Sample records for utilizing mems adaptive

  1. Micro-masonry for 3D additive micromanufacturing.

    PubMed

    Keum, Hohyun; Kim, Seok

    2014-08-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.

  2. Utilizing Microelectromechanical Systems (MEMS) Micro-Shutter Designs for Adaptive Coded Aperture Imaging (ACAI) Technologies

    DTIC Science & Technology

    2009-03-01

    52 Figure 4-1: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm single hot-arm actuator (shown on right...58 Figure 4-2: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm double hot-arm actuator (shown on...61 Figure 4-5: Deflection vs. power curves for an individual wedge from

  3. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.

    PubMed

    Ham, Suyun; Popovics, John S

    2015-04-17

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.

  4. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  5. Micro-masonry for 3D Additive Micromanufacturing

    PubMed Central

    Keum, Hohyun; Kim, Seok

    2014-01-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178

  6. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  7. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  8. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  9. HARM processing techniques for MEMS and MOEMS devices using bonded SOI substrates and DRIE

    NASA Astrophysics Data System (ADS)

    Gormley, Colin; Boyle, Anne; Srigengan, Viji; Blackstone, Scott C.

    2000-08-01

    Silicon-on-Insulator (SOI) MEMS devices (1) are rapidly gaining popularity in realizing numerous solutions for MEMS, especially in the optical and inertia application fields. BCO recently developed a DRIE trench etch, utilizing the Bosch process, and refill process for high voltage dielectric isolation integrated circuits on thick SOI substrates. In this paper we present our most recently developed DRIE processes for MEMS and MOEMS devices. These advanced etch techniques are initially described and their integration with silicon bonding demonstrated. This has enabled process flows that are currently being utilized to develop optical router and filter products for fiber optics telecommunications and high precision accelerometers.

  10. A Three-Dimensional Transonic, Potential Flow Computer Program, Its Conversion to IBM Fortran and Utilization

    DTIC Science & Technology

    1983-12-01

    MAIN OEG=NFGVB1.3266P //COPY PEOC EILE=, MEM = // EXEC PGM=IEBGENEB //SISPRINT DD SYSOUT=A //SYSIN DC DÖMMY //SYS0T1 DD...COE*,FILE=1, MEM =FL027 // EXEC COPY,FILE=2,HEM=A411IN // EXEC COEY,FILE=3, MEM =VWIN // EXEC COPY,FILE = 4, MEM =A411A01...EXEC C0EY,FILE=5,MEä=INTERE // EXEC COPY,FILE=6, MEM =A411PS // EXEC COEY,FILE=7, MEM =A411P1 // EXEC COPY,FILE

  11. Integrated multidisciplinary CAD/CAE environment for micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Przekwas, Andrzej J.

    1999-03-01

    Computational design of MEMS involves several strongly coupled physical disciplines, including fluid mechanics, heat transfer, stress/deformation dynamics, electronics, electro/magneto statics, calorics, biochemistry and others. CFDRC is developing a new generation multi-disciplinary CAD systems for MEMS using high-fidelity field solvers on unstructured, solution-adaptive grids for a full range of disciplines. The software system, ACE + MEMS, includes all essential CAD tools; geometry/grid generation for multi- discipline, multi-equation solvers, GUI, tightly coupled configurable 3D field solvers for FVM, FEM and BEM and a 3D visualization/animation tool. The flow/heat transfer/calorics/chemistry equations are solved with unstructured adaptive FVM solver, stress/deformation are computed with a FEM STRESS solver and a FAST BEM solver is used to solve linear heat transfer, electro/magnetostatics and elastostatics equations on adaptive polygonal surface grids. Tight multidisciplinary coupling and automatic interoperability between the tools was achieved by designing a comprehensive database structure and APIs for complete model definition. The virtual model definition is implemented in data transfer facility, a publicly available tool described in this paper. The paper presents overall description of the software architecture and MEMS design flow in ACE + MEMS. It describes current status, ongoing effort and future plans for the software. The paper also discusses new concepts of mixed-level and mixed- dimensionality capability in which 1D microfluidic networks are simulated concurrently with 3D high-fidelity models of discrete components.

  12. The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions

    PubMed Central

    Dhar, Sumitrajit

    2009-01-01

    Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence. PMID:19798532

  13. Selected papers from the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2012) (Atlanta, GA, USA, 2-5 December 2012)

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Lang, Jeffrey

    2013-11-01

    Welcome to this special section of the Journal of Micromechanics and Microengineering (JMM). This section, co-edited by myself and by Professor Jeffrey Lang of the Massachusetts Institute of Technology, contains expanded versions of selected papers presented at the Power MEMS meeting held in Atlanta, GA, USA, in December of 2012. Professor Lang and I had the privilege of co-chairing Power MEMS 2012, the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. The scope of the PowerMEMS series of workshops ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of power MEMS (microelectromehcanical systems) range from MEMS-enabled energy harvesting, storage, conversion and conditioning, to integrated systems that manage these processes. Why is the power MEMS field growing in importance? Smaller-scale power and power supplies (microwatts to tens of watts) are gaining in prominence due to many factors, including the ubiquity of low power portable electronic equipment and the proliferation of wireless sensor nodes that require extraction of energy from their embedding environment in order to function. MEMS manufacturing methods can be utilized to improve the performance of traditional power supply elements, such as allowing batteries to charge faster or shrinking the physical size of passive elements in small-scale power supplies. MEMS technologies can be used to fabricate energy harvesters that extract energy from an embedding environment to power wireless sensor nodes, in-body medical implants and other devices, in which the harvesters are on the small scales that are appropriately matched to the overall size of these microsystems. MEMS can enable the manufacturing of energy storage elements from nontraditional materials by bringing appropriate structure and surface morphology to these materials as well as fabricating the electrical interfaces required for their operation and interconnection. Clearly, the marriage of MEMS technologies and energy conversion is a vital application space; and we are pleased to bring you some of the latest results from that space in this special section. Approximately 130 papers were presented at the Power MEMS 2012 conference. From these, the 20 papers you have before you were selected based on paper quality and topical balance. As you can see, papers representing many of the important areas of power MEMS are included: energy harvesters using multiple transduction schemes; MEMS-based fabrication of compact passive elements (inductors, supercapacitors, transformers); MEMS-enabled power diagnostics; MEMS-based batteries; and low power circuitry adapted to interfacing MEMS-based harvesters to overall systems. All of the papers you will read in this special section comprise substantial expansion from the proceedings articles and were reviewed through JMM's normal reviewing process. Both Professor Lang and I hope that you will share our enthusiasm for the field of power MEMS and that you will find this special section of JMM exciting, interesting and useful.  Sincerely,  Mark G Allen

  14. MEMS FPI-based smartphone hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  15. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  16. Surface chemistry and tribology of MEMS.

    PubMed

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  17. Poly-SiGe MEMS actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Lin, Blake C.; King, Tsu-Jae; Muller, Richard S.

    2006-01-01

    Many adaptive optics (AO) applications require mirror arrays with hundreds to thousands of segments, necessitating a CMOS-compatible MEMS process to integrate the mirrors with their driving electronics. This paper proposes a MEMS actuator that is fabricated using low-temperature polycrystalline silicon-germanium (poly-SiGe) surface-micromaching technology (total thermal budget is 6 hours at or below 425°C). The MEMS actuator consists of three flexures and a hexagonal platform, on which a micromirror is to be assembled. The flexures are made of single-layer poly-SiGe with stress gradient across thickness of the film, making them bend out-of-plane after sacrificial-layer release to create a large nominal gap. The platform, on the other hand, has an additional stress-balancing SiGe layer deposited on top, making the dual-layer stack stay flat after release. Using this process, we have successfully fabricated the MEMS actuator which is lifted 14.6 μm out-of-plane by 290-μm-long flexures. The 2-μm-thick hexagonal mirror-platform exhibits a strain gradient of -5.5×10 -5 μm -1 (equivalent to 18 mm radius-of-curvature), which would be further reduced once the micromirror is assembled.

  18. High brightness MEMS mirror based head-up display (HUD) modules with wireless data streaming capability

    NASA Astrophysics Data System (ADS)

    Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker

    2015-02-01

    A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.

  19. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  20. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  1. MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2002-01-01

    Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.

  2. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  3. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  4. MEMS for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Lawton, R.

    1998-01-01

    Micro-Electrical Mechanical Systems (MEMS) are entering the stage of design and verification to demonstrate the utility of the technology for a wide range of applications including sensors and actuators for military, space, medical, industrial, consumer, automotive and instrumentation products.

  5. Construction and Initial Validation of the Multiracial Experiences Measure (MEM)

    PubMed Central

    Yoo, Hyung Chol; Jackson, Kelly; Guevarra, Rudy P.; Miller, Matthew J.; Harrington, Blair

    2015-01-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across two studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one’s social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. PMID:26460977

  6. Construction and initial validation of the Multiracial Experiences Measure (MEM).

    PubMed

    Yoo, Hyung Chol; Jackson, Kelly F; Guevarra, Rudy P; Miller, Matthew J; Harrington, Blair

    2016-03-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across 2 studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one's social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. (c) 2016 APA, all rights reserved).

  7. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  8. A multi-conjugate adaptive optics testbed using two MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2011-03-01

    Adaptive optics (AO) systems are well demonstrated in the literature with both laboratory and real-world systems being developed. Some of these systems have employed MEMS deformable mirrors as their active corrective element. More recent work in AO for astronomical applications has focused on providing correction in more than one conjugate plane. Additionally, horizontal path AO systems are exploring correction in multiple conjugate planes. This provides challenges for a laboratory system as the aberrations need to be generated and corrected in more than one plane in the optical system. Our work with compact AO systems employing MEMS technology in addition to liquid crystal spatial light modulator (SLM) driven aberration generators has been scaled up to a two conjugate plane testbed. Using two SLM based aberration generators and two separate wavefront sensors, the system can apply correction with two MEMS deformable mirrors. The challenges in such a system are to properly match non-identical components and weight the correction algorithm for correcting in two planes. This paper demonstrates preliminary results and analysis with this system with wavefront data and residual error measurements.

  9. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    USGS Publications Warehouse

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.

  10. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    DTIC Science & Technology

    2011-03-01

    properties, but would be very difficult to adapt to a MEMS fabrication process. Nitinol was also considered as a structural material for its...such as iron, carbon, hydrogen and oxygen(13). Nitinol was also considered for these wings, but the expense and lead time was too great. Aside

  11. Design, fabrication and characterization of MEMS deformable mirrors for ocular adaptive optics

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyu

    This dissertation describes the design and modeling of MEMS-based bimorph deformable mirrors for adaptive optics as well as the characterization of fabricated devices. The objective of this research is to create a compact and low-cost deformable mirror that can be used as a phase corrector particularly for vision science applications. A fundamental theory of adaptive optics is reviewed, paying attention to the phase corrector which is a key component of the adaptive optics system. Several types of phase corrector are presented and the minimization of their size and cost using micro electromechanical systems (MEMS) technology is also discussed. Since this research is targeted towards the ophthalmic applications of adaptive optics, aberrations of the human eye are illustrated and the benefits of corrections by adaptive optics are explained. A couple of actuator types of the phase corrector that can be used in vision science are introduced and discussed their suitability for the purpose. The requirements to be an ideal deformable mirror for ocular adaptive optics are presented. The characteristics of bimorph deformable mirrors originally developed for laser communications are investigated in an effort to understand their suitability for ophthalmological adaptive optics applications. A Phase shifting interferometer setup is developed for optical characterization and fundamental theory of interferogram analysis is described along with wavefront reconstruction. The theoretical analysis of the bimorph deformable mirror begins with developing an analytical model of the laminated structure. The finite element models are also developed using COMSOL Multiphysics. Using the FEM results, the performance of deformable mirrors under various structure dimensions and operating conditions is analyzed for optimization. A basic theory of piezoelectricity is explained, followed by introduction of applications to MEMS devices. The material properties of single crystal PMN-PT adopted in this research are described and characterized. The fabrication process of the optimized deformable mirror is presented and advanced techniques used in the process are described in detail. The fabricated deformable mirrors are characterized and the comparison with FEM is described. Finally, the dissertation ends up with suggestions for further developments and tests for the mirror.

  12. MEMS- and LC-adaptive optics at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Restaino, S. R.; Wilcox, C. C.; Martinez, T.; Andrews, J. R.; Santiago, F.; Payne, D. M.

    2012-06-01

    Adaptive Optics (AO) is an ensemble of techniques that aims at the remedial of the deleterious effects that the Earth's turbulent atmosphere induces on both imagery and signal gathering in real time. It has been over four decades since the first AO system was developed and tested. During this time important technological advances have changed profoundly the way that we think and develop AO systems. The use of Micro-Electro-Mechanical-Systems (MEMS) devices and Liquid Crystal Devices (LCD) has revolutionized these technologies making possible to go from very expensive, very large and power consuming systems to very compact and inexpensive systems. These changes have rendered AO systems useful and applicable in other fields ranging from medical imaging to industry. In this paper we will review the research efforts at the Naval research Laboratory (NRL) to develop AO systems based on both MEMs and LCD in order to produce more compact and light weight AO systems.

  13. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  14. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  15. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells.

    PubMed

    Chen, Jun; Liang, Xiu; Chen, Pei-fu

    2011-04-01

    Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.

  17. Adaptive optics ophthalmologic systems using dual deformable mirrors

    NASA Astrophysics Data System (ADS)

    Jones, S. M.; Olivier, S.; Chen, D.; Joeres, S.; Sadda, S.; Zawadzki, R. J.; Werner, J. S.; Miller, D. T.

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer / tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to 'focus' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  18. Integrative Bioengineering Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddington, David; Magin,L,Richard; Hetling, John

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the designmore » philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.« less

  19. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.

  20. Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator

    NASA Astrophysics Data System (ADS)

    Ma, Wenying; Ma, Changwei; Wang, Weimin

    2018-03-01

    Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.

  1. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  2. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    PubMed Central

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552

  3. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics.

    PubMed

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-30

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-microm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r(0) =10-15 cm. The MEMS when solitary suffered saturation approximately 4% of the time. Simulating a woofer DM with approximately 5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  4. Development of a Self-Calibrated MEMS Gyrocompass for North-Finding and Tracking

    NASA Astrophysics Data System (ADS)

    Prikhodko, Igor P.

    This Ph.D. dissertation presents development of a microelectromechanical (MEMS) gyrocompass for north-finding and north-tracking applications. The central part of this work enabling these applications is control and self-calibration architectures for drift mitigation over thermal environments, validated using a MEMS quadruple mass gyroscope. The thesis contributions are the following: • Adapted and implemented bias and scale-factor drifts compensation algorithm relying on temperature self-sensing for MEMS gyroscopes with high quality factors. The real-time self-compensation reduced a total bias error to 2 °/hr and a scale-factor error to 500 ppm over temperature range of 25 °C to 55 °C (on par with the state-of-the-art). • Adapted and implemented a scale-factor self-calibration algorithm previously employed for macroscale hemispherical resonator gyroscope to MEMS Coriolis vibratory gyroscopes. An accuracy of 100 ppm was demonstrated by simultaneously measuring the true and estimated scale-factors over temperature variations (on par with the state-of-the art). • Demonstrated north-finding accuracy satisfying a typical mission requirement of 4 meter target location error at 1 kilometer stand-off distance (on par with a GPS accuracy). Analyzed north-finding mechanizations trade-offs for MEMS vibratory gyroscopes and demonstrated measurements of the Earth's rotation (15 °/hr). • Demonstrated, for the first time, an angle measuring MEMS gyroscope operation for north-tracking applications in a +/-500 °/s rate range and 100 Hz bandwidth, eliminating both bandwidth and range constraints of conventional open-loop Coriolis vibratory gyroscopes. • Investigated hypothesis that surface-tension driven glass-blowing microfabrication can create highly spherical shells for 3-D MEMS. Without any trimming or tuning of the natural frequencies, a 1 MHz glass-blown 3-D microshell resonator demonstrated a 0.63 % frequency mismatch between two degenerate 4-node wineglass modes. • Multi-axis rotation detection for nuclear magnetic resonance (NMR) gyroscope was proposed and developed. The analysis of cross-axis sensitivities for NMR gyroscope was performed. The framework for the analysis of NMR gyroscope dynamics for both open loop and closed loop modes of operation was developed.

  5. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  6. Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Daugherty, Robin

    This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.

  7. MEMS-based IR-sources

    NASA Astrophysics Data System (ADS)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  8. UAV-borne lidar with MEMS mirror-based scanning capability

    NASA Astrophysics Data System (ADS)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of <90mm x 60mm x 40mm, weighing less than 40g and consuming less than 750mW of power using a ~5mW laser. This MEMS scan module was controlled by a smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of <70mm x 60mm x 60mm, and weigh <50g when powered by the UAV's battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  9. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  10. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    PubMed

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  11. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    PubMed Central

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-01

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829

  12. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  13. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Microelectromechanical pump utilizing porous silicon

    DOEpatents

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  15. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  16. BioMEMS for biosensors and closed-loop drug delivery.

    PubMed

    Coffel, Joel; Nuxoll, Eric

    2018-06-15

    The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well and are stable and repeatable at the sub-nm level over the course of an hour. In Chapter 8, I prove MEMS ability to correct high-order Kolmogorov turbulence and maintain the high-contrast "dark hole" in the GPI woofer-tweeter architecture. Finally, in Chapter 9, I analyze MEMS performance on sky with Villages, a telescope testbed for MEMS technology, visible-light AO, and open-loop control. The MEMS remains repeatably flat and controllable over ˜4 years and ˜800 hours of operation. Open loop control of the hysteresis-free MEMS produces a diffraction-limited core in I-band, while internal static errors dominate the on-sky error budget. This work establishes MEMS deformable mirrors as excellent wavefront correctors for high-order AO. The MEMS in GPI will produce a deeper, broader dark hole, allowing for detection and characterization of directly-imaged planets in a fainter, wider search space.

  18. Maximum entropy analysis of polarized fluorescence decay of (E)GFP in aqueous solution

    NASA Astrophysics Data System (ADS)

    Novikov, Eugene G.; Skakun, Victor V.; Borst, Jan Willem; Visser, Antonie J. W. G.

    2018-01-01

    The maximum entropy method (MEM) was used for the analysis of polarized fluorescence decays of enhanced green fluorescent protein (EGFP) in buffered water/glycerol mixtures, obtained with time-correlated single-photon counting (Visser et al 2016 Methods Appl. Fluoresc. 4 035002). To this end, we used a general-purpose software module of MEM that was earlier developed to analyze (complex) laser photolysis kinetics of ligand rebinding reactions in oxygen binding proteins. We demonstrate that the MEM software provides reliable results and is easy to use for the analysis of both total fluorescence decay and fluorescence anisotropy decay of aqueous solutions of EGFP. The rotational correlation times of EGFP in water/glycerol mixtures, obtained by MEM as maxima of the correlation-time distributions, are identical to the single correlation times determined by global analysis of parallel and perpendicular polarized decay components. The MEM software is also able to determine homo-FRET in another dimeric GFP, for which the transfer correlation time is an order of magnitude shorter than the rotational correlation time. One important advantage utilizing MEM analysis is that no initial guesses of parameters are required, since MEM is able to select the least correlated solution from the feasible set of solutions.

  19. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  20. Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding

    NASA Astrophysics Data System (ADS)

    Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi

    This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.

  1. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  2. Advanced adaptive optics technology development

    NASA Astrophysics Data System (ADS)

    Olivier, Scot S.

    2002-02-01

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  3. Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank

    2017-05-01

    In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.

  4. Microelectromechanical safe arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  5. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  6. LAO web page

    Science.gov Websites

    of adaptive optics systems for the next generation of high resolution astronomy instrumentation. The largest telescopes in support of UC Astronomy, including those at the Keck, Gemini, and Lick Observatories optics for astronomy: MEMS and fiber lasers lead the way. In Adaptive Optics: Analysis, Methods and

  7. U.S. Army Corrosion Office's storage and quality requirements for military MEMS program

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III; Skelton, D. R.

    2007-04-01

    As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.

  8. Biomimetic MEMS to assist, enhance, and expand human sensory perceptions: a survey on state-of-the-art developments

    NASA Astrophysics Data System (ADS)

    Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.

    2011-06-01

    The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).

  9. Contact material optimization and contact physics in metal-contact microelectromechanical systems (MEMS) switches

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyin

    Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact resistance. Our work also contributes to the field of general nano-science and technology by resolving the transfer directionality of field evaporation of gold in atomic force microscope (AFM)/scanning tunneling microscope (STM).

  10. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  11. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  12. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    NASA Astrophysics Data System (ADS)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  13. Cost-Effectiveness of Remote Cardiac Monitoring With the CardioMEMS Heart Failure System.

    PubMed

    Schmier, Jordana K; Ong, Kevin L; Fonarow, Gregg C

    2017-07-01

    Heart failure (HF) is a leading cause of cardiovascular mortality in the United States and presents a substantial economic burden. A recently approved implantable wireless pulmonary artery pressure remote monitor, the CardioMEMS HF System, has been shown to be effective in reducing hospitalizations among New York Heart Association (NYHA) class III HF patients. The objective of this study was to estimate the cost-effectiveness of this remote monitoring technology compared to standard of care treatment for HF. A Markov cohort model relying on the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) clinical trial for mortality and hospitalization data, published sources for cost data, and a mix of CHAMPION data and published sources for utility data, was developed. The model compares outcomes over 5 years for implanted vs standard of care patients, allowing patients to accrue costs and utilities while they remain alive. Sensitivity analyses explored uncertainty in input parameters. The CardioMEMS HF System was found to be cost-effective, with an incremental cost-effectiveness ratio of $44,832 per quality-adjusted life year (QALY). Sensitivity analysis found the model was sensitive to the device cost and to whether mortality benefits were sustained, although there were no scenarios in which the cost/QALY exceeded $100,000. Compared with standard of care, the CardioMEMS HF System was cost-effective when leveraging trial data to populate the model. © 2017 Wiley Periodicals, Inc.

  14. Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs.

    PubMed

    Engleder, Elisabeth; Demmerer, Elisabeth; Wang, Xueyan; Honeder, Clemens; Zhu, Chengjing; Studenik, Christian; Wirth, Michael; Arnoldner, Christoph; Gabor, Franz

    2015-04-30

    In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an approved model for middle ear research, was characterized with the purpose to identify bioadhesive ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa (MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate specificities as bioadhesive ligands, viable MEM specimens were incubated at 4°C and the lectin binding capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order: sialic acid and N-acetyl-d-glucosamine (WGA)>mannose and galactosamine (Lensculinaris agglutinin)>N-acetyl-d-glucosamine (Solanumtuberosum agglutinin)>fucose (Ulexeuropaeus isoagglutinin I)>terminal mannose α-(1,3)-mannose (Galanthusnivalis agglutinin). Competitive inhibition studies with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming specificity of the F-WGA-MEM interaction. The cilia of the MEM were identified as F-WGA binding sites by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially for successful therapy for difficult-to-treat diseases such as otitis media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  16. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  17. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    NASA Astrophysics Data System (ADS)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  18. Micromachined integrated self-adaptive nonlinear stops for mechanical shock protection of MEMS

    NASA Astrophysics Data System (ADS)

    Xu, Kaisi; Jiang, Fushuai; Zhang, Wei; Hao, Yilong

    2018-06-01

    This paper presents a novel concept of self-adaptive nonlinear stops (SANS) for the generic in-plane shock protection of microelectromechanical systems (MEMS) suspensions. This new shock protection strategy decouples the reliability design from the device design and is compatible with wafer-level MEMS batch fabrication without the requirement of additional processes or materials. SANS increase shock reliability by limiting the travel of the suspension in a compliant manner with efficient energy dissipation. Using numerical simulation, we analyzed the energy dissipation and the impact force between suspensions and shock stops under a half-sine shock impulse (3000 g (1 g  ≈  9.8 m s‑2), 0.15 ms). The simulation results indicate that SANS can reduce approximately 89.4% of the impact force compared with hard stops, and additionally, dissipate more than 22.7% of the total mechanical energy in a round trip of the proof mass. To prove the improvement in shock protection, we designed and fabricated model test specimens of both SANS and conventional hard stops. The experimental results demonstrate that test specimens of SANS achieved twice the robustness compared with those of hard stops.

  19. MEMS Lens Scanners for Free-Space Optical Interconnects

    DTIC Science & Technology

    2011-12-15

    22] D. C. O ? Brien , G. E. Faulkner, T. D. Wilkinson, B. Robertson, and D. G. Leyva, “Design and Analysis of an Adaptive Board-to-Board Dynamic...trenches on 20 µm device layer. (c-d) Deposit and pattern low-stress nitride and polysilicon for electrical isolation. (e) DRIE for MEMS structures...Telecentric Lateral Shift Board Translation (mm) D is p la c e m e n t o f S p o t (  m ) 0 0.5 1 1.5 2 0 100 200 300 400 Tilt Error Board Tilt (deg) D

  20. Experimental Analysis of Diffraction Effects from a Segmented MEMS Deformable Mirror for a Closed Loop Adaptive Optics System

    DTIC Science & Technology

    2010-06-01

    different approaches were used to model MEMS OM as a grating in Zemax software. First, a 2D grating was directly modeled as a combination of two ID...method of modeling ~IEMS DM in Zemax was implemented by combining two ID gratings. Due to the fact that ZEl\\’IAX allows to easily use ID physical...optics shows thc far field diffractioll pattcrn, which in Zemax geometrical model shows up as distinct spots. each one corresponding to a specific

  1. Incidence of Acute Kidney Injury among Patients Treated with Piperacillin-Tazobactam or Meropenem in Combination with Vancomycin.

    PubMed

    Rutter, W Cliff; Burgess, David S

    2018-07-01

    Acute kidney injury (AKI) increases during empirical antimicrobial therapy with the combination of piperacillin-tazobactam (TZP) and vancomycin (VAN) compared to the number of incidences with monotherapy or the combination of cefepime and VAN. Limited data regarding the impact of meropenem (MEM) combined with VAN exist. This study examined the AKI incidence among patients treated with MEM plus VAN (MEM+VAN) or TZP+VAN. Data were collected from the University of Kentucky Center for Clinical and Translational Science Enterprise Data Trust from September 2007 through October 2015. Adults without previous renal disease who received MEM+VAN or TZP+VAN for at least 2 days were included. AKI was assessed using risk, injury, failure, loss, and end-stage (RIFLE) criteria. Inverse probability of treatment weighting was utilized to control for differences between groups. In total, 10,236 patients met inclusion criteria, with 9,898 receiving TZP+VAN and 338 receiving MEM+VAN. AKI occurred in 15.4% of MEM+VAN patients and in 27.4% of TZP+VAN patients ( P < 0.001). TZP+VAN was associated with increased AKI compared to the level with MEM+VAN (odds ratio [OR], 2.53; 95% confidence interval [CI], 1.82 to 3.52), after controlling for confounders. Use of MEM+VAN should be considered an appropriate alternative therapy to TZP+VAN if nephrotoxicity is a major concern. The results of this study demonstrate that judicial use of TZP+VAN for empirical coverage of infection is needed. Copyright © 2018 American Society for Microbiology.

  2. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  3. Piezoelectric MEMS switch to activate event-driven wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Nogami, H.; Kobayashi, T.; Okada, H.; Makimoto, N.; Maeda, R.; Itoh, T.

    2013-09-01

    We have developed piezoelectric microelectromechanical systems (MEMS) switches and applied them to ultra-low power wireless sensor nodes, to monitor the health condition of chickens. The piezoelectric switches have ‘S’-shaped piezoelectric cantilevers with a proof mass. Since the resonant frequency of the piezoelectric switches is around 24 Hz, we have utilized their superharmonic resonance to detect chicken movements as low as 5-15 Hz. When the vibration frequency is 4, 6 and 12 Hz, the piezoelectric switches vibrate at 0.5 m s-2 and generate 3-5 mV output voltages with superharmonic resonance. In order to detect such small piezoelectric output voltages, we employ comparator circuits that can be driven at low voltages, which can set the threshold voltage (Vth) from 1 to 31 mV with a 1 mV increment. When we set Vth at 4 mV, the output voltages of the piezoelectric MEMS switches vibrate below 15 Hz with amplitudes above 0.3 m s-2 and turn on the comparator circuits. Similarly, by setting Vth at 5 mV, the output voltages turn on the comparator circuits with vibrations above 0.4 m s-2. Furthermore, setting Vth at 10 mV causes vibrations above 0.5 m s-2 that turn on the comparator circuits. These results suggest that we can select small or fast chicken movements to utilize piezoelectric MEMS switches with comparator circuits.

  4. Characterization of contour shapes achievable with a MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas

    2006-01-01

    An important consideration in the design of an adaptive optics controller is the range of physical shapes required by the DM to compensate the existing aberrations. Conversely, if the range of surface shapes achievable with a DM is known, its suitability for a particular AO application can be determined. In this paper, we characterize one MEMS DM that was recently developed for vision science applications. The device has 140 actuators supporting a continuous face sheet deformable mirror having 4mm square aperture. The total range of actuation is about 4μm, achieved using electrostatic actuation in an architecture that has been described previously. We incorporated the MEMS mirror into an adaptive optics (AO) testbed to measure its capacity to transform an initially planar wavefront into a wavefront having one of thirty-six orthogonal shapes corresponding to the first seven orders of Zernike polynomials. The testbed included a superluminescent diode source emitting light with a wavelength 630nm, a MEMS DM, and a Shack Hartmann wavefront sensor (SHWS). The DM was positioned in a plane conjugate to the SHWS lenslets, using a pair of relay lenses. Wavefront slope measurements provided by the SHWS were used in an integral controller to regulate DM shape. The control software used the difference between the the wavefront measured by the SHWS and the desired (reference) wavefront as feedback for the DM. The DM is able to produce all 36 terms with a wavefront height root mean square (RMS) from 1.35μm for the lower order Zernike shapes to 0.2μm for the 7th order.

  5. Piston-Driven Fluid Ejectors In Silicon Mems

    DOEpatents

    Galambos, Paul C.; Benavides, Gilbert L.; Jokiel, Jr., Bernhard; Jakubczak II, Jerome F.

    2005-05-03

    A surface-micromachined fluid-ejection apparatus is disclosed which utilizes a piston to provide for the ejection of jets or drops of a fluid (e.g. for ink-jet printing). The piston, which is located at least partially inside a fluid reservoir, is moveable into a cylindrical fluid-ejection chamber connected to the reservoir by a microelectromechanical (MEM) actuator which is located outside the reservoir. In this way, the reservoir and fluid-ejection chamber can be maintained as electric-field-free regions thereby allowing the apparatus to be used with fluids that are electrically conductive or which may react or break down in the presence of a high electric field. The MEM actuator can comprise either an electrostatic actuator or a thermal actuator.

  6. MEMS Reaction Control and Maneuvering for Picosat Beyond LEO

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina

    2016-01-01

    The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.

  7. Wettability of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  8. The Development and Validation of Novel, Simple High-Performance Liquid Chromatographic Method with Refractive Index Detector for Quantification of Memantine Hydrochloride in Dissolution Samples.

    PubMed

    Sawant, Tukaram B; Wakchaure, Vikas S; Rakibe, Udyakumar K; Musmade, Prashant B; Chaudhari, Bhata R; Mane, Dhananjay V

    2017-07-01

    The present study was aimed to develop an analytical method for quantification of memantine (MEM) hydrochloride in dissolution samples using high-performance liquid chromatography with refractive index (RI) detector. The chromatographic separation was achieved on C18 (250 × 4.5 mm, 5 μm) column using isocratic mobile phase comprises of buffer (pH 5.2):methanol (40:60 v/v) pumped at a flow rate of 1.0 mL/min. The column effluents were monitored using RI detector. The retention time of MEM was found to be ~6.5 ± 0.3 min. The developed chromatographic method was validated and found to be linear over the concentration range of 5.0-45.0 μg/mL for MEM. Mean recovery of MEM was found to be 99.2 ± 0.5% (w/w). The method was found to be simple, fast, precise and accurate, which can be utilized for the quantification of MEM in dissolution samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    NASA Astrophysics Data System (ADS)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  10. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  11. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  12. Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control

    NASA Astrophysics Data System (ADS)

    Sane, Harshad S.; Yazdi, Navid; Mastrangelo, Carlos H.

    2005-01-01

    This paper presents high-resolution control of torsional electrostatic micromirrors beyond their inherent pull-in instability using robust sliding-mode control (SMC). The objectives of this paper are two-fold - firstly, to demonstrate the applicability of SMC for MEMS devices; secondly - to present a modified SMC algorithm that yields improved control accuracy. SMC enables compact realization of a robust controller tolerant of device characteristic variations and nonlinearities. Robustness of the control loop is demonstrated through extensive simulations and measurements on MEMS with a wide range in their characteristics. Control of two-axis gimbaled micromirrors beyond their pull-in instability with overall 10-bit pointing accuracy is confirmed experimentally. In addition, this paper presents an analysis of the sources of errors in discrete-time implementation of the control algorithm. To minimize these errors, we present an adaptive version of the SMC algorithm that yields substantial performance improvement without considerably increasing implementation complexity.

  13. Investigation of improved designs for rotational micromirrors using multiuser MEMS processes

    NASA Astrophysics Data System (ADS)

    Lin, Julianna E.; Michael, Feras S. J.; Kirk, Andrew G.

    2001-04-01

    In recent years, the design of rotational micromirrors for use in optical cross connects has received much attention. Although several companies have already produced and marketed a number of torsional mirror devices, more work is still needed to determine how these mirrors can be integrated into optical systems to form compact optical switches. However, recently several commercial MEMS foundry services have become available. Thus, due to the low cost of these prototyping services, new devices can be fabricated in short amounts of time and the designs adapted to meet the needs of different applications. The purpose of this work is to investigate the fabrication of new micromirror designs using the Multi-User MEMS Processes (MUMPs) foundry service available from Cronos Integrated Microsystems, located in North Carolina, USA). Several sets of mirror designs were submitted for fabrication and the resulting structures characterized using a phase-shifting Mirau interferometer. The results of these devices are presented.

  14. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previousmore » work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.« less

  15. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-09-01

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  16. FPGA platform for MEMS Disc Resonance Gyroscope (DRG) control

    NASA Astrophysics Data System (ADS)

    Keymeulen, Didier; Peay, Chris; Foor, David; Trung, Tran; Bakhshi, Alireza; Withington, Phil; Yee, Karl; Terrile, Rich

    2008-04-01

    Inertial navigation systems based upon optical gyroscopes tend to be expensive, large, power consumptive, and are not long lived. Micro-Electromechanical Systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space Inertial Reference Unit applications. The efforts resulted in demonstration of a Post Resonator Gyroscope (PRG). This experience led to the more compact Disc Resonator Gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.

  17. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams.

    PubMed

    Gao, Lili; Zhou, Zai-Fa; Huang, Qing-An

    2017-11-08

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  18. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams

    PubMed Central

    Gao, Lili

    2017-01-01

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations. PMID:29117096

  19. Laser-assisted advanced assembly for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Atanasov, Yuriy Andreev

    Micro Electro-Mechanical Systems (MEMS) are currently fabricated using methods originally designed for manufacturing semiconductor devices, using minimum if any assembly at all. The inherited limitations of this approach narrow the materials that can be employed and reduce the design complexity, imposing limitations on MEMS functionality. The proposed Laser-Assisted Advanced Assembly (LA3) method solves these problems by first fabricating components followed by assembly of a MEMS device. Components are micro-machined using a laser or by photolithography followed by wet/dry etching out of any material available in a thin sheet form. A wide range of materials can be utilized, including biocompatible metals, ceramics, polymers, composites, semiconductors, and materials with special properties such as memory shape alloys, thermoelectric, ferromagnetic, piezoelectric, and more. The approach proposed allows enhancing the structural and mechanical properties of the starting materials through heat treatment, tribological coatings, surface modifications, bio-functionalization, and more, a limited, even unavailable possibility with existing methods. Components are transferred to the substrate for assembly using the thermo-mechanical Selective Laser Assisted Die Transfer (tmSLADT) mechanism for microchips assembly, already demonstrated by our team. Therefore, the mechanical and electronic part of the MEMS can be fabricated using the same equipment/method. The viability of the Laser-Assisted Advanced Assembly technique for MEMS is demonstrated by fabricating magnetic switches for embedding in a conductive carbon-fiber metamaterial for use in an Electromagnetic-Responsive Mobile Cyber-Physical System (E-RMCPS), which is expected to improve the wireless communication system efficiency within a battery-powered device.

  20. Intelligent MEMS spectral sensor for NIR applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Antila, Jarkko E.; Mäkynen, Jussi; Suhonen, Janne

    2017-05-01

    Near Infrared (NIR) spectrometers have been widely used in many material inspection applications, but mainly in central laboratories. The role of miniaturization, robustness of spectrometer and portability are really crucial when field inspection tools should be developed. We present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer which will meet these requirements. We describe the wireless device design, operation principle and easy-to-use algorithms to adapt the sensor to number of applications. Multiple devices can be operated simultaneously and seamlessly through cloud connectivity. We also present some practical NIR applications carried out with truly portable NIR device.

  1. MOEMS FPI sensors for NIR-MIR microspectrometer applications

    NASA Astrophysics Data System (ADS)

    Akujärvi, A.; Guo, B.; Mannila, R.; Rissanen, A.

    2016-03-01

    This paper presents near- and mid- infrared (NIR-MIR) wavelength range optical MEMS Fabry-Perot interferometers (FPIs) developed for automotive and multi-gas sensing applications. MEMS FPI platform for NIR-range consist of LPCVD (low-pressure chemical vapour) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapour. Characterization results for the NIR MFPI devices for λ = 1.5 - 2.0 μm show resolution of 15 nm at the optimization wavelength of 1750 nm. We also present a MIR-range MEMS FPI for λ = 2.5 - 3.5 μm, which utilizes silicon and air in within the Bragg reflector structure to provide a high contrast for improved resolution. Characterization results show a FWHM (Full Width Half Maximum) of 20 nm in comparison to the 50 nm resolution provided by earlier MEMS FPIs realized for hydrocarbon sensing with conventional CVD-thin film materials. The improved resolution and the extended operation region shows potential to enable simultaneous sensing of CO2 and multiple hydrocarbons.

  2. AOSLO: from benchtop to clinic

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Poonja, Siddharth; Roorda, Austin

    2006-08-01

    We present a clinically deployable adaptive optics scanning laser ophthalmoscope (AOSLO) that features micro-electro-mechanical (MEMS) deformable mirror (DM) based adaptive optics (AO) and low coherent light sources. With the miniaturized optical aperture of a μDMS-Multi TM MEMS DM (Boston Micromachines Corporation, Watertown, MA), we were able to develop a compact and robust AOSLO optical system that occupies a 50 cm X 50 cm area on a mobile optical table. We introduced low coherent light sources, which are superluminescent laser diodes (SLD) at 680 nm with 9 nm bandwidth and 840 nm with 50 nm bandwidth, in confocal scanning ophthalmoscopy to eliminate interference artifacts in the images. We selected a photo multiplier tube (PMT) for photon signal detection and designed low noise video signal conditioning circuits. We employed an acoustic-optical (AOM) spatial light modulator to modulate the light beam so that we could avoid unnecessary exposure to the retina or project a specific stimulus pattern onto the retina. The MEMS DM based AO system demonstrated robust performance. The use of low coherent light sources effectively mitigated the interference artifacts in the images and yielded high-fidelity retinal images of contiguous cone mosaic. We imaged patients with inherited retinal degenerations including cone-rod dystrophy (CRD) and retinitis pigmentosa (RP). We have produced high-fidelity, real-time, microscopic views of the living human retina for healthy and diseased eyes.

  3. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.

  4. Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect

    NASA Astrophysics Data System (ADS)

    Guha, K.; Laskar, N. M.; Gogoi, H. J.; Borah, A. K.; Baishnab, K. L.; Baishya, S.

    2017-11-01

    This paper presents a new method for the design, modelling and optimization of a uniform serpentine meander based MEMS shunt capacitive switch with perforation on upper beam. The new approach is proposed to improve the Pull-in Voltage performance in a MEMS switch. First a new analytical model of the Pull-in Voltage is proposed using the modified Mejis-Fokkema capacitance model taking care of the nonlinear electrostatic force, the fringing field effect due to beam thickness and etched holes on the beam simultaneously followed by the validation of same with the simulated results of benchmark full 3D FEM solver CoventorWare in a wide range of structural parameter variations. It shows a good agreement with the simulated results. Secondly, an optimization method is presented to determine the optimum configuration of switch for achieving minimum Pull-in voltage considering the proposed analytical mode as objective function. Some high performance Evolutionary Optimization Algorithms have been utilized to obtain the optimum dimensions with less computational cost and complexity. Upon comparing the applied algorithms between each other, the Dragonfly Algorithm is found to be most suitable in terms of minimum Pull-in voltage and higher convergence speed. Optimized values are validated against the simulated results of CoventorWare which shows a very satisfactory results with a small deviation of 0.223 V. In addition to these, the paper proposes, for the first time, a novel algorithmic approach for uniform arrangement of square holes in a given beam area of RF MEMS switch for perforation. The algorithm dynamically accommodates all the square holes within a given beam area such that the maximum space is utilized. This automated arrangement of perforation holes will further improve the computational complexity and design accuracy of the complex design of perforated MEMS switch.

  5. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    PubMed

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  6. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  7. An adaptive cubature formula for efficient reliability assessment of nonlinear structural dynamic systems

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Kong, Fan

    2018-05-01

    Extreme value distribution (EVD) evaluation is a critical topic in reliability analysis of nonlinear structural dynamic systems. In this paper, a new method is proposed to obtain the EVD. The maximum entropy method (MEM) with fractional moments as constraints is employed to derive the entire range of EVD. Then, an adaptive cubature formula is proposed for fractional moments assessment involved in MEM, which is closely related to the efficiency and accuracy for reliability analysis. Three point sets, which include a total of 2d2 + 1 integration points in the dimension d, are generated in the proposed formula. In this regard, the efficiency of the proposed formula is ensured. Besides, a "free" parameter is introduced, which makes the proposed formula adaptive with the dimension. The "free" parameter is determined by arranging one point set adjacent to the boundary of the hyper-sphere which contains the bulk of total probability. In this regard, the tail distribution may be better reproduced and the fractional moments could be evaluated with accuracy. Finally, the proposed method is applied to a ten-storey shear frame structure under seismic excitations, which exhibits strong nonlinearity. The numerical results demonstrate the efficacy of the proposed method.

  8. A Model for Speedup of Parallel Programs

    DTIC Science & Technology

    1997-01-01

    Sanjeev. K Setia . The interaction between mem- ory allocation and adaptive partitioning in message- passing multicomputers. In IPPS 󈨣 Workshop on Job...Scheduling Strategies for Parallel Processing, pages 89{99, 1995. [15] Sanjeev K. Setia and Satish K. Tripathi. A compar- ative analysis of static

  9. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D; Olivier, S; Jones, S

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of themore » trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.« less

  10. Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels

    NASA Astrophysics Data System (ADS)

    Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.

    2018-03-01

    Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.

  11. Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations

    NASA Astrophysics Data System (ADS)

    Chityala, Ravishankar; Vidal, Carola; Jones, Robert

    Optical Coherence Tomography (OCT) has seen broad application in dentistry including early carious lesion detection and imaging defects in resin composite restorations. This study investigates expanding the clinical usefulness by investigating methods to use OCT for obtaining three-dimensional (3D) digital impressions, which can be integrated to CAD/CAM manufacturing of indirect restorations. 3D surface topography `before' and `after' a cavity preparation was acquired by an intraoral cross polarization swept source OCT (CP-OCT) system with a Micro-Electro-Mechanical System (MEMS) scanning mirror. Image registration and segmentation methods were used to digitally construct a replacement restoration that modeled the original surface morphology of a hydroxyapatite sample. After high resolution additive manufacturing (e.g. polymer 3D printing) of the replacement restoration, micro-CT imaging was performed to examine the marginal adaptation. This study establishes the protocol for further investigation of integrating OCT with CAD/CAM of indirect dental restorations.

  12. RF MEMS Switches with SiC Microbridges for Improved Reliability

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Zorman, Christian A.; Oldham, Daniel R.

    2008-01-01

    Radio frequency (RF) microelectromechanical (MEMS) switches offer superior performance when compared to the traditional semiconductor devices such as PIN diodes or GaAs transistors. MEMS switches have a return loss (RL) better than -25 dB, negligible insertion loss (IL), isolation better than -30 dB, and near zero power consumption. However, RF MEMS switches have several drawbacks the most serious being long-term reliability. The ability for the switch to operate for millions or even billions of cycles is a major concern and must be addressed. MEMS switches are basically grouped in two categories, capacitive and metal-to-metal contact. The capacitive type switch consists of a movable metal bridge spanning a fixed electrode and separated by a narrow air gap and thin insulating material. The metal-to-metal contact type utilizes the same basic design but without the insulating material. After prolonged operation the metal bridges, in most of these switches, begin to sag and eventually fail to actuate. For the metal-to-metal type, the two metal layers may actually fuse together. Also if the switches are not packaged properly or protected from the environment moisture may build up and cause stiction between the top and bottom electrodes rendering them useless. Many MEMS switch designs have been developed and most illustrate fairly good RF characteristics. Nevertheless very few have demonstrated both great RF performance and ability to perform millions/billions of switching cycles. Of these, nearly all are of metal-to-metal type so as the frequency increases RF performance decreases.

  13. A New MEMS Gyroscope Used for Single-Channel Damping

    PubMed Central

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

  14. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  15. MEMS-based thermally-actuated image stabilizer for cellular phone camera

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ying; Chiou, Jin-Chern

    2012-11-01

    This work develops an image stabilizer (IS) that is fabricated using micro-electro-mechanical system (MEMS) technology and is designed to counteract the vibrations when human using cellular phone cameras. The proposed IS has dimensions of 8.8 × 8.8 × 0.3 mm3 and is strong enough to suspend an image sensor. The processes that is utilized to fabricate the IS includes inductive coupled plasma (ICP) processes, reactive ion etching (RIE) processes and the flip-chip bonding method. The IS is designed to enable the electrical signals from the suspended image sensor to be successfully emitted out using signal output beams, and the maximum actuating distance of the stage exceeds 24.835 µm when the driving current is 155 mA. Depending on integration of MEMS device and designed controller, the proposed IS can decrease the hand tremor by 72.5%.

  16. Can mobile phones used in strong motion seismology?

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.

  17. A novel method of calibrating a MEMS inertial reference unit on a turntable under limited working conditions

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Liang, Shufang; Yang, Yanqiang

    2017-10-01

    Micro-electro-mechanical systems (MEMS) inertial measurement devices tend to be widely used in inertial navigation systems and have quickly emerged on the market due to their characteristics of low cost, high reliability and small size. Calibration is the most effective way to remove the deterministic error of an inertial reference unit (IRU), which in this paper consists of three orthogonally mounted MEMS gyros. However, common testing methods in the lab cannot predict the corresponding errors precisely when the turntable’s working condition is restricted. In this paper, the turntable can only provide a relatively small rotation angle. Moreover, the errors must be compensated exactly because of the great effect caused by the high angular velocity of the craft. To deal with this question, a new method is proposed to evaluate the MEMS IRU’s performance. In the calibration procedure, a one-axis table that can rotate a limited angle in the form of a sine function is utilized to provide the MEMS IRU’s angular velocity. A new algorithm based on Fourier series is designed to calculate the misalignment and scale factor errors. The proposed method is tested in a set of experiments, and the calibration results are compared to a traditional calibration method performed under normal working conditions to verify their correctness. In addition, a verification test in the given rotation speed is implemented for further demonstration.

  18. Microscale Electrode Implantation during Nerve Repair: Effects on Nerve Morphology, Electromyography, and Recovery of Muscle Contractile Function

    PubMed Central

    Urbanchek, Melanie G; Wei, Benjamin; Egeland, Brent M; Abidian, Mohammad R; Kipke, Daryl R; Cederna, Paul S

    2011-01-01

    Background Our goal is to develop a peripheral nerve electrode with long-term stability and fidelity for use in nerve-machine interfaces. Microelectromechanical systems (MEMS) use silicon probes that contain multi-channel actuators, sensors, and electronics. We tested the null hypothesis that implantation of MEMS probes do not have a detrimental effect on peripheral nerve function or regeneration. Methods A rat hindlimb, peroneal nerve model was utilized in all experimental groups: a) intact nerve (Control, n= 10); b) nerve division and repair (Repair, n= 9); and c) Nerve division, insertion of MEMS probe, and repair (Repair + Probe, n=9). Nerve morphology, nerve to muscle compound action potential (CMAP) studies, walking tracks, and extensor digitorum longus (EDL) muscle function tests were evaluated following an 80 day recovery. Results Repair and Repair + Probe showed no differences in axon count, axon size, percent non-neural area, CMAP amplitude, latency, muscle mass, muscle force, or walking track scores. Though there was some local fibrosis around each MEMS probe, this did not lead to measurable detrimental effects in any anatomic or functional outcome measurements. Conclusions The lack of a significant difference between Repair and Repair + Probe groups in histology, CMAP, walking tracks, and muscle force suggests that MEMS electrodes are compatible with regenerating axons and show promise for establishing chemical and electrical interfaces with peripheral nerves. PMID:21921739

  19. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    PubMed

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  20. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    PubMed Central

    Gerdtman, Christer

    2018-01-01

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412

  1. STEAM: a software tool based on empirical analysis for micro electro mechanical systems

    NASA Astrophysics Data System (ADS)

    Devasia, Archana; Pasupuleti, Ajay; Sahin, Ferat

    2006-03-01

    In this research a generalized software framework that enables accurate computer aided design of MEMS devices is developed. The proposed simulation engine utilizes a novel material property estimation technique that generates effective material properties at the microscopic level. The material property models were developed based on empirical analysis and the behavior extraction of standard test structures. A literature review is provided on the physical phenomena that govern the mechanical behavior of thin films materials. This survey indicates that the present day models operate under a wide range of assumptions that may not be applicable to the micro-world. Thus, this methodology is foreseen to be an essential tool for MEMS designers as it would develop empirical models that relate the loading parameters, material properties, and the geometry of the microstructures with its performance characteristics. This process involves learning the relationship between the above parameters using non-parametric learning algorithms such as radial basis function networks and genetic algorithms. The proposed simulation engine has a graphical user interface (GUI) which is very adaptable, flexible, and transparent. The GUI is able to encompass all parameters associated with the determination of the desired material property so as to create models that provide an accurate estimation of the desired property. This technique was verified by fabricating and simulating bilayer cantilevers consisting of aluminum and glass (TEOS oxide) in our previous work. The results obtained were found to be very encouraging.

  2. Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors

    PubMed Central

    Sadek, Khaled; Moussa, Walied

    2007-01-01

    In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

  3. Benefits Assessment for Tactical Runway Configuration Management Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.

    2013-01-01

    The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.

  4. Nonclassical MHC-E (Mamu-E) expression in the rhesus monkey placenta

    PubMed Central

    Dambaeva, Svetlana V.; Bondarenko, Gennadiy I.; Grendell, Richard L.; Kravitz, Rachel H.; Durning, Maureen; Golos, Thaddeus G.

    2009-01-01

    The aim of this study was to characterize the expression of the rhesus HLA-E ortholog Mamu-E, particularly at the maternal-fetal interface. Mamu-E expression was confirmed by locus-specific RT-PCR in the placenta as well as in peripheral blood mononuclear cells (PBMC) and other organs. We evaluated the utility of antibodies recognizing HLA-E (MEM-E/06 against native HLA-E, MEM-E/02 against denatured HLA-E) to detect Mamu-E by flow cytometry/immunofluorescence, Western blot, and immunohistochemistry (IHC). Western blot analysis of cells and selected transfectants confirmed the recognition of Mamu-E but not Mamu-AG by antibodies MEM-E/06 and HC10 but not MEM-E/02. Immunohistochemical staining of frozen sections of rhesus placenta with the MEM-E/06 antibody demonstrated expression in most populations of rhesus monkey trophoblast cells, including villous cytotrophoblasts (strong positive staining), apical membrane of syncytiotrophoblasts (light to moderate staining) and extravillous cytotrophoblasts (moderate to strong staining, especially endovascular trophoblasts in early pregnancy). Expression was not trophoblast cell-specific, especially at term, when endothelial cells in both the chorionic plate and placental villi showed strong staining for Mamu-E. Staining of rhesus extravillous trophoblast cells suggested the co-expression of Mamu-E and Mamu-AG (the rhesus HLA-G homolog) on these cells. MEM-E/06 was shown also to react with differentiating rhesus placental syncytiotrophoblasts in primary culture, detecting intracellular and weak surface expression of Mamu-E. We conclude that the gestation-dependent co-expression of Mamu-E with Mamu-AG in villous and extravillous trophoblast cells suggests important and perhaps complementary but distinct roles of these two nonclassical MHC class I loci in pregnancy at the maternal-fetal interface. In addition, the MEM-E/06 antibody will be useful for the detection of Mamu-E at the maternal-fetal interface in the rhesus monkey. PMID:17996936

  5. Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure.

    PubMed

    Sandhu, Alexander T; Goldhaber-Fiebert, Jeremy D; Owens, Douglas K; Turakhia, Mintu P; Kaiser, Daniel W; Heidenreich, Paul A

    2016-05-01

    This study aimed to evaluate the cost-effectiveness of the CardioMEMS (CardioMEMS Heart Failure System, St Jude Medical Inc, Atlanta, Georgia) device in patients with chronic heart failure. The CardioMEMS device, an implantable pulmonary artery pressure monitor, was shown to reduce hospitalizations for heart failure and improve quality of life in the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) trial. We developed a Markov model to determine the hospitalization, survival, quality of life, cost, and incremental cost-effectiveness ratio of CardioMEMS implantation compared with usual care among a CHAMPION trial cohort of patients with heart failure. We obtained event rates and utilities from published trial data; we used costs from literature estimates and Medicare reimbursement data. We performed subgroup analyses of preserved and reduced ejection fraction and an exploratory analysis in a lower-risk cohort on the basis of the CHARM (Candesartan in Heart failure: Reduction in Mortality and Morbidity) trials. CardioMEMS reduced lifetime hospitalizations (2.18 vs. 3.12), increased quality-adjusted life-years (QALYs) (2.74 vs. 2.46), and increased costs ($176,648 vs. $156,569), thus yielding a cost of $71,462 per QALY gained and $48,054 per life-year gained. The cost per QALY gained was $82,301 in patients with reduced ejection fraction and $47,768 in those with preserved ejection fraction. In the lower-risk CHARM cohort, the device would need to reduce hospitalizations for heart failure by 41% to cost <$100,000 per QALY gained. The cost-effectiveness was most sensitive to the device's durability. In populations similar to that of the CHAMPION trial, the CardioMEMS device is cost-effective if the trial effectiveness is sustained over long periods. Post-marketing surveillance data on durability will further clarify its value. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Field evaluations of "ShapeAccelArray" in-place MEMS inclinometer strings for subsurface deformation monitoring.

    DOT National Transportation Integrated Search

    2012-03-01

    Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...

  7. Nanoionics-Based Switches for Radio-Frequency Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  8. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

    PubMed Central

    MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE

    2014-01-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783

  9. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  10. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  11. Multi-Dimensional Sensors and Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph R. (Inventor); Shirke, Amol G. (Inventor)

    2014-01-01

    A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored.

  12. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    PubMed

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  13. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  14. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  15. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  16. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  17. Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts.

    PubMed

    Raud, Brenda; McGuire, Peter J; Jones, Russell G; Sparwasser, Tim; Berod, Luciana

    2018-05-01

    CD8 + T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8 + T cells, while naive and memory (T mem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8 + T mem cell development. Moreover, it has been proposed that CD8 + T mem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8 + T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8 + T mem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. High energy microelectromechanical oscillator based on the electrostatic microactuator

    NASA Astrophysics Data System (ADS)

    Baginsky, I.; Kostsov, Edvard; Sobolev, Victor

    2008-03-01

    Electrostatic high energy micromotor based on the ferroelectric films is studied as applied to microelectromechanical devices operating in vibrational mode. It is shown that the micromotor can be efficiently used in high frequency micromechanical vibrators that are used in high energy MEMS devices, such as micropumps, microvalves, microinjectors, adaptive microoptic devices etc.

  19. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors.

    PubMed

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Muroyama, Masanori

    2018-01-15

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz.

  20. The immediate impact of semen diluent and rate of dilution on the sperm quality index, ATP utilization, gas exchange, and ionic balance of broiler breeder sperm.

    PubMed

    Parker, H M; McDaniel, C D

    2006-01-01

    The sperm quality index (SQI) is a tool used to predict overall rooster semen quality, fertility, and hatchability. However, semen must be diluted before SQI analysis, and research has shown that the SQI is most predictive of fertility at lower semen dilutions. Therefore, the present study was undertaken to determine why the SQI is not as predictive of fertility at higher semen dilutions and whether semen diluent type alters the SQI, adenosine triphosphate (ATP) utilization, gas exchange, and ionic balance of broiler breeder sperm. Semen was diluted with saline, seminal plasma, or minimum essential medium (MEM) from 2- to 200-fold. The following parameters were measured for each diluent type at each dilution: SQI, ATP, Na+, Ca2+, K+, Cl-, CO2, and O2. To examine the rate of sperm motility, the SQI was expressed as SQI/million sperm per mL (SQI/sperm). There was an interaction between diluent type and dilution for the SQI, SQI/sperm, CO2 generated, O2 used, as well as Na+, Ca2+, and K+ internalization. For sperm diluted with saline, the SQI declined more rapidly with increasing dilution. However, SQI/sperm increased rapidly when semen was diluted with MEM or SP. Sperm diluted in SP used ATP with increasing dilution whereas sperm diluted with saline and MEM generated ATP. Neat semen contained no free O2; however, each diluent type contained abundant O2 resulting in more O2 available as semen was diluted. Sperm diluted in SP produced more CO2 and used more O2 than semen diluted in saline or MEM. For SQI/sperm, ATP and CO2 generated, as well as Na+ and Ca2+ internalization, differences between diluent types occurred when semen was diluted 50-fold and greater. In conclusion, it appears that sperm motility, ATP utilization, gas exchange, and ionic balance are altered by diluent type and rate of dilution. These alterations in semen quality are exacerbated at semen dilutions of 50-fold and greater yielding an SQI that is not indicative of sperm motility or fertility.

  1. MEMS-based sensing and algorithm development for fall detection and gait analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew

    2010-02-01

    Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.

  2. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  3. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  4. High-Performance Piezoresistive MEMS Strain Sensor with Low Thermal Sensitivity

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2011-01-01

    This paper presents the experimental evaluation of a new piezoresistive MEMS strain sensor. Geometric characteristics of the sensor silicon carrier have been employed to improve the sensor sensitivity. Surface features or trenches have been introduced in the vicinity of the sensing elements. These features create stress concentration regions (SCRs) and as a result, the strain/stress field was altered. The improved sensing sensitivity compensated for the signal loss. The feasibility of this methodology was proved in a previous work using Finite Element Analysis (FEA). This paper provides the experimental part of the previous study. The experiments covered a temperature range from −50 °C to +50 °C. The MEMS sensors are fabricated using five different doping concentrations. FEA is also utilized to investigate the effect of material properties and layer thickness of the bonding adhesive on the sensor response. The experimental findings are compared to the simulation results to guide selection of bonding adhesive and installation procedure. Finally, FEA was used to analyze the effect of rotational/alignment errors. PMID:22319384

  5. MEMS-based liquid lens for capsule endoscope

    NASA Astrophysics Data System (ADS)

    Seo, S. W.; Han, S.; Seo, J. H.; Kim, Y. M.; Kang, M. S.; Min, N. G.; Choi, W. B.; Sung, M. Y.

    2008-03-01

    The capsule endoscope, a new application area of digital imaging, is growing rapidly but needs the versatile imaging capabilities such as auto-focusing and zoom-in to be an active diagnostic tool. The liquid lens based on MEMS technology can be a strong candidate because it is able to be small enough. In this paper, a cylinder-type liquid lens was designed based on Young-Lippmann model and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.

  6. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  7. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  8. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-05-25

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  9. Controlling Variable Emittance (MEMS) Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Farrar, D.; Schneider, W.; Osiander, R.; Champion, J. L.; Darrin, A. G.; Douglas, Donya; Swanson, Ted D.

    2003-01-01

    Small spacecraft, including micro and nanosats, as they are envisioned for future missions, will require an alternative means to achieve thermal control due to their small power and mass budgets. One of the proposed alternatives is Variable Emittance (Vari-E) Coatings for spacecraft radiators. Space Technology-5 (ST-5) is a technology demonstration mission through NASA Goddard Space Flight Center (GSFC) that will utilize Vari-E Coatings. This mission involves a constellation of three (3) satellites in a highly elliptical orbit with a perigee altitude of approximately 200 kilometers and an apogee of approximately 38,000 kilometers. Such an environment will expose the spacecraft to a wide swing in the thermal and radiation environment of the earth's atmosphere. There are three (3) different technologies associated with this mission. The three technologies are electrophoretic, electrochromic, and Micro ElectroMechanical Systems (MEMS). The ultimate goal is to make use of Van-E coatings, in order to achieve various levels of thermal control. The focus of this paper is to highlight the Vari-E Coating MEMS instrument, with an emphasis on the Electronic Control Unit responsible for operating the MEMS device. The Test & Evaluation approach, along with the results, is specific for application on ST-5, yet the information provides a guideline for future experiments and/or thermal applications on the exterior structure of a spacecraft.

  10. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    PubMed Central

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  11. Localized synthesis, assembly and integration of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Englander, Ongi

    Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire organization, alignment, and assembly. The integrated nanoelectrormechanical system was found to be mechanically resilient as it proved to successfully withstand a wide variety of post-processing steps, including manipulations and examinations under scanning and transmission electron microscopes and aqueous processing, although a super critical drying step is necessary to preserve the integrated system during the drying process. Electrical characterization of the system proved challenging due to low carrier concentration and possible transport issues at the nano-micro interface. Nonetheless, in a proof-of-concept demonstration, the system was functionalized and tested for a hydrogen sensing application.

  12. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  13. 2007 Precision Strike Annual Programs Review

    DTIC Science & Technology

    2007-04-25

    Adapting our methods • Remaining a flexible combined-arms force • Enabling a generation of combat- experienced decision-makers by distributing...Sustain Propulsion Network RadioMEMS IMU Flexible Engagement Options Requirements Capabilities Precision Attack Missile (PAM) 67” (with Canister...Aimpoint 6 PAM Seeker Modes PAM’s Multiple Targeting Modes Increase Flexibility , Improve Lethality PAM’s Multiple Targeting Modes Increase Flexibility

  14. [Development of a massage device based on microcontroller in the field of alimentary tract].

    PubMed

    Huang, Rong; Peng, Chenglin; He, Hongmei; Zhu, Jing

    2007-12-01

    In this artical is first reported a survey of the progress in research of MEMS technology. Then, the basic structure, features and the principles of a massage device based on microcontroller in the field of alimentary tract are introduced. Special emphasis is laid on the utilization of MSP430F123 microprocessor for producing a kind of period pulse to control the power of massage capsule. In general, the research and development of the massage device in the field of alimentary tract have active support and deep significance to therapy in the clinical and business settings as well as in the development of biomedical engineering and MEMS.

  15. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOEpatents

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  16. Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials.

    PubMed

    Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao

    2018-01-01

    We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.

  17. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  18. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  19. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  20. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-08-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.

  1. The Utility of Handheld Programmable Calculators in Aircraft Life Cycle Cost Estimation.

    DTIC Science & Technology

    1982-09-01

    are available for extended mem - ory, hardcopy printout, video interface, and special application software. Any calculator of comparable memory could...condi- tioning system. OG Total number of engine, air turbine motor (ATM) and auxiliary power unit (APU) driven generator/alternators. OHP Total number

  2. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  3. An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding Measurement in a GNSS Signal-Challenged Environment

    PubMed Central

    Zhou, Qifan; Zhang, Hai; Li, You; Li, Zheng

    2015-01-01

    The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system’s difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution. PMID:26393605

  4. An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding Measurement in a GNSS Signal-Challenged Environment.

    PubMed

    Zhou, Qifan; Zhang, Hai; Li, You; Li, Zheng

    2015-09-18

    The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system's difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution.

  5. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers were improved. In 2016 the MEO also adapted the forecast to the cislunar environment for the first time. We plan to make additional improvements to the model in the next two years using optical meteor flux measurements and mass indices.

  6. Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach.

    PubMed

    Cervera, Javier; Pietak, Alexis; Levin, Michael; Mafe, Salvador

    2018-04-21

    We review the basic concepts involved in bioelectrically-coupled multicellular domains, focusing on the role of membrane potentials (V mem ). In the first model, single-cell V mem is modulated by two generic polarizing and depolarizing ion channels, while intercellular coupling is implemented via voltage-gated gap junctions. Biochemical and bioelectrical signals are integrated via a feedback loop between V mem and the transcription and translation of a protein forming an ion channel. The effective rate constants depend on the single-cell V mem because these potentials modulate the local concentrations of signaling molecules and ions. This electrochemically-based idealization of the complex biophysical problem suggests that the spatio-temporal map of single-cell potentials can influence downstream patterning processes by means of the voltage-gated gap junction interconnectivity, much as in the case of electronic devices where the control of electric potentials and currents allows the local modulation of the circuitry to achieve full functionality. An alternative theoretical approach, the BioElectrical Tissue Simulation Engine (BETSE), is also presented. The BETSE modeling environment utilizes finite volume techniques to simulate bioelectric states from the perspective of ion concentrations and fluxes. This model has been successfully applied to make predictions and explain experimental observations in a variety of embryonic, regenerative, and oncogenic contexts. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    PubMed Central

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki

    2018-01-01

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923

  8. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    2010-07-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method capable of autonomous (computer-free) closed-loop control of a MEMS deformable mirror. A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the "modes". On reconstruction, an input beam will be diffracted into pairs of focal spots - the ratio of particular pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using a fast, sensitive photo-detector array such as a multi-pixel photon counters. This information is then used to directly control each actuator in the MEMS DM without the need for any computer in the loop. We present initial results of a 32-actuator prototype device. We further demonstrate that being an all-optical, parallel processing scheme, the speed is independent of the number of actuators. In fact, the limitations on speed are ultimately determined by the maximum driving speed of the DM actuators themselves. Finally, being modal in nature, the system is largely insensitive to both obscuration and scintillation. This should make it ideal for laser beam transmission or imaging under highly turbulent conditions.

  9. Process Development for the Fabrication of Spheroidal Microdevice Packages Utilizing MEMS Technologies

    DTIC Science & Technology

    2014-03-27

    in a thin conductive layer, the wafer surface can be made into the cathode while using a stainless steel plate as an anode. Bath temperature, voltage...beakers with polytetrafluoroethylene (PTFE) tools while under a fume hood, as HF is known to attack glass and polystyrene [62]. Additionally

  10. Radioistopes to Solar to High Energy Accelerators - Chip-Scale Energy Sources

    NASA Astrophysics Data System (ADS)

    Lal, Amit

    2013-12-01

    This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further.

  11. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  12. A fast MEMS scanning photoacoustic microscopy system and its application in glioma study

    NASA Astrophysics Data System (ADS)

    Bi, Renzhe; Balasundaram, Ghayathri; Jeon, Seungwan; Pu, Yang; Tay, Hui Chien; Kim, Chulhong; Olivo, Malini

    2018-02-01

    We present a water-proof Microelectromechanical systems (MEMS) based scanning optical resolution Photoacoustic Microscopy (OR-PAM) system and its application in glioma tumor mouse model study. The presented OR-PAM system has high optical resolution ( 3 μm) and high scanning speed (up to 50 kHz A-scan rate), which is ideal for cerebral vascular imaging. In this study, the mice with glioma tumor are treated with vascular disrupting agent (VDA). OR-PAM system is utilized to image the cerebral with the whole skull intact before and after the injection of VDA. By image registration, the response of every single blood vessel can be traced. This will provide us deeper understanding of the drug effect.

  13. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  14. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  15. MEMS switches having non-metallic crossbeams

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximillian C (Inventor)

    2009-01-01

    A RF MEMS switch comprising a crossbeam of SiC, supported by at least one leg above a substrate and above a plurality of transmission lines forming a CPW. Bias is provided by at least one layer of metal disposed on a top surface of the SiC crossbeam, such as a layer of chromium followed by a layer of gold, and extending beyond the switch to a biasing pad on the substrate. The switch utilizes stress and conductivity-controlled non-metallic thin cantilevers or bridges, thereby improving the RF characteristics and operational reliability of the switch. The switch can be fabricated with conventional silicon integrated circuit (IC) processing techniques. The design of the switch is very versatile and can be implemented in many transmission line mediums.

  16. Phase Calibration of Microphones by Measurement in the Free-field

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Bartram, Scott M.; Humphreys, William M.; Zuckewar, Allan J.

    2006-01-01

    Over the past several years, significant effort has been expended at NASA Langley developing new Micro-Electro-Mechanical System (MEMS)-based microphone directional array instrumentation for high-frequency aeroacoustic measurements in wind tunnels. This new type of array construction solves two challenges which have limited the widespread use of large channel-count arrays, namely by providing a lower cost-per-channel and a simpler method for mounting microphones in wind tunnels and in field-deployable arrays. The current generation of array instrumentation is capable of extracting accurate noise source location and directivity on a variety of airframe components using sophisticated data reduction algorithms [1-2]. Commercially-available MEMS microphones are condenser-type devices and have some desirable characteristics when compared with conventional condenser-type microphones. The most important advantages of MEMS microphones are their size, price, and power consumption. However, the commercially-available units suffer from certain important shortcomings. Based on experiments with array prototypes, it was found that both the bandwidth and the sound pressure limit of the microphones should be increased significantly to improve the performance and flexibility of the microphone array [3]. It was also desired to modify the packaging to eliminate unwanted Helmholtz resonance s exhibited by the commercial devices. Thus, new requirements were defined as follows: Frequency response: 100 Hz to 100 KHz (+/-3dB) Upper sound pressure limit: Design 1: 130 dB SPL (THD less than 5%) Design 2: 150-160 dB SPL (THD less than 5%) Packaging: 3.73 x 6.13 x 1.3 mm can with laser-etched lid. In collaboration with Novusonic Acoustic Innovation, NASA modified a Knowles SiSonic MEMS design to meet these new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size [4]. Hence a substitution based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. The free-field sensitivity (voltage per unit sound pressure) was obtained using the procedure outlined in reference 4. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone. The free-field calibration procedure along with representative sensitivity and phase responses for the new high-frequency MEMS microphones are presented here.

  17. Electronic monitoring of treatment adherence and validation of alternative adherence measures in tuberculosis patients: a pilot study.

    PubMed

    van den Boogaard, Jossy; Lyimo, Ramsey A; Boeree, Martin J; Kibiki, Gibson S; Aarnoutse, Rob E

    2011-09-01

    To assess adherence to community-based directly observed treatment (DOT) among Tanzanian tuberculosis patients using the Medication Event Monitoring System (MEMS) and to validate alternative adherence measures for resource-limited settings using MEMS as a gold standard. This was a longitudinal pilot study of 50 patients recruited consecutively from one rural hospital, one urban hospital and two urban health centres. Treatment adherence was monitored with MEMS and the validity of the following adherence measures was assessed: isoniazid urine test, urine colour test, Morisky scale, Brief Medication Questionnaire, adapted AIDS Clinical Trials Group (ACTG) adherence questionnaire, pill counts and medication refill visits. The mean adherence rate in the study population was 96.3% (standard deviation, SD: 7.7). Adherence was less than 100% in 70% of the patients, less than 95% in 21% of them, and less than 80% in 2%. The ACTG adherence questionnaire and urine colour test had the highest sensitivities but lowest specificities. The Morisky scale and refill visits had the highest specificities but lowest sensitivities. Pill counts and refill visits combined, used in routine practice, yielded moderate sensitivity and specificity, but sensitivity improved when the ACTG adherence questionnaire was added. Patients on community-based DOT showed good adherence in this study. The combination of pill counts, refill visits and the ACTG adherence questionnaire could be used to monitor adherence in settings where MEMS is not affordable. The findings with regard to adherence and to the validity of simple adherence measures should be confirmed in larger populations with wider variability in adherence rates.

  18. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform.

  19. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  20. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  1. MEMS sensor material based on polypyrrole carbon nanotube nanocomposite: film deposition and characterization

    NASA Astrophysics Data System (ADS)

    Teh, Kwok-Siong; Lin, Liwei

    2005-11-01

    Conductive polymer-based nanocomposite has been utilized as a MEMS sensing material via a one-step, selective on-chip deposition process at room temperature. A doped polypyrrole (PPy) variant synthesized by incorporating multi-walled carbon nanotube (MWCNT) into electropolymerized PPy has been shown to improve the sensing performance utilizing a two-terminal, micro-gap chemiresistor architecture. The dodecylbenzenesulfonate (DBS)-doped PPy-MWCNT nanocomposites are found to be responsive to oxidants, such as hydrogen peroxide (H2O2), and this effect can be extended to glucose detection using H2O2 as a proxy material. The oxidant sensing effect is demonstrated by subjecting a glucose oxidase (GOx)-laden PPy-MWCNT nanocomposite film to various concentrations of glucose solution. Such PPy-MWCNT nanocomposite, when applied in a chemiresistor configuration, obviates the need for reference electrode and electron mediators, by measuring the direct and reversible, oxidation-reduction induced conductivity change. Experimentally, GOx-laden, doped PPy-MWCNT is tested to be sensitive to glucose concentration up to 20 mM, which covers the physiologically important range for diabetics of 0-20 mM.

  2. Effectiveness of BaTiO 3 dielectric patches on YBa 2Cu 3O 7 thin films for MEM switches

    DOE PAGES

    Vargas, J.; Hijazi, Y.; Noel, J.; ...

    2014-05-12

    A micro-electro-mechanical (MEM) switch built on a superconducting microstrip filter will be utilized to investigate BaTiO 3 dielectric patches for functional switching points of contact. Actuation voltage resulting from the MEM switch provokes static friction between the bridge membrane and BaTiO 3 insulation layer. Furthermore, the dielectric patch crystal structure and roughness affect the ability of repetitively switching cycles and lifetime. We performed a series of experiments using different deposition methods and RF magnetron sputtering was found to be the best deposition process for the BaTiO 3 layer. The effect examination of surface morphology will be presented using characterization techniquesmore » as x-ray diffraction, SEM and AFM for an optimum switching device. The thin film is made of YBa 2Cu 3O 7 deposited on LaAlO 3 substrate by pulsed laser deposition. In our work, the dielectric material sputtering pressure is set at 9.5x10 -6 Torr. The argon gas is released through a mass-flow controller to purge the system prior to deposition. RF power is 85 W at a distance of 9 cm. The behavior of Au membranes built on ultimate BaTiO 3 patches will be shown as part of the results. These novel surface patterns will in turn be used in modelling other RF MEM switch devices such as distributed-satellite communication system operating at cryogenic temperatures.« less

  3. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yuan; Gan, Ruyi, E-mail: 2471390146@qq.com; Wan, Shalang

    This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3 V under an acceleration of 1 g at 292.11 Hz of frequency, and the output power can be up to 0.155 mW under the load of 0.4 MΩ. The power density is calculated as 496.79 μWmm{sup −3}. Besides that, itmore » is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.« less

  4. MEMS Integrated Submount Alignment for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. Jeffrey; Pearson, Raymond A.; Grenestedt, Joachim L.; Hutapea, Parsaoran; Gupta, Vikas

    2005-02-01

    One of the most expensive and time-consuming production processes for single-mode fiber-optic components is the alignment of the photonic chip or waveguide to the fiber. The alignment equipment is capital intensive and usually requires trained technicians to achieve desired results. Current technology requires active alignment since tolerances are only ~0.2 μ m or less for a typical laser diode. This is accomplished using piezoelectric actuated stages and active optical feedback. Joining technologies such as soldering, epoxy bonding, or laser welding may contribute significant postbond shift, and final coupling efficiencies are often less than 80%. This paper presents a method of adaptive optical alignment to freeze in place directly on an optical submount using a microelectromechanical system (MEMS) shape memory alloy (SMA) actuation technology. Postbond shift is eliminated since the phase change is the alignment actuation. This technology is not limited to optical alignment but can be applied to a variety of MEMS actuations, including nano-actuation and nano-alignment for biomedical applications. Experimental proof-of-concept results are discussed, and a simple analytical model is proposed to predict the stress strain behavior of the optical submount. Optical coupling efficiencies and alignment times are compared with traditional processes. The feasibility of this technique in high-volume production is discussed.

  5. Use of electronic monitoring in clinical nursing research.

    PubMed

    Ailinger, Rita L; Black, Patricia L; Lima-Garcia, Natalie

    2008-05-01

    In the past decade, the introduction of electronic monitoring systems for monitoring medication adherence has contributed to the dialog about what works and what does not work in monitoring adherence. The purpose of this article is to describe the use of the Medication Event Monitoring System (MEMS) in a study of patients receiving isoniazid for latent tuberculosis infection. Three case examples from the study illustrate the data that are obtained from the electronic device compared to self-reports and point to the disparities that may occur in electronic monitoring. The strengths and limitations of using the MEMS and ethical issues in utilizing this technology are discussed. Nurses need to be aware of these challenges when using electronic measuring devices to monitor medication adherence in clinical nursing practice and research.

  6. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    NASA Astrophysics Data System (ADS)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard CMOS IC. This device is expected to operate in hundreds of Mhz frequency range; quality factor surpasses 10000 and series motional impedance low enough that could be matching into conventional system without enormous effort. This MEMS resonator can be used in the design of many blocks in wireless and RF (Radio Frequency) systems such as low phase noise oscillator, band pass filter, power amplifier and in many sensing application.

  7. Setting new standards in MEMS

    NASA Astrophysics Data System (ADS)

    Rimskog, Magnus; O'Loughlin, Brian J.

    2007-02-01

    Silex Microsystems handles a wide range of customized MEMS components. This speech will be describing Silex's MEMS foundry work model for providing customized solutions based on MEMS in a cost effective and well controlled manner. Factors for success are the capabilities to reformulate a customer product concept to manufacturing processes in the wafer fab, using standard process modules and production equipment. A well-controlled system increases the likelihood of a first batch success and enables fast ramp-up into volume production. The following success factors can be listed: strong enduring relationships with the customers; highly qualified well-experienced specialists working close with the customer; process solutions and building blocks ready to use out of a library; addressing manufacturing issues in the early design phase; in-house know how to meet demands for volume manufacturing; access to a wafer fab with high capacity, good organization, high availability of equipment, and short lead times; process development done in the manufacturing environment using production equipment for easy ramp-up to volume production. The article covers a method of working to address these factors: to have a long and enduring relationships with customers utilizing MEMS expertise and working close with customers, to translate their product ideas to MEMS components; to have stable process solutions for features such as Low ohmic vias, Spiked electrodes, Cantilevers, Silicon optical mirrors, Micro needles, etc, which can be used and modified for the customer needs; to use a structured development and design methodology in order to handle hundreds of process modules, and setting up standard run sheets. It is also very important to do real time process development in the manufacturing line. It minimizes the lead-time for the ramp-up of production; to have access to a state of the art Wafer Fab which is well organized, controlled and flexible, with high capacity and short lead-time for prototypes. It is crucial to have intimate control of processes, equipment, organization, production flow control and WIP. This has been addressed by using a fully computerized control and reporting system.

  8. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    NASA Astrophysics Data System (ADS)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  9. Utilization of Pb-free solders in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  10. Identifying a new particle with jet substructures

    DOE PAGES

    Han, Chengcheng; Kim, Doojin; Kim, Minho; ...

    2017-01-09

    Here, we investigate a potential of determining properties of a new heavy resonance of mass O(1)TeV which decays to collimated jets via heavy Standard Model intermediary states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete example for the intermediary state, we utilize a "merged jet" defined by a large jet size to capture the two quarks from its decay. The use of the merged jet bene ts the identification of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We also find that jet substructure procedures may enhance features in some kinematic observablesmore » formed with subjet four-momenta extracted from a merged jet. This observation motivates us to feed subjet momenta into the matrix elements associated with plausible hypotheses on the nature of the heavy resonance, which are further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM in combination with jet substructure techniques can be a very powerful tool for identifying its physical properties. Finally, we discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.« less

  11. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  12. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  13. DeMi Payload Progress Update and Adaptive Optics (AO) Control Comparisons – Meeting Space AO Requirements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Grunwald, Warren; Holden, Bobby; Barnes, Derek; Allan, Gregory; Mehrle, Nicholas; Douglas, Ewan S.; Cahoy, Kerri

    2018-01-01

    The Deformable Mirror (DeMi) CubeSat mission utilizes an Adaptive Optics (AO) control loop to correct incoming wavefronts as a technology demonstration for space-based imaging missions, such as high contrast observations (Earthlike exoplanets) and steering light into core single mode fibers for amplification. While AO has been used extensively on ground based systems to correct for atmospheric aberrations, operating an AO system on-board a small satellite presents different challenges. The DeMi payload 140 actuator MEMS deformable mirror (DM) corrects the incoming wavefront in four different control modes: 1) internal observation with a Shack-Hartmann Wavefront Sensor (SHWFS), 2) internal observation with an image plane sensor, 3) external observation with a SHWFS, and 4) external observation with an image plane sensor. All modes have wavefront aberration from two main sources, time-invariant launch disturbances that have changed the optical path from the expected path when calibrated in the lab and very low temporal frequency thermal variations as DeMi orbits the Earth. The external observation modes has additional error from: the pointing precision error from the attitude control system and reaction wheel jitter. Updates on DeMi’s mechanical, thermal, electrical, and mission design are also presented. The analysis from the DeMi payload simulations and testing provides information on the design options when developing space-based AO systems.

  14. Electrofluidic systems for contrast management

    NASA Astrophysics Data System (ADS)

    Rebello, Keith J.; Maranchi, Jeffrey P.; Tiffany, Jason E.; Brown, Christopher Y.; Maisano, Adam J.; Hagedon, Matthew A.; Heikenfeld, Jason C.

    2012-06-01

    Operating in dynamic lighting conditions and in greatly varying backgrounds is challenging. Current paints and state-ofthe- art passive adaptive coatings (e.g. photochromics) are not suitable for multi- environment situations. A semi-active, low power, skin is needed that can adapt its reflective properties based on the background environment to minimize contrast through the development and incorporation of suitable pigment materials. Electrofluidic skins are a reflective display technology for electronic ink and paper applications. The technology is similar to that in E Ink but makes use of MEMS based microfluidic structures, instead of simple black and white ink microcapsules dispersed in clear oil. Electrofluidic skin's low power operation and fast switching speeds (~20 ms) are an improvement over current state-ofthe- art contrast management technologies. We report on a microfluidic display which utilizes diffuse pigment dispersion inks to change the contrast of the underlying substrate from 5.8% to 100%. Voltage is applied and an electromechanical pressure is used to pull a pigment dispersion based ink from a hydrophobic coated reservoir into a hydrophobic coated surface channel. When no voltage is applied, the Young-Laplace pressure pushes the pigment dispersion ink back down into the reservoir. This allows the pixel to switch from the on and off state by balancing the two pressures. Taking a systems engineering approach from the beginning of development has enabled the technology to be integrated into larger systems.

  15. Combustion and Reacting Systems for Exploration

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2004-01-01

    Contents include the foloving: 1. Spacecraft Fire Prevention, Detection, and Suppression. 2. Advanced Life Support. Air/water revitalization, waste management. 3. In Situ Resource Utilization (ISRU). Fuel/consumables from regolith/atmosphere. 4. Extra vehicular Activity. Air revitalization, power systems (MEMS scale combustors). 5. In-situ Fabrication and Repair.Of these we have the lead responsibility in Fire Safety.

  16. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which makes it suitable for HPM systems. The PSO (Particle Swarm Optimization) technique is applied to the septum design to achieve a high performance antenna design. The electric field intensity above the septum is evaluated through the simulation and its properties are compared to simple half-plane scattering phenomena.

  17. Efficient coupling of starlight into single mode photonics using Adaptive Injection (AI)

    NASA Astrophysics Data System (ADS)

    Norris, Barnaby; Cvetojevic, Nick; Gross, Simon; Arriola, Alexander; Tuthill, Peter; Lawrence, Jon; Richards, Samuel; Goodwin, Michael; Zheng, Jessica

    2016-08-01

    Using single-mode fibres in astronomy enables revolutionary techniques including single-mode interferometry and spectroscopy. However, injection of seeing-limited starlight into single mode photonics is extremely difficult. One solution is Adaptive Injection (AI). The telescope pupil is segmented into a number of smaller subapertures each with size r0, such that seeing can be approximated as a single tip / tilt / piston term for each subaperture, and then injected into a separate fibre via a facet of a segmented MEMS deformable mirror. The injection problem is then reduced to a set of individual tip tilt loops, resulting in high overall coupling efficiency.

  18. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  19. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  20. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  1. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M [Albuquerque, NM; Allen, James J [Albuquerque, NM

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  2. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  3. Study and characterization of a MEMS micromirror device

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2004-08-01

    In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.

  4. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    NASA Astrophysics Data System (ADS)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  5. Percutaneous Steerable Robotic Tool Delivery Platform and Metal MEMS Device for Tissue Manipulation and Approximation: Closure of Patent Foramen Ovale in an Animal Model

    PubMed Central

    Vasilyev, Nikolay V.; Gosline, Andrew H.; Butler, Evan; Lang, Nora; Codd, Patrick J.; Yamauchi, Haruo; Feins, Eric N.; Folk, Chris R.; Cohen, Adam L.; Chen, Richard; Zurakowski, David; del Nido, Pedro J.; Dupont, Pierre E

    2013-01-01

    Background Beating-heart image-guided intracardiac interventions have been evolving rapidly. To extend the domain of catheter-based and transcardiac interventions into reconstructive surgery, a new robotic tool delivery platform (TDP) and tissue approximation device have been developed. Initial results employing these tools to perform patent foramen ovale (PFO) closure are described. Methods and Results A robotic TDP comprised of superelastic metal tubes provides the capability of delivering and manipulating tools and devices inside the beating heart. A new device technology is also presented that utilizes a metal-based MicroElectroMechanical Systems (MEMS) manufacturing process to produce fully-assembled and fully-functional millimeter-scale tools. As a demonstration of both technologies, a PFO creation and closure was performed in a swine model. In the first group of animals (N=10), a preliminary study was performed. The procedural technique was validated with a transcardiac handheld delivery platform and epicardial echocardiography, video-assisted cardioscopy and fluoroscopy. In the second group (N=9), the procedure was performed percutaneously using the robotic TDP under epicardial echocardiography and fluoroscopy imaging. All PFO’s were completely closed in the first group. In the second group, the PFO was not successfully created in 1 animal, and the defects were completely closed in 6 of the 8 remaining animals. Conclusions In contrast to existing robotic catheter technologies, the robotic TDP utilizes a combination of stiffness and active steerability along its length to provide the positioning accuracy and force application capability necessary for tissue manipulation. In combination with a MEMS tool technology, it can enable reconstructive procedures inside the beating heart. PMID:23899870

  6. Recent progress in MEMS technology development for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Burgett, Sherrie J.

    2001-08-01

    The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.

  7. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  8. An investigation into graphene exfoliation and potential graphene application in MEMS devices

    NASA Astrophysics Data System (ADS)

    Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary

    2011-02-01

    The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (n<3) of approximately 10μm x 44μm. Photolithography could possibly be utilized to tailor designs for microshutter technology to be used in future deep space telescopes.

  9. Development of scanning holographic display using MEMS SLM

    NASA Astrophysics Data System (ADS)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  10. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  11. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can potentially address.

  12. Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter.

    PubMed

    Mehta, Dharmini C; Short, Jennifer L; Nicolazzo, Joseph A

    2013-12-02

    Memantine (MEM) is prescribed in mono and combination therapies for treating the symptoms of moderate to severe Alzheimer's disease (AD). Despite MEM being widely prescribed with other AD and non-AD medicines, very little is known about its mechanism of transport across the blood-brain barrier (BBB), and whether the nature of this transport lends MEM to a potential for drug-drug interactions at the BBB. Therefore, the purpose of this study was to characterize the mechanisms facilitating MEM brain uptake in Swiss Outbred mice using an in situ transcardiac perfusion technique, and identify the putative transporter involved in MEM disposition into the brain. Following transcardiac perfusion of MEM with increasing concentrations, the brain uptake of MEM was observed to be saturable. Furthermore, MEM brain uptake was reduced (up to 55%) by various cationic transporter inhibitors (amantadine, quinine, tetraethylammonium, choline and carnitine) and was dependent on extracellular pH, while being independent of membrane depolarization and the presence of Na(+) in the perfusate. In addition, MEM brain uptake was observed to be sensitive to changes in intracellular pH, hence, likely to be driven by H(+)/MEM antiport mechanisms. Taken together, these findings implicate the involvement of an organic cation transporter regulated by proton antiport mechanisms in the transport of MEM across the mouse BBB, possibly the organic cation/carnitine transporter, OCTN1. These studies also clearly demonstrate the brain uptake of MEM is significantly reduced by other cationic compounds, highlighting the need to consider the possibility of drug interactions with MEM at the BBB, potentially leading to reduced brain uptake and, therefore, altered efficacy of MEM when used in patients on multidrug regimens.

  13. High-power visible laser effect on a Boston Micromachines' MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Norton, Andrew; Gavel, Donald; Dillon, Daren; Cornelissen, Steven

    2010-07-01

    Continuous-facesheet and segmented Boston Micromachines Corporations' (BMC) Micro-Electrical Mechanical Systems (MEMS) Deformable Mirrors (DM) have been tested for their response to high-power visible-wavelength laser light. The deformable mirrors, coated with either protected silver or bare aluminum, were subjected to a maximum of 2 Watt laser-light at a wavelength of 532 nanometers. The laser light was incident on a ~ 3.5×3.5 cm area for time periods from minutes to 7 continuous hours. Spot heating from the laser-light is measured to induce a local bulge in the surface of each DM. For the aluminum-coated continuous facesheet DM, the induced spot heating changes the surface figure by 16 nm rms. The silver-coated continuous-facesheet and segmented (spatial light modulator) DMs experience a 6 and 8 nm surface rms change in surface quality with the laser at 2 Watts. For spatial frequencies less than the actuator spacing (300 mm), the laser induced surface bulge is shown to be removable, as the DMs continued to be fully functional during and after their exposure. Over the full 10 mm aperture one could expect the same results with a 15 Watt laser guide star (LGS). These results are very promising for use of the MEMS DM to pre-correct the outgoing laser light in the Laboratory for Adaptive Optics' (LAO) laser uplink application.

  14. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  15. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle.

    PubMed

    Yin, T; Pinent, T; Brügemann, K; Simianer, H; König, S

    2015-08-01

    This study presents an approach combining phenotypes from novel traits, deterministic equations from cattle nutrition, and stochastic simulation techniques from animal breeding to generate test-day methane emissions (MEm) of dairy cows. Data included test-day production traits (milk yield, fat percentage, protein percentage, milk urea nitrogen), conformation traits (wither height, hip width, body condition score), female fertility traits (days open, calving interval, stillbirth), and health traits (clinical mastitis) from 961 first lactation Brown Swiss cows kept on 41 low-input farms in Switzerland. Test-day MEm were predicted based on the traits from the current data set and 2 deterministic prediction equations, resulting in the traits labeled MEm1 and MEm2. Stochastic simulations were used to assign individual concentrate intake in dependency of farm-type specifications (requirement when calculating MEm2). Genetic parameters for MEm1 and MEm2 were estimated using random regression models. Predicted MEm had moderate heritabilities over lactation and ranged from 0.15 to 0.37, with highest heritabilities around DIM 100. Genetic correlations between MEm1 and MEm2 ranged between 0.91 and 0.94. Antagonistic genetic correlations in the range from 0.70 to 0.92 were found for the associations between MEm2 and milk yield. Genetic correlations between MEm with days open and with calving interval increased from 0.10 at the beginning to 0.90 at the end of lactation. Genetic relationships between MEm2 and stillbirth were negative (0 to -0.24) from the beginning to the peak phase of lactation. Positive genetic relationships in the range from 0.02 to 0.49 were found between MEm2 with clinical mastitis. Interpretation of genetic (co)variance components should also consider the limitations when using data generated by prediction equations. Prediction functions only describe that part of MEm which is dependent on the factors and effects included in the function. With high probability, there are more important effects contributing to variations of MEm that are not explained or are independent from these functions. Furthermore, autocorrelations exist between indicator traits and predicted MEm. Nevertheless, this integrative approach, combining information from dairy cattle nutrition with dairy cattle genetics, generated novel traits which are difficult to record on a large scale. The simulated data basis for MEm was used to determine the size of a cow calibration group for genomic selection. A calibration group including 2,581 cows with MEm phenotypes was competitive with conventional breeding strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Converting MEMS technology into profits

    NASA Astrophysics Data System (ADS)

    Bryzek, Janusz

    1998-08-01

    This paper discusses issues related to transitioning a company from the advanced technology development phase (with a particular focus on MEMS) to a profitable business, with emphasis on start-up companies. It includes several case studies from (primarily) NovaSensor MEMS development history. These case studies illustrate strategic problems with which advanced MEMS technology developers have to be concerned. Conclusions from these case studies could be used as checkpoints for future MEMS developers to increase probability of profitable operations. The objective for this paper is to share the author's experience from multiple MEMS start-ups to accelerate development of the MEMS market by focusing state- of-the-art technologists on marketing issues.

  17. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review

    PubMed Central

    Martín, Ferran; Bonache, Jordi

    2014-01-01

    In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378

  18. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2‐associated Andersen–Tawil Syndrome

    PubMed Central

    Adams, Dany Spencer; Uzel, Sebastien G. M.; Akagi, Jin; Wlodkowic, Donald; Andreeva, Viktoria; Yelick, Pamela Crotty; Devitt‐Lee, Adrian; Pare, Jean‐Francois; Levin, Michael

    2016-01-01

    Key points Xenopus laevis craniofacial development is a good system for the study of Andersen–Tawil Syndrome (ATS)‐associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular‐genetic and biophysical techniques are available for the study of ion‐dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages.Forced expression of WT or variant Kcnj2 changes the normal pattern of V mem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes.Expression of other potassium channels and two different light‐activated channels, all of which have an effect on V mem, causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl− channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion‐ or channel‐specific signalling.Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting V mem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in V mem induced late in neurulation do not affect craniofacial development.We interpret these data as strong evidence, consistent with our hypothesis, that ATS‐associated CFAs are caused by the effect of variant Kcnj2 on the V mem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux‐modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. Abstract Variants in potassium channel KCNJ2 cause Andersen–Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS‐associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells’ resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non‐neural cells in embryos, we show that developmentally patterned K+ flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients. PMID:26864374

  19. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    PubMed Central

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-01-01

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively. PMID:28629144

  20. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  1. A MEMS torsion magnetic sensor with reflective blazed grating integration

    NASA Astrophysics Data System (ADS)

    Long, Liang; Zhong, Shaolong

    2016-07-01

    A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT-1 and 5.7 pm μT-1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.

  2. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    PubMed

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  3. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOEpatents

    Farino, A.J.; Montague, S.; Sniegowski, J.J.; Smith, J.H.; McWhorter, P.J.

    1998-07-21

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface. 15 figs.

  4. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOEpatents

    Farino, Anthony J.; Montague, Stephen; Sniegowski, Jeffry J.; Smith, James H.; McWhorter, Paul J.

    1998-01-01

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface.

  5. A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network

    PubMed Central

    Xu, Qimin; Li, Xu; Chan, Ching-Yao

    2017-01-01

    In this paper, we propose a cost-effective localization solution for land vehicles, which can simultaneously adapt to the uncertain noise of inertial sensors and bridge Global Positioning System (GPS) outages. First, three Unscented Kalman filters (UKFs) with different noise covariances are introduced into the framework of Interacting Multiple Model (IMM) algorithm to form the proposed IMM-based UKF, termed as IMM-UKF. The IMM algorithm can provide a soft switching among the three UKFs and therefore adapt to different noise characteristics. Further, two IMM-UKFs are executed in parallel when GPS is available. One fuses the information of low-cost GPS, in-vehicle sensors, and micro electromechanical system (MEMS)-based reduced inertial sensor systems (RISS), while the other fuses only in-vehicle sensors and MEMS-RISS. The differences between the state vectors of the two IMM-UKFs are considered as training data of a Grey Neural Network (GNN) module, which is known for its high prediction accuracy with a limited amount of samples. The GNN module can predict and compensate position errors when GPS signals are blocked. To verify the feasibility and effectiveness of the proposed solution, road-test experiments with various driving scenarios were performed. The experimental results indicate that the proposed solution outperforms all the compared methods. PMID:28629165

  6. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  7. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  8. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  9. Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology

    PubMed Central

    Kim, Steven; Roy, Shuvo

    2013-01-01

    Microelectromechanical systems (MEMS) is playing a prominent role in the development of many new and innovative biomedical devices, but remains a relatively underutilized technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS based technologies in device designs and applications. The enthusiasm stems from the ability to create small-scale device features with high precision in a cost effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate MEMS devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS. PMID:24206604

  10. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  11. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  12. Single and pair-wise manipulation of atoms in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore; Wang, Yang; Weiss, David

    2013-05-01

    We describe the hardware used in a quantum computing experiment using individual Cs atoms in a 5 μm -spaced 3D optical lattice as qubits. Far-off-resonance addressing beams can be steered to any site in the array using MEMS mirrors within 10 μs , allowing the translation of individual atoms between lattice sites, for example to remove vacancies in the atom array, and the manipulation of single atoms for single qubit gates in < 100 μs . Two-qubit gates on adjacent atoms can be performed via the Rydberg blockade mechanism using a second MEMS system and high-NA imaging objective. The lasers for the Rydberg excitation are built using a new extended cavity diode laser design utilizing an interference filter as the frequency selecting element following Baillard, et al. (Opt. Comm. 266: 609 (2009)), but using commercially available components. We gratefully acknowledge funding from ARO and DARPA.

  13. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface Micromachined Adjustable Micro-Concave Mirror for Bio-Detection Applications

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh

    2009-08-01

    We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.

  15. JPRS Report, Science & Technology, Europe

    DTIC Science & Technology

    1991-08-13

    Integrate Former Dresden Microelectronics Center [Duesseldorf VDI NACHRICHTEN, 23 Aug 91] 35 Switzerland’s Contraves To Increase Thin-Film... drugs on the mem- brane systems of living cells will be the first application. Microtest systems of this type can be utilized in phar- macy for...other drugs affecting the membrane, and to their effects on the cellular system. German Research Ministry Funds Biosensor Project 91MI0556 Bonn

  16. MEMS Cantilever Sensor for THz Photoacoustic Chemical Sensing and Spectroscopy

    DTIC Science & Technology

    2013-12-26

    meaning the detector didn’t have to be cryogenically cooled. Piezoresistive cantilever style sensor designs have been fabricated for wind and...made a two cantilever pizeoresistive wind speed sensor that utilized a Wheatstone bridge configuration. The designed cantilevers, etched out of...Murakami et al. in Japan fabricated diaphragm and cantilever PZT microphone sensors for anomaly detection in machines such as turbines or engines

  17. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Osten, Wolfgang

    2018-03-01

    There are a wide range of applications for micro-electro-mechanical systems (MEMS). The automotive and consumer market is the strongest driver for the growing MEMS industry. A 100 % test of MEMS is particularly necessary since these are often used for safety-related purposes such as the ESP (Electronic Stability Program) system. The production of MEMS is a fully automated process that generates 90 % of the costs during the packaging and dicing steps. Nowadays, an electrical test is carried out on each individual MEMS component before these steps. However, after encapsulation, MEMS are opaque to visible light and other defects cannot be detected. Therefore, we apply an infrared low-coherence interferometer for the topography measurement of those hidden structures. A lock-in algorithm-based method is shown to calculate the object height and to reduce ghost steps due to the 2π -unambiguity. Finally, measurements of different MEMS-based sensors are presented.

  18. Optimization of biogas production using MEMS based near infrared inline-sensor

    NASA Astrophysics Data System (ADS)

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  19. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2005-01-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  20. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2004-12-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  1. Conceptual Design of the Adaptive Optics System for the Laser Communication Relay Demonstration Ground Station at Table Mountain

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C., Jr.; Page, Norman A.; Burruss, Rick S.; Truong, Tuan N.; Dew, Sharon; Troy, Mitchell

    2013-01-01

    The Laser Communication Relay Demonstration will feature a geostationary satellite communicating via optical links to multiple ground stations. The first ground station (GS-1) is the 1m OCTL telescope at Table Mountain in California. The optical link will utilize pulse position modulation (PPM) and differential phase shift keying (DPSK) protocols. The DPSK link necessitates that adaptive optics (AO) be used to relay the incoming beam into the single mode fiber that is the input of the modem. The GS-1 AO system will have two MEMS Deformable mirrors to achieve the needed actuator density and stroke limit. The AO system will sense the aberrations with a Shack-Hartmann wavefront sensor using the light from the communication link's 1.55 microns laser to close the loop. The system will operate day and night. The system's software will be based on heritage software from the Palm 3000 AO system, reducing risk and cost. The AO system is being designed to work at r(sub 0) greater than 3.3 cm (measured at 500 nm and zenith) and at elevations greater than 20deg above the horizon. In our worst case operating conditions we expect to achieve Strehl ratios of over 70% (at 1.55 microns), which should couple 57% of the light into the single mode DPSK fiber. This paper describes the conceptual design of the AO system, predicted performance and discusses some of the trades that were conducted during the design process.

  2. Thermally actuated resonant silicon crystal nanobalances

    NASA Astrophysics Data System (ADS)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high concentration of phosphorous, resulting in even slightly positive TCF for some of the devices. This is also expected to improve the phase noise characteristics of oscillators implemented utilizing such frequency references by eliminating the sharp dependence to electronic noise in the resonator bias current. Finally it is well known that non-uniformities in fabrication of MEMS resonators lead to variations in their frequency. I have proposed both active (non-permanent) and permanent frequency modification to compensate for variations in frequency of the MEMS resonators.

  3. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  4. EDITORIAL: Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    2009-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.

  5. Optical inspection of hidden MEMS structures

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    Micro-electro-mechanical system's (MEMS) applications have greatly expanded over the recent years, and the MEMS industry has grown almost exponentially. One of the strongest drivers are the automotive and consumer markets. A 100% test is necessary especially in the production of automotive MEMS sensors since they are subject to safety relevant functions. This inspection should be carried out before dicing and packaging since more than 90% of the production costs are incurred during these steps. An electrical test is currently being carried out with each MEMS component. In the case of a malfunction, the defect can not be located on the wafer because the MEMS are no longer optically accessible due to the encapsulation. This paper presents a low coherence interferometer for the topography measurement of MEMS structures located within the wafer stack. Here, a high axial and lateral resolution is necessary to identify defects such as stuck or bent MEMS fingers. First, the boundary conditions for an optical inspection system will be discussed. The setup is then shown with some exemplary measurements.

  6. System and method for reproducibly mounting an optical element

    DOEpatents

    Eisenbies, Stephen; Haney, Steven

    2005-05-31

    The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.

  7. Correction of large amplitude wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.

    2005-12-01

    Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.

  8. Attitude Determination Using a MEMS-Based Flight Information Measurement Unit

    PubMed Central

    Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I.-Chiang; Lin, Yu-Heng

    2012-01-01

    Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design. PMID:22368455

  9. Attitude determination using a MEMS-based flight information measurement unit.

    PubMed

    Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I-Chiang; Lin, Yu-Heng

    2012-01-01

    Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design.

  10. Grayscale lithography-automated mask generation for complex three-dimensional topography

    NASA Astrophysics Data System (ADS)

    Loomis, James; Ratnayake, Dilan; McKenna, Curtis; Walsh, Kevin M.

    2016-01-01

    Grayscale lithography is a relatively underutilized technique that enables fabrication of three-dimensional (3-D) microstructures in photosensitive polymers (photoresists). By spatially modulating ultraviolet (UV) dosage during the writing process, one can vary the depth at which photoresist is developed. This means complex structures and bioinspired designs can readily be produced that would otherwise be cost prohibitive or too time intensive to fabricate. The main barrier to widespread grayscale implementation, however, stems from the laborious generation of mask files required to create complex surface topography. We present a process and associated software utility for automatically generating grayscale mask files from 3-D models created within industry-standard computer-aided design (CAD) suites. By shifting the microelectromechanical systems (MEMS) design onus to commonly used CAD programs ideal for complex surfacing, engineering professionals already familiar with traditional 3-D CAD software can readily utilize their pre-existing skills to make valuable contributions to the MEMS community. Our conversion process is demonstrated by prototyping several samples on a laser pattern generator-capital equipment already in use in many foundries. Finally, an empirical calibration technique is shown that compensates for nonlinear relationships between UV exposure intensity and photoresist development depth as well as a thermal reflow technique to help smooth microstructure surfaces.

  11. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  12. Ultra-compact switchable SLO/OCT handheld probe design

    NASA Astrophysics Data System (ADS)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.

    2015-03-01

    Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.

  13. HALOS: fast, autonomous, holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff P.; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-08-01

    We present progress on our holographic adaptive laser optics system (HALOS): a compact, closed-loop aberration correction system that uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. The wavefront characterization is based on simple, parallel measurements of the intensity of fixed focal spots and does not require any complex calculations. As such, the system does not require a computer and is thus much cheaper, less complex than conventional approaches. We present details of a fully functional, closed-loop prototype incorporating a 32-element MEMS mirror, operating at a bandwidth of over 10kHz. Additionally, since the all-optical sensing is made in parallel, the speed is independent of actuator number - running at the same bandwidth for one actuator as for a million.

  14. MEMS testing and applications in automotive and aerospace industries

    NASA Astrophysics Data System (ADS)

    Ma, Zhichun; Chen, Xuyuan

    2009-05-01

    MEMS technology combines micromachining and integrated circuit fabrication technologies to produce highly reliable MEMS transducers. This paper presents an overview of MEMS transducers applications, particularly in automotive and aerospace industries, which includes inertia sensors for safety, navigation, and guidance control, thermal anemometer for temperature and heat-flux sensors in engine applications, MEMS atomizers for fuel injection, and micromachined actuators for flow control applications. Design examples for the devices in above mentioned applications are also presented and test results are given.

  15. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  16. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841

  17. Combining a Disturbance Observer with Triple-Loop Control Based on MEMS Accelerometers for Line-of-Sight Stabilization

    PubMed Central

    Huang, Yongmei; Deng, Chao; Ren, Wei; Wu, Qiongyan

    2017-01-01

    In the CCD-based fine tracking optical system (FTOS), the whole disturbance suppression ability (DSA) is the product of the inner loop and outer position loop. Traditionally, high sampling fiber-optic gyroscopes (FOGs) are added to the platform to stabilize the line-of-sight (LOS). However, because of the FOGs’ high cost and relatively big volume relative to the back narrow space of small rotating mirrors, we attempt in this work to utilize a cheaper and smaller micro-electro-mechanical system (MEMS) accelerometer to build the inner loop, replacing the FOG. Unfortunately, since accelerometers are susceptible to the low-frequency noise, according to the classical way of using accelerometers, the crucial low-frequency DSA of the system is insufficient. To solve this problem, in this paper, we propose an approach based on MEMS accelerometers combining disturbance observer (DOB) with triple-loop control (TLC) in which the composite velocity loop is built by acceleration integration and corrected by CCD. The DOB is firstly used to reform the platform, greatly improving the medium-frequency DSA. Then the composite velocity loop exchanges a part of medium-frequency performance for the low-frequency DSA. A detailed analysis and experiments verify the proposed method has a better DSA than the traditional way and could totally substitute FOG in the LOS stabilization. PMID:29149050

  18. A MEMS sensor for AC electric current

    NASA Astrophysics Data System (ADS)

    Leland, Eli Sidney

    This manuscript describes the development of a new MEMS sensor for the measurement of AC electric current. The sensor is comprised of a MEMS piezoelectric cantilever with a microscale permanent magnet mounted to the cantilever's free end. When placed near a wire carrying AC current, the magnet couples to the oscillating magnetic field surrounding the wire, causing the cantilever to deflect, and piezoelectric coupling produces a sinusoidal voltage proportional to the current in the wire. The sensor is itself passive, requiring no power supply to operate. It also operates on proximity and need only be placed near a current carrier in order to function. The sensor does not need to encircle the current carrier and it therefore can measure current in two-wire zip-cords without necessitating the separation of the two conductors. Applications for tins sensor include measuring residential and commercial electricity use and monitoring electric power distribution networks. An analytical model describing the behavior of the current sensor was developed. This model was also adapted to describe the power output of an energy scavenger coupled to a wire carrying AC current. A mesoscale sensor exhibited a sensitivity of 75 mV/A when measuring AC electric current in a zip-cord. A mesoscale energy scavenger produced 345 muW when coupled to a zip-cord carrying 13 A. MEMS current sensors were fabricated from aluminum nitride piezoelectric cantilevers and composite permanent magnets. The cantilevers were fabricated using a four-mask process. Microscale permanent magnets were dispenser-printed using NdFeB magnetic powder with an epoxy binder. The MEMS AC current sensor was interfaced with amplification circuitry and packaged inside an almninum enclosure. The sensor was also integrated with a mesoscale energy scavenger and power conditioning circuitry to create a fully self-powered current sensor. Unamplified sensitivity of the sensor was 0.1-1.1 mV/A when measuring currents in single wires and zip-cords. The self-powered current sensor operated at a 0.6% duty cycle when coupled to the zip-cord of a 1500 W space heater drawing 13 A. The self-powered sensor's energy scavenger transferred energy to a 10 mF storage capacitor at a rate of 69 muJ/s.

  19. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  20. The Development of the Differential MEMS Vector Hydrophone

    PubMed Central

    Zhang, Guojun; Liu, Mengran; Shen, Nixin; Wang, Xubo; Zhang, Wendong

    2017-01-01

    To solve the problem that MEMS vector hydrophones are greatly interfered with by the vibration of the platform and flow noise in applications, this paper describes a differential MEMS vector hydrophone that could simultaneously receive acoustic signals and reject acceleration signals. Theoretical and simulation analyses have been carried out. Lastly, a prototype of the differential MEMS vector hydrophone has been created and tested using a standing wave tube and a vibration platform. The results of the test show that this hydrophone has a high sensitivity, Mv = −185 dB (@ 500 Hz, 0 dB reference 1 V/μPa), which is almost the same as the previous MEMS vector hydrophones, and has a low acceleration sensitivity, Mv = −58 dB (0 dB reference 1 V/g), which has decreased by 17 dB compared with the previous MEMS vector hydrophone. The differential MEMS vector hydrophone basically meets the requirements of acoustic vector detection when it is rigidly fixed to a working platform, which lays the foundation for engineering applications of MEMS vector hydrophones. PMID:28594384

  1. MEMS for pico- to micro-satellites

    NASA Astrophysics Data System (ADS)

    Shea, H. R.

    2009-02-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton telecommunication satellites. While MEMS are playing a growing role on Earth in safety-critical applications, in the harsh and remote environment of space, reliability is still the crucial issue, and the absence of an accepted qualification methodology is holding back MEMS from wider use. An overview is given of the range of MEMS applications in space. An effective way to prove that MEMS can operate reliably in space is to use them in space: we illustrate how Cubesats (1 kg, 1 liter, cubic satellites in a standardized format to reduce launch costs) can serve as low-cost vectors for MEMS technology demonstration in space. The Cubesat SwissCube developed in Switzerland is used as one example of a rapid way to fly new microtechnologies, and also as an example of a spacecraft whose performance is only possible thanks to MEMS.

  2. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    PubMed

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  3. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application

    PubMed Central

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-01-01

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880

  4. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    NASA Technical Reports Server (NTRS)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x < 500 mW) applications. Although the electrical characteristics of RF MEMS switches far surpass any existing technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  5. Comparison of maintenance energy requirement and energetic efficiency between lactating Holstein-Friesian and other groups of dairy cows.

    PubMed

    Dong, L F; Yan, T; Ferris, C P; McDowell, D A

    2015-02-01

    The objectives of the present study were to investigate the effects of cow group on energy expenditure and utilization efficiency. Data used were collated from 32 calorimetric chamber experiments undertaken from 1992 to 2010, with 823 observations from lactating Holstein-Friesian (HF) cows and 112 observations from other groups of lactating cows including Norwegian (n=50), Jersey × HF (n=46), and Norwegian × HF (n=16) cows. The metabolizable energy (ME) requirement for maintenance (MEm) for individual cows was calculated from heat production (HP) minus energy losses from inefficiencies of ME use for lactation, energy retention, and pregnancy. The efficiency of ME use for lactation (kl) was obtained from milk energy output adjusted to zero energy balance (El(0)) divided by ME available for production. The effects of cow groups were first evaluated using Norwegian cows against HF crossbred cows (F1 hybrid, Jersey × HF and Norwegian × HF). The results indicated no significant difference between the 2 groups in terms of energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ per kg of metabolic body weight, MJ/kg(0.75)), or kl. Consequently, their data were combined (categorized as non-HF cows) and used to compare with those of HF cows. Again, we detected no significant difference in energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ/kg(0.75)), or kl between non-HF and HF cows. The effects were further evaluated using linear regression to examine whether any significant differences existed between HF and non-HF cows in terms of relationships between ME intake and energetic parameters. With a common constant, no significant difference was observed between the 2 groups of cows in coefficients in each set of relationships between ME intake (MJ/kg(0.75)) and MEm (MJ/kg(0.75)), El(0) (MJ/kg(0.75)), HP (MJ/kg(0.75)), MEm:ME intake, El(0):ME intake, or HP:ME intake. However, MEm values (MJ/kg(0.75)) were positively related to ME intake (MJ/kg(0.75)), irrespective of cow group. We concluded, therefore, that cow groups evaluated in the present study had no significant effects on energy expenditure or energetic efficiency. However, the maintenance energy requirement (MJ/kg(0.75)) was not constant (as adopted in the majority of energy rationing systems across the world) but increased with increasing feed intake. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Vision for Micro Technology Space Missions. Chapter 2

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2005-01-01

    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

  7. MEMS analog light processing: an enabling technology for adaptive optical phase control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Knobbe, Jens; Komenda, Ondrej

    2006-01-01

    Various applications in modern optics are demanding for Spatial Light Modulators (SLM) with a true analog light processing capability, e.g. the generation of arbitrary analog phase patterns for an adaptive optical phase control. For that purpose the Fraunhofer IPMS has developed a high-resolution MEMS Micro Mirror Array (MMA) with an integrated active-matrix CMOS address circuitry. The device provides 240 x 200 piston-type mirror elements with 40 μm pixel size, where each of them can be addressed and deflected independently at an 8bit height resolution with a vertical analog deflection range of up to 400 nm suitable for a 2pi phase modulation in the visible. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a direct data feed-through within a closed-loop environment. High-speed data communication is established by an IEEE1394a FireWire interface together with an electronic driving board performing the actual MMA programming and control at a maximum frame rate of up to 500 Hz. Successful application demonstrations have been given in eye aberration correction, coupling efficiency optimization into a monomode fiber, ultra-short laser pulse modulation and diffractive beam shaping. Besides a presentation of the basic device concept the paper will give an overview of the obtained results from these applications.

  8. The 18 mm[superscript 2] Laboratory: Teaching MEMS Development with the SUMMiT Foundry Process

    ERIC Educational Resources Information Center

    Dallas, T.; Berg, J. M.; Gale, R. O.

    2012-01-01

    This paper describes the goals, pedagogical system, and educational outcomes of a three-semester curriculum in microelectromechanical systems (MEMS). The sequence takes engineering students with no formal MEMS training and gives them the skills to participate in cutting-edge MEMS research and development. The evolution of the curriculum from…

  9. Electrostatic MEMS devices with high reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  10. Electrical latching of microelectromechanical devices

    DOEpatents

    Garcia, Ernest J.; Sleefe, Gerard E.

    2004-11-02

    Methods are disclosed for row and column addressing of an array of microelectromechanical (MEM) devices. The methods of the present invention are applicable to MEM micromirrors or memory elements and allow the MEM array to be programmed and maintained latched in a programmed state with a voltage that is generally lower than the voltage required for electrostatically switching the MEM devices.

  11. MEMS device for spacecraft thermal control applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theordore D. (Inventor)

    2003-01-01

    A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.

  12. JPRS Report. East Europe: Reference Aid, Abbreviations and Acronyms Used in the Bulgarian Press

    DTIC Science & Technology

    1990-10-25

    MHcneKUHfl 3a atprcaBeH TeXHHMeCKH KOHTpOJl ME MHTepHaUHOHaJIHH eflHHHUH MEMM M3BeCTHH Ha ETHOrpa<I>CKHfl HHCTHTyT c My3efi MEM ...HapofleH mezhdunar. international MEM MaillHHHO-eJieKTpOTeXHHHeCKH HHCTHTyT ME I Machine-Electrical Engineering Institute MEM MOCKOBCKH... MEM MHHHCTepCTBO Ha eJieKTpH$HKaUHHTa H MejiHopauHHTe MEM Ministry of Electrification and Land Reclamation (obs) 165 Menpo-Bajinpo

  13. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  14. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  15. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing silicon and metal based microsystems. In this thesis, this mature technique was exploited to generate a variety of microelectrode structures to facilitate the micropatterning and manipulation of the CNTs. Selective deposition of electrically charged CNTs onto desired locations was realized in an EPD process through patterning of electric field lines created by the microelectrodes fabricated through MEMS techniques. A variety of 2-D and 3-D micropatterns of CNTs with waferscale areas have been successfully achieved in both rigid and elastic systems. The thickness and morphology of the generated CNT patterns was found to be readily controllable through the parameters of the fabrication process. Studies also showed that for this technique, high surface hydrophobicity of the non-conductive regions in microstructures was critical to accomplish well-defined selective micropatterning of CNTs. Upon clearing the hurdles of the CNT manipulation, a patterned PDMS/CNT nanocomposite was fabricated through the aforementioned approach and was incorporated, investigated and validated in elastic force/strain microsensors. The gauge factor of the sensor exhibited a strong dependence on both the initial resistance of the device and the applied strain. Detailed analysis of the data suggests that the piezoresistive effect of this specially constructed bi-layer composite could be due to three mechanisms, and the sensing mechanism may vary when physical properties of the CNT network embedded in the polymer matrix alter. The feasibility of the PDSM/CNT composite being utilized as an elastic electret was further explored. The nanocomposite composed of these two non-traditional electret materials exhibited electret characteristics with reasonable charge storage stability when charged using a corona discharge. The power generation capacity of the corona-charged composite has been characterized and successfully demonstrated in both a ball drop experiment and cyclic mechanical load experiments. Lastly, in an effort to develop carbon-material-based substrates for MEMS applications, a carbon fiber-based poly-Si solar cell was designed, fabricated and investigated. This fiber-type photovoltaics (PV) takes advantage of the excellent thermal stability, electrical conductivity and spatial format of the CF, which allows CF to serve as both the building block and the electrode in the PV configuration. The photovoltaic effects of the fiber PV were demonstrated with an open-circuit voltage of 0.14 V, a short-circuit current density of 1.7 mA/cm2, and output power density of 0.059mW/cm2 . The issues of this system were discussed as well.

  16. Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors

    PubMed Central

    Broquetas, Antoni; Comerón, Adolf; Gelonch, Antoni; Fuertes, Josep M.; Castro, J. Antonio; Felip, Damià; López, Miguel A.; Pulido, José A.

    2012-01-01

    The paper presents a two-step technique for real-time track detection in single-track railway sidings using low-cost MEMS gyroscopes. The objective is to reliably know the path the train has taken in a switch, diverted or main road, immediately after the train head leaves the switch. The signal delivered by the gyroscope is first processed by an adaptive low-pass filter that rejects noise and converts the temporal turn rate data in degree/second units into spatial turn rate data in degree/meter. The conversion is based on the travelled distance taken from odometer data. The filter is implemented to achieve a speed-dependent cut-off frequency to maximize the signal-to-noise ratio. Although direct comparison of the filtered turn rate signal with a predetermined threshold is possible, the paper shows that better detection performance can be achieved by processing the turn rate signal with a filter matched to the rail switch curvature parameters. Implementation aspects of the track detector have been optimized for real-time operation. The detector has been tested with both simulated data and real data acquired in railway campaigns. PMID:23443376

  17. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually insensitive to scintillation and obscuration.

  18. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  19. The Impact of Emerging MEMS-Based Microsystems on US Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.

    2000-01-20

    This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.

  20. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  1. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.

    PiMEMS Inc. (Santa Barbara, CA) in collaboration with ORNL investigated the use of Titanium Bonded Graphite Foam Composites (TBGC) for thermal mitigation in Micro Electronic Mechanical Systems (MEMS) applications. Also considered were potentially new additive manufacturing routes to producing novel high surface area micro features and diverse shaped heat transfer components for numerous lightweight MEMs applications.

  2. Managing design for manufacture and assembly in the development of MEMS-based products

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Yao; Narasimhan, Nachchinarkkinian; Hariz, Alex J.

    2006-12-01

    Design for manufacturability, assembly and reliability of MEMS products is being applied to a multitude of novel MEMS products to make up for the lack of "Standard Process for MEMS" concept. The latter has proved a major handicap in commercialization of MEMS devices when compared to integrated circuits products. Furthermore, an examination of recent engineering literature seems to suggest convergence towards the development of the design for manufacturability and reliability of MEMS products. This paper will highlight the advantages and disadvantages of conventional techniques that have been pursued up to this point to achieve commercialization of MEMS products, identify some of the problems slowing down development, and explore measures that could be taken to try to address those problems. Successful commercialization critically depends on packaging and assembly, manufacturability, and reliability for micro scale products. However, a methodology that appropriately shadows next generation knowledge management will undoubtedly address most of the critical problems that are hampering development of MEMS industries. Finally this paper will also identify contemporary issues that are challenging the industry in regards to product commercialization and will recommend appropriate measures based on knowledge flow to address those shortcomings and lay out plans to expedient and successful paths to market.

  3. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  4. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  5. Microelectromechanical Systems for Aerodynamics Applications

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli

    1996-01-01

    Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight

  6. Overview of MEMS/NEMS technology development for space applications at NASA/JPL

    NASA Astrophysics Data System (ADS)

    George, Thomas

    2003-04-01

    This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.

  7. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage

    PubMed Central

    Zhang, Xiaoyang; Duan, Can; Liu, Lin; Li, Xingde; Xie, Huikai

    2015-01-01

    Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications. PMID:26347583

  8. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s-1 and 20 µm s-1.

  9. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  10. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  11. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth

    2012-01-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.

  12. A review of microelectromechanical systems for nanoscale mechanical characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chang, Tzu-Hsuan

    2015-09-01

    A plethora of nanostructures with outstanding properties have emerged over the past decades. Measuring their mechanical properties and understanding their deformation mechanisms is of paramount importance for many of their device applications. To address this need innovative experimental techniques have been developed, among which a promising one is based upon microelectromechanical systems (MEMS). This article reviews the recent advances in MEMS platforms for the mechanical characterization of one-dimensional (1D) nanostructures over the past decade. A large number of MEMS platforms and related nanomechanics studies are presented to demonstrate the unprecedented capabilities of MEMS for nanoscale mechanical characterization. Focusing on key design considerations, this article aims to provide useful guidelines for developing MEMS platforms. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical characterization are discussed.

  13. Towards memory-aware services and browsing through lifelogging sensing.

    PubMed

    Arcega, Lorena; Font, Jaime; Cetina, Carlos

    2013-11-05

    Every day we receive lots of information through our senses that is lost forever, because it lacked the strength or the repetition needed to generate a lasting memory. Combining the emerging Internet of Things and lifelogging sensors, we believe it is possible to build up a Digital Memory (Dig-Mem) in order to complement the fallible memory of people. This work shows how to realize the Dig-Mem in terms of interactions, affinities, activities, goals and protocols. We also complement this Dig-Mem with memory-aware services and a Dig-Mem browser. Furthermore, we propose a RFID Tag-Sharing technique to speed up the adoption of Dig-Mem. Experimentation reveals an improvement of the user understanding of Dig-Mem as time passes, compared to natural memories where the level of detail decreases over time.

  14. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for applications in high temperature environments and can be used for high-temperature MEMS applications. With SiC, diodes and more complex electronics have been shown to operate to about 600 C, while the mechanical properties of SiC are maintained to much higher temperatures. Even when MEMS devices show benefits in the laboratory, there are many packaging challenges for any aeronautics application. Incorporating MEMS into these applications requires new approaches to packaging that goes beyond traditional integrated circuit (IC) packaging technologies. MEMS must interact mechanically, as well as electrically with their environment, making most traditional chip packaging and mounting techniques inadequate. Wind tunnels operate over wide temperature ranges in an environment that is far from being a 'clean-room.' In flight, aircraft are exposed to natural elements (e.g. rain, sun, ice, insects and dirt) and operational interferences(e.g. cleaning and deicing fluids, and maintenance crews). In propulsion systems applications, MEMS devices will have to operate in environments containing gases with very high temperatures, abrasive particles and combustion products. Hence deployment and packaging that maintains the integrity of the MEMS system is crucial. This paper presents an overview of MEMS fabrication and materials, descriptions of available sensors with more details on those being developed in our laboratories, and a discussion of sensor deployment options for wind tunnel and flight applications.

  15. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  16. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained from the MEMS transducers paralleled the count obtained from the commercial transducer. Waveform analysis of signals from the MEMS transducers provided additional information concerning arrivals of P-waves and S-waves. Similarly, the analysis provided additional confirmation that the acoustic emissions emanated from the damage zone near the crack tip, and were not spurious signals or artifacts. Subsequent tests were conducted in a field application where the MEMS transducers were redundant to a group of commercial transducers. The application example is a connection plate in truss bridge construction under passage of heavy traffic loads. The MEMS transducers were found to be functional, but were less sensitive in their present form than existing commercial transducers. We conclude that the transducers are usable in their current configuration and we outline applications for which they are presently suited, and then we discuss alternate MEMS structures that would provide greater sensitivity.

  17. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  18. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  19. Sleep Estimates Using Microelectromechanical Systems (MEMS)

    PubMed Central

    te Lindert, Bart H. W.; Van Someren, Eus J. W.

    2013-01-01

    Study Objectives: Although currently more affordable than polysomnography, actigraphic sleep estimates have disadvantages. Brand-specific differences in data reduction impede pooling of data in large-scale cohorts and may not fully exploit movement information. Sleep estimate reliability might improve by advanced analyses of three-axial, linear accelerometry data sampled at a high rate, which is now feasible using microelectromechanical systems (MEMS). However, it might take some time before these analyses become available. To provide ongoing studies with backward compatibility while already switching from actigraphy to MEMS accelerometry, we designed and validated a method to transform accelerometry data into the traditional actigraphic movement counts, thus allowing for the use of validated algorithms to estimate sleep parameters. Design: Simultaneous actigraphy and MEMS-accelerometry recording. Setting: Home, unrestrained. Participants: Fifteen healthy adults (23-36 y, 10 males, 5 females). Interventions: None. Measurements: Actigraphic movement counts/15-sec and 50-Hz digitized MEMS-accelerometry. Analyses: Passing-Bablok regression optimized transformation of MEMS-accelerometry signals to movement counts. Kappa statistics calculated agreement between individual epochs scored as wake or sleep. Bland-Altman plots evaluated reliability of common sleep variables both between and within actigraphs and MEMS-accelerometers. Results: Agreement between epochs was almost perfect at the low, medium, and high threshold (kappa = 0.87 ± 0.05, 0.85 ± 0.06, and 0.83 ± 0.07). Sleep parameter agreement was better between two MEMS-accelerometers or a MEMS-accelerometer and an actigraph than between two actigraphs. Conclusions: The algorithm allows for continuity of outcome parameters in ongoing actigraphy studies that consider switching to MEMS-accelerometers. Its implementation makes backward compatibility feasible, while collecting raw data that, in time, could provide better sleep estimates and promote cross-study data pooling. Citation: te Lindert BHW; Van Someren EJW. Sleep estimates using microelectromechanical systems (MEMS). SLEEP 2013;36(5):781-789. PMID:23633761

  20. MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer Electronics

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Gómez, Udo-Martin

    MEMS sensors gained over the last two decades an impressive width of applications: (a) ESP: A car is skidding and stabilizes itself without driver intervention (b) Free-fall detection: A laptop falls to the floor and protects the hard drive by parking the read/write drive head automatically before impact. (c) Airbag: An airbag fires before the driver/occupant involved in an impending automotive crash impacts the steering wheel, thereby significantly reducing physical injury risk. MEMS sensors are sensing the environmental conditions and are giving input to electronic control systems. These crucial MEMS sensors are making system reactions to human needs more intelligent, precise, and at much faster reaction rates than humanly possible. Important prerequisites for the success of sensors are their size, functionality, power consumption, and costs. This technical progress in sensor development is realized by micro-machining. The development of these processes was the breakthrough to industrial mass-production for micro-electro-mechanical systems (MEMS). Besides leading-edge micromechanical processes, innovative and robust ASIC designs, thorough simulations of the electrical and mechanical behaviour, a deep understanding of the interactions (mainly over temperature and lifetime) of the package and the mechanical structures are needed. This was achieved over the last 20 years by intense and successful development activities combined with the experience of volume production of billions of sensors. This chapter gives an overview of current MEMS technology, its applications and the market share. The MEMS processes are described, and the challenges of MEMS, compared to standard IC fabrication, are discussed. The evolution of MEMS requirements is presented, and a short survey of MEMS applications is shown. Concepts of newest inertial sensors for ESP-systems are given with an emphasis on the design concepts of the sensing element and the evaluation circuit for achieving excellent noise performance. The chapter concludes with an outlook on arising new MEMS applications such as energy harvester and micro fuel cells.

  1. Vibration nullification of MEMS device using input shaping

    NASA Astrophysics Data System (ADS)

    Jordan, Scott; Lawrence, Eric M.

    2003-07-01

    The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how the application of this compact, efficient algorithm can improve the performance of both open- and closed-loop MEMS devices, eliminating the need for costly closed-loop approaches. This can greatly reduce the complexity, cost and yield of MEMS design and manufacture.

  2. Towards Memory-Aware Services and Browsing through Lifelogging Sensing

    PubMed Central

    Arcega, Lorena; Font, Jaime; Cetina, Carlos

    2013-01-01

    Every day we receive lots of information through our senses that is lost forever, because it lacked the strength or the repetition needed to generate a lasting memory. Combining the emerging Internet of Things and lifelogging sensors, we believe it is possible to build up a Digital Memory (Dig-Mem) in order to complement the fallible memory of people. This work shows how to realize the Dig-Mem in terms of interactions, affinities, activities, goals and protocols. We also complement this Dig-Mem with memory-aware services and a Dig-Mem browser. Furthermore, we propose a RFID Tag-Sharing technique to speed up the adoption of Dig-Mem. Experimentation reveals an improvement of the user understanding of Dig-Mem as time passes, compared to natural memories where the level of detail decreases over time. PMID:24196436

  3. Signal bi-amplification in networks of unidirectionally coupled MEMS

    NASA Astrophysics Data System (ADS)

    Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere

    2016-01-01

    The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.

  4. Wavelength tunable MEMS VCSELs for OCT imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa; Semenova, Elizaveta; Hansen, Ole; Yvind, Kresten

    2018-02-01

    MEMS VCSELs are one of the most promising swept source (SS) lasers for optical coherence tomography (OCT) and one of the best candidates for future integration with endoscopes, surgical probes and achieving an integrated OCT system. However, the current MEMS-based SS are processed on the III-V wafers, which are small, expensive and challenging to work with. Furthermore, the actuating part, i.e., the MEMS, is on the top of the structure which causes a strong dependence on packaging to decrease its sensitivity to the operating environment. This work addresses these design drawbacks and proposes a novel design framework. The proposed device uses a high contrast grating mirror on a Si MEMS stage as the bottom mirror, all of which is defined in an SOI wafer. The SOI wafer is then bonded to an InP III-V wafer with the desired active layers, thereby sealing the MEMS. Finally, the top mirror, a dielectric DBR (7 pairs of TiO2 - SiO2), is deposited on top. The new device is based on a silicon substrate with MEMS defined on a silicon membrane in an enclosed cavity. Thus the device is much more robust than the existing MEMS VCSELs. This design also enables either a two-way actuation on the MEMS or a smaller optical cavity (pull-away design), i.e., wider FSR (Free Spectral Range) to increase the wavelength sweep. Fabrication of the proposed device is outlined and the results of device characterization are reported.

  5. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    NASA Astrophysics Data System (ADS)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design methodology for relevant applications. To further demonstrate MCD versatility, we implement a bandstop MCD filter that cascades nine separate resonators to achieve a 6-24 GHz continuous tuning. The disseration concludes with a Galinstan Magnetohydrodynamic (MHD) micropump and summary of my doctoral work. Although presented at the very end of this dissertation, the MHD micropump was indeed the very starting point for all my doctoral research efforts. The invaluable lessons learned here paved the way for development of both LMD and MCD RF-MEMS.

  6. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  7. MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Lim, James; Huang, Chen-Kuo; Ryan, Margaret; Snyder, G. Jeffrey; Herman, Jennifer; Fleurial, Jean-Pierre

    2008-01-01

    A method of fabricating Bi(2-x)Sb(x)Te3-based thermoelectric microdevices involves a combination of (1) techniques used previously in the fabrication of integrated circuits and of microelectromechanical systems (MEMS) and (2) a relatively inexpensive MEMS-oriented electrochemical-deposition (ECD) technique. The present method overcomes the limitations of prior MEMS fabrication techniques and makes it possible to satisfy requirements.

  8. Development of a MEMS-Scale Turbomachinery Based Vacuum Pump

    DTIC Science & Technology

    2012-06-01

    MEMS -SCALE TURBOMACHINERY BASED VACUUM PUMP by Michael J. Shea June 2012 Thesis Advisor: Anthony J. Gannon Second Reader...June 2012 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Development of a MEMS -Scale Turbomachinery Based Vacuum Pump 5...to develop a MEMS scale turbomachinery based vacuum pump. This would allow very high vacuum to be drawn for handheld mass spectroscopy. This

  9. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  10. A MEMS-based, wireless, biometric-like security system

    NASA Astrophysics Data System (ADS)

    Cross, Joshua D.; Schneiter, John L.; Leiby, Grant A.; McCarter, Steven; Smith, Jeremiah; Budka, Thomas P.

    2010-04-01

    We present a system for secure identification applications that is based upon biometric-like MEMS chips. The MEMS chips have unique frequency signatures resulting from fabrication process variations. The MEMS chips possess something analogous to a "voiceprint". The chips are vacuum encapsulated, rugged, and suitable for low-cost, highvolume mass production. Furthermore, the fabrication process is fully integrated with standard CMOS fabrication methods. One is able to operate the MEMS-based identification system similarly to a conventional RFID system: the reader (essentially a custom network analyzer) detects the power reflected across a frequency spectrum from a MEMS chip in its vicinity. We demonstrate prototype "tags" - MEMS chips placed on a credit card-like substrate - to show how the system could be used in standard identification or authentication applications. We have integrated power scavenging to provide DC bias for the MEMS chips through the use of a 915 MHz source in the reader and a RF-DC conversion circuit on the tag. The system enables a high level of protection against typical RFID hacking attacks. There is no need for signal encryption, so back-end infrastructure is minimal. We believe this system would make a viable low-cost, high-security system for a variety of identification and authentication applications.

  11. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    PubMed Central

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  12. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  13. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin

    2018-03-01

    Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.

  14. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    PubMed

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  15. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2003-12-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  16. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2004-01-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  17. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Benavides, Gilbert L [Los Ranchos, NM; Hetherington, Dale L [Albuquerque, NM

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  18. Fully Integrated, Miniature, High-Frequency Flow Probe Utilizing MEMS Leadless SOI Technology

    NASA Technical Reports Server (NTRS)

    Ned, Alex; Kurtz, Anthony; Shang, Tonghuo; Goodman, Scott; Giemette. Gera (d)

    2013-01-01

    This work focused on developing, fabricating, and fully calibrating a flowangle probe for aeronautics research by utilizing the latest microelectromechanical systems (MEMS), leadless silicon on insulator (SOI) sensor technology. While the concept of angle probes is not new, traditional devices had been relatively large due to fabrication constraints; often too large to resolve flow structures necessary for modern aeropropulsion measurements such as inlet flow distortions and vortices, secondary flows, etc. Mea surements of this kind demanded a new approach to probe design to achieve sizes on the order of 0.1 in. (.3 mm) diameter or smaller, and capable of meeting demanding requirements for accuracy and ruggedness. This approach invoked the use of stateof- the-art processing techniques to install SOI sensor chips directly onto the probe body, thus eliminating redundancy in sensor packaging and probe installation that have historically forced larger probe size. This also facilitated a better thermal match between the chip and its mount, improving stability and accuracy. Further, the leadless sensor technology with which the SOI sensing element is fabricated allows direct mounting and electrical interconnecting of the sensor to the probe body. This leadless technology allowed a rugged wire-out approach that is performed at the sensor length scale, thus achieving substantial sensor size reductions. The technology is inherently capable of high-frequency and high-accuracy performance in high temperatures and harsh environments.

  19. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells.

    PubMed

    Yang, Sufang; Pilgaard, Linda; Chase, Lucas G; Boucher, Shayne; Vemuri, Mohan C; Fink, Trine; Zachar, Vladimir

    2012-08-01

    Development and implementation of therapeutic protocols based on stem cells or tissue-engineered products relies on methods that enable the production of substantial numbers of cells while complying with stringent quality and safety demands. In the current study, we aimed to assess the benefits of maintaining cultures of adipose-derived stem cells (ASCs) in a defined culture system devoid of xenogeneic components (xeno-free) and hypoxia over a 49-day growth period. Our data provide evidence that conditions involving StemPro mesenchymal stem cells serum-free medium (SFM) Xeno-Free and hypoxia (5% oxygen concentration) in the culture atmosphere provide a superior proliferation rate compared to a standard growth environment comprised of alpha-modified Eagle medium (A-MEM) supplemented with fetal calf serum (FCS) and ambient air (20% oxygen concentration) or that of A-MEM supplemented with FCS and hypoxia. Furthermore, a flow cytometric analysis and in vitro differentiation assays confirmed the immunophenotype stability and maintained multipotency of ASCs when expanded under xeno-free conditions and hypoxia. In conclusion, our data demonstrate that growth conditions utilizing a xeno-free and hypoxic environment not only provide an improved environment for the expansion of ASCs, but also set the stage as a culture system with the potential broad spectrum utility for regenerative medicine and tissue engineering applications.

  20. Nano/micro-electro mechanical systems: a patent view

    NASA Astrophysics Data System (ADS)

    Hu, Guangyuan; Liu, Weishu

    2015-12-01

    Combining both bibliometrics and citation network analysis, this research evaluates the global development of micro-electro mechanical systems (MEMS) research based on the Derwent Innovations Index database. We found that worldwide, the growth trajectory of MEMS patents demonstrates an approximate S shape, with United States, Japan, China, and Korea leading the global MEMS race. Evidenced by Derwent class codes, the technology structure of global MEMS patents remains steady over time. Yet there does exist a national competitiveness component among the top country players. The latecomer China has become the second most prolific country filing MEMS patents, but its patent quality still lags behind the global average.

  1. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  2. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    PubMed Central

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors. PMID:27924853

  3. Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-01-01

    °Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.

  4. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  5. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE PAGES

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; ...

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  6. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors.

    PubMed

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-07

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors.

  7. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  8. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    PubMed

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  9. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  10. Modeling nonlinearities in MEMS oscillators.

    PubMed

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  11. Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Kumar, Amit; Chandran, Achu; Rangra, Kamaljit

    2017-02-01

    Variation in actuation voltage for RF MEMS switches is observed as a result of stress-generated buckling of MEMS structures. Large voltage driven RF-MEMS switches are a major concern in space bound communication applications. In this paper, we propose a low voltage driven RF MEMS capacitive switch with the introduction of perforations and reinforcement. The performance of the fabricated switch is compared with conventional capacitive RF MEMS switches. The pull-in voltage of the switch is reduced from 70 V to 16.2 V and the magnitude of deformation is reduced from 8 µm to 1 µm. The design of the reinforcement frame enhances the structural stiffness by 46 % without affecting the high frequency response of the switch. The measured isolation and insertion loss of the reinforced switch is more than 20 dB and 0.4 dB over the X band range.

  12. New dynamic silicon photonic components enabled by MEMS technology

    NASA Astrophysics Data System (ADS)

    Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.

    2018-02-01

    Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

  13. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  14. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical bio-sensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  15. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  16. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremelyhigh surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

  17. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremely high surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

  18. The low-power potential of oven-controlled MEMS oscillators.

    PubMed

    Vig, John; Kim, Yoonkee

    2013-04-01

    It is shown that oven-controlled micro electromechanical systems (MEMS) oscillators have the potential of attaining a higher frequency stability, with a lower power consumption, than temperature-compensated crystal oscillators (TCXOs) and the currently manufactured MEMS oscillators.

  19. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  20. Microelectromechanical systems(MEMS): Launching Research Concepts into the Marketplace

    NASA Astrophysics Data System (ADS)

    Arney, Susanne

    1999-04-01

    More than a decade following the demonstration of the first spinning micromotors and microgears, the field of microelectromechanical systems (MEMS) has burgeoned on a worldwide basis. Integrated circuit design, fabrication, and packaging techniques have provided the foundation for the growth of an increasingly mature MEMS infrastructure which spans numerous topics of research as well as industrial application. The remarkable proliferation of MEMS concepts into such contrasting arenas of application as automotive sensors, biology, optical and wireless telecommunications, displays, printing, and physics experiments will be described. Challenges to commercialization of research prototypes will be discussed with emphasis on the development of design, fabrication, packaging, reliability and standards which fundamentally enable the application of MEMS to a highly diversified marketplace.

  1. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.

    PubMed

    Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng

    2017-10-13

    MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.

  2. Electro-Magnetic Actuated Valve for MEMS Fuel Metering System

    DTIC Science & Technology

    2007-09-01

    This model is utilized material properties of Silicon (Si), Copper (Cu), Nickel Iron ( NiFe ), and air. C11 Air NiSe Figure 5. Design of a simplified a... NiFe are defined and shown table 4. It is assumed that the properties of materials are independent of orientation (i.e. isotropic materials). Relative...dry filn resist. This process enables an integrated NiFe armature with a hole-in-the-wall within the main flow channel. UC Berkeley, Pisano - 2007

  3. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  4. Integrated electronics and fluidic MEMS for bioengineering

    NASA Astrophysics Data System (ADS)

    Fok, Ho Him Raymond

    Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8 pedestals. This approach also allows the in-vitro model to mimic the three-dimensionality of the cellular mitotic spindle that is absent in previous work. The second application of an integrated bioengineering system discussed in this dissertation is to design and fabricate active electronics and sensors for an in-vivo application to monitor neural activity at the cellular level. Temperature sensors were chosen for a first demonstration. In order for temperature sensors to be able to be implanted into brain interfaces, it is necessary for these devices to be fabricated using processes that are compatible with bio-compatible substrates such as glass and plastic. This dissertation addresses this challenge by developing temperature sensors integrated with biasing circuitry using zinc oxide thin film transistors (TFTs) fabricated on polyimide substrates. The integrated sensors show good temperature sensitivity, which is critical for monitoring neural temperature at the cellular level. This dissertation also describes the unique requirements of encapsulating implantable electronics. For instance, encapsulation schemes must be designed in such a way that they both protect electronic devices from extracellular fluids and also do not interfere with the functionality of these devices. In this work, SU-8 is used as a convenient and effective encapsulation layer. Thermal engineering to prevent active electronics from overheating and to ensure accurate temperature measurement from temperature sensors is also discussed, and a synergistic encapsulation and thermal engineering combination is presented.

  5. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    PubMed Central

    Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai

    2016-01-01

    A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047

  6. Human Pulse Wave Measurement by MEMS Electret Condenser Microphone

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi

    A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.

  7. Protection of Radial Glial-Like Cells in the Hippocampus of APP/PS1 Mice: a Novel Mechanism of Memantine in the Treatment of Alzheimer's Disease.

    PubMed

    Sun, Dayu; Chen, Junhua; Bao, Xiaohang; Cai, Yulong; Zhao, Jinghui; Huang, Jing; Huang, Wei; Fan, Xiaotang; Xu, Haiwei

    2015-08-01

    The failure of adult neurogenesis in the hippocampal dentate gyrus (DG) is closely correlated with memory decline in Alzheimer's disease (AD). Radial glial-like cells (RGLs) localized to the adult DG generate intermediate progenitor cells and immature neurons and thus contribute to adult hippocampus neurogenesis. Memantine (MEM) has been indicated to dramatically increase hippocampal neurogenesis by promoting the proliferation of RGLs. In this study, we examined the effect of MEM on the capacity for hippocampal cell proliferation and the amount of RGLs in APPswe/PS1∆E9 transgenic (APP/PS1) mice between 9 and 13 months of age. MEM could enhance hippocampal neurogenesis and increase the number of RGLs in the DG subgranular zone (DG-SGZ) of APP/PS1 mice of both ages. Moreover, MEM decreased amyloidogenesis in 13-month-old APP/PS1 mice and protected cultured radial glia cells (RGCs, L2.3 cells) from apoptosis induced by the β amyloid peptide (Aβ). Additionally, MEM inhibited microglial activation in a vertical process in DG-SGZ of APP/PS1 mice and decreased interacting with RGL processes. Reelin is involved in the proliferation of RGLs in the hippocampus, which was typically upregulated in the hippocampus of APP/PS1 mice by MEM and thought to be an active signaling pathway associated with the MEM-induced increase in RGLs. Our data suggest a previously uncharacterized role for MEM in treating AD.

  8. Remote driven and read MEMS sensors for harsh environments.

    PubMed

    Knobloch, Aaron J; Ahmad, Faisal R; Sexton, Dan W; Vernooy, David W

    2013-10-21

    The utilization of high accuracy sensors in harsh environments has been limited by the temperature constraints of the control electronics that must be co-located with the sensor. Several methods of remote interrogation for resonant sensors are presented in this paper which would allow these sensors to be extended to harsh environments. This work in particular demonstrates for the first time the ability to acoustically drive a silicon comb drive resonator into resonance and electromagnetically couple to the resonator to read its frequency. The performance of this system was studied as a function of standoff distance demonstrating the ability to excite and read the device from 22 cm when limited to drive powers of 30 mW. A feedback architecture was implemented that allowed the resonator to be driven into resonance from broadband noise and a standoff distance of 15 cm was demonstrated. It is emphasized that no junction-based electronic device was required to be co-located with the resonator, opening the door for the use of silicon-based, high accuracy MEMS devices in high temperature wireless applications.

  9. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    PubMed

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.

  10. A novel polyimide based micro heater with high temperature uniformity

    DOE PAGES

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...

    2017-02-06

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  11. A novel polyimide based micro heater with high temperature uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  12. MEMS Rotary Engine Power System

    NASA Astrophysics Data System (ADS)

    Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian

    This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.

  13. RF-MEMS capacitive switches with high reliability

    DOEpatents

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  14. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements, volume II

    DOT National Transportation Integrated Search

    2016-08-01

    This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...

  15. MEMS microdisplays: overview and markets

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jérémie; Nowak, Olivier

    2006-04-01

    MEMS based microdisplays have been given a lot of attention recently since the DLP based products have started to generate substantial revenues for Texas Instrument. Other companies are trying to enter this promising market with similar or alternative concepts. How will he MEMS-based microdisplay market develop until the end of the decade? May other mass markets emerge such as displays for cell phones? Is anyone in the position to challenge TI? This paper presents the results of the analysis of MEMS microdisplay applications and markets in the NEXUS III study.

  16. MEMS microdisplays: overview and markets

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jérémie; Wicht, Henning

    2006-01-01

    MEMS based microdisplays have been given a lot of attention recently since the DLP based products have started to generate substantial revenues for Texas Instrument. Other companies are trying to enter this promising market with similar or alternative concepts. How will he MEMS-based microdisplay market develop until the end of the decade? May other mass markets emerge such as displays for cell phones? Is anyone in the position to challenge TI? This paper presents the results of the analysis of MEMS microdisplay applications and markets in the NEXUS III study.

  17. 3D MEMS in Standard Processes: Fabrication, Quality Assurance, and Novel Measurement Microstructures

    NASA Technical Reports Server (NTRS)

    Lin, Gisela; Lawton, Russell A.

    2000-01-01

    Three-dimensional MEMS microsystems that are commercially fabricated require minimal post-processing and are easily integrated with CMOS signal processing electronics. Measurements to evaluate the fabrication process (such as cross-sectional imaging and device performance characterization) provide much needed feedback in terms of reliability and quality assurance. MEMS technology is bringing a new class of microscale measurements to fruition. The relatively small size of MEMS microsystems offers the potential for higher fidelity recordings compared to macrosize counterparts, as illustrated in the measurement of muscle cell forces.

  18. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2007-10-30

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  19. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R [Albuquerque, NM; Polosky, Marc A [Tijeras, NM

    2009-12-15

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  20. Application of SPM interferometry in MEMS vibration measurement

    NASA Astrophysics Data System (ADS)

    Tang, Chaowei; He, Guotian; Xu, Changbiao; Zhao, Lijuan; Hu, Jun

    2007-12-01

    The resonant frequency measurement of cantilever has an important position in MEMS(Micro Electro Mechanical Systems) research. Meanwhile the SPM interferometry is a high-precision optical measurement technique, which can be used in physical quantity measurement of vibration, displacement, surface profile. Hence, in this paper we propose to apply SPM(SPM) interferometry in measuring the vibration of MEMS cantilever and in the experiment the vibration of MEMS cantilever was driven by light source. Then this kind of vibration was measured in nm precision. Finally the relational characteristics of MEMS cantilever vibration under optical excitation can be gotten and the measurement principle is analyzed. This method eliminates the influence on the measuring precision caused by external interference and light intensity change through feedback control loop. Experiment results prove that this measurement method has a good effect.

  1. Performance Thresholds for Application of MEMS Inertial Sensors in Space

    NASA Technical Reports Server (NTRS)

    Smit, Geoffrey N.

    1995-01-01

    We review types of inertial sensors available and current usage of inertial sensors in space and the performance requirements for these applications. We then assess the performance available from micro-electro-mechanical systems (MEMS) devices, both in the near and far term. Opportunities for the application of these devices are identified. A key point is that although the performance available from MEMS inertial sensors is significantly lower than that achieved by existing macroscopic devices (at least in the near term), the low cost, low size, and power of the MEMS devices opens up a number of applications. In particular, we show that there are substantial benefits to using MEMS devices to provide vibration, and for some missions, attitude sensing. In addition, augmentation for global positioning system (GPS) navigation systems holds much promise.

  2. Fabrication of Microhotplates Based on Laser Micromachining of Zirconium Oxide

    NASA Astrophysics Data System (ADS)

    Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Lipilin, Alexandr; Vasiliev, Alexey; Sokolov, Andrey

    We present a novel approach to the fabrication of MEMS devices, which can be used for gas sensors operating in harsh environment in wireless and autonomous information systems. MEMS platforms based on ZrO2/Y2O3 (YSZ) are applied in these devices. The methods of ceramic MEMS devices fabrication with laser micromachining are considered. It is shown that the application of YSZ membranes permits a decrease in MEMS power consumption at 4500C down to ∼75 mW at continuous heating and down to ∼ 1 mW at pulse heating mode. The application of the platforms is not restricted by gas sensors: they can be used for fast thermometers, bolometric matrices, flowmeteres and other MEMS devices working under harsh environmental conditions.

  3. Use of silicon oxynitride as a sacrificial material for microelectromechanical devices

    DOEpatents

    Habermehl, Scott D.; Sniegowski, Jeffry J.

    2001-01-01

    The use of silicon oxynitride (SiO.sub.x N.sub.y) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride. Advantages to be gained from the use of silicon oxynitride as a sacrificial material for a MEM device include the formation of polysilicon members that are substantially free from residual stress, thereby improving the reliability of the MEM device; an ability to form the MEM device with a higher degree of complexity and more layers of structural polysilicon than would be possible using conventional compressively-strained sacrificial materials; and improved manufacturability resulting from the elimination of wafer distortion that can arise from an excess of accumulated stress in conventional sacrificial materials. The present invention is useful for forming many different types of MEM devices including accelerometers, sensors, motors, switches, coded locks, and flow-control devices, with or without integrated electronic circuitry.

  4. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    NASA Astrophysics Data System (ADS)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  5. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  6. Development of the micro pixel chamber based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2018-02-01

    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  7. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.

    1999-09-01

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  8. Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Khandan, Omid

    The use of microelectromechanical systems (MEMS) technology in medical and biological applications has increased dramatically in the past decade due to the potential for enhanced sensitivity, functionality, and performance associated with the miniaturization of devices, as well as the market potential for low-cost, personalized medicine. However, the utility of such devices in clinical medicine is ultimately limited due to factors associated with prevailing micromachined materials such as silicon, as it poses concerns of safety and reliability due to its intrinsically brittle properties, making it prone to catastrophic failure. Recent advances in titanium (Ti) micromachining provides an opportunity to create devices with enhanced safety and performance due to its proven biocompatibility and high fracture toughness, which causes it to fail by means of graceful, plasticity-based deformation. Motivated by this opportunity, we discuss our efforts to advance Ti MEMS technology in two ways: 1) Through the development of titanium-based microneedles (MNs) that seek to provide a safer, simpler, and more efficacious means of ocular drug delivery, and 2) Through the advancement of Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. As for the first of these thrusts, we show that MN devices with in-plane geometry and through-thickness fenestrations that serve as drug reservoirs for passive delivery via diffusive transport from fast-dissolving coatings can be fabricated utilizing Ti deep reactive ion etching (Ti DRIE). Our mechanical testing and finite element analysis (FEA) results suggest that these devices possess sufficient stiffness for reliable corneal insertion. Our MN coating studies show that, relative to solid MNs of identical shank dimension, fenestrated devices can increase drug carrying capacity by 5-fold. Furthermore, we demonstrate that through-etched fenestrations provide a protective cavity for delivering drugs subsurface, thereby enhancing delivery efficiencies in an ex vivo rabbit cornea model. Collectively, these results show the potential embodied in developing Ti MNs for effective, minimally invasive, and low-cost ocular drug delivery. Additionally, or the second of these thrusts, we report the development of an anodic bonding process that allows, for the first time, high-strength joining of bulk Ti and glass substrates at the wafer-scale, without need for interlayers or adhesives. We demonstrate that uniform, full-wafer bonding can be achieved at temperatures as low as 250°C, and that failure during burst pressure testing occurs via crack propagation through the glass, rather than the Ti/glass interface, thus demonstrating the robustness of the bonding. Moreover, using optimized bonding conditions, we demonstrate the fabrication of rudimentary Ti/glass-based microfluidic devices at the wafer-scale, and their leak-free operation under pressure-driven flow. Finally, we demonstrate the monolithic integration of nanoporous titanium dioxide within such devices, thus illustrating the promise embodied in Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. Together, these results demonstrate the potential embodied in utilizing Ti MEMS technology for the fabrication of novel drug delivery and microfluidic systems with enhanced robustness, safety, and performance.

  9. Measuring Micro-Friction Torque in MEMS Gas Bearings

    PubMed Central

    Fang, Xudong; Liu, Huan

    2016-01-01

    An in situ measurement of micro-friction torque in MEMS gas bearings, which has been a challenging research topic for years, is realized by a system designed in this paper. In the system, a high accuracy micro-force sensor and an electronically-driven table are designed, fabricated and utilized. With appropriate installation of the sensor and bearings on the table, the engine rotor can be driven to rotate with the sensor using a silicon lever beam. One end of the beam is fixed to the shaft of the gas bearing, while the other end is free and in contact with the sensor probe tip. When the sensor begins to rotate with the table, the beam is pushed by the sensor probe to rotate in the same direction. For the beam, the friction torque from the gas bearing is balanced by the torque induced by pushing force from the sensor probe. Thus, the friction torque can be calculated as a product of the pushing force measured by the sensor and the lever arm, which is defined as the distance from the sensor probe tip to the centerline of the bearing. Experimental results demonstrate the feasibility of this system, with a sensitivity of 1.285 mV/μN·m in a range of 0 to 11.76 μN·m when the lever arm is 20 mm long. The measuring range can be modified by varying the length of the lever arm. Thus, this system has wide potential applications in measuring the micro-friction torque of gas bearings in rotating MEMS machines. PMID:27213377

  10. Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors

    NASA Astrophysics Data System (ADS)

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2010-01-01

    In this paper, the design of MEMS piezoresistive strain sensor is described. ANSYS®, finite element analysis (FEA) software, was used as a tool to model the performance of the silicon-based sensor. The incorporation of stress concentration regions (SCRs), to localize stresses, was explored in detail. This methodology employs the structural design of the sensor silicon carrier. Therefore, the induced strain in the sensing chip yielded stress concentration in the vicinity of the SCRs. Hence, this concept was proved to enhance the sensor sensitivity. Another advantage of the SCRs is to reduce the sensor transverse gauge factor, which offered a great opportunity to develop a MEMS sensor with minimal cross sensitivity. Two basic SCR designs were studied. The depth of the SCRs was also investigated. Moreover, FEA simulation is utilized to investigate the effect of the sensing element depth on the sensor sensitivity. Simulation results showed that the sensor sensitivity is independent of the piezoresistors' depth. The microfabrication process flow was introduced to prototype the different sensor designs. The experiments covered operating temperature range from -50 °C to +50 °C. Finally, packaging scheme and bonding adhesive selection were discussed. The experimental results showed good agreement with the FEA simulation results. The findings of this study confirmed the feasibility of introducing SCRs in the sensor silicon carrier to improve the sensor sensitivity while using relatively high doping levels (5 × 1019 atoms cm-3). The fabricated sensors have a gauge factor about three to four times higher compared to conventional thin-foil strain gauges.

  11. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  12. Interrogation of miniature extrinsic Fabry-Pérot sensor using path matched differential interferometer and phase generated carrier scheme

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming

    2014-05-01

    Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.

  13. Real-time computational photon-counting LiDAR

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  14. EDITORIAL: The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Toriyama, Toshiyuki

    2005-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was edited in collaboration with Professor Toshiyuki Toriyama (Ritsumeikan University), Co-chair of the Technical Program Committee, and the Institute of Physics Publishing staff.

  15. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  16. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  17. Using the Wiimote to Learn MEMS in a Physics Degree Program

    ERIC Educational Resources Information Center

    Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Celma, Santiago; Aldea, Concepción

    2016-01-01

    This paper describes a learning experience designed to introduce students in a Micro- and Nanosystems course in a Physics Bachelor's degree program to the use of professional tools for the design and characterization of micro-electromechanical systems (MEMS) through a specific commercial case: the MEMS used by the well-known gaming platform…

  18. Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering

    DTIC Science & Technology

    2011-12-01

    LINEAR-QUADRATIC CONTROL OF A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Jamie P...A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Presented to the Faculty Department of Electrical Engineering Graduate School of...actuated micromirrors fabricated by PolyMUMPs. Successful application of these techniques enables demonstration of smooth, stable deflections of 50% and

  19. Development of Testing Methodologies for the Mechanical Properties of MEMS

    NASA Technical Reports Server (NTRS)

    Ekwaro-Osire, Stephen

    2003-01-01

    This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.

  20. Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly

    2013-03-01

    Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.

  1. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  2. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  3. MEMS sensing and control: an aerospace perspective

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.

    2000-06-01

    Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.

  4. RF MEMS devices for multifunctional integrated circuits and antennas

    NASA Astrophysics Data System (ADS)

    Peroulis, Dimitrios

    Micromachining and RF Micro-Electro-Mechanical Systems (RF MEMS) have been identified as two of the most significant enabling technologies in developing miniaturized low-cost communications systems and sensor networks. The key components in these MEMS-based architectures are the RF MEMS switches and varactors. The first part of this thesis focuses on three novel RF MEMS components with state-of-the-art performance. In particular, a broadband 6 V capacitive MEMS switch is presented with insertion loss of only 0.04 and 0.17 dB at 10 and 40 GHz respectively. Special consideration is given to particularly challenging issues, such as residual stress, planarity, power handling capability and switching speed. The need for switches operating below 1 GHz is also identified and a spring-loaded metal-to-metal contact switch is developed. The measured on-state contact resistance and off-state series capacitance are 0.5 O and 10 fF respectively for this switch. An analog millimeter-wave variable capacitor is the third MEMS component presented in this thesis. This variable capacitor shows an ultra high measured tuning range of nearly 4:1, which is the highest reported value for the millimeter-wave region. The second part of this thesis primarily concentrates on MEMS-based reconfigurable systems and their potential to revolutionize the design of future RF/microwave multifunctional systems. High-isolation switches and switch packets with isolation of more than 60 dB are designed and implemented. Furthermore, lowpass and bandpass tunable filters with 3:1 and 2:1 tuning ratios respectively are demonstrated. Similar methods have been also applied to the field of slot antennas and a novel design technique for compact reconfigurable antennas has been developed. The main advantage of these antennas is that they essentially preserve their impedance, radiation pattern, polarization, gain and efficiency for all operating frequencies. The thesis concludes by discussing the future challenges of RF MEMS, such as packaging and reliability.

  5. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.

    PubMed

    Wu, Dongjin; Xia, Linyuan; Geng, Jijun

    2018-06-19

    Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.

  6. CNES reliability approach for the qualification of MEMS for space

    NASA Astrophysics Data System (ADS)

    Pressecq, Francis; Lafontan, Xavier; Perez, Guy; Fortea, Jean-Pierre

    2001-10-01

    This paper describes the reliability approach performs at CNES to evaluate MEMS for space application. After an introduction and a detailed state of the art on the space requirements and on the use of MEMS for space, different approaches for taking into account MEMS in the qualification phases are presented. CNES proposes improvement to theses approaches in term of failure mechanisms identification. Our approach is based on a design and test phase deeply linked with a technology study. This workflow is illustrated with an example: the case of a variable capacitance processed with MUMPS process is presented.

  7. KAPAO first light: the design, construction and operation of a low-cost natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Badham, Katherine E.; Bolger, Dalton; Contreras, Daniel S.; Gilbreth, Blaine N.; Guerrero, Christian; Littleton, Erik; Long, Joseph; McGonigle, Lorcan P.; Morrison, William A.; Ortega, Fernando; Rudy, Alex R.; Wong, Jonathan R.; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2014-07-01

    We present the instrument design and first light observations of KAPAO, a natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The KAPAO system has dual science channels with visible and near-infrared cameras, a Shack-Hartmann wavefront sensor, and a commercially available 140-actuator MEMS deformable mirror. The pupil relays are two pairs of custom off-axis parabolas and the control system is based on a version of the Robo-AO control software. The AO system and telescope are remotely operable, and KAPAO is designed to share the Cassegrain focus with the existing TMO polarimeter. We discuss the extensive integration of undergraduate students in the program including the multiple senior theses/capstones and summer assistantships amongst our partner institutions. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  8. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  9. A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun

    2017-01-01

    Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.

  10. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysiliconmore » gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.« less

  11. Novel First-Level Interconnect Techniques for Flip Chip on MEMS Devices

    PubMed Central

    Sutanto, Jemmy; Anand, Sindhu; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    Flip-chip packaging is desirable for microelectro-mechanical systems (MEMS) devices because it reduces the overall package size and allows scaling up the number of MEMS chips through 3-D stacks. In this report, we demonstrate three novel techniques to create first-level interconnect (FLI) on MEMS: 1) Dip and attach technology for Ag epoxy; 2) Dispense technology for solder paste; 3) Dispense, pull, and attach technology (DPAT) for solder paste. The above techniques required no additional microfabrication steps, produced no visible surface contamination on the MEMS active structures, and generated high-aspect-ratio interconnects. The developed FLIs were successfully tested on MEMS moveable microelectrodes microfabricated by SUMMiTVTM process producing no apparent detrimental effect due to outgassing. The bumping processes were successfully applied on Al-deposited bond pads of 100 μm × 100 μm with an average bump height of 101.3 μm for Ag and 184.8 μm for solder (63Sn, 37Pb). DPAT for solder paste produced bumps with the aspect ratio of 1.8 or more. The average shear strengths of Ag and solder bumps were 78 MPa and 689 kPa, respectively. The electrical test on Ag bumps at 794 A/cm2 demonstrated reliable electrical interconnects with negligible resistance. These scalable FLI technologies are potentially useful for MEMS flip-chip packaging and 3-D stacking. PMID:24504168

  12. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  13. Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex

    PubMed Central

    Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.

    2010-01-01

    The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664

  14. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis

    NASA Astrophysics Data System (ADS)

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-12-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication.

  15. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  16. Novel packaging approaches for increased robustness and overall performance of gimbal-less MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Su, Yu Roger; Hu, Frank

    2017-02-01

    2D quasistatic (point-to-point) gimbal-less MEMS mirrors enable programmable, arbitrary control of laser beam position and velocity - up to their maximum limits. Hence, they provide the ability to track targets, point lasercom beams, and to scan uniform velocity lines over objects in laser imaging. They are becoming increasingly established in applications including 3D scanning, laser marking and 3D printing, biomedical imaging, communications, and LiDAR. With the increased utility in applications that demand larger mirror sizes and larger overall angle*diameter (θ*D) figures of merit, the technology is continuously pushed against its limit. As a result we have implemented mirrors with larger diameters including 5.0mm, 6.4mm, and 7.5mm, and have designed actuators with larger torque and angles to match the Θ*D demand. While the results have been very positive in certain application cases, a limitation for their more wide-spread use has been the relatively high susceptibility of large- θ*D mirrors to shock and vibrations. On the other hand, one of the challenges of MEMS mirrors of small diameters is their lower optical power tolerance simply due to their smaller area and heat removal ability. Although they can be operated at up to 2-3W of CW laser power, new developments in dynamic solid state lighting in e.g. headlights demand operation at up to 10W or beyond. In this work we study and present several package-level approaches to increase mechanical damping, shock robustness, and laser power tolerance. Specifically, we study back-filling of MEMS packages with different gases as well as with different (increased) pressures to control damping and in turn increase robustness and useable bandwidth. Additionally, we study the effects of specialized mechanical structures which were designed and fabricated to modify packages to significantly reduce volumes of space around moving structures. In their standard form and packaging the MEMS mirrors tested in this study typically measure quality factors of 75-100. Increases of pressure up to 50psi have shown relatively modest reductions of the overall quality factor to the 40-50 range. Backfilling of packages with heavier inert gasses such as Ar and SF6 results in lowering of the quality factor down to 20-30 range. Mechanical modifications of the package with special structures and reduced air-gap to the window yielded the best results, reducing the quality factor to 9-14. Combination of specialized packaging structures and gas backfill and pressure control could provide a very efficient heat transfer from the mirror and the desired near-critical damping, but has not been demonstrated yet. The increased performance does not change the compactness and low power consumption - the improved MEMS mirrors still consume <1mW. So far, designs with mirror sizes through 3.0mm diameter with increased damping have passed 500G shock tests. In terms of improved heat removal we have found that the packaging improvement greatly increased optical power tolerance of MEMS mirrors from few Watts of CW laser power to <10 Watts. The exact numbers for the upper limit are not yet available - in samples where the heat removing structure was added and air was replaced with Helium, our setup with 3 combined lasers was not able to damage any samples.

  17. Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

    PubMed

    Heers, Marcel; Chowdhury, Rasheda A; Hedrich, Tanguy; Dubeau, François; Hall, Jeffery A; Lina, Jean-Marc; Grova, Christophe; Kobayashi, Eliane

    2016-01-01

    Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.

  18. Nanotwinned metal MEMS films with unprecedented strength and stability

    PubMed Central

    Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.

    2017-01-01

    Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015

  19. Apparatus and method for sensing motion in a microelectro-mechanical system

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    1999-01-01

    An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

  20. Method for fabricating a microelectromechanical resonator

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  1. Surface-micromachined and high-aspect ratio electrostatic actuators for aeronautic and space applications: design and lifetime considerations

    NASA Astrophysics Data System (ADS)

    Vescovo, P.; Joseph, E.; Bourbon, G.; Le Moal, P.; Minotti, P.; Hibert, C.; Pont, G.

    2003-09-01

    This paper focuses on recent advances in the field of MEMS-based actuators and distributed microelectromechanical systems (MEMS). IC-processed actuators (e.g. actuators that are machined using integrated circuit batch processes) are expected to open a wide range of industrial applications on the near term. The most promising investigations deal with high-aspect ratio electric field driven microactuators suitable for use in numerous technical fields such as aeronautics and space industry. Because the silicon micromachining technology have the potential to integrate both mechanical components and control circuits within a single process, MEMS-based active control of microscopic and macroscopic structures appears to be one of the most promising challenges for the next decade. As a first step towards new generations of MEMS-based smart structures, recent investigations dealing with silicon mechanisms involving MEMS-based actuators are briefly discussed in this paper.

  2. Hybrid power systems for autonomous MEMS

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel M.; Selfridge, Richard H.; Humble, Paul; Harb, John N.

    2001-08-01

    This paper describes the design of a hybrid power system for use with autonomous MEMS and other microdevices. This hybrid power system includes energy conversion and storage along with an electronic system for managing the collection and distribution of power. It offers flexibility and longevity in a compact package. The hybrid power system couples a silicon solar cell with a microbattery specially designed for MEMS applications. We have designed a control/interface charging circuit to be compatible with a MEMS duty cycle. The design permits short pulses of 'high' power while taking care to avoid excessive charging or discharging of the battery. Charging is carefully controlled to provide a balance between acceptably small charging times and a charging profile that extends battery life. Our report describes the charging of our Ni/Zn microbatteries using solar cells. To date we have demonstrated thousands of charge/discharge cycles of a simulated MEMS duty cycle.

  3. Method for fabricating five-level microelectromechanical structures and microelectromechanical transmission formed

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; McWhorter, Paul J.

    2000-01-01

    A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.

  4. MEMS reliability: coming of age

    NASA Astrophysics Data System (ADS)

    Douglass, Michael R.

    2008-02-01

    In today's high-volume semiconductor world, one could easily take reliability for granted. As the MOEMS/MEMS industry continues to establish itself as a viable alternative to conventional manufacturing in the macro world, reliability can be of high concern. Currently, there are several emerging market opportunities in which MOEMS/MEMS is gaining a foothold. Markets such as mobile media, consumer electronics, biomedical devices, and homeland security are all showing great interest in microfabricated products. At the same time, these markets are among the most demanding when it comes to reliability assurance. To be successful, each company developing a MOEMS/MEMS device must consider reliability on an equal footing with cost, performance and manufacturability. What can this maturing industry learn from the successful development of DLP technology, air bag accelerometers and inkjet printheads? This paper discusses some basic reliability principles which any MOEMS/MEMS device development must use. Examples from the commercially successful and highly reliable Digital Micromirror Device complement the discussion.

  5. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  6. RF-MEMS Technology for High-Performance Passives; The challenge of 5G mobile applications

    NASA Astrophysics Data System (ADS)

    Iannacci, Jacopo

    2017-11-01

    Commencing with a review of the characteristics of RF-MEMS in relation to 5G, the book proceeds to develop practical insight concerning the design and development of RF-MEMS including case studies of design concepts. Including multiphysics simulation and animated figures, the book will be essential reading for both academic and industrial researchers and engineers.

  7. Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS

    NASA Astrophysics Data System (ADS)

    Mita, Yoshio; Hirakawa, Atsushi; Stefanelli, Bruno; Mori, Isao; Okamoto, Yuki; Morishita, Satoshi; Kubota, Masanori; Lebrasseur, Eric; Kaiser, Andreas

    2018-04-01

    In this paper, we address issues and solutions for micro-electro-mechanical-systems (MEMS) powering through semiconductor devices towards one-chip MEMS, especially those with microactuators that require high voltage (HV, which is more than 10 V, and is often over 100 V) for operation. We experimentally and theoretically demonstrated that the main reason why MEMS actuators need such HV is the tradeoff between resonant frequency and displacement amplitude. Indeed, the product of frequency and displacement is constant regardless of the MEMS design, but proportional to the input energy, which is the square of applied voltage in an electrostatic actuator. A comprehensive study on the principles of HV device technology and associated circuit technologies, especially voltage shifter circuits, was conducted. From the viewpoint of on-chip energy source, series-connected HV photovoltaic cells have been discussed. Isolation and electrical connection methods were identified to be key enabling technologies. Towards future rapid development of such autonomous devices, a technology to convert standard 5 V CMOS devices into HV circuits using SOI substrate and a MEMS postprocess is presented. HV breakdown experiments demonstrated this technology can hold over 700 to 1000 V, depending on the layout.

  8. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  9. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  10. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  11. Design and Optimization of AlN based RF MEMS Switches

    NASA Astrophysics Data System (ADS)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  12. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  13. Pilot study to harmonize the reported influenza intensity levels within the Spanish Influenza Sentinel Surveillance System (SISSS) using the Moving Epidemic Method (MEM).

    PubMed

    Bangert, M; Gil, H; Oliva, J; Delgado, C; Vega, T; DE Mateo, S; Larrauri, A

    2017-03-01

    The intensity of annual Spanish influenza activity is currently estimated from historical data of the Spanish Influenza Sentinel Surveillance System (SISSS) using qualitative indicators from the European Influenza Surveillance Network. However, these indicators are subjective, based on qualitative comparison with historical data of influenza-like illness rates. This pilot study assesses the implementation of Moving Epidemic Method (MEM) intensity levels during the 2014-2015 influenza season within the 17 sentinel networks covered by SISSS, comparing them to historically reported indicators. Intensity levels reported and those obtained with MEM at the epidemic peak of the influenza wave, and at national and regional levels did not show statistical difference (P = 0·74, Wilcoxon signed-rank test), suggesting that the implementation of MEM would have limited disrupting effects on the dynamic of notification within the surveillance system. MEM allows objective influenza surveillance monitoring and standardization of criteria for comparing the intensity of influenza epidemics in regions in Spain. Following this pilot study, MEM has been adopted to harmonize the reporting of intensity levels of influenza activity in Spain, starting in the 2015-2016 season.

  14. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    NASA Astrophysics Data System (ADS)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid-frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  15. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements. Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

  16. Low-voltage high-reliability MEMS switch for millimeter wave 5G applications

    NASA Astrophysics Data System (ADS)

    Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.

    2018-07-01

    Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.

  17. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  18. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  19. Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices

    NASA Astrophysics Data System (ADS)

    Nogami, Hirofumi; Kobayashi, Takeshi; Okada, Hironao; Masuda, Takashi; Maeda, Ryutaro; Itoh, Toshihiro

    2012-09-01

    An animal health monitoring system and a wireless sensor node aimed at preventing the spread of animal-transmitted diseases and improving pastoral efficiency which are especially suitable for chickens, were developed. The sensor node uses a piezoelectric microelectromechanical system (MEMS) device and an event-driven system that is activated by the movements of a chicken. The piezoelectric MEMS device has two functions: a) it measures the activity of a chicken and b) switches the micro-control unit (MCU) of the wireless sensor node from the sleep mode. The piezoelectric MEMS device is required to produce high output voltages when the chicken moves. However, after the piezoelectric MEMS device was reflowed to the wireless sensor node, the output voltages of the piezoelectric MEMS device decreased. The main reason for this might be the loss of residual polarization, which is affected by the thermal load during the reflow process. After the reflow process, we were not able to apply a voltage to the piezoelectric MEMS device; thus, the piezoelectric output voltage was not increased by repoling the piezoelectric MEMS device. To address the thermal load of the reflow process, we established a thermal poling treatment, which achieves a higher temperature than the reflow process. We found that on increasing the thermal poling temperature, the piezoelectric output voltages did not decreased low significantly. Thus, we considered that a thermal poling temperature higher than that of the reflow process prevents the piezoelectric output voltage reduction caused by the thermal load.

  20. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  1. Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices

    NASA Astrophysics Data System (ADS)

    Singh, R. A.; Satyanarayana, N.; Kustandi, T. S.; Sinha, S. K.

    2011-01-01

    Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by ~4-7 times and the steady-state coefficient of friction reduces by ~2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.

  2. MEMS Using SOI Substrate

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.

    1999-01-01

    At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.

  3. Tunable photonic cavities for in-situ spectroscopic trace gas detection

    DOEpatents

    Bond, Tiziana; Cole, Garrett; Goddard, Lynford

    2012-11-13

    Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.

  4. Recent Progress in Silicon Mems Oscillators

    DTIC Science & Technology

    2008-12-01

    MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of

  5. Silicon Carbide Capacitive High Temperature MEMS Strain Transducer

    DTIC Science & Technology

    2012-03-22

    SILICON CARBIDE CAPACITIVE HIGH TEMPURATURE MEMS STRAIN TRANSDUCER THESIS Richard P. Weisenberger, DR01, USAF AFIT/GE/ENG...declared a work of the U.S. Government and is not subject to copyright protection in the United States AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE IDGH TEMPURATURE MEMS STRAIN TRANSDUCER

  6. Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15

    DTIC Science & Technology

    2015-09-01

    TECHNICAL DOCUMENT 3298 September 2015 Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15 Paul D. Swanson...Naval Warfare Systems Center Pacific (SSC Pacific), San Diego, CA. SSC Pacific’s Naval Innovative Science and Engineering (NISE) Program provided...for Miniaturized Flow Cytometer o Howard Dyckman: 71730 Infrared Waveguides o Teresa Emery: 55360 Bistable MEMS systems for Energy

  7. MemAxes Visualization Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  8. Sputtered highly oriented PZT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate orientation that could improve the MEMS device performance. Potential application of these devices is as battery operated disposable drug delivery systems. This work will also investigate the fabrication of a flexural plate wave based microfluidic device using the PZT thin film of appropriate orientation that would enhance the device performance. (Abstract shortened by UMI.)

  9. Multilayer ultra thick resist development for MEMS

    NASA Astrophysics Data System (ADS)

    Washio, Yasushi; Senzaki, Takahiro; Masuda, Yasuo; Saito, Koji; Obiya, Hiroyuki

    2005-05-01

    MEMS (Micro-Electro-Mechanical Systems) is achieved through a process technology, called Micro-machining. There are two distinct methods to manufacture a MEMS-product. One method is to form permanent film through photolithography, and the other is to form a non-permanent film resist after photolithography proceeded by etch or plating process. The three-dimensional ultra-fine processing technology based on photolithography, and is assembled by processes, such as anode junction, and post lithography processes such as etching and plating. Currently ORDYL PR-100 (Dry Film Type) is used for the permanent resist process. TOK has developed TMMR S2000 (Liquid Type) and TMMF S2000 (Dry Film Type) also. TOK has developed a new process utilizing these resist. The electro-forming method by photolithography is developed as one of the methods for enabling high resolution and high aspect formation. In recent years, it has become possible to manufacture conventionally difficult multilayer through our development with material and equipment project (M&E). As for material for electro-forming, it was checked that chemically amplified resist is optimal from the reaction mechanism as it is easily removed by the clean solution. Moreover, multiple plating formations were enabled with the resist through a new process. As for the equipment, TOK developed Applicator (It can apply 500 or more μms) and Developer, which achieves high throughput and quality. The detailed plating formations, which a path differs, and air wiring are realizable through M&E. From the above results, opposed to metallic mold plating, electro-forming method by resist, enabled to form high resolution and aspect pattern, at low cost. It is thought that the infinite possibility spreads by applying this process.

  10. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  11. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  12. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  13. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, James G.

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, andmore » also has applications for thermal management within satellites.« less

  14. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  15. Elemental and compound semiconductor surface chemistry: Intelligent interfacial design facilitated through novel functionalization and deposition strategies

    NASA Astrophysics Data System (ADS)

    Porter, Lon Alan, Jr.

    The fundamental understanding of silicon surface chemistry is an essential tool for silicon's continued dominance of the semiconductor industry in the years to come. By tapping into the vast library of organic functionalities, the synthesis of organic monolayers may be utilized to prepare interfaces, tailored to a myriad of applications ranging from silicon VLSI device optimization and MEMS to physiological implants and chemical sensors. Efforts in our lab to form stable organic monolayers on porous silicon through direct silicon-carbon linkages have resulted in several efficient functionalization methods. In the first chapter of this thesis a comprehensive review of these methods, and many others is presented. The following chapter and the appendix serve to demonstrate both potential applications and studies aimed at developing a fundamental understanding of the chemistry behind the organic functionalization of silicon surfaces. The remainder of this thesis attempts to demonstrate new methods of metal deposition onto both elemental and compound semiconductor surfaces. Currently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ULSI device fabrication, MEMS, and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. Continuous metallic films form spontaneously under ambient conditions, in the absence of a fluoride source or an externally applied current. In order to apply this metallization method toward the development of useful technologies, patterning utilizing photolithography, microcontact printing, and scanning probe nanolithography has been demonstrated.

  16. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  17. Micromirror-based manipulation of synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  18. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  19. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  20. A geometrical defect detection method for non-silicon MEMS part based on HU moment invariants of skeleton image

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Jin, Xin; Zhang, Zhijing; Lu, Jun

    2014-01-01

    In order to improve the accuracy of geometrical defect detection, this paper presented a method based on HU moment invariants of skeleton image. This method have four steps: first of all, grayscale images of non-silicon MEMS parts are collected and converted into binary images, secondly, skeletons of binary images are extracted using medialaxis- transform method, and then HU moment invariants of skeleton images are calculated, finally, differences of HU moment invariants between measured parts and qualified parts are obtained to determine whether there are geometrical defects. To demonstrate the availability of this method, experiments were carried out between skeleton images and grayscale images, and results show that: when defects of non-silicon MEMS part are the same, HU moment invariants of skeleton images are more sensitive than that of grayscale images, and detection accuracy is higher. Therefore, this method can more accurately determine whether non-silicon MEMS parts qualified or not, and can be applied to nonsilicon MEMS part detection system.

  1. MEMS-based tunable gratings and their applications

    NASA Astrophysics Data System (ADS)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  2. Numerical simulation of MEMS-based blade load distribution control in centrifugal compressor surge suppression

    NASA Astrophysics Data System (ADS)

    Beneda, Károly

    2012-11-01

    The utilization of turbomachines requires up-to-date technologies to ensure safe operation throughout the widest possible range that makes novel ideas necessary to cope with classic problems. One of the most dangerous instability in compression systems is surge that has to be suppressed before its onset to avoid structural damages as well as other adverse consequences in the system. As surge occurs at low delivered mass flow rates the conventional widely spread surge control is based on bypassing the unnecessary airflow back to the atmosphere. This method has been implemented on a large number of aircraft and provides a robust control on suppressing compressor surge while creating a significant efficiency loss. This paper deals with an idea that has been originally designed as a fixed geometry that could be realized using up-to-date MEMS technology resulting in moderate losses but comparable stability enhancement. Previously the author has established the one-dimensional mathematical model of the concept, but it is indispensable - before the real instrument can be developed - to carry out detailed numerical simulation of the device. The aim of the paper is to acquaint the efforts of this CFD simulation.

  3. Simulation Studies on Energy Harvesting Characterisitcs and Storage Analysis Through Microcantilever Vibration

    NASA Astrophysics Data System (ADS)

    Solleti, Ravi Teja; Harikrishna, Kyatham; Velmurugan, V.

    Vibrations can be a good source of energy and can be harvested and utilized by simple design and fabrication using the MEMS technology. Energy harvesting provides unending sources of energy for low-power electronics devices where the use of batteries is not feasible. Piezoelectric energy harvesters are widely considered because of their compact design, compatibility to MEMS devices and ability to respond to a wide range of frequencies freely available in the environment. In this project, a rectangular model for cantilever-based piezoelectric energy harvester is proposed with different designs like two layer, two layer with proof mass, four layer and four layer with proof mass designed with dimensions as 50μm×50μm×1μm for each layer using COMSOL Multiphysics 5.0. Simulation results were obtained using silicon as substrate, aluminium as electrodes and PZT-5H and ZnO as piezoelectric materials and the respective stress and voltages were obtained by applying a force acting on foot, train, roller coaster and a general value of 10N/m2 on top of the cantilever. The effects of varying geometrical dimensions of the device were also investigated.

  4. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  5. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Teixidor, Genis Turon; Zaouk, Rabih B.; Park, Benjamin Y.; Madou, Marc J.

    This paper presents fabrication and testing results of three-dimensional carbon anodes for lithium-ion batteries, which are fabricated through the pyrolysis of lithographically patterned epoxy resins. This technique, known as Carbon-MEMS, provides great flexibility and an unprecedented dimensional control in shaping carbon microstructures. Variations in the pattern density and in the pyrolysis conditions result in anodes with different specific and gravimetric capacities, with a three to six times increase in specific capacity with respect to the current thin-film battery technology. Newly designed cross-shaped Carbon-MEMS arrays have a much higher mechanical robustness (as given by their moment of inertia) than the traditionally used cylindrical posts, but the gravimetric analysis suggests that new designs with thinner features are required for better carbon utilization. Pyrolysis at higher temperatures and slower ramping up schedules reduces the irreversible capacity of the carbon electrodes. We also analyze the addition of Meso-Carbon Micro-Beads (MCMB) particles on the reversible and irreversible capacities of new three-dimensional, hybrid electrodes. This combination results in a slight increase in reversible capacity and a big increase in the irreversible capacity of the carbon electrodes, mostly due to the non-complete attachment of the MCMB particles.

  6. Micromechanical die attachment surcharge

    DOEpatents

    Filter, William F.; Hohimer, John P.

    2002-01-01

    An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.

  7. In Defense of Competition during Syntactic Ambiguity Resolution

    ERIC Educational Resources Information Center

    Vosse, Theo; Kempen, Gerard

    2009-01-01

    In a recent series of publications (Traxler et al. J Mem Lang 39:558-592, 1998; Van Gompel et al. J Mem Lang 52:284-307, 2005; see also Van Gompel et al. (In: Kennedy, et al.(eds) Reading as a perceptual process, Oxford, Elsevier pp 621-648, 2000); Van Gompel et al. J Mem Lang 45:225-258, 2001) eye tracking data are reported showing that globally…

  8. Survivability Using Controlled Security Services

    DTIC Science & Technology

    2005-06-01

    California, Irvine. ear complexities of either (or both) group public key size or signature size with respect to the number of group mem - bers. These...troduced leak-freedom and immediate-revocation. Correctness: any signature produced by any group mem - ber using Sign must be accepted by Verify...can only convince one or more appointed verifiers of its mem - bership, while no other party can verify membership even if the signer cooperates fully

  9. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  10. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  11. Ball driven type MEMS SAD for artillery fuse

    NASA Astrophysics Data System (ADS)

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.

  12. Effect of cryopreservation of peripheral blood mononuclear cells (PBMCs) on the variability of an antigen-specific memory B cell ELISpot.

    PubMed

    Trück, Johannes; Mitchell, Ruth; Thompson, Amber J; Morales-Aza, Begonia; Clutterbuck, Elizabeth A; Kelly, Dominic F; Finn, Adam; Pollard, Andrew J

    2014-01-01

    The ELISpot assay is used in vaccine studies for the quantification of antigen-specific memory B cells (B(MEM)), and can be performed using cryopreserved samples. The effects of cryopreservation on B(MEM) detection and the consistency of cultured ELISpot assays when performed by different operators or laboratories are unknown. In this study, blood was taken from healthy volunteers, and a cultured ELISpot assay was used to count B(MEM) specific for 2 routine vaccine antigens (diphtheria and tetanus toxoid). Results were assessed for intra- and inter-operator variation, and the effects of cryopreservation. Cryopreserved samples were shipped to a second laboratory in order to assess inter-laboratory variation. B(MEM) frequencies were very strongly correlated when comparing fresh and frozen samples processed by the same operator, and were also very strongly correlated when comparing 2 operators in the same laboratory. Results were slightly less consistent when samples were processed in different laboratories but correlation between the 2 measurements was still very strong. Although cell viability was reduced in some cryopreserved samples due to higher temperatures during transportation, B(MEM) could still be quantified. These results demonstrate the reproducibility of the ELISpot assay across operators and laboratories, and support the use of cryopreserved samples in future B(MEM) studies.

  13. MemFlash device: floating gate transistors as memristive devices for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Riggert, C.; Ziegler, M.; Schroeder, D.; Krautschneider, W. H.; Kohlstedt, H.

    2014-10-01

    Memristive devices are promising candidates for future non-volatile memory applications and mixed-signal circuits. In the field of neuromorphic engineering these devices are especially interesting to emulate neuronal functionality. Therefore, new materials and material combinations are currently investigated, which are often not compatible with Si-technology processes. The underlying mechanisms of the device often remain unclear and are paired with low device endurance and yield. These facts define the current most challenging development tasks towards a reliable memristive device technology. In this respect, the MemFlash concept is of particular interest. A MemFlash device results from a diode configuration wiring scheme of a floating gate transistor, which enables the persistent device resistance to be varied according to the history of the charge flow through the device. In this study, we investigate the scaling conditions of the floating gate oxide thickness with respect to possible applications in the field of neuromorphic engineering. We show that MemFlash cells exhibit essential features with respect to neuromorphic applications. In particular, cells with thin floating gate oxides show a limited synaptic weight growth together with low energy dissipation. MemFlash cells present an attractive alternative for state-of-art memresitive devices. The emulation of associative learning is discussed by implementing a single MemFlash cell in an analogue circuit.

  14. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  15. Powering a leadless pacemaker using a PiezoMEMS energy harvester

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Olszewski, Oskar; O'Murchu, Cian; Mathewson, Alan

    2017-06-01

    MEMS based vibrational energy harvesting devices have been a highly researched topic over the past decade. The application targeted in this paper focuses on a leadless pacemaker that will be implanted in the right ventricle of the heart. A leadless pacemaker requires the same functionality as a normal pacemaker, but with significantly reduced volume. The reduced volume limits the space for a battery; therefore an energy harvesting device is required. This paper compares varying the dimensions of a linear MEMS based piezoelectric energy harvester that can harvest energy from the mechanical vibrations of the heart due to shock induced vibration. Typical MEMS linear energy harvesting devices operate at high frequency (<50 Hz) with low acceleration (< 1g). The force generated from the heart acts as a series of impulses as opposed to traditional sinusoidal vibration force with high acceleration (1-4 g). Therefore the design of a MEMS harvester that is based on shock-induced vibration is necessary. PiezoMEMS energy harvesting devices consisting of a silicon substrate and mass with aluminium nitride piezoelectric material were developed and characterized using acceleration forces that mimic the heartbeat. Peak powers of up to 25μW were obtained at 1 g acceleration with a powder density of approximately 1.5 mW cm-3.

  16. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Gkotsis, Petros; Kilchytska, Valeriya; Tang, Xiaohui; Druart, Sylvain; Raskin, Jean-Pierre; Flandre, Denis

    2013-03-01

    The impact of different types of radiation on the electromechanical properties of materials used in microfabrication and on the capacitive and piezoresistive transduction mechanisms of MEMS is investigated. MEMS technologies could revolutionize avionics, satellite and space applications provided that the stress conditions which can compromise the reliability of microsystems in these environments are well understood. Initial tests with MEMS revealed a vulnerability of some types of devices to radiation induced dielectric charging, a physical mechanism which also affects microelectronics, however integration of novel functional materials in microfabrication and the current trend to substitute SiO2 with high-k dielectrics in ICs pose new questions regarding reliability in radiation environments. The performance of MEMS devices with moving parts could also degrade due to radiation induced changes in the mechanical properties of the materials. It is thus necessary to investigate the effects of radiation on the properties of thin films used in microfabrication and here we report on tests with γ, high energy protons and fast neutrons radiation. Prototype SOI based MEMS magnetometers which were developed in UCL are also used as test vehicles to investigate radiation effects on the reliability of magnetically actuated and capacitively coupled MEMS.

  17. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  18. Effects of transfer of embryos independently cultured in essential and sequential culture media on pregnancy rates in assisted reproduction cycles.

    PubMed

    Geber, Selmo; Bossi, Renata; Guimarães, Fernando; Valle, Marcello; Sampaio, Marcos

    2012-10-01

    Several culture media are available to be used in ART. However it is uncertain whether embryos would preferably benefit from one type of medium or the association of different media. We performed this study to evaluate the impact of simultaneous transfer of embryos independently cultured in two distinct culture media, on pregnancy outcome. A total of 722 couples who underwent infertility treatment were sequentially allocated into three groups: those who had half of the embryos individually cultured in MEM and the other half cultured in sequential media (MEM + Seq Group) (n = 243); those who had all embryos cultured only in sequential medium (Seq Group) (n = 239); and those who had all embryos cultured only in MEM (MEM Group) (n = 240). The pregnancy rate was higher in the MEM + Seq group (51.8 %) than the Seq group (36.7 %) (p < 0.001). However the pregnancy rate observed in the MEM group was similar to the others (44.2 %). When a logistic regression test was applied it demonstrated that the number of transferred embryos did not interfere in the pregnancy rates. Our results suggests that offering different culture conditions for sibling embryos with subsequent transfer of embryos that were kept in distinct culture media, might increase pregnancy rates in assisted reproduction cycles.

  19. MEMS/MOEMS foundry services at INO

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Ilias, Samir; Williamson, Fraser; Généreux, Francis; Le Noc, Loïc; Poirier, Michel; Proulx, Christian; Tremblay, Bruno; Provençal, Francis; Desroches, Yan; Caron, Jean-Sol; Larouche, Carl; Beaupré, Patrick; Fortin, Benoit; Topart, Patrice; Picard, Francis; Alain, Christine; Pope, Timothy; Jerominek, Hubert

    2010-06-01

    In the MEMS manufacturing world, the "fabless" model is getting increasing importance in recent years as a way for MEMS manufactures and startups to minimize equipment costs and initial capital investment. In order for this model to be successful, the fabless company needs to work closely with a MEMS foundry service provider. Due to the lack of standardization in MEMS processes, as opposed to CMOS microfabrication, the experience in MEMS development processes and the flexibility of the MEMS foundry are of vital importance. A multidisciplinary team together with a complete microfabrication toolset allows INO to offer unique MEMS foundry services to fabless companies looking for low to mid-volume production. Companies that benefit from their own microfabrication facilities can also be interested in INO's assistance in conducting their research and development work during periods where production runs keep their whole staff busy. Services include design, prototyping, fabrication, packaging, and testing of various MEMS and MOEMS devices on wafers fully compatible with CMOS integration. Wafer diameters ranging typically from 1 inch to 6 inches can be accepted while 8-inch wafers can be processed in some instances. Standard microfabrication techniques such as metal, dielectric, and semiconductor film deposition and etching as well as photolithographic pattern transfer are available. A stepper permits reduction of the critical dimension to around 0.4 μm. Metals deposited by vacuum deposition methods include Au, Ag, Al, Al alloys, Ti, Cr, Cu, Mo, MoCr, Ni, Pt, and V with thickness varying from 5 nm to 2 μm. Electroplating of several materials including Ni, Au and In is also available. In addition, INO has developed and built a gold black deposition facility to answer customer's needs for broadband microbolometric detectors. The gold black deposited presents specular reflectance of less than 10% in the wavelength range from 0.2 μm to 100 μm with thickness ranging from 20 to 35 μm and a density of 0.3% the bulk density of gold. Two Balzers thin-film deposition instruments (BAP-800 and BAK-760) permit INO to offer optical thin film manufacturing. Recent work in this field includes the design and development of a custom filter for the James Webb Space Telescope (JWST) as collaboration with the Canadian company ComDEV. An overview of the different microfabrication foundry services offered by INO will be presented together with the most recent achievements in the field of MEMS/MOEMS.

  20. BioMEMS –Advancing the Frontiers of Medicine

    PubMed Central

    James, Teena; Mannoor, Manu Sebastian; Ivanov, Dentcho V.

    2008-01-01

    Biological and medical application of micro-electro-mechanical-systems (MEMS) is currently seen as an area of high potential impact. Integration of biology and microtechnology has resulted in the development of a number of platforms for improving biomedical and pharmaceutical technologies. This review provides a general overview of the applications and the opportunities presented by MEMS in medicine by classifying these platforms according to their applications in the medical field. PMID:27873858

  1. The MEM of spectral analysis applied to L.O.D.

    NASA Astrophysics Data System (ADS)

    Fernandez, L. I.; Arias, E. F.

    The maximum entropy method (MEM) has been widely applied for polar motion studies taking advantage of its performance on the management of complex time series. The authors used the algorithm of the MEM to estimate Cross Spectral function in order to compare interannual Length-of-Day (LOD) time series with Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) series, which are close related to El Niño-Southern Oscillation (ENSO) events.

  2. Method and system for automated on-chip material and structural certification of MEMS devices

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  3. Breast Cancer and Estrogen Biosynthesis in Adipose Tissue

    DTIC Science & Technology

    1998-10-01

    transferred to a nitrocellulose mem - brane. The transferred proteins were subjected to a denaturation/rena- turation process and hybridized to the 32P...aromatase expression in adipose tissue has been recently observed to be regulated by mem - bers of the interleukin-6 (IL-6) cytokine family. Based on...shown in human adipose stromal cells that the stimulatory effects of serum on aromatase expression can be mimicked by mem - bers of the interleukin-6

  4. Application of the Moment Method in the Slip and Transition Regime for Microfluidic Flows

    DTIC Science & Technology

    2011-01-01

    systems ( MEMS ), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic understanding of the nature of flow and heat ...Couette Flow Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To understand the damping mechanisms...transfer in these devices is considered essential for efficient design and control of MEMS . Engineering applications for gas microflows include

  5. Dual Mode Thin Film Bulk Acoustic Resonators (FBARs) Based on AlN, ZnO and GaN Films with Tilted c-Axis Orientation

    DTIC Science & Technology

    2010-01-01

    TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The

  6. A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit

    NASA Astrophysics Data System (ADS)

    Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei

    2017-07-01

    In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.

  7. Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology

    PubMed Central

    Droogendijk, H.; Brookhuis, R. A.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed. PMID:25100317

  8. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  9. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  10. Additive direct-write microfabrication for MEMS: A review

    NASA Astrophysics Data System (ADS)

    Teh, Kwok Siong

    2017-12-01

    Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.

  11. Cost-minimization analysis of imipenem/cilastatin versus meropenem in moderate to severe infections at a tertiary care hospital in Saudi Arabia.

    PubMed

    Joosub, Imraan; Gray, Andy; Crisostomo, Analyn; Salam, Abdul

    2015-11-01

    The aim of this study was to compare the costs of management of moderate to severe infections in patients treated with imipenem/cilastatin (IC) and meropenem (MEM). Pharmacoeconomic studies in Saudi Arabia are scarce. The current hospital formulary contains 2 carbapenems: IC and MEM. These antibiotics share a similar spectrum of activity. There are conflicting reviews with regard to the relative cost-effectiveness of these two agents. A retrospective, single-centre cohort study of 88 patients of IC versus MEM in moderate to severe infections was performed, applying cost-minimization analysis (CMA) methods. In accordance with CMA methods, the assumption of equivalent efficacy was first demonstrated by literature retrieved and appraised. Adult patients (⩾18 years old) diagnosed with moderate to severe infections, including skin and skin structure infections (SSIs), sepsis, intra-abdominal infections (IAIs), respiratory tract infections, urinary tract infections (UTIs) and hospital-acquired infections (HAIs), who were prescribed IC 500 mg every six hours intravenously (2 g per day) or MEM 1 g every eight hours (3 g per day), were included in the study. Only direct costs related to the management of the infections were included, in accordance with a payer perspective. Overall there was no difference in the mean total daily costs between IC (SAR 4784.46, 95% CI 4140.68, 5428.24) and MEM (4390.14, 95% CI 3785.82, 4994.45; p = 0.37). A significantly lower medicine acquisition cost per vial of IC was observed when compared to MEM, however there was a significantly higher cost attached to administration sets used in the IC group than the MEM group. Consultation, nursing and physician costs were not significantly different between the groups. No differences were observed in costs associated with adverse drug events (ADEs). This study has shown that while acquisition costs of IC at a dose of 500 mg q6 h may be lower than for MEM 1 g q8 h, mean total costs per day were not significantly different between IC and MEM, indicating that medicine costs are only a small element of the overall costs of managing moderate to severe infections.

  12. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  13. Partial characterization of normal and Haemophilus influenzae-infected mucosal complementary DNA libraries in chinchilla middle ear mucosa.

    PubMed

    Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D

    2010-04-01

    We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.

  14. Partial Characterization of Normal and Haemophilus influenzae–Infected Mucosal Complementary DNA Libraries in Chinchilla Middle Ear Mucosa

    PubMed Central

    Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028

  15. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    NASA Astrophysics Data System (ADS)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  16. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  17. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    NASA Astrophysics Data System (ADS)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  18. Compliance assessed by the Medication Event Monitoring System.

    PubMed Central

    Olivieri, N F; Matsui, D; Hermann, C; Koren, G

    1991-01-01

    The accurate assessment of patient compliance is especially crucial in evaluating the efficacy of a new treatment. Because of the problems associated with parenteral desferrioxamine, the development of a safe, effective, and convenient iron chelator is of high priority. The high morbidity and mortality associated with iron overload requires careful evaluation of the ability of any new agent to promote long term effective iron chelation. Patients' compliance with an orally available chelating agent, 1,2,-dimethyl-3-hydroxypyrid-4-one (L1), that has been demonstrated to induce in vivo iron excretion equivalent to that of desferrioxamine during supervised short term administration, was examined. Compliance was assessed in seven patients by patient interview, by daily diaries reviewed monthly with each patient, and with the use of the Medication Event Monitoring System (MEMS) standard pill bottles with microprocessors in the cap that record the timing and frequency of bottle openings. L1 was dispensed in MEMS containers to the patients, who, unaware of their significance, recorded compliance using a daily diary. Overall compliance rate (% of prescribed doses taken) measured by MEMS was 88.7 +/- 6.8%. When 'doubling of doses' was accounted for, significantly poorer compliance with L1 was noted by MEMS (91.7 +/- 7.4%) than by patients' diaries (95.7 +/- 5.2%). There was no significant difference in patient compliance recorded between the first and last 30 day period of drug administration. MEMS can eliminate the confounding variable of erratic patient compliance in the evaluation of a new drug's efficacy. As MEMS cannot distinguish a missed dose from one doubled at the next bottle opening, the use of patient diaries is a useful adjunct to the accurate assessment of compliance and should be combined with the use of MEMS. PMID:1776885

  19. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  20. JPRS Report, East Europe

    DTIC Science & Technology

    1988-02-24

    after that, it was Defense Minister Sokolov and 2 weeks later Lev Saikov, a mem - ber of the Politburo and a central committee secretary, visited...POL1TICHESKOYE OBRAZOVAN1YE in Russian No 12 Dec 87 signed to press 16 Nov 87 pp 114-120 [Article by MSZMP Central Committee Politburo Mem - ber and Central...work" which should above all find its expres- sion in: —the growth of political requirements on party mem - bers; —consolidation of a creative

  1. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  2. Emergency motorcycle: has it a place in a medical emergency system?

    PubMed

    Soares-Oliveira, Miguel; Egipto, Paula; Costa, Isabel; Cunha-Ribeiro, Luis Manuel

    2007-07-01

    In an emergency medical service system, response time is an important factor in determining the prognosis of a victim. There are well-documented increases in response time in urban areas, mainly during rush hour. Because prehospital emergency care is required to be efficient and swift, alternative measures to achieve this goal should be addressed. We report our experience with a medical emergency motorcycle (MEM) and propose major criteria for dispatching it. This work presents a prospective analysis of the data relating to MEM calls from July 2004 to December 2005. The analyzed parameters were age, sex, reason for call, action, and need for subsequent transport. A comparison was made of the need to activate more means and, if so, whether the MEM was the first to arrive. There were 1972 calls. The average time of arrival at destination was 4.4 +/- 2.5 minutes. The main action consisted of administration of oxygen (n = 626), immobilization (n = 118), and control of hemorrhage (n = 101). In 63% of cases, MEM arrived before other emergency vehicles. In 355 cases (18%), there was no need for transport. The MEM can intervene in a wide variety of clinical situations and a quick response is guaranteed. Moreover, in specific situations, MEM safely and efficiently permits better management of emergency vehicles. We propose that it should be dispatched mainly in the following situations: true life-threatening cases and uncertain need for an ambulance.

  3. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continuallymore » vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.« less

  4. Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base

    PubMed Central

    Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng

    2018-01-01

    The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150

  5. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    PubMed

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  6. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  7. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  8. PLL application research of a broadband MEMS phase detector: Theory, measurement and modeling

    NASA Astrophysics Data System (ADS)

    Han, Juzheng; Liao, Xiaoping

    2017-06-01

    This paper evaluates the capability of a broadband MEMS phase detector in the application of phase locked loops (PLLs) through the aspect of theory, measurement and modeling. For the first time, it demonstrates how broadband property and optimized structure are realized through cascaded transmission lines and ANSYS simulations. The broadband MEMS phase detector shows potential in PLL application for its dc voltage output and large power handling ability which is important for munition applications. S-parameters of the power combiner in the MEMS phase detector are measured with S11 better than -15 dB and S23 better than -10 dB over the whole X-band. Compared to our previous works, developed phase detection measurements are performed and focused on signals at larger power levels up to 1 W. Cosine tendencies are revealed between the output voltage and the phase difference for both small and large signals. Simulation approach through equivalent circuit modeling is proposed to study the PLL application of the broadband MEMS phase detector. Synchronization and tracking properties are revealed.

  9. New optoelectronic methodology for nondestructive evaluation of MEMS at the wafer level

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Ferguson, Curtis F.; Melson, Michael J.

    2004-02-01

    One of the approaches to fabrication of MEMS involves surface micromachining to define dies on single crystal silicon wafers, dicing of the wafers to separate the dies, and electronic packaging of the individual dies. Dicing and packaging of MEMS accounts for a large fraction of the fabrication costs, therefore, nondestructive evaluation at the wafer level, before dicing, can have significant implications on improving production yield and costs. In this paper, advances in development of optoelectronic holography (OEH) techniques for nondestructive, noninvasive, full-field of view evaluation of MEMS at the wafer level are described. With OEH techniques, quantitative measurements of shape and deformation of MEMS, as related to their performance and integrity, are obtained with sub-micrometer spatial resolution and nanometer measuring accuracy. To inspect an entire wafer with OEH methodologies, measurements of overlapping regions of interest (ROI) on a wafer are recorded and adjacent ROIs are stitched together through efficient 3D correlation analysis algorithms. Capabilities of the OEH techniques are illustrated with representative applications, including determination of optimal inspection conditions to minimize inspection time while achieving sufficient levels of accuracy and resolution.

  10. Analysis of the surface effects on adhesion in MEMS structures

    NASA Astrophysics Data System (ADS)

    Rusu, F.; Pustan, M.; Bîrleanu, C.; Müller, R.; Voicu, R.; Baracu, A.

    2015-12-01

    One of the main failure causes in microelectromechanical systems (MEMS) is stiction. Stiction is the adhesion of contacting surfaces due to surface forces. Adhesion force depends on the operating conditions and is influenced by the contact area. In this study, the adhesion force between MEMS materials and the AFM tips is analyzed using the spectroscopy in point mode of the AFM. The aim is to predict the stiction failure mode in MEMS. The investigated MEMS materials are silicon, polysilicon, platinum, aluminum, and gold. Three types of investigations were conducted. The first one aimed to determine the variation of the adhesion force with respect to the variation of the roughness. The roughness has a strong influence on the adhesion because the contact area between components increases if the roughness decreases. The second type of investigation aimed to determine the adhesion force in multiple points of each considered sample. The values obtained experimentally for the adhesion force were also validated using the JKR and DMT models. The third type of investigation was conducted with the purpose of determining the influence of the temperature on the adhesion force.

  11. MEMS: A new approach to micro-optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less

  12. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  13. Color image generation for screen-scanning holographic display.

    PubMed

    Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi

    2015-10-19

    Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.

  14. Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert

    2013-03-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute

  15. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  16. Adaptive optics self-calibration using differential OTF (dOTF)

    NASA Astrophysics Data System (ADS)

    Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier

    2015-09-01

    We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.

  17. Reconstruction of coded aperture images

    NASA Technical Reports Server (NTRS)

    Bielefeld, Michael J.; Yin, Lo I.

    1987-01-01

    Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.

  18. Micro/nano electro mechanical systems for practical applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2009-09-01

    Silicon MEMS as electrostatically levitated rotational gyroscope, 2D optical scanner and wafer level packaged devices as integrated capacitive pressure sensor and MEMS switch are described. MEMS which use non-silicon materials as diamond, PZT, conductive polymer, CNT (carbon nano tube), LTCC with electrical feedthrough, SiC (silicon carbide) and LiNbO3 for multi-probe data storage, multi-column electron beam lithography system, probe card for wafer-level burn-in test, mould for glass press moulding and SAW wireless passive sensor respectively are also described.

  19. Transimpedance Amplifier for MEMS SAW Oscillator in 1.4GHz

    NASA Astrophysics Data System (ADS)

    Kamarudin, N.; Karim, J.; Hussin, H.

    2018-03-01

    This work is to design a transimpedance amplifier for MEMS SAW resonator to achieve low power consumption at desired frequency. A transimpedance amplifier is designed and characterized for MEMS SAW resonator in 0.18μm CMOS process. The transimpedance amplifier achieves gain is 31 dBΩ at 176°. The power consume by oscillator is 0.6mW at VDD 1.8V while phase noise at -133.97dBc/Hz at 10kHz.

  20. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    PubMed

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

Top