight of the aircraft influences the vertical downwash component almost linearly; and (d) the
ERIC Educational Resources Information Center
Summers, M. K.
1977-01-01
Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)
Actuated Recoil Absorbing Mounting System for use with an Underwater Gun
1998-03-31
fire supercavitating bullets, requires that 20 the new projectile launchers be tested. The firing of projectile 21 launchers involving a high...of projectile launcher 12 includes an underwater gun 15 that fires supercavitating bullets underwater and has a high 16 discharge energy. However
NASA Technical Reports Server (NTRS)
Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Heck, Philipp R.; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.;
2007-01-01
In January 2006, the Stardust mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at the Stardust encounter velocity of 6.1 kilometers per second into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used two NanoSIMS ion microprobes to perform C, N, and O isotope imaging measurements on four large (59-295 micrometer diameter) and on 47 small (0.32-1.9 micrometer diameter) Al foil impact craters as part of the Stardust Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average N-15 enrichment of approx. 450%o, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles and to components of some primitive meteorites. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the Stardust mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.
NASA Technical Reports Server (NTRS)
Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; Stephan, Thomas;
2007-01-01
In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.
Impact penetration experiments in teflon targets of variable thickness
NASA Astrophysics Data System (ADS)
Hoerz, F.; Cintala, M. J.; Bernhard, R. P.; See, T. H.
1993-03-01
Approximately 20.4 sq m of Teflon thermal blankets on the nonspinning Long Duration Exposure Facility (LDEF) were exposed to the orbital debris and micrometeoroid environment in low-Earth orbit (LEO) for approximately 5.7 years. Each blanket consisted of an outer layer (approximately 125 micron thick) of FEP Teflon that was backed by a vapor-deposited metal mirror (Inconel; less than 1 micron thick). The inner surface consisted of organic binders and Chemglaze thermal protective paint (approximately 50 micron thick) resulting in a somewhat variable, total blanket thickness of approximately 180 to 200 microns. There was at least one of these blankets, each exposing approximately 1.2 sq m of surface area, on nine of LDEF's 12 principal pointing directions, the exceptions being Rows 3, 9, and 12. As a consequence, these blankets represent a significant opportunity for micrometeoroid and debris studies, in general, and specifically they provide an opportunity to address those issues that require information about pointing direction (i.e., spatial density of impact events as a function of instrument orientation). During deintegration of the LDEF spacecraft at KSC, all penetration holes greater than or equal to 300 micron in diameter were documented and were recently synthesized in terms of spatial density as a function of LDEF viewing direction by. The present report describes ongoing cratering and penetration experiments in pure Teflon targets, which are intended to establish the relationships between crater or penetration-hole diameters and the associated projectile dimensions at laboratory velocities (i.e., 6 km/s). The ultimate objective of these efforts is to extract reliable mass-frequencies and associated fluxes of hypervelocity particles in LEO.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.
Numerical modeling of seismic anomalies at impact craters on a laboratory scale
NASA Astrophysics Data System (ADS)
Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.
2011-12-01
Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.
Advances in light-gas gun technology
NASA Technical Reports Server (NTRS)
Cowan, P. L.; Murphy, J. R.
1968-01-01
Constant-area accelerator used with light-gas guns increases the velocity of accelerating projectiles. A disposable accelerator on the muzzle of the gun uses the energy and momentum of a primary projectile, launched by the gun, to achieve high velocities of a light secondary projectile accelerated from rest in the accelerator.
Shock destruction armor system
Froeschner, Kenneth E.
1993-01-01
A shock destruction armor system is constructed and arranged to destroy the force of impact of a projectile by shock hydrodynamics. The armor system is designed to comprise a plurality of superimposed armor plates each preferably having a thickness less than five times the projectile's diameter and are preferably separated one-from-another by a distance at least equal to one-half of the projectile's diameter. The armor plates are effective to hydrodynamically and sequentially destroy the projectile. The armor system is particularly adapted for use on various military vehicles, such as tanks, aircraft and ships.
Modified Point Mass Trajectory Simulation for Base-Burn Projectiles
1992-03-01
Konrad Adenauer Ufer 2-6 1 DGAM 54 Koblenz ATTN: Mr. J.L. Perez Minguez GERMANY Poligono de Experiencias Paseo de Extremedura WTD 91 D. BW-031 28024...directly related to the average projectile base pressure, Pb, as follows: 1 Pb Cob YM2_ (1) 2 db2 where: db = base diameter of projectile in calibers M...and p v Ab is the free-stream mass flow through an area equal to the base of the projectile, Ab. Danberg (1990) has shown that ABP is linearly related
Study of clustering structures through breakup reactions
NASA Astrophysics Data System (ADS)
Capel, Pierre
2014-12-01
Models for the description of breakup reactions used to study the structure of exotic cluster structures like halos are reviewed. The sensitivity of these models to the projectile description is presented. Calculations are sensitive to the projectile ground state mostly through its asymptotic normalisation coefficient (ANC). They also probe the continuum of the projectile. This enables studying not only resonant states of the projectile but also its non-resonant continuum both resonant and non-resonant. This opens the possibility to study correlations between both halo neutrons in two-neutron halo nuclei.
25MM Plastic Telescoped Cartridge Case Development Program
1975-01-01
Mat’ I____ Projectile: 0wq. No. 30033;7,Rev, A, Platic "Band, 3000 Grain. Primer: Type .SmL. , Lot No.,, , Ne. . Flash Tubet.l3TSpe 1ell Project l...8217 _ ’_"__ Projectile: Dwg. No. 300347, Ray. A, Platic Biand, 3000 Graln. Primer: Type P-SIT.ML , Lot No. . No, Flash Tube:c<# 7’Tr-pecla1, Projectile Rot ntlo...Case: N ,o Rev. ___, Mati:.l, ILt Dwg. No,._____ Rev. M Nt l______Projectile: Dwg, No. 300347, ev • A, Platic ’ t -and, 3000 Grain, Primers Type , Lot
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-07-01
Ref: ARL-TR- 2219 , 2000.) Al 5083 .30 Caliber AP-M2 E ^Projectile — 3.918 mm tAj = 76.2 mm H = 20.0 mm VP = 400 - 900 m/s Al ^ Al H 2013...reference - ARL-TR- 2219 , 2000. 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH, Aluminum 5083, SiC, DoP Expeminets, AutoDyn...on the DoP experiments described in reference - ARL-TR- 2219 , 2000. 2013 © University of Delaware DOP OF .30cal PROJECTILE INTO MONOLITHIC ALUMINUM