A model for plant lighting system selection.
Ciolkosz, D E; Albright, L D; Sager, J C; Langhans, R W
2002-01-01
A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.
Top-level modeling of an als system utilizing object-oriented techniques
NASA Astrophysics Data System (ADS)
Rodriguez, L. F.; Kang, S.; Ting, K. C.
The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system.This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models.
2011-01-01
ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component
Assessment of distributed photovoltair electric-power systems
NASA Astrophysics Data System (ADS)
Neal, R. W.; Deduck, P. F.; Marshall, R. N.
1982-10-01
The development of a methodology to assess the potential impacts of distributed photovoltaic (PV) systems on electric utility systems, including subtransmission and distribution networks, and to apply that methodology to several illustrative examples was developed. The investigations focused upon five specific utilities. Impacts upon utility system operations and generation mix were assessed using accepted utility planning methods in combination with models that simulate PV system performance and life cycle economics. Impacts on the utility subtransmission and distribution systems were also investigated. The economic potential of distributed PV systems was investigated for ownership by the utility as well as by the individual utility customer.
Capacity utilization study for aviation security cargo inspection queuing system
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl
2010-04-01
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.
Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number ofmore » cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.« less
Energy Systems Integration News - October 2016 | Energy Systems Integration
SuperModels Game," a sophisticated game model developed by the National Association of Regulatory Utility maintain reliability, affordability, and utility company competitiveness. Those not invited to the game
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1981-01-01
Progress is reported in reading MAGSAT tapes in modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere. The modeling technique utilizes a linear current element representation of the large-scale space-current system.
Distribution system model calibration with big data from AMI and PV inverters
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...
2016-03-03
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Distribution system model calibration with big data from AMI and PV inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A
2014-01-01
Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.
WATER DISTRIBUTION SYSTEM ANALYSIS: FIELD STUDIES, MODELING AND MANAGEMENT
The user‘s guide entitled “Water Distribution System Analysis: Field Studies, Modeling and Management” is a reference guide for water utilities and an extensive summarization of information designed to provide drinking water utility personnel (and related consultants and research...
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The status of the initial testing of the modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is reported. The modeling technique utilizes a linear current element representation of the large scale space-current system.
Use of multiattribute utility theory for formulary management in a health system.
Chung, Seonyoung; Kim, Sooyon; Kim, Jeongmee; Sohn, Kieho
2010-01-15
The application, utility, and flexibility of the multiattribute utility theory (MAUT) when used as a formulary decision methodology in a Korean medical center were evaluated. A drug analysis model using MAUT consisting of 10 steps was designed for two drug classes of dihydropyridine calcium channel blockers (CCBs) and angiotensin II receptor blockers (ARBs). These two drug classes contain the most diverse agents among cardiovascular drugs on Samsung Medical Center's drug formulary. The attributes identified for inclusion in the drug analysis model were effectiveness, safety, patient convenience, and cost, with relative weights of 50%, 30%, 10%, and 10%, respectively. The factors were incorporated into the model to quantify the contribution of each attribute. For each factor, a utility scale of 0-100 was established, and the total utility score for each alternative was calculated. An attempt was made to make the model adaptable to changing health care and regulatory circumstances. The analysis revealed amlodipine besylate to be an alternative agent, with the highest total utility score among the dihydropyridine CCBs, while barnidipine hydrochloride had the lowest score. For ARBs, losartan potassium had the greatest total utility score, while olmesartan medoxomil had the lowest. A drug analysis model based on the MAUT was successfully developed and used in making formulary decisions for dihydropyridine CCBs and ARBs for a Korean health system. The model incorporates sufficient utility and flexibility of a drug's attributes and can be used as an alternative decision-making tool for formulary management in health systems.
Rehan, R; Knight, M A; Haas, C T; Unger, A J A
2011-10-15
Recently enacted regulations in Canada and elsewhere require water utilities to be financially self-sustaining over the long-term. This implies full cost recovery for providing water and wastewater services to users. This study proposes a new approach to help water utilities plan to meet the requirements of the new regulations. A causal loop diagram is developed for a financially self-sustaining water utility which frames water and wastewater network management as a complex system with multiple interconnections and feedback loops. The novel System Dynamics approach is used to develop a demonstration model for water and wastewater network management. This is the first known application of System Dynamics to water and wastewater network management. The network simulated is that of a typical Canadian water utility that has under invested in maintenance. Model results show that with no proactive rehabilitation strategy the utility will need to substantially increase its user fees to achieve financial sustainability. This increase is further exacerbated when price elasticity of water demand is considered. When the utility pursues proactive rehabilitation, financial sustainability is achieved with lower user fees. Having demonstrated the significance of feedback loops for financial management of water and wastewater networks, the paper makes the case for a more complete utility model that considers the complexity of the system by incorporating all feedback loops. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Balancing autonomy and utilization of solar power and battery storage for demand based microgrids
NASA Astrophysics Data System (ADS)
Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.
2015-04-01
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.
A Transparent Translation from Legacy System Model into Common Information Model: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Simpson, Jeffrey; Zhang, Yingchen
Advance in smart grid is forcing utilities towards better monitoring, control and analysis of distribution systems, and requires extensive cyber-based intelligent systems and applications to realize various functionalities. The ability of systems, or components within systems, to interact and exchange services or information with each other is the key to the success of smart grid technologies, and it requires efficient information exchanging and data sharing infrastructure. The Common Information Model (CIM) is a standard that allows different applications to exchange information about an electrical system, and it has become a widely accepted solution for information exchange among different platforms andmore » applications. However, most existing legacy systems are not developed using CIM, but using their own languages. Integrating such legacy systems is a challenge for utilities, and the appropriate utilization of the integrated legacy systems is even more intricate. Thus, this paper has developed an approach and open-source tool in order to translate legacy system models into CIM format. The developed tool is tested for a commercial distribution management system and simulation results have proved its effectiveness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Donald; Davidson, Carolyn; Fu, Ran
The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scalemore » systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.« less
Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting
NASA Astrophysics Data System (ADS)
Abarr, Miles L. Lindsey
This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.
Energy Systems Integration News | Energy Systems Integration Facility |
technologies and business models help utilities and tech companies address integrate distributed energy invaders: Disruptive technologies crowding the utility space" at the Utilities in a Time of Change and Franyutti, Vice-President, Energy Business Group, Mexichem
NASA Astrophysics Data System (ADS)
Morioka, Yasuki; Nakata, Toshihiko
In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.
Giessler, Mathias; Tränckner, Jens
2018-02-01
The paper presents a simplified model that quantifies economic and technical consequences of changing conditions in wastewater systems on utility level. It has been developed based on data from stakeholders and ministries, collected by a survey that determined resulting effects and adapted measures. The model comprises all substantial cost relevant assets and activities of a typical German wastewater utility. It consists of three modules: i) Sewer for describing the state development of sewer systems, ii) WWTP for process parameter consideration of waste water treatment plants (WWTP) and iii) Cost Accounting for calculation of expenses in the cost categories and resulting charges. Validity and accuracy of this model was verified by using historical data from an exemplary wastewater utility. Calculated process as well as economic parameters shows a high accuracy compared to measured parameters and given expenses. Thus, the model is proposed to support strategic, process oriented decision making on utility level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Westermayer, Sonja A; Fritz, Georg; Gutiérrez, Joaquín; Megerle, Judith A; Weißl, Mira P S; Schnetz, Karin; Gerland, Ulrich; Rädler, Joachim O
2016-05-01
The utilization of several sugars in Escherichia coli is regulated by the Phosphotransferase System (PTS), in which diverse sugar utilization modules compete for phosphoryl flux from the general PTS proteins. Existing theoretical work predicts a winner-take-all outcome when this flux limits carbon uptake. To date, no experimental work has interrogated competing PTS uptake modules with single-cell resolution. Using time-lapse microscopy in perfused microchannels, we analyzed the competition between N-acetyl-glucosamine and sorbitol, as representative PTS sugars, by measuring both the expression of their utilization systems and the concomitant impact of sugar utilization on growth rates. We find two distinct regimes: hierarchical usage of the carbohydrates, and co-expression of the genes for both systems. Simulations of a mathematical model incorporating asymmetric sugar quality reproduce our metabolic phase diagram, indicating that under conditions of nonlimiting phosphate flux, co-expression is due to uncoupling of both sugar utilization systems. Our model reproduces hierarchical winner-take-all behaviour and stochastic co-expression, and predicts the switching between both strategies as a function of available phosphate flux. Hence, experiments and theory both suggest that PTS sugar utilization involves not only switching between the sugars utilized but also switching of utilization strategies to accommodate prevailing environmental conditions. © 2016 John Wiley & Sons Ltd.
Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat
2013-01-22
A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.
Historical Development of Simulation Models of Recreation Use
Jan W. van Wagtendonk; David N. Cole
2005-01-01
The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...
Distribution Feeder Modeling for Time-Series Simulation of Voltage Management Strategies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraldez Miner, Julieta I; Gotseff, Peter; Nagarajan, Adarsh
This paper presents techniques to create baseline distribution models using a utility feeder from Hawai'ian Electric Company. It describes the software-to-software conversion, steady-state, and time-series validations of a utility feeder model. It also presents a methodology to add secondary low-voltage circuit models to accurately capture the voltage at the customer meter level. This enables preparing models to perform studies that simulate how customer-sited resources integrate into legacy utility distribution system operations.
Model prototype utilization in the analysis of fault tolerant control and data processing systems
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Tsarev, R. Yu; Gruzenkin, D. V.; Prokopenko, A. V.; Knyazkov, A. N.; Laptenok, V. D.
2016-04-01
The procedure assessing the profit of control and data processing system implementation is presented in the paper. The reasonability of model prototype creation and analysis results from the implementing of the approach of fault tolerance provision through the inclusion of structural and software assessment redundancy. The developed procedure allows finding the best ratio between the development cost and the analysis of model prototype and earnings from the results of this utilization and information produced. The suggested approach has been illustrated by the model example of profit assessment and analysis of control and data processing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows themore » relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.« less
Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, A.; Ferguson, T.
This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less
Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System
NASA Technical Reports Server (NTRS)
Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.
2005-01-01
In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.
Pumping Optimization Model for Pump and Treat Systems - 15091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, S.; Ivarson, Kristine A.; Karanovic, M.
2015-01-15
Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It producesmore » predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.« less
Rehan, R; Knight, M A; Unger, A J A; Haas, C T
2013-12-15
This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R
2011-09-01
Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.
ADVANCED UTILITY SIMULATION MODEL DOCUMENTATION OF SYSTEM DESIGN STATE LEVEL MODEL (VERSION 1.0)
The report is one of 11 in a series describing the initial development of the Advanced Utility Simulation Model (AUSM) by the Universities Research Group on Energy (URGE) and its continued development by the Science Applications International Corporation (SAIC) research team. The...
Appendix M. Research Utilization and Problem Solving
ERIC Educational Resources Information Center
Jung, Charles
The Research Utilization and Problem Solving (RUPS) Model--an instructional system designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and developing curriculum to meet the needs identified--is intended to facilitate the development of…
Utilizing Climate Forecasts for Improving Water and Power Systems Coordination
NASA Astrophysics Data System (ADS)
Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.
2016-12-01
Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Efforts in support of the development of a model of the magnetic fields due to ionospheric and magnetospheric electrical currents are discussed. Specifically, progress made in reading MAGSAT tapes and plotting the deviation of the measured magnetic field components with respect to a spherical harmonic model of the main geomagnetic field is reported. Initial tests of the modeling procedure developed to compute the ionosphere/magnetosphere-induced fields at satellite orbit are also described. The modeling technique utilizes a liner current element representation of the large scale current system.
SIMULATION OF SULFATE AEROSOL IN EAST ASIA USING MODELS-3/CMAQ WITH RAMS METEOROLOGICAL DATA
The present study attempts to address a few challenges in utilizing the flexibility of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. We apply the CMAQ system with the meteorological data provided by the Regional Atmospheric Modeling System (RAMS) and to a...
Method and system for controlling a gasification or partial oxidation process
Rozelle, Peter L; Der, Victor K
2015-02-10
A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
An evidential reasoning extension to quantitative model-based failure diagnosis
NASA Technical Reports Server (NTRS)
Gertler, Janos J.; Anderson, Kenneth C.
1992-01-01
The detection and diagnosis of failures in physical systems characterized by continuous-time operation are studied. A quantitative diagnostic methodology has been developed that utilizes the mathematical model of the physical system. On the basis of the latter, diagnostic models are derived each of which comprises a set of orthogonal parity equations. To improve the robustness of the algorithm, several models may be used in parallel, providing potentially incomplete and/or conflicting inferences. Dempster's rule of combination is used to integrate evidence from the different models. The basic probability measures are assigned utilizing quantitative information extracted from the mathematical model and from online computation performed therewith.
User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs
Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.
2008-01-01
This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.
NASA Astrophysics Data System (ADS)
Klasic, M. R.; Ekstrom, J.; Bedsworth, L. W.; Baker, Z.
2017-12-01
Extreme events such as wildfires, droughts, and flooding are projected to be more frequent and intense under a changing climate, increasing challenges to water quality management. To protect and improve public health, drinking water utility managers need to understand and plan for climate change and extreme events. This three year study began with the assumption that improved climate projections were key to advancing climate adaptation at the local level. Through a survey (N = 259) and interviews (N = 61) with California drinking water utility managers during the peak of the state's recent drought, we found that scientific information was not a key barrier hindering adaptation. Instead, we found that managers fell into three distinct mental models based on their interaction with, perceptions, and attitudes, towards scientific information and the future of water in their system. One of the mental models, "modeled futures", is a concept most in line with how climate change scientists talk about the use of information. Drinking water utilities falling into the "modeled future" category tend to be larger systems that have adequate capacity to both receive and use scientific information. Medium and smaller utilities in California, that more often serve rural low income communities, tend to fall into the other two mental models, "whose future" and "no future". We show evidence that there is an implicit presumption that all drinking water utility managers should strive to align with "modeled future" mental models. This presentation questions this assumption as it leaves behind many utilities that need to adapt to climate change (several thousand in California alone), but may not have the technical, financial, managerial, or other capacity to do so. It is clear that no single solution or pathway to drought resilience exists for water utilities, but we argue that a more explicit understanding and definition of what it means to be a resilient drinking water utility is necessary. By highlighting, then questioning, the assumption that all utility managers should strive to have "modeled future" mentalities, this presentation seeks to foster an open dialogue around which pathway or pathways are most feasible for supporting drinking water utility managers planning for climate change.
Analysis and design of hospital management information system based on UML
NASA Astrophysics Data System (ADS)
Ma, Lin; Zhao, Huifang; You, Shi Jun; Ge, Wenyong
2018-05-01
With the rapid development of computer technology, computer information management system has been utilized in many industries. Hospital Information System (HIS) is in favor of providing data for directors, lightening the workload for the medical workers, and improving the workers efficiency. According to the HIS demand analysis and system design, this paper focus on utilizing unified modeling language (UML) models to establish the use case diagram, class diagram, sequence chart and collaboration diagram, and satisfying the demands of the daily patient visit, inpatient, drug management and other relevant operations. At last, the paper summarizes the problems of the system and puts forward an outlook of the HIS system.
A Model for Communications Satellite System Architecture Assessment
2011-09-01
This is shown in Equation 4. The total system cost includes all development, acquisition, fielding, operations, maintenance and upgrades, and system...protection. A mathematical model was implemented to enable the analysis of communications satellite system architectures based on multiple system... implemented to enable the analysis of communications satellite system architectures based on multiple system attributes. Utilization of the model in
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
NASA Astrophysics Data System (ADS)
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
Information system and website design to support theautomotive manufacture ERP system
NASA Astrophysics Data System (ADS)
Amran, T. G.; Azmi, N.; Surjawati, A. A.
2017-12-01
This research is to create an on-time production system design with Heijunka model so that the product diversity for all models could meet time and capacity requirements, own production flexibility, high quality, meet the customers’ demands, realistic in production as well as creating a web-based local components’ order information system that supports the Enterprise Resource Planning (ERP) system. The Heijunka model for equalization with heuristic and stochastic model has been implemented for productions up to 3000 units by implementing Suzuki International Manufacturing. The inefficiency in the local order information system demanded the need for a new information system design that is integrated in ERP. Kaizen needs to be done is the Supplier Network that all vendors can download and utilize those data to deliver the components to the company and for vendors’ internal uses as well. The model design is presumed effective where the model is able to be utilized as a solution so that the production can run according to the schedule and presumed efficient were the model is able to show the reduction of loss time and stock.
A decision modeling for phasor measurement unit location selection in smart grid systems
NASA Astrophysics Data System (ADS)
Lee, Seung Yup
As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.
Analyzing Cyber Security Threats on Cyber-Physical Systems Using Model-Based Systems Engineering
NASA Technical Reports Server (NTRS)
Kerzhner, Aleksandr; Pomerantz, Marc; Tan, Kymie; Campuzano, Brian; Dinkel, Kevin; Pecharich, Jeremy; Nguyen, Viet; Steele, Robert; Johnson, Bryan
2015-01-01
The spectre of cyber attacks on aerospace systems can no longer be ignored given that many of the components and vulnerabilities that have been successfully exploited by the adversary on other infrastructures are the same as those deployed and used within the aerospace environment. An important consideration with respect to the mission/safety critical infrastructure supporting space operations is that an appropriate defensive response to an attack invariably involves the need for high precision and accuracy, because an incorrect response can trigger unacceptable losses involving lives and/or significant financial damage. A highly precise defensive response, considering the typical complexity of aerospace environments, requires a detailed and well-founded understanding of the underlying system where the goal of the defensive response is to preserve critical mission objectives in the presence of adversarial activity. In this paper, a structured approach for modeling aerospace systems is described. The approach includes physical elements, network topology, software applications, system functions, and usage scenarios. We leverage Model-Based Systems Engineering methodology by utilizing the Object Management Group's Systems Modeling Language to represent the system being analyzed and also utilize model transformations to change relevant aspects of the model into specialized analyses. A novel visualization approach is utilized to visualize the entire model as a three-dimensional graph, allowing easier interaction with subject matter experts. The model provides a unifying structure for analyzing the impact of a particular attack or a particular type of attack. Two different example analysis types are demonstrated in this paper: a graph-based propagation analysis based on edge labels, and a graph-based propagation analysis based on node labels.
IS Success Model in E-Learning Context Based on Students' Perceptions
ERIC Educational Resources Information Center
Freeze, Ronald D.; Alshare, Khaled A.; Lane, Peggy L.; Wen, H. Joseph
2010-01-01
This study utilized the Information Systems Success (ISS) model in examining e-learning systems success. The study was built on the premise that system quality (SQ) and information quality (IQ) influence system use and user satisfaction, which in turn impact system success. A structural equation model (SEM), using LISREL, was used to test the…
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Atmospheric Modeling And Sensor Simulation (AMASS) study
NASA Technical Reports Server (NTRS)
Parker, K. G.
1984-01-01
The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.
Efficient Agent-Based Models for Non-Genomic Evolution
NASA Technical Reports Server (NTRS)
Gupta, Nachi; Agogino, Adrian; Tumer, Kagan
2006-01-01
Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.
IAPCS: A COMPUTER MODEL THAT EVALUATES POLLUTION CONTROL SYSTEMS FOR UTILITY BOILERS
The IAPCS model, developed by U.S. EPA`s Air and Energy Engineering Research Laboratory and made available to the public through the National Technical Information Service, can be used by utility companies, architectural and engineering companies, and regulatory agencies at all l...
Modeling of materials supply, demand and prices
NASA Technical Reports Server (NTRS)
1982-01-01
The societal, economic, and policy tradeoffs associated with materials processing and utilization, are discussed. The materials system provides the materials engineer with the system analysis required for formulate sound materials processing, utilization, and resource development policies and strategies. Materials system simulation and modeling research program including assessments of materials substitution dynamics, public policy implications, and materials process economics was expanded. This effort includes several collaborative programs with materials engineers, economists, and policy analysts. The technical and socioeconomic issues of materials recycling, input-output analysis, and technological change and productivity are examined. The major thrust areas in materials systems research are outlined.
Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...
2014-12-31
Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less
A social systems model of hospital utilization.
Anderson, J G
1976-01-01
A social systems model for the health services system serving the state of New Mexico is presented. Utilization of short-term general hospitals is viewed as a function of sociodemographic characteristics of the population and of the supply of health manpower and facilities available to that population. The model includes a network specifying the causal relationships hypothesized as existing among a set of social, demographic, and economic variables known to be related to the supply of health manpower and facilities and to their utilization. Inclusion of feedback into the model as well as lagged values of physician supply variables permits examination of the dynamic behavior of the social system over time. A method for deriving the reduced form of the structural model is presented along with the reduced-form equations. These equations provide valuable information for policy decisions regarding the likely consequences of changes in the structure of the population and in the supply of health manpower and facilities. The structural and reduced-form equations have been used to predict the consequences for one New Mexico county of state and federal policies that would affect the organization and delivery of health services. PMID:1017949
Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joan F. Brennecke; Mihir Sen; Edward J. Maginn
2009-01-11
The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILsmore » appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuohy, Aidan; Smith, Jeff; Rylander, Matt
2016-07-11
Increasing levels of distributed and utility scale Solar Photovoltaics (PV) will have an impact on many utility functions, including distribution system operations, bulk system performance, business models and scheduling of generation. In this project, EPRI worked with Southern Company Services and its affiliates and the Tennessee Valley Authority to assist these utilities in their strategic planning efforts for integrating PV, based on modeling, simulation and analysis using a set of innovative tools. Advanced production simulation models were used to investigate operating reserve requirements. To leverage existing work and datasets, this last task was carried out on the California system. Overall,more » the project resulted in providing useful information to both of the utilities involved and through the final reports and interactions during the project. The results from this project can be used to inform the industry about new and improved methodologies for understanding solar PV penetration, and will influence ongoing and future research. This report summarizes each of the topics investigated over the 2.5-year project period.« less
Siggers, Keri A; Lesser, Cammie F
2008-07-17
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uri, N.D.
This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
NASA Technical Reports Server (NTRS)
Chon, K. H.; Cohen, R. J.
1997-01-01
This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.
What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?
NASA Astrophysics Data System (ADS)
Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.
2009-12-01
“…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility planning is conducted. In the near term we feel strongly that water utilities and climate scientists should work together to leverage the upcoming Coupled Model Intercomparison Project, Phase 5 (CMIP5; a coordinated set climate model experiments that will be used to support the upcoming IPCC Fifth Assessment) to better benefit water utilities. In the longer term, even with model and downscaling improvements, it is very likely that substantial uncertainty about future climate change at the desired spatial and temporal scales will remain. Nonetheless, there is no doubt the climate is changing, and the challenge is to work with what we have, or what we can reasonably expect to have in the coming years to make the best decisions we can.
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.
1990-01-01
The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.
Quasi 1D Modeling of Mixed Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.
2012-01-01
The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.
The economic impact of state ordered avoided cost rates for photovoltaic generated electricity
NASA Astrophysics Data System (ADS)
Bottaro, D.; Wheatley, N. J.
Various methods the states have devised to implement federal policy regarding the Public Utility Regulatory Policies Act (PURPA) of 1978, which requires that utilities pay their full 'avoided costs' to small power producers for the energy and capacity provided, are examined. The actions of several states are compared with rates estimated using utility expansion and rate-setting models, and the potential break-even capital costs of a photovoltaic system are estimated using models which calculate photovoltaic worth. The potential for the development of photovoltaics has been increased by the PURPA regulations more from the guarantee of utility purchase of photovoltaic power than from the high buy-back rates paid. The buy-back rate is high partly because of the surprisingly high effective capacity of photovoltaic systems in some locations.
An Integrated Framework for Analysis of Water Supply Strategies in a Developing City: Chennai, India
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Gorelick, S.; Goulder, L.
2009-12-01
Indian cities are facing a severe water crisis: rapidly growing population, low tariffs, high leakage rates, inadequate reservoir storage, are straining water supply systems, resulting in unreliable, intermittent piped supply. Conventional approaches to studying the problem of urban water supply have typically considered only centralized piped supply by the water utility. Specifically, they have tended to overlook decentralized actions by consumers such as groundwater extraction via private wells and aquifer recharge by rainwater harvesting. We present an innovative integrative framework for analyzing urban water supply in Indian cities. The framework is used in a systems model of water supply in the city of Chennai, India that integrates different components of the urban water system: water flows into the reservoir system, diversion and distribution by the public water utility, groundwater flow in the urban aquifer, informal water markets and consumer behavior. Historical system behavior from 2002-2006 is used to calibrate the model. The historical system behavior highlights the buffering role of the urban aquifer; storing water in periods of surplus for extraction by consumers via private wells. The model results show that in Chennai, distribution pipeline leaks result in the transfer of water from the inadequate reservoir system to the urban aquifer. The systems approach also makes it possible to evaluate and compare a wide range of centralized and decentralized policies. Three very different policies: Supply Augmentation (desalination), Efficiency Improvement (raising tariffs and fixing pipe leaks), and Rainwater Harvesting (recharging the urban aquifer by capturing rooftop and yard runoff) were evaluated using the model. The model results suggest that a combination of Rainwater Harvesting and Efficiency Improvement best meets our criteria of welfare maximization, equity, system reliability, and utility profitability. Importantly, the study shows that combination policy emerges as optimal because of three conditions that are prevalent in Chennai: 1) widespread presence of private wells, 2) inadequate availability of reservoir storage to the utility, and 2) high cost of new supply sources.
Őri, Zsolt P
2017-05-01
A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.
Tian, Zhongyuan; Fauré, Adrien; Mori, Hirotada; Matsuno, Hiroshi
2013-01-01
Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.
There is No Free Lunch: Tradeoffs in the Utility of Learned Knowledge
NASA Technical Reports Server (NTRS)
Kedar, Smadar T.; McKusick, Kathleen B.
1992-01-01
With the recent introduction of learning in integrated systems, there is a need to measure the utility of learned knowledge for these more complex systems. A difficulty arrises when there are multiple, possibly conflicting, utility metrics to be measured. In this paper, we present schemes which trade off conflicting utility metrics in order to achieve some global performance objectives. In particular, we present a case study of a multi-strategy machine learning system, mutual theory refinement, which refines world models for an integrated reactive system, the Entropy Reduction Engine. We provide experimental results on the utility of learned knowledge in two conflicting metrics - improved accuracy and degraded efficiency. We then demonstrate two ways to trade off these metrics. In each, some learned knowledge is either approximated or dynamically 'forgotten' so as to improve efficiency while degrading accuracy only slightly.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm-2 mm-1, 2.07 kg hm-2 mm-1 and 1.92 kg hm-2 mm-1 during 2011-2040, 2041-2070 and 2071-2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.
A Special Education Systems Simulation Model: Teacher Training Emphasis.
ERIC Educational Resources Information Center
Jones, Wayne; And Others
The authors illustrate the application of a systems approach for educational decision-makers through utilization of a special education systems simulation model with emphasis on teacher training. It is noted that the model provides a procedure to answer "what if" type questions before actually implementing a proposed program. Discussed are the…
Identification of human operator performance models utilizing time series analysis
NASA Technical Reports Server (NTRS)
Holden, F. M.; Shinners, S. M.
1973-01-01
The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.
Ryu, Young-Joon; Kim, Hankyeom; Jang, Sejin; Koo, Young-Mo
2013-06-01
Efficient management of human tissue samples is a critical issue; the supply of samples is unable to satisfy the current demands for research. Lack of informed consent is also an ethical problem. One of the goals of the 2012 revision of Korea's Bioethics and Safety Act was to implement regulations that govern the management of human tissue samples. To remain competitive, medical institutions must prepare for these future changes. In this report, we review two tissue management models that are currently in use; model 1 is the most common system utilized by hospitals in Korea and model 2 is implemented by some of the larger institutions. We also propose three alternative models that offer advantages over the systems currently in use. Model 3 is a multi-bank model that protects the independence of physicians and pathologists. Model 4 utilizes a comprehensive single bioresource bank; although in this case, the pathologists gain control of the samples, which may make it difficult to implement. Model 5, which employs a bioresource utilization steering committee (BUSC), is viable to implement and still maintains the advantages of Model 4. To comply with the upcoming law, we suggest that physicians and pathologists in an institution should collaborate to choose one of the improved models of tissue management system that best fits for their situation.
Gries, Katharine S; Regier, Dean A; Ramsey, Scott D; Patrick, Donald L
2017-06-01
To develop a statistical model generating utility estimates for prostate cancer specific health states, using preference weights derived from the perspectives of prostate cancer patients, men at risk for prostate cancer, and society. Utility estimate values were calculated using standard gamble (SG) methodology. Study participants valued 18 prostate-specific health states with the five attributes: sexual function, urinary function, bowel function, pain, and emotional well-being. Appropriateness of model (linear regression, mixed effects, or generalized estimating equation) to generate prostate cancer utility estimates was determined by paired t-tests to compare observed and predicted values. Mixed-corrected standard SG utility estimates to account for loss aversion were calculated based on prospect theory. 132 study participants assigned values to the health states (n = 40 men at risk for prostate cancer; n = 43 men with prostate cancer; n = 49 general population). In total, 792 valuations were elicited (six health states for each 132 participants). The most appropriate model for the classification system was a mixed effects model; correlations between the mean observed and predicted utility estimates were greater than 0.80 for each perspective. Developing a health-state classification system with preference weights for three different perspectives demonstrates the relative importance of main effects between populations. The predicted values for men with prostate cancer support the hypothesis that patients experiencing the disease state assign higher utility estimates to health states and there is a difference in valuations made by patients and the general population.
Overview of ASC Capability Computing System Governance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.
This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.
NASA Astrophysics Data System (ADS)
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
Over the years, computer modeling has been used extensively in many disciplines to solve engineering problems. A set of computer program tools is proposed to assist the engineer in the various phases of the Space Station program from technology selection through flight operations. The development and application of emulation and simulation transient performance modeling tools for life support systems are examined. The results of the development and the demonstration of the utility of three computer models are presented. The first model is a detailed computer model (emulation) of a solid amine water desorbed (SAWD) CO2 removal subsystem combined with much less detailed models (simulations) of a cabin, crew, and heat exchangers. This model was used in parallel with the hardware design and test of this CO2 removal subsystem. The second model is a simulation of an air revitalization system combined with a wastewater processing system to demonstrate the capabilities to study subsystem integration. The third model is that of a Space Station total air revitalization system. The station configuration consists of a habitat module, a lab module, two crews, and four connecting nodes.
Exercise and Diet in Obesity Treatment: An Integrative System Dynamics Perspective.
ERIC Educational Resources Information Center
Abdel-Hamid, Tarek K.
2003-01-01
Examined the utility of System Dynamics modeling as a vehicle for controlled experimentation to study and gain insight into the impacts of physical activity and diet on body weight and composition. Results underscored the significant interaction effects between physical activity, diet, and body composition and demonstrated the utility of…
Dual processing model of medical decision-making.
Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G
2012-09-03
Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. We show that physician's beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker's threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the large extent dominated by expected utility theory. The model also provides a platform for reconciling two groups of competing dual processing theories (parallel competitive with default-interventionalist theories).
NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance
in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company
Yu, Yuncui; Jia, Lulu; Meng, Yao; Hu, Lihua; Liu, Yiwei; Nie, Xiaolu; Zhang, Meng; Zhang, Xuan; Han, Sheng; Peng, Xiaoxia; Wang, Xiaoling
2018-04-01
Establishing a comprehensive clinical evaluation system is critical in enacting national drug policy and promoting rational drug use. In China, the 'Clinical Comprehensive Evaluation System for Pediatric Drugs' (CCES-P) project, which aims to compare drugs based on clinical efficacy and cost effectiveness to help decision makers, was recently proposed; therefore, a systematic and objective method is required to guide the process. An evidence-based multi-criteria decision analysis model that involved an analytic hierarchy process (AHP) was developed, consisting of nine steps: (1) select the drugs to be reviewed; (2) establish the evaluation criterion system; (3) determine the criterion weight based on the AHP; (4) construct the evidence body for each drug under evaluation; (5) select comparative measures and calculate the original utility score; (6) place a common utility scale and calculate the standardized utility score; (7) calculate the comprehensive utility score; (8) rank the drugs; and (9) perform a sensitivity analysis. The model was applied to the evaluation of three different inhaled corticosteroids (ICSs) used for asthma management in children (a total of 16 drugs with different dosage forms and strengths or different manufacturers). By applying the drug analysis model, the 16 ICSs under review were successfully scored and evaluated. Budesonide suspension for inhalation (drug ID number: 7) ranked the highest, with comprehensive utility score of 80.23, followed by fluticasone propionate inhaled aerosol (drug ID number: 16), with a score of 79.59, and budesonide inhalation powder (drug ID number: 6), with a score of 78.98. In the sensitivity analysis, the ranking of the top five and lowest five drugs remains unchanged, suggesting this model is generally robust. An evidence-based drug evaluation model based on AHP was successfully developed. The model incorporates sufficient utility and flexibility for aiding the decision-making process, and can be a useful tool for the CCES-P.
NASA Technical Reports Server (NTRS)
Horton, F. E.
1970-01-01
The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.
Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan
2015-08-05
Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less
LCP- LIFETIME COST AND PERFORMANCE MODEL FOR DISTRIBUTED PHOTOVOLTAIC SYSTEMS
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
The Lifetime Cost and Performance (LCP) Model was developed to assist in the assessment of Photovoltaic (PV) system design options. LCP is a simulation of the performance, cost, and revenue streams associated with distributed PV power systems. LCP provides the user with substantial flexibility in specifying the technical and economic environment of the PV application. User-specified input parameters are available to describe PV system characteristics, site climatic conditions, utility purchase and sellback rate structures, discount and escalation rates, construction timing, and lifetime of the system. Such details as PV array orientation and tilt angle, PV module and balance-of-system performance attributes, and the mode of utility interconnection are user-specified. LCP assumes that the distributed PV system is utility grid interactive without dedicated electrical storage. In combination with a suitable economic model, LCP can provide an estimate of the expected net present worth of a PV system to the owner, as compared to electricity purchased from a utility grid. Similarly, LCP might be used to perform sensitivity analyses to identify those PV system parameters having significant impact on net worth. The user describes the PV system configuration to LCP via the basic electrical components. The module is the smallest entity in the PV system which is modeled. A PV module is defined in the simulation by its short circuit current, which varies over the system lifetime due to degradation and failure. Modules are wired in series to form a branch circuit. Bypass diodes are allowed between modules in the branch circuits. Branch circuits are then connected in parallel to form a bus. A collection of buses is connected in parallel to form an increment to capacity of the system. By choosing the appropriate series-parallel wiring design, the user can specify the current, voltage, and reliability characteristics of the system. LCP simulation of system performance is site-specific and follows a three-step procedure. First the hourly power produced by the PV system is computed using a selected year's insolation and temperature profile. For this step it is assumed that there are no module failures or degradation. Next, the monthly simulation is performed involving a month to month progression through the lifetime of the system. In this step, the effects of degradation, failure, dirt accumulation and operations/maintenance efforts on PV system performance over time are used to compute the monthly power capability fraction. The resulting monthly power capability fractions are applied to the hourly power matrix from the first step, giving the anticipated hourly energy output over the lifetime of the system. PV system energy output is compared with the PV system owner's electricity demand for each hour. The amount of energy to be purchased from or sold to the utility grid is then determined. Monthly expenditures on the PV system and the purchase of electricity from the utility grid are also calculated. LCP generates output reports pertaining to the performance of the PV system, and system costs and revenues. The LCP model, written in SIMSCRIPT 2.5 for batch execution on an IBM 370 series computer, was developed in 1981.
An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression
Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay
2012-01-01
Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552
Designing Interactive Learning Systems.
ERIC Educational Resources Information Center
Barker, Philip
1990-01-01
Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
NASA Astrophysics Data System (ADS)
Pyne, Moinak
This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.
Mitigating Provider Uncertainty in Service Provision Contracts
NASA Astrophysics Data System (ADS)
Smith, Chris; van Moorsel, Aad
Uncertainty is an inherent property of open, distributed and multiparty systems. The viability of the mutually beneficial relationships which motivate these systems relies on rational decision-making by each constituent party under uncertainty. Service provision in distributed systems is one such relationship. Uncertainty is experienced by the service provider in his ability to deliver a service with selected quality level guarantees due to inherent non-determinism, such as load fluctuations and hardware failures. Statistical estimators utilized to model this non-determinism introduce additional uncertainty through sampling error. Inability of the provider to accurately model and analyze uncertainty in the quality level guarantees can result in the formation of sub-optimal service provision contracts. Emblematic consequences include loss of revenue, inefficient resource utilization and erosion of reputation and consumer trust. We propose a utility model for contract-based service provision to provide a systematic approach to optimal service provision contract formation under uncertainty. Performance prediction methods to enable the derivation of statistical estimators for quality level are introduced, with analysis of their resultant accuracy and cost.
Majoring in Information Systems: An Examination of Role Model Influence
ERIC Educational Resources Information Center
Akbulut, Asli Y.
2016-01-01
The importance of role models on individuals' academic and career development and success has been widely acknowledged in the literature. The purpose of this study was to understand the influence of role models on students' decisions to major in information systems (IS). Utilizing a model derived from the social cognitive career theory, we…
RELEASE NOTES FOR MODELS-3 VERSION 4.1 PATCH: SMOKE TOOL AND FILE CONVERTER
This software patch to the Models-3 system corrects minor errors in the Models-3 framework, provides substantial improvements in the ASCII to I/O API format conversion of the File Converter utility, and new functionalities for the SMOKE Tool. Version 4.1 of the Models-3 system...
Climate Science: How Earth System Models are Reshaping the Science Policy Interface.
NASA Technical Reports Server (NTRS)
Ruane, Alex
2015-01-01
This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.
Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.
Han, Bing; Taha, Tarek M
2010-04-01
There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.
Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L
2015-01-01
In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.
Cost and Performance Model for Photovoltaic Systems
NASA Technical Reports Server (NTRS)
Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.
1986-01-01
Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.
Isolation transformers for utility-interactive photovoltaic systems
NASA Astrophysics Data System (ADS)
Kern, E. C., Jr.
1982-12-01
Isolation transformers are used in some photovoltaic systems to isolate the photovoltaic system common mode voltage from the utility distribution system. In early system experiments with grid connected photovoltaics, such transformers were the source of significant power losses. A project at the Lincoln Laboratory and at Allied Chemical Corporation developed an improved isolation transformer to minimize such power losses. Experimental results and an analytical model of conventional and improved transformers are presented, showing considerable reductions of losses associated with the improved transformer.
Towards using musculoskeletal models for intelligent control of physically assistive robots.
Carmichael, Marc G; Liu, Dikai
2011-01-01
With the increasing number of robots being developed to physically assist humans in tasks such as rehabilitation and assistive living, more intelligent and personalized control systems are desired. In this paper we propose the use of a musculoskeletal model to estimate the strength of the user, from which information can be utilized to improve control schemes in which robots physically assist humans. An optimization model is developed utilizing a musculoskeletal model to estimate human strength in a specified dynamic state. Results of this optimization as well as methods of using it to observe muscle-based weaknesses in task space are presented. Lastly potential methods and problems in incorporating this model into a robot control system are discussed.
Kernel-Based Approximate Dynamic Programming Using Bellman Residual Elimination
2010-02-01
framework is the ability to utilize stochastic system models, thereby allowing the system to make sound decisions even if there is randomness in the system ...approximate policy when a system model is unavailable. We present theoretical analysis of all BRE algorithms proving convergence to the optimal policy in...policies based on MDPs is that there may be parameters of the system model that are poorly known and/or vary with time as the system operates. System
Drawing the Line: The Cultural Cartography of Utilization Recommendations for Mental Health Problems
ERIC Educational Resources Information Center
Olafsdottir, Sigrun; Pescosolido, Bernice A.
2009-01-01
In the 1990s, sociologists began to rethink the failure of utilization models to explain whether and why individuals accessed formal treatment systems. This effort focused on reconceptualizing the underlying assumptions and processes that shaped utilization patterns. While we have built a better understanding of how social networks structure…
Health State Utilities Associated with Glucose Monitoring Devices.
Matza, Louis S; Stewart, Katie D; Davies, Evan W; Hellmund, Richard; Polonsky, William H; Kerr, David
2017-03-01
Glucose monitoring is important for patients with diabetes treated with insulin. Conventional glucose monitoring requires a blood sample, typically obtained by pricking the finger. A new sensor-based system called "flash glucose monitoring" monitors glucose levels with a sensor worn on the arm, without requiring blood samples. To estimate the utility difference between these two glucose monitoring approaches for use in cost-utility models. In time trade-off interviews, general population participants in the United Kingdom (London and Edinburgh) valued health states that were drafted and refined on the basis of literature, clinician input, and a pilot study. The health states had identical descriptions of diabetes and insulin treatment, differing only in glucose monitoring approach. A total of 209 participants completed the interviews (51.7% women; mean age = 42.1 years). Mean utilities were 0.851 ± 0.140 for conventional monitoring and 0.882 ± 0.121 for flash monitoring (significant difference between the mean utilities; t = 8.3; P < 0.0001). Of the 209 participants, 78 (37.3%) had a higher utility for flash monitoring, 2 (1.0%) had a higher utility for conventional monitoring, and 129 (61.7%) had the same utility for both health states. The flash glucose monitoring system was associated with a significantly greater utility than the conventional monitoring system. This difference may be useful in cost-utility models comparing the value of glucose monitoring devices for patients with diabetes. This study adds to the literature on treatment process utilities, suggesting that time trade-off methods may be used to quantify preferences among medical devices. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
1981-10-01
measure for Central Nervus System is the Glasgow Cons Score (GCS), a scale of brain and spinal cord injury (Langfitt [1978]), and is itself an additive...concerns directly relating to the injury itself were identified. These were: 1. Ventilation Severity 2 Circulation Severity 3. Central Nervous System ...interacting system within which these concerns represent interacting parts. Most trauma involves only one of these systems , but more than one may be
Morlock, L L; Alexander, J A
1986-12-01
This study utilizes data from a national survey of 159 multihospital systems in order to describe the types of governance structures currently being utilized, and to compare the policy making process for various types of decisions in systems with different approaches to governance. Survey results indicate that multihospital systems most often use one of three governance models. Forty-one percent of the systems (including 33% of system hospitals) use a parent holding company model in which there is a system-wide corporate governing board and separate governing boards for each member hospital. Twenty-two percent of systems in the sample (but 47% of all system hospitals) utilize what we have termed a modified parent holding company model in which there is one system-wide governing board, but advisory boards are substituted for governing boards at the local hospital level. Twenty-three percent of the sampled systems (including 11% of system hospitals) use a corporate model in which there is one system-wide governing board but no other governing or advisory boards at either the divisional, regional or local hospital levels. A comparison of systems using these three governance approaches found significant variation in terms of system size, ownership and the geographic proximity of member hospitals. In order to examine the relationship between alternative approaches to governance and patterns of decision-making, the three model types were compared with respect to the percentages of systems reporting that local boards, corporate management and/or system-wide corporate boards have responsibility for decision-making in a number of specific issue areas. Study results indicate that, regardless of model type, corporate boards are most likely to have responsibility for decisions regarding the transfer, pledging and sale of assets; the formation of new companies; purchase of assets greater than $100,000; changes in hospital bylaws; and the appointment of local board members. In contrast corporate management is relatively uninvolved in these issues, again regardless of governance model type. There is substantial variation in the locus of decision-making responsibility by governance model type for a variety of other issues, however, including: hospital-level service additions and deletions; operating and capital budgets; medical staff privileges, hospital-level long-range planning; hospital CEO performance evaluation and the appointment of hospital CEOs.(ABSTRACT TRUNCATED AT 400 WORDS)
Application of Complex Adaptive Systems in Portfolio Management
ERIC Educational Resources Information Center
Su, Zheyuan
2017-01-01
Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…
An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization
ERIC Educational Resources Information Center
Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall
2008-01-01
Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark; Pratt, Annabelle; Lunacek, Monte
2015-07-17
The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling housesmore » in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.« less
Hernández-Avila, Juan E; Rodríguez, Mario H; Rodríguez, Norma E; Santos, René; Morales, Evangelina; Cruz, Carlos; Sepúlveda-Amor, Jaime
2002-01-01
To describe the geographical coverage of the Mexican Healthcare System (MHS) services and to assess the utilization of its General Hospitals. A Geographic Information System (GIS) was used to include sociodemographic data by locality, the geographical location of all MHS healthcare services, and data on hospital discharge records. A maximum likelihood estimation model was developed to assess the utilization levels of 217 MHS General Hospitals. The model included data on human resources, additional infrastructure, and the population within a 25 km radius. In 1998, 10,806 localities with 72 million inhabitants had at least one public healthcare unit, and 97.2% of the population lived within 50 km of a healthcare unit; however, over 18 million people lived in rural localities without a healthcare unit. The mean annual hospital occupation rate was 48.5 +/- 28.5 per 100 bed/years, with high variability within and between states. Hospital occupation was significantly associated with the number of physicians in the unit, and in the Mexican Institute of Social Security units utilization was associated with additional health infrastructure, and with the population's poverty index. GIS analysis allows improved estimation of the coverage and utilization of MHS hospitals.
Collective states in social systems with interacting learning agents
NASA Astrophysics Data System (ADS)
Semeshenko, Viktoriya; Gordon, Mirta B.; Nadal, Jean-Pierre
2008-08-01
We study the implications of social interactions and individual learning features on consumer demand in a simple market model. We consider a social system of interacting heterogeneous agents with learning abilities. Given a fixed price, agents repeatedly decide whether or not to buy a unit of a good, so as to maximize their expected utilities. This model is close to Random Field Ising Models, where the random field corresponds to the idiosyncratic willingness to pay. We show that the equilibrium reached depends on the nature of the information agents use to estimate their expected utilities. It may be different from the systems’ Nash equilibria.
NASA Astrophysics Data System (ADS)
Kanta, L.
2016-12-01
Outdoor water use for landscape and irrigation constitutes a significant end use in residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water use restrictions. Because utilities do not typically record outdoor and indoor water uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density or lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, records of outdoor conservation programs, frequency and type of mandatory water use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.
NASA Astrophysics Data System (ADS)
Kanta, L.; Berglund, E. Z.; Soh, M. H.
2017-12-01
Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.
NASA Technical Reports Server (NTRS)
Waites, W. L.; Chin, Y. T.
1974-01-01
A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.
Input/output behavior of supercomputing applications
NASA Technical Reports Server (NTRS)
Miller, Ethan L.
1991-01-01
The collection and analysis of supercomputer I/O traces and their use in a collection of buffering and caching simulations are described. This serves two purposes. First, it gives a model of how individual applications running on supercomputers request file system I/O, allowing system designer to optimize I/O hardware and file system algorithms to that model. Second, the buffering simulations show what resources are needed to maximize the CPU utilization of a supercomputer given a very bursty I/O request rate. By using read-ahead and write-behind in a large solid stated disk, one or two applications were sufficient to fully utilize a Cray Y-MP CPU.
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2017-01-01
We utilize the time dependent accretion disk model described by Ichikawa & Osaki (1992) to explore two basic ideas for the outbursts in the SU UMa systems, Osaki's Thermal-Tidal Model, and the basic accretion disk limit cycle model. We explore a range in possible input parameters and model assumptions to delineate under what conditions each model may be preferred.
Electrical utilities model for determining electrical distribution capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, R. L.
1997-09-03
In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at themore » minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.« less
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
An integrated model of learning.
Trigg, A M; Cordova, F D
1987-01-01
Worldwide, most educational systems are based on three levels of education that utilize the pedagogical approaches to learning. In the 1960s, scholars formulated another approach to education that has become known as andragogy and has been applied to adult education. Several innovative scholars have seen how andragogy can be applied to teaching children. As a result, both andragogy and pedagogy are viewed as the opposite ends of the educational spectrum. Both of these approaches have a place and function within the modern educational framework. If one assumes that the goal of education is for the acquisition and application of knowledge, then both of these approaches can be used effectively for the attainment of that goal. In order to utilize these approaches effectively, an integrated model of learning has been developed that consists of initial teaching and exploratory learning phases. This model has both the directive and flexible qualities found in the theories of pedagogy and andragogy. With careful consideration and analysis this educational model can be utilized effectively within most educational systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auld, Joshua; Hope, Michael; Ley, Hubert
This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less
Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.
2015-12-01
The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.
A model-based executive for commanding robot teams
NASA Technical Reports Server (NTRS)
Barrett, Anthony
2005-01-01
The paper presents a way to robustly command a system of systems as a single entity. Instead of modeling each component system in isolation and then manually crafting interaction protocols, this approach starts with a model of the collective population as a single system. By compiling the model into separate elements for each component system and utilizing a teamwork model for coordination, it circumvents the complexities of manually crafting robust interaction protocols. The resulting systems are both globally responsive by virtue of a team oriented interaction model and locally responsive by virtue of a distributed approach to model-based fault detection, isolation, and recovery.
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa C.
Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approachesmore » that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).« less
NASA Astrophysics Data System (ADS)
Karki, Rajesh
Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates risk, well-being and energy based indices to provide realistic cost/reliability measures of utilizing renewable energy. The concepts presented and the examples illustrated in this thesis will help system planners to decide on appropriate installation sites, the types and mix of different energy generating sources, the optimum operating policies, and the optimum generation expansion plans required to meet increasing load demands in small isolated power systems containing photovoltaic and wind energy sources.
Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults.
Wang, Tao; Xie, Wenfang; Zhang, Youmin
2012-05-01
In this paper, two sliding mode control algorithms are developed for nonlinear systems with both modeling uncertainties and actuator faults. The first algorithm is developed under an assumption that the uncertainty bounds are known. Different design parameters are utilized to deal with modeling uncertainties and actuator faults, respectively. The second algorithm is an adaptive version of the first one, which is developed to accommodate uncertainties and faults without utilizing exact bounds information. The stability of the overall control systems is proved by using a Lyapunov function. The effectiveness of the developed algorithms have been verified on a nonlinear longitudinal model of Boeing 747-100/200. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Design issues for grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Ropp, Michael Eugene
1998-08-01
Photovoltaics (PV) is the direct conversion of sunlight to electrical energy. In areas without centralized utility grids, the benefits of PV easily overshadow the present shortcomings of the technology. However, in locations with centralized utility systems, significant technical challenges remain before utility-interactive PV (UIPV) systems can be integrated into the mix of electricity sources. One challenge is that the needed computer design tools for optimal design of PV systems with curved PV arrays are not available, and even those that are available do not facilitate monitoring of the system once it is built. Another arises from the issue of islanding. Islanding occurs when a UIPV system continues to energize a section of a utility system after that section has been isolated from the utility voltage source. Islanding, which is potentially dangerous to both personnel and equipment, is difficult to prevent completely. The work contained within this thesis targets both of these technical challenges. In Task 1, a method for modeling a PV system with a curved PV array using only existing computer software is developed. This methodology also facilitates comparison of measured and modeled data for use in system monitoring. The procedure is applied to the Georgia Tech Aquatic Center (GTAC) FV system. In the work contained under Task 2, islanding prevention is considered. The existing state-of-the- art is thoroughly reviewed. In Subtask 2.1, an analysis is performed which suggests that standard protective relays are in fact insufficient to guarantee protection against islanding. In Subtask 2.2. several existing islanding prevention methods are compared in a novel way. The superiority of this new comparison over those used previously is demonstrated. A new islanding prevention method is the subject under Subtask 2.3. It is shown that it does not compare favorably with other existing techniques. However, in Subtask 2.4, a novel method for dramatically improving this new islanding prevention method is described. It is shown, both by computer modeling and experiment, that this new method is one of the most effective available today. Finally, under Subtask 2.5, the effects of certain types of loads; on the effectiveness of islanding prevention methods are discussed.
ERIC Educational Resources Information Center
Grobmeier, Cynthia
2007-01-01
Relating knowledge management (KM) case studies in various organizational contexts to existing theoretical constructs of learning organizations, a new model, the MIKS (Member Integrated Knowledge System) Model is proposed to include the role of the individual in the process. Their degree of motivation as well as communication and learning…
Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan
2018-06-01
We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an environmentally and economically rewarding manner. The model developed in this study is generic, and it can be applied to any industry at any location, as long as the required inputs are available. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
Kopec, Jacek A; Sayre, Eric C; Rogers, Pamela; Davis, Aileen M; Badley, Elizabeth M; Anis, Aslam H; Abrahamowicz, Michal; Russell, Lara; Rahman, Md Mushfiqur; Esdaile, John M
2015-10-01
The CAT-5D-QOL is a previously reported item response theory (IRT)-based computerized adaptive tool to measure five domains (attributes) of health-related quality of life. The objective of this study was to develop and validate a multiattribute health utility (MAHU) scoring method for this instrument. The MAHU scoring system was developed in two stages. In phase I, we obtained standard gamble (SG) utilities for 75 hypothetical health states in which only one domain varied (15 states per domain). In phase II, we obtained SG utilities for 256 multiattribute states. We fit a multiplicative regression model to predict SG utilities from the five IRT domain scores. The prediction model was constrained using data from phase I. We validated MAHU scores by comparing them with the Health Utilities Index Mark 3 (HUI3) and directly measured utilities and by assessing between-group discrimination. MAHU scores have a theoretical range from -0.842 to 1. In the validation study, the scores were, on average, higher than HUI3 utilities and lower than directly measured SG utilities. MAHU scores correlated strongly with the HUI3 (Spearman ρ = 0.78) and discriminated well between groups expected to differ in health status. Results reported here provide initial evidence supporting the validity of the MAHU scoring system for the CAT-5D-QOL. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeuchi, Susumu; Teranishi, Yuuichi; Harumoto, Kaname; Shimojo, Shinji
Almost all companies are now utilizing computer networks to support speedier and more effective in-house information-sharing and communication. However, existing systems are designed to support communications only within the same department. Therefore, in our research, we propose an in-house communication support system which is based on the “Information Propagation Model (IPM).” The IPM is proposed to realize word-of-mouth communication in a social network, and to support information-sharing on the network. By applying the system in a real company, we found that information could be exchanged between different and unrelated departments, and such exchanges of information could help to build new relationships between the users who are apart on the social network.
Automated Gun Laying System for Self-Propelled Artillery Weapons.
1980-05-30
model designed specifically to the requirements of a test bed system. The system configuration and characteristics were specified through a series of...proposed by the contractor was further defined, utilizing the M109 component information provided by the COTR. Math models were developed to predict system...data. The model used for the TB-I program did not have the capability for a remote reset function, hence it was necessary to instruct the crew (loader
NASA Astrophysics Data System (ADS)
Wang, Lei; Fan, Youping; Zhang, Dai; Ge, Mengxin; Zou, Xianbin; Li, Jingjiao
2017-09-01
This paper proposes a method to simulate a back-to-back modular multilevel converter (MMC) HVDC transmission system. In this paper we utilize an equivalent networks to simulate the dynamic power system. Moreover, to account for the performance of converter station, core components of model of the converter station gives a basic model of simulation. The proposed method is applied to an equivalent real power system.
Dual processing model of medical decision-making
2012-01-01
Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the large extent dominated by expected utility theory. The model also provides a platform for reconciling two groups of competing dual processing theories (parallel competitive with default-interventionalist theories). PMID:22943520
On the Impact of Execution Models: A Case Study in Computational Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Halappanavar, Mahantesh; Krishnamoorthy, Sriram
2015-05-25
Efficient utilization of high-performance computing (HPC) platforms is an important and complex problem. Execution models, abstract descriptions of the dynamic runtime behavior of the execution stack, have significant impact on the utilization of HPC systems. Using a computational chemistry kernel as a case study and a wide variety of execution models combined with load balancing techniques, we explore the impact of execution models on the utilization of an HPC system. We demonstrate a 50 percent improvement in performance by using work stealing relative to a more traditional static scheduling approach. We also use a novel semi-matching technique for load balancingmore » that has comparable performance to a traditional hypergraph-based partitioning implementation, which is computationally expensive. Using this study, we found that execution model design choices and assumptions can limit critical optimizations such as global, dynamic load balancing and finding the correct balance between available work units and different system and runtime overheads. With the emergence of multi- and many-core architectures and the consequent growth in the complexity of HPC platforms, we believe that these lessons will be beneficial to researchers tuning diverse applications on modern HPC platforms, especially on emerging dynamic platforms with energy-induced performance variability.« less
Allocation of surgical procedures to operating rooms.
Ozkarahan, I
1995-08-01
Reduction of health care costs is of paramount importance in our time. This paper is a part of the research which proposes an expert hospital decision support system for resource scheduling. The proposed system combines mathematical programming, knowledge base, and database technologies, and what is more, its friendly interface is suitable for any novice user. Operating rooms in hospitals represent big investments and must be utilized efficiently. In this paper, first a mathematical model similar to job shop scheduling models is developed. The model loads surgical cases to operating rooms by maximizing room utilization and minimizing overtime in a multiple operating room setting. Then a prototype expert system which replaces the expertise of the operations research analyst for the model, drives the modelbase, database, and manages the user dialog is developed. Finally, an overview of the sequencing procedures for operations within an operating room is also presented.
Producing regionally-relevant multiobjective tradeoffs to engage with Colorado water managers
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Basdekas, L.; Dilling, L.
2016-12-01
Disseminating results from water resources systems analysis research can be challenging when there are political or regulatory barriers associated with real-world models, or when a research model does not incorporate management context to which practitioners can relate. As part of a larger transdisciplinary study, we developed a broadly-applicable case study in collaboration with our partners at six diverse water utilities in the Front Range of Colorado, USA. Our model, called the "Eldorado Utility Planning Model", incorporates realistic water management decisions and objectives and achieves a pragmatic balance between system complexity and simplicity. Using the sophisticated modeling platform RiverWare, we modeled a spatially distributed regional network in which, under varying climate scenarios, the Eldorado Utility can meet growing demand from its variety of sources and by interacting with other users in the network. In accordance with complicated Front Range water laws, ownership, priority of use, and restricted uses of water are tracked through RiverWare's accounting functionality. To achieve good system performance, Eldorado can make decisions such as expand/build a reservoir, purchase rights from one or more actors, and enact conservation. This presentation introduces the model, and motivates how it can be used to aid researchers in developing multi-objective evolutionary algorithm (MOEA)-based optimization for similar multi-reservoir systems in Colorado and the Western US. Within the optimization, system performance is quantified by 5 objectives: minimizing time in restrictions; new storage capacity; newly developed supply; and uncaptured water; and maximizing year-end storage. Our results demonstrate critical tradeoffs between the objectives and show how these tradeoffs are affected by several realistic climate change scenarios. These results were used within an interactive workshop that helped demonstrate the application of MOEA-based optimization for water management in the western US.
Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience
Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.
2013-01-01
This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881
Synthesis of trigeneration systems: sensitivity analyses and resilience.
Carvalho, Monica; Lozano, Miguel A; Ramos, José; Serra, Luis M
2013-01-01
This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs.
An Agent-Based Model for Navigation Simulation in a Heterogeneous Environment
ERIC Educational Resources Information Center
Shanklin, Teresa A.
2012-01-01
Complex navigation (e.g. indoor and outdoor environments) can be studied as a system-of-systems problem. The model is made up of disparate systems that can aid a user in navigating from one location to another, utilizing whatever sensor system or information is available. By using intelligent navigation sensors and techniques (e.g. RFID, Wifi,…
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
A driver-adaptive stability control strategy for sport utility vehicles
NASA Astrophysics Data System (ADS)
Zhu, Shenjin; He, Yuping
2017-08-01
Conventional vehicle stability control (VSC) systems are designed for average drivers. For a driver with a good driving skill, the VSC systems may be redundant; for a driver with a poor driving skill, the VSC intervention may be inadequate. To increase safety of sport utility vehicles (SUVs), this paper proposes a novel driver-adaptive VSC (DAVSC) strategy based on scaling the target yaw rate commanded by the driver. The DAVSC system is adaptive to drivers' driving skills. More control effort would be exerted for drivers with poor driving skills, and vice versa. A sliding mode control (SMC)-based differential braking (DB) controller is designed using a three degrees of freedom (DOF) yaw-plane model. An eight DOF nonlinear yaw-roll model is used to simulate the SUV dynamics. Two driver models, namely longitudinal and lateral, are used to 'drive' the virtual SUV. By integrating the virtual SUV, the DB controller, and the driver models, the performance of the DAVSC system is investigated. The simulations demonstrate the effectiveness of the DAVSC strategy.
A system level model for preliminary design of a space propulsion solid rocket motor
NASA Astrophysics Data System (ADS)
Schumacher, Daniel M.
Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiike, S.; Okazaki, Y.
This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.
Reliability analysis of a robotic system using hybridized technique
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Komal; Lather, J. S.
2017-09-01
In this manuscript, the reliability of a robotic system has been analyzed using the available data (containing vagueness, uncertainty, etc). Quantification of involved uncertainties is done through data fuzzification using triangular fuzzy numbers with known spreads as suggested by system experts. With fuzzified data, if the existing fuzzy lambda-tau (FLT) technique is employed, then the computed reliability parameters have wide range of predictions. Therefore, decision-maker cannot suggest any specific and influential managerial strategy to prevent unexpected failures and consequently to improve complex system performance. To overcome this problem, the present study utilizes a hybridized technique. With this technique, fuzzy set theory is utilized to quantify uncertainties, fault tree is utilized for the system modeling, lambda-tau method is utilized to formulate mathematical expressions for failure/repair rates of the system, and genetic algorithm is utilized to solve established nonlinear programming problem. Different reliability parameters of a robotic system are computed and the results are compared with the existing technique. The components of the robotic system follow exponential distribution, i.e., constant. Sensitivity analysis is also performed and impact on system mean time between failures (MTBF) is addressed by varying other reliability parameters. Based on analysis some influential suggestions are given to improve the system performance.
He, Xin; Frey, Eric C
2006-08-01
Previously, we have developed a decision model for three-class receiver operating characteristic (ROC) analysis based on decision theory. The proposed decision model maximizes the expected decision utility under the assumption that incorrect decisions have equal utilities under the same hypothesis (equal error utility assumption). This assumption reduced the dimensionality of the "general" three-class ROC analysis and provided a practical figure-of-merit to evaluate the three-class task performance. However, it also limits the generality of the resulting model because the equal error utility assumption will not apply for all clinical three-class decision tasks. The goal of this study was to investigate the optimality of the proposed three-class decision model with respect to several other decision criteria. In particular, besides the maximum expected utility (MEU) criterion used in the previous study, we investigated the maximum-correctness (MC) (or minimum-error), maximum likelihood (ML), and Nyman-Pearson (N-P) criteria. We found that by making assumptions for both MEU and N-P criteria, all decision criteria lead to the previously-proposed three-class decision model. As a result, this model maximizes the expected utility under the equal error utility assumption, maximizes the probability of making correct decisions, satisfies the N-P criterion in the sense that it maximizes the sensitivity of one class given the sensitivities of the other two classes, and the resulting ROC surface contains the maximum likelihood decision operating point. While the proposed three-class ROC analysis model is not optimal in the general sense due to the use of the equal error utility assumption, the range of criteria for which it is optimal increases its applicability for evaluating and comparing a range of diagnostic systems.
Reducing ambulance response times using discrete event simulation.
Wei Lam, Sean Shao; Zhang, Zhong Cheng; Oh, Hong Choon; Ng, Yih Ying; Wah, Win; Hock Ong, Marcus Eng
2014-01-01
The objectives of this study are to develop a discrete-event simulation (DES) model for the Singapore Emergency Medical Services (EMS), and to demonstrate the utility of this DES model for the evaluation of different policy alternatives to improve ambulance response times. A DES model was developed based on retrospective emergency call data over a continuous 6-month period in Singapore. The main outcome measure is the distribution of response times. The secondary outcome measure is ambulance utilization levels based on unit hour utilization (UHU) ratios. The DES model was used to evaluate different policy options in order to improve the response times, while maintaining reasonable fleet utilization. Three policy alternatives looking at the reallocation of ambulances, the addition of new ambulances, and alternative dispatch policies were evaluated. Modifications of dispatch policy combined with the reallocation of existing ambulances were able to achieve response time performance equivalent to that of adding 10 ambulances. The median (90th percentile) response time was 7.08 minutes (12.69 minutes). Overall, this combined strategy managed to narrow the gap between the ideal and existing response time distribution by 11-13%. Furthermore, the median UHU under this combined strategy was 0.324 with an interquartile range (IQR) of 0.047 versus a median utilization of 0.285 (IQR of 0.051) resulting from the introduction of additional ambulances. Response times were shown to be improved via a more effective reallocation of ambulances and dispatch policy. More importantly, the response time improvements were achieved without a reduction in the utilization levels and additional costs associated with the addition of ambulances. We demonstrated the effective use of DES as a versatile platform to model the dynamic system complexities of Singapore's national EMS systems for the evaluation of operational strategies to improve ambulance response times.
Mars 2020 Model Based Systems Engineering Pilot
NASA Technical Reports Server (NTRS)
Dukes, Alexandra Marie
2017-01-01
The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and verifications leading up to launch. The model allows IE to understand the relationships between disciplines throughout test activities and verifications. Additionally, the relationships between disciplines and integration tasks are generally consistent. The model allows for the generic relationships and tasks to be captured and used throughout multiple mission models should LSP further pursue MBSE. A con of MBSE is the amount of time it takes upfront to understand MBSE and create a useful model. The upfront time it takes to create a useful model is heavily discussed in MBSE literature and is a consistent con throughout the known applications of MBSE. The need to understand SysML and the software chosen also poses the possibility of a "bottleneck" or one person being the sole MBSE user for the working group. The utility of MBSE will continue to be evaluated through the remainder of the study. In conclusion, the original objectives of the pilot study were to use artifacts from MSL to model key aspects of Mars 2020 and demonstrate how MBSE could be used by LSP to gain insight into the spacecraft and launch vehicle interfaces. Progress has been made in modeling and identifying the utility of MBSE to LSP IE and will continue to be made until the pilot study's conclusion in mid-August. The results of this study will produce initial models, modeling instructions and examples, and a summary of MBSE's utility for future use by LSP.
Towards a Framework for Modeling Space Systems Architectures
NASA Technical Reports Server (NTRS)
Shames, Peter; Skipper, Joseph
2006-01-01
Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.
Solar Advisor Model User Guide for Version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.; Blair, N.; Mehos, M.
2008-08-01
The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.
A reduced order, test verified component mode synthesis approach for system modeling applications
NASA Astrophysics Data System (ADS)
Butland, Adam; Avitabile, Peter
2010-05-01
Component mode synthesis (CMS) is a very common approach used for the generation of large system models. In general, these modeling techniques can be separated into two categories: those utilizing a combination of constraint modes and fixed interface normal modes and those based on a combination of free interface normal modes and residual flexibility terms. The major limitation of the methods utilizing constraint modes and fixed interface normal modes is the inability to easily obtain the required information from testing; the result of this limitation is that constraint mode-based techniques are primarily used with numerical models. An alternate approach is proposed which utilizes frequency and shape information acquired from modal testing to update reduced order finite element models using exact analytical model improvement techniques. The connection degrees of freedom are then rigidly constrained in the test verified, reduced order model to provide the boundary conditions necessary for constraint modes and fixed interface normal modes. The CMS approach is then used with this test verified, reduced order model to generate the system model for further analysis. A laboratory structure is used to show the application of the technique with both numerical and simulated experimental components to describe the system and validate the proposed approach. Actual test data is then used in the approach proposed. Due to typical measurement data contaminants that are always included in any test, the measured data is further processed to remove contaminants and is then used in the proposed approach. The final case using improved data with the reduced order, test verified components is shown to produce very acceptable results from the Craig-Bampton component mode synthesis approach. Use of the technique with its strengths and weaknesses are discussed.
A perspective on laboratory utilization management from Canada.
Naugler, Christopher
2014-01-01
Utilization, particularly in chemistry and molecular testing, is growing rapidly in Canada at a time when laboratory budgets are shrinking. Canadian laboratories face particular challenges as the prevailing funding model limits the scope for new revenue generation. Aggressive and coordinated interventions to reduce over-utilization will be necessary to ensure the long-term viability of the current system. © 2013.
Mixture of autoregressive modeling orders and its implication on single trial EEG classification
Atyabi, Adham; Shic, Frederick; Naples, Adam
2016-01-01
Autoregressive (AR) models are of commonly utilized feature types in Electroencephalogram (EEG) studies due to offering better resolution, smoother spectra and being applicable to short segments of data. Identifying correct AR’s modeling order is an open challenge. Lower model orders poorly represent the signal while higher orders increase noise. Conventional methods for estimating modeling order includes Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Final Prediction Error (FPE). This article assesses the hypothesis that appropriate mixture of multiple AR orders is likely to better represent the true signal compared to any single order. Better spectral representation of underlying EEG patterns can increase utility of AR features in Brain Computer Interface (BCI) systems by increasing timely & correctly responsiveness of such systems to operator’s thoughts. Two mechanisms of Evolutionary-based fusion and Ensemble-based mixture are utilized for identifying such appropriate mixture of modeling orders. The classification performance of the resultant AR-mixtures are assessed against several conventional methods utilized by the community including 1) A well-known set of commonly used orders suggested by the literature, 2) conventional order estimation approaches (e.g., AIC, BIC and FPE), 3) blind mixture of AR features originated from a range of well-known orders. Five datasets from BCI competition III that contain 2, 3 and 4 motor imagery tasks are considered for the assessment. The results indicate superiority of Ensemble-based modeling order mixture and evolutionary-based order fusion methods within all datasets. PMID:28740331
Cranial implant design using augmented reality immersive system.
Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary
2007-01-01
Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.
NASA Technical Reports Server (NTRS)
Sainsbury-Carter, J. B.; Conaway, J. H.
1973-01-01
The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.
LCA-based optimization of wood utilization under special consideration of a cascading use of wood.
Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus
2015-04-01
Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Utility functions and resource management in an oversubscribed heterogeneous computing environment
Khemka, Bhavesh; Friese, Ryan; Briceno, Luis Diego; ...
2014-09-26
We model an oversubscribed heterogeneous computing system where tasks arrive dynamically and a scheduler maps the tasks to machines for execution. The environment and workloads are based on those being investigated by the Extreme Scale Systems Center at Oak Ridge National Laboratory. Utility functions that are designed based on specifications from the system owner and users are used to create a metric for the performance of resource allocation heuristics. Each task has a time-varying utility (importance) that the enterprise will earn based on when the task successfully completes execution. We design multiple heuristics, which include a technique to drop lowmore » utility-earning tasks, to maximize the total utility that can be earned by completing tasks. The heuristics are evaluated using simulation experiments with two levels of oversubscription. The results show the benefit of having fast heuristics that account for the importance of a task and the heterogeneity of the environment when making allocation decisions in an oversubscribed environment. Furthermore, the ability to drop low utility-earning tasks allow the heuristics to tolerate the high oversubscription as well as earn significant utility.« less
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.
2000-06-20
smoothing and regression which includes curve fitting are two principle forecasting model types utilized in the vast majority of forecasting applications ... model were compared against the VA Office of Policy and Planning forecasting study commissioned with the actuarial firm of Milliman & Robertson (M & R... Application to the Veterans Healthcare System The development of a model to forecast future VEV needs, utilization, and cost of the Acute Care and
DOT National Transportation Integrated Search
2012-10-01
This project conducted a thorough review of the existing Pavement Management Information System (PMIS) database, : performance models, needs estimates, utility curves, and scores calculations, as well as a review of District practices : concerning th...
A TRAINING MODEL FOR THE JOBLESS ADULT.
ERIC Educational Resources Information Center
ULRICH, BERNARD
THE TRAINING SYSTEMS DESIGN, AN INTERDISCIPLINARY APPROACH UTILIZING KNOWLEDGE OF BEHAVIORAL SCIENCES, NEW INSTRUCTIONAL TECHNOLOGY, AND SYSTEMS DESIGN, HAS BEEN APPLIED TO DEVELOP A MODEL FOR RE-EDUCATING AND TRAINING THE AGING UNEMPLOYED. RESEARCH INTO EXISTING MDTA DEMONSTRATION PROGRAMS BY THE COOPERATIVE EFFORTS OF MCGRAW-HILL AND THE…
ERIC Educational Resources Information Center
Smith, Hubert Gene
The objectives of the study presented in the dissertation were to identify present and anticipated information requirements of the various departments within the Oklahoma State Department of Vocational and Technical Education, to design a computerized information system model utilizing an integrated systems concept to meet information…
Modeling support for Alabama MPOs
DOT National Transportation Integrated Search
2010-07-29
The Fort Collins Advance Traffic Management System (ATMS) was a FY01 earmarked project. The objective of the overall project was to rebuild the City's entire traffic management system to utilize and provide Intelligent Transportation System (ITS) cap...
An Epidemiological Network Model for Disease Outbreak Detection
Reis, Ben Y; Kohane, Isaac S; Mandl, Kenneth D
2007-01-01
Background Advanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most. Methods and Findings To address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach. Conclusions The integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events. PMID:17593895
2011-09-30
community use for ROMS is biogeochemisty: chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to...J.C. McWilliams, X. Capet, and J. Kurian, 2010: Heat balance and eddies in the Peru- Chile Current System. Climate Dynamics, 37, in press. doi10.1007
Application of advanced preclinical models and methods in anesthetic neurotoxicity research.
Wang, Cheng; Zhang, Xuan; Liu, Fang
2017-05-01
Recently, there has been increasing concern regarding the potential of anesthetics to disturb the long-term function of the central nervous system (CNS). The field of anesthesia-related toxicology, therefore, has engaged multiple scientific disciplines and utilized a variety of pre-clinical research models in an attempt to identify the basic characteristics of the anesthetic agents that may produce acute and/or chronic adverse effects on the CNS. This review discusses how the application of advanced research approaches and models, such as the nonhuman primate, neural stem cell-derived organotypic slice cultures and/or organs-on-chips systems, can serve as translational models of infantile anesthetic exposure. Utilization of these models may expeditiously decrease the uncertainty in the risk posed to children by postnatal anesthetic exposure. Copyright © 2017. Published by Elsevier Inc.
Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H
2016-01-01
Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.
An abstract specification language for Markov reliability models
NASA Technical Reports Server (NTRS)
Butler, R. W.
1985-01-01
Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.
An abstract language for specifying Markov reliability models
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1986-01-01
Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.
Embedding Analogical Reasoning into 5E Learning Model: A Study of the Solar System
ERIC Educational Resources Information Center
Devecioglu-Kaymakci, Yasemin
2016-01-01
The purpose of this study was to investigate how the 5E learning model affects learning about the Solar System when an analogical model is utilized in teaching. The data were gathered in an urban middle school 7th grade science course while teaching relevant astronomy topics. The analogical model developed by the researchers was administered to 20…
Apparatus for sensor failure detection and correction in a gas turbine engine control system
NASA Technical Reports Server (NTRS)
Spang, H. A., III; Wanger, R. P. (Inventor)
1981-01-01
A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, B. M.
The electric utility industry is undergoing significant transformations in its operation model, including a greater emphasis on automation, monitoring technologies, and distributed energy resource management systems (DERMS). With these changes and new technologies, while driving greater efficiencies and reliability, these new models may introduce new vectors of cyber attack. The appropriate cybersecurity controls to address and mitigate these newly introduced attack vectors and potential vulnerabilities are still widely unknown and performance of the control is difficult to vet. This proposal argues that modeling and simulation (M&S) is a necessary tool to address and better understand these problems introduced by emergingmore » technologies for the grid. M&S will provide electric utilities a platform to model its transmission and distribution systems and run various simulations against the model to better understand the operational impact and performance of cybersecurity controls.« less
Oscillatory dynamics of investment and capacity utilization
NASA Astrophysics Data System (ADS)
Greenblatt, R. E.
2017-01-01
Capitalist economic systems display a wide variety of oscillatory phenomena whose underlying causes are often not well understood. In this paper, I consider a very simple model of the reciprocal interaction between investment, capacity utilization, and their time derivatives. The model, which gives rise periodic oscillations, predicts qualitatively the phase relations between these variables. These predictions are observed to be consistent in a statistical sense with econometric data from the US economy.
National Utility Rate Database: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, S.; McKeel, R.
2012-08-01
When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.
Hassanpour, Saeed; Langlotz, Curtis P
2016-01-01
Imaging utilization has significantly increased over the last two decades, and is only recently showing signs of moderating. To help healthcare providers identify patients at risk for high imaging utilization, we developed a prediction model to recognize high imaging utilizers based on their initial imaging reports. The prediction model uses a machine learning text classification framework. In this study, we used radiology reports from 18,384 patients with at least one abdomen computed tomography study in their imaging record at Stanford Health Care as the training set. We modeled the radiology reports in a vector space and trained a support vector machine classifier for this prediction task. We evaluated our model on a separate test set of 4791 patients. In addition to high prediction accuracy, in our method, we aimed at achieving high specificity to identify patients at high risk for high imaging utilization. Our results (accuracy: 94.0%, sensitivity: 74.4%, specificity: 97.9%, positive predictive value: 87.3%, negative predictive value: 95.1%) show that a prediction model can enable healthcare providers to identify in advance patients who are likely to be high utilizers of imaging services. Machine learning classifiers developed from narrative radiology reports are feasible methods to predict imaging utilization. Such systems can be used to identify high utilizers, inform future image ordering behavior, and encourage judicious use of imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Incorporating structure from motion uncertainty into image-based pose estimation
NASA Astrophysics Data System (ADS)
Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen
2015-05-01
A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.
Cost Effectiveness of On-Line Retrieval System.
ERIC Educational Resources Information Center
King, Donald W.; Neel, Peggy W.
A recently developed cost-effectiveness model for on-line retrieval systems is discussed through use of an example utilizing performance results collected from several independent sources and cost data derived for a recently completed study for the American Psychological Association. One of the primary attributes of the model rests in its great…
Numerical approach to optimal portfolio in a power utility regime-switching model
NASA Astrophysics Data System (ADS)
Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.
2017-12-01
We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.
Modelling machine ensembles with discrete event dynamical system theory
NASA Technical Reports Server (NTRS)
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
Utilization of design data on conventional system to building information modeling (BIM)
NASA Astrophysics Data System (ADS)
Akbar, Boyke M.; Z. R., Dewi Larasati
2017-11-01
Nowadays infrastructure development becomes one of the main priorities in the developed country such as Indonesia. The use of conventional design system is considered no longer effectively support the infrastructure projects, especially for the high complexity building design, due to its fragmented system issues. BIM comes as one of the solutions in managing projects in an integrated manner. Despite of the all known BIM benefits, there are some obstacles on the migration process to BIM. The two main of the obstacles are; the BIM implementation unpreparedness of some project parties and a concerns to leave behind the existing database and create a new one on the BIM system. This paper discusses the utilization probabilities of the existing CAD data from the conventional design system for BIM system. The existing conventional CAD data's and BIM design system output was studied to examine compatibility issues between two subject and followed by an utilization scheme-strategy probabilities. The goal of this study is to add project parties' eagerness in migrating to BIM by maximizing the existing data utilization and hopefully could also increase BIM based project workflow quality.
The Effects of Climate Model Similarity on Local, Risk-Based Adaptation Planning
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Brown, C. M.
2014-12-01
The climate science community has recently proposed techniques to develop probabilistic projections of climate change from ensemble climate model output. These methods provide a means to incorporate the formal concept of risk, i.e., the product of impact and probability, into long-term planning assessments for local systems under climate change. However, approaches for pdf development often assume that different climate models provide independent information for the estimation of probabilities, despite model similarities that stem from a common genealogy. Here we utilize an ensemble of projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to develop probabilistic climate information, with and without an accounting of inter-model correlations, and use it to estimate climate-related risks to a local water utility in Colorado, U.S. We show that the tail risk of extreme climate changes in both mean precipitation and temperature is underestimated if model correlations are ignored. When coupled with impact models of the hydrology and infrastructure of the water utility, the underestimation of extreme climate changes substantially alters the quantification of risk for water supply shortages by mid-century. We argue that progress in climate change adaptation for local systems requires the recognition that there is less information in multi-model climate ensembles than previously thought. Importantly, adaptation decisions cannot be limited to the spread in one generation of climate models.
Mayer, Joni A.; Gabbard, Susan; Kronick, Richard G.; Roesch, Scott C.; Malcarne, Vanessa L.; Zuniga, Maria L.
2011-01-01
Objectives. We examined individual-, environmental-, and policy-level correlates of US farmworker health care utilization, guided by the behavioral model for vulnerable populations and the ecological model. Methods. The 2006 and 2007 administrations of the National Agricultural Workers Survey (n = 2884) provided the primary data. Geographic information systems, the 2005 Uniform Data System, and rurality and border proximity indices provided environmental variables. To identify factors associated with health care use, we performed logistic regression using weighted hierarchical linear modeling. Results. Approximately half (55.3%) of farmworkers utilized US health care in the previous 2 years. Several factors were independently associated with use at the individual level (gender, immigration and migrant status, English proficiency, transportation access, health status, and non-US health care utilization), the environmental level (proximity to US–Mexico border), and the policy level (insurance status and workplace payment structure). County Federally Qualified Health Center resources were not independently associated. Conclusions. We identified farmworkers at greatest risk for poor access. We made recommendations for change to farmworker health care access at all 3 levels of influence, emphasizing Federally Qualified Health Center service delivery. PMID:21330594
Cultural Geography Model Validation
2010-03-01
the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S
Dynamic evaluation of the CMAQv5.0 modeling system during the NOx SIP Call time period indicates that the model underestimates the observed ozone decrease in eastern U.S. Utilizing novel cross simulations we are able to separately quantify the impact on ozone predictions stemmin...
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.
2004-01-01
A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.
[Improvement and prediction of intestinal drug absorption].
Miyake, Masateru
2013-01-01
The suppository preparation, which can improve the absorption of poorly absorbable drugs safer than commercially available suppositories, was developed by utilizing sodium laurate and taurine. Additionally, the novel oral absorption-improving system was also established by utilizing polyamines and bile acids. Furthermore, to evaluate the efficacy of these new formulations and estimate the absorbability of new drug candidates in humans, the in vitro prediction system utilizing an isolated human intestinal tissues was developed and successfully predicted the fraction of dose absorbed for several model drugs. These findings would contribute to the development of new dosage forms and new drugs for oral administration.
A stochastic conflict resolution model for trading pollutant discharge permits in river systems.
Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram
2009-07-01
This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.
A study on the operation analysis of the power conditioning system with real HTS SMES coil
NASA Astrophysics Data System (ADS)
Kim, A. R.; Jung, H. Y.; Kim, J. H.; Ali, Mohd. Hasan; Park, M.; Yu, I. K.; Kim, H. J.; Kim, S. H.; Seong, K. C.
2008-09-01
Voltage sag from sudden increasing loads is one of the major problems in the utility network. In order to compensate the voltage sag problem, power compensation devices have widely been developed. In the case of voltage sag, it needs an energy source to overcome the energy caused by voltage sag. According as the SMES device is characterized by its very high response time of charge and discharge, it has widely been researched and developed for more than 20 years. However, before the installation of SMES into utility, the system analysis has to be carried out with a certain simulation tool. This paper presents a real-time simulation algorithm for the SMES system by using the miniaturized SMES model coil whose properties are same as those of real size SMES coil. With this method, researchers can easily analyse the performance of SMES connected into utility network by abstracting the properties from the real modeled SMES coil and using the virtual simulated power network in RSCAD/RTDS.
Belciug, Smaranda; Gorunescu, Florin
2015-02-01
Scarce healthcare resources require carefully made policies ensuring optimal bed allocation, quality healthcare service, and adequate financial support. This paper proposes a complex analysis of the resource allocation in a hospital department by integrating in the same framework a queuing system, a compartmental model, and an evolutionary-based optimization. The queuing system shapes the flow of patients through the hospital, the compartmental model offers a feasible structure of the hospital department in accordance to the queuing characteristics, and the evolutionary paradigm provides the means to optimize the bed-occupancy management and the resource utilization using a genetic algorithm approach. The paper also focuses on a "What-if analysis" providing a flexible tool to explore the effects on the outcomes of the queuing system and resource utilization through systematic changes in the input parameters. The methodology was illustrated using a simulation based on real data collected from a geriatric department of a hospital from London, UK. In addition, the paper explores the possibility of adapting the methodology to different medical departments (surgery, stroke, and mental illness). Moreover, the paper also focuses on the practical use of the model from the healthcare point of view, by presenting a simulated application. Copyright © 2014 Elsevier Inc. All rights reserved.
On the utility of threads for data parallel programming
NASA Technical Reports Server (NTRS)
Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush
1995-01-01
Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
Bett, R C; Kosgey, I S; Bebe, B O; Kahi, A K
2007-10-01
A deterministic model was developed and applied to evaluate biological and economic variables that characterize smallholder production systems utilizing the Kenya Dual Purpose goat (KDPG) in Kenya. The systems were defined as: smallholder low-potential (SLP), smallholder medium-potential (SMP) and smallholder high-potential (SHP). The model was able to predict revenues and costs to the system. Revenues were from sale of milk, surplus yearlings and cull-forage animals, while costs included those incurred for feeds, husbandry, marketing and fixed asset (fixed costs). Of the total outputs, revenue from meat and milk accounted for about 55% and 45%, respectively, in SMP and 39% and 61% in SHP. Total costs comprised mainly variable costs (98%), with husbandry costs being the highest in both SMP and SLP. The total profit per doe per year was KSh 315.48 in SMP, KSh -1352.75 in SLP and KSh -80.22 in SHP. Results suggest that the utilization of the KDPG goat in Kenya is more profitable in the smallholder medium-potential production system. The implication for the application of the model to smallholder production systems in Kenya is discussed.
Stability analysis of spacecraft power systems
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.
1990-01-01
The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.
Pathologists' roles in clinical utilization management. A financing model for managed care.
Zhao, J J; Liberman, A
2000-03-01
In ancillary or laboratory utilization management, the roles of pathologists have not been explored fully in managed care systems. Two possible reasons may account for this: pathologists' potential contributions have not been defined clearly, and effective measurement of and reasonable compensation for the pathologist's contribution remains vague. The responsibilities of pathologists in clinical practice may include clinical pathology and laboratory services (which have long been well-defined and are compensated according to a resource-based relative value system-based coding system), laboratory administration, clinical utilization management, and clinical research. Although laboratory administration services have been compensated with mechanisms such as percentage of total service revenue or fixed salary, the involvement of pathologists seems less today than in the past, owing to increased clinical workload and time constraints in an expanding managed care environment, especially in community hospital settings. The lack of financial incentives or appropriate compensation mechanisms for the services likely accounts for the current situation. Furthermore, the importance of pathologist-driven utilization management in laboratory services lacks recognition among hospital administrators, managed care executives, and pathologists themselves, despite its potential benefits for reducing cost and enhancing quality of care. We propose a financial compensation model for such services and summarize its advantages.
Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data
NASA Astrophysics Data System (ADS)
Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai
2017-11-01
Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, M.; Pratt, A.; Lunacek, M.
The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electricmore » bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.« less
On the transient dynamics of piezoelectric-based, state-switched systems
NASA Astrophysics Data System (ADS)
Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.
2018-01-01
This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.
Thermal Control of the Scientific Instrument Package in the Large Space Telescope
NASA Technical Reports Server (NTRS)
Hawks, K. H.
1972-01-01
The general thermal control system philosophy was to utilize passive control where feasible and to utilize active methods only where required for more accurate thermal control of the SIP components with narrow temperature tolerances. A thermal model of the SIP and a concept for cooling the SIP cameras are presented. The model and cooling concept have established a rationale for determining a Phase A baseline for SIP thermal control.
Evaluating synoptic systems in the CMIP5 climate models over the Australian region
NASA Astrophysics Data System (ADS)
Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.
2016-10-01
Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.
Model-Driven Test Generation of Distributed Systems
NASA Technical Reports Server (NTRS)
Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin
2012-01-01
This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Romanczyk, K. C.
1973-01-01
One of the most significant problems associated with the development of large orbiting astronomical telescopes is that of maintaining the very precise pointing accuracy required. A proposed solution to this problem utilizes dual-level pointing control. The primary control system maintains the telescope structure attitude stabilized within the field of view to the desired accuracy. In order to demonstrate the feasibility of optically stabilizing the star images to the desired accuracy a regulating system has been designed and evaluated. The control system utilizes a digital star sensor and an optical star image motion compensator, both of which have been developed for this application. These components have been analyzed mathematically, analytical models have been developed, and hardware has been built and tested.
Study of Lyndon B. Johnson Space Center utility systems
NASA Technical Reports Server (NTRS)
Redding, T. E.; Huber, W. C.
1977-01-01
The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis.
Utilization-Based Modeling and Optimization for Cognitive Radio Networks
NASA Astrophysics Data System (ADS)
Liu, Yanbing; Huang, Jun; Liu, Zhangxiong
The cognitive radio technique promises to manage and allocate the scarce radio spectrum in the highly varying and disparate modern environments. This paper considers a cognitive radio scenario composed of two queues for the primary (licensed) users and cognitive (unlicensed) users. According to the Markov process, the system state equations are derived and an optimization model for the system is proposed. Next, the system performance is evaluated by calculations which show the rationality of our system model. Furthermore, discussions among different parameters for the system are presented based on the experimental results.
New Educational Modules Using a Cyber-Distribution System Testbed
Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching; ...
2018-03-30
At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less
New Educational Modules Using a Cyber-Distribution System Testbed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching
At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less
Nonlinear multimodal model for TLD of irregular tank geometry and small fluid depth
NASA Astrophysics Data System (ADS)
Love, J. S.; Tait, M. J.
2013-11-01
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman-Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure-TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.
Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation
NASA Astrophysics Data System (ADS)
Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.
2017-11-01
This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.;
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
Time series modeling for syndromic surveillance.
Reis, Ben Y; Mandl, Kenneth D
2003-01-23
Emergency department (ED) based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED) visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA) residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. Time series methods applied to historical ED utilization data are an important tool for syndromic surveillance. Accurate forecasting of emergency department total utilization as well as the rates of particular syndromes is possible. The multiple models in the system account for both long-term and recent trends, and an integrated alarms strategy combining these two perspectives may provide a more complete picture to public health authorities. The systematic methodology described here can be generalized to other healthcare settings to develop automated surveillance systems capable of detecting anomalies in disease patterns and healthcare utilization.
Venkatesh, G; Sægrov, Sveinung; Brattebø, Helge
2014-09-15
Urban water services are challenged from many perspectives and different stakeholders demand performance improvements along economic, social and environmental dimensions of sustainability. In response, urban water utilities systematically give more attention to criteria such as water safety, climate change adaptation and mitigation, environmental life cycle assessment (LCA), total cost efficiency, and on how to improve their operations within the water-energy-carbon nexus. The authors of this paper collaborated in the development of a 'Dynamic Metabolism Model' (DMM). The model is developed for generic use in the sustainability assessment of urban water services, and it has been initially tested for the city of Oslo, Norway. The purpose has been to adopt a holistic systemic perspective to the analysis of metabolism and environmental impacts of resource flows in urban water and wastewater systems, in order to offer a tool for the examination of future strategies and intervention options in such systems. This paper describes the model and its application to the city of Oslo for the analysis time period 2013-2040. The external factors impacting decision-making and interventions are introduced along with realistic scenarios developed for the testing, after consultation with officials at the Oslo Water and Wastewater Works (Norway). Possible interventions that the utility intends to set in motion are defined and numerically interpreted for incorporation into the model, and changes in the indicator values over the time period are determined. This paper aims to demonstrate the effectiveness and usefulness of the DMM, as a decision-support tool for water-wastewater utilities. The scenarios considered and interventions identified do not include all possible scenarios and interventions that can be relevant for water-wastewater utilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aggregate modeling of fast-acting demand response and control under real-time pricing
Chassin, David P.; Rondeau, Daniel
2016-08-24
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. Finally, the results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Aggregate modeling of fast-acting demand response and control under real-time pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Rondeau, Daniel
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. Finally, the results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Aggregate modeling of fast-acting demand response and control under real-time pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Rondeau, Daniel
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. The results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
NASA Astrophysics Data System (ADS)
Behr, Joshua G.; Diaz, Rafael
Non-urgent Emergency Department utilization has been attributed with increasing congestion in the flow and treatment of patients and, by extension, conditions the quality of care and profitability of the Emergency Department. Interventions designed to divert populations to more appropriate care may be cautiously received by operations managers due to uncertainty about the impact an adopted intervention may have on the two values of congestion and profitability. System Dynamics (SD) modeling and simulation may be used to measure the sensitivity of these two, often-competing, values of congestion and profitability and, thus, provide an additional layer of information designed to inform strategic decision making.
Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)
NASA Astrophysics Data System (ADS)
Arsali, Mohammad H.
1998-12-01
The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.
Leak detection utilizing analog binaural (VLSI) techniques
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1995-01-01
A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.
Variable Generation Power Forecasting as a Big Data Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Variable Generation Power Forecasting as a Big Data Problem
Haupt, Sue Ellen; Kosovic, Branko
2016-10-10
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
NASA Astrophysics Data System (ADS)
Liu, Suqi; Tan, Jianping; Wen, Xue
2017-11-01
Wireless power transfer (WPT) via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.
Automated Instructional Management Systems (AIMS) Version III, Operator's Guide.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This manual gives the instructions necessary to understand and operate the Automated Instructional Management System (AIMS), utilizing IBM System 360, Model 30/Release 20 Disk Operating System, and the OpScan 100 System Reader and Tape Unit. It covers the AIMS III system initialization, system and operational input, requirements, master response…
ERIC Educational Resources Information Center
HUNT, DAVID E.
EDUCATIONAL ENVIRONMENTS, HIGHLY STRUCTURED OR UNSTRUCTURED, WERE DIFFERENTIALLY EFFECTIVE WITH STUDENTS OF VARYING PERSONALITIES. THE REPORT CONSIDERED THE UTILITY AND RELEVANCE OF THE CONCEPTUAL SYSTEMS MODEL BY DESCRIBING A SPECIFIC PROJECT IN WHICH THE MODEL SERVED AS THE BASIS FOR FORMING HOMOGENEOUS CLASSROOM GROUPS. THE PROJECT WAS…
A Programming System for School Location & Facility Utilization.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
A linear program model designed to aid in site selection and the development of pupil assignment plans is illustrated in terms of a hypothetical school system. The model is designed to provide the best possible realization of any single stated objective (for example, "Minimize the distance that pupils must travel") given any number of specified…
Automatic Detection of Learning Styles for an E-Learning System
ERIC Educational Resources Information Center
Ozpolat, Ebru; Akar, Gozde B.
2009-01-01
A desirable characteristic for an e-learning system is to provide the learner the most appropriate information based on his requirements and preferences. This can be achieved by capturing and utilizing the learner model. Learner models can be extracted based on personality factors like learning styles, behavioral factors like user's browsing…
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
1986-01-01
Further development of utility program software for analyzing final results of Earth rotation parameter determination from different space geodetic systems was completed. Main simulation experiments were performed. Results and conclusions were compiled. The utilization of range-difference observations in geodynamics is also examined. A method based on the Bayesian philosophy and entropy measure of information is given for the elucidation of time-dependent models of crustal motions as part of a proposed algorithm. The strategy of model discrimination and design of measurements is illustrated in an example for the case of crustal deformation models.
Mathematical Modeling of Food Supply for Long Term Space Missions Using Advanced Life Support
NASA Technical Reports Server (NTRS)
Cruthirds, John E.
2003-01-01
A habitat for long duration missions which utilizes Advanced Life Support (ALS), the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently being built at JSC. In this system all consumables will be recycled and reused. In support of this effort, a menu is being planned utilizing ALS crops that will meet nutritional and psychological requirements. The need exists in the food system to identify specific physical quantities that define life support systems from an analysis and modeling perspective. Once these quantities are defined, they need to be fed into a mathematical model that takes into consideration other systems in the BIO-Plex. This model, if successful, will be used to understand the impacts of changes in the food system on the other systems and vice versa. The Equivalent System Mass (ESM) metric has been used to describe systems and subsystems, including the food system options, in terms of the single parameter, mass. There is concern that this approach might not adequately address the important issues of food quality and psychological impact on crew morale of a supply of fiesh food items. In fact, the mass of food can also depend on the quality of the food. This summer faculty fellow project will involve creating an appropriate mathematical model for the food plan developed by the Food Processing System for BIO-Plex. The desired outcome of this work will be a quantitative model that can be applied to the various options of supplying food on long-term space missions.
Vidal, Sarah E Lightfoot; Tamamoto, Kasey A; Nguyen, Hanh; Abbott, Rosalyn D; Cairns, Dana M; Kaplan, David L
2018-04-24
Current commercially available human skin equivalents (HSEs) are used for relatively short term studies (∼1 week) due in part to the time-dependent contraction of the collagen gel-based matrix and the limited cell types and skin tissue components utilized. In contrast, here we describe a new matrix consisting of a silk-collagen composite system that provides long term, stable cultivation with reduced contraction and degradation over time. This matrix supports full thickness skin equivalents which include nerves. The unique silk-collagen composite system preserves cell-binding domains of collagen while maintaining the stability and mechanics of the skin system for long-term culture with silk. The utility of this new composite protein-based biomaterial was demonstrated by bioengineering full thickness human skin systems using primary cells, including nerves and immune cells to establish an HSE with a neuro-immuno-cutaneous system. The HSEs with neurons and hypodermis, compared to in vitro skin-only HSEs controls, demonstrated higher secretion of pro-inflammatory cytokines. Proteomics analysis confirmed the presence of several proteins associated with inflammation across all sample groups, but HSEs with neurons had the highest amount of detected protein due to the complexity of the model. This improved, in vitro full thickness HSE model system utilizes cross-linked silk-collagen as the biomaterial and allows reduced reliance on animal models and provides a new in vitro tissue system for the assessment of chronic responses related to skin diseases and drug discovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shukla, Shrivridhi; Muchomba, Felix M; McCoyd, Judith L M
2018-06-01
Integrated models of HIV/AIDS service delivery are believed to have advantages over stand-alone models of care from health planners' and providers' perspectives. Integration models differ, yet there is little information about the influence of differing models on workers' beliefs about models' efficacy. Here, we examine the effect of integration of HIV care into the general health system in India. In 2014, India replaced its stand-alone model of HIV service delivery-Community Care Centers (CCCs)-with a purported integrated model that delivers HIV medical services at general hospitals and HIV psychosocial services at nearby Care and Support Centers (CSCs). We examine 15 health workers' perceptions of how change from the earlier stand-alone model to the current model impacted women's care in a district in Uttar Pradesh, India. Results indicate that (1) Women's antiretroviral (ART) adherence and utilization of psychosocial support service for HIV/AIDS suffered when services were not provided at one site; (2) Provision of inpatient care in the CCC model offered women living in poverty personal safety in accessing HIV health services and promoted chances of competent ART usage and repeat service utilization; and (3) Although integration of HIV services with the general health system was perceived to improve patient anonymity and decrease chances of HIV-related stigma and discrimination, resource shortages continued to plague the integrated system while shifting costs of time and money to the patients. Findings suggest that integration efforts need to consider the context of service provision and the gendered nature of access to HIV care.
Forecasting the shortage of neurosurgeons in Iran using a system dynamics model approach.
Rafiei, Sima; Daneshvaran, Arman; Abdollahzade, Sina
2018-01-01
Shortage of physicians particularly in specialty levels is considered as an important issue in Iran health system. Thus, in an uncertain environment, long-term planning is required for health professionals as a basic priority on a national scale. This study aimed to estimate the number of required neurosurgeons using system dynamic modeling. System dynamic modeling was applied to predict the gap between stock and number of required neurosurgeons in Iran up to 2020. A supply and demand simulation model was constructed for neurosurgeons using system dynamic approach. The demand model included epidemiological, demographic, and utilization variables along with supply model-incorporated current stock of neurosurgeons and flow variables such as attrition, migration, and retirement rate. Data were obtained from various governmental databases and were analyzed by Vensim PLE Version 3.0 to address the flow of health professionals, clinical infrastructure, population demographics, and disease prevalence during the time. It was forecasted that shortage in number of neurosurgeons would disappear at 2020. The most dominant determinants on predicted number of neurosurgeons were the prevalence of neurosurgical diseases, the rate for service utilization, and medical capacity of the region. Shortage of neurosurgeons in some areas of the country relates to maldistribution of the specialists. Accordingly, there is a need to reconsider the allocation system for health professionals within the country instead of increasing the overall number of acceptance quota in training positions.
How Animal Models Inform Child and Adolescent Psychiatry
Stevens, Hanna E.; Vaccarino, Flora M.
2015-01-01
Objective Every available approach should be utilized to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of non-human animals and the biology and behavior they share with humans is an approach that must be used to advance the clinical work of child psychiatry. Method We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. Results We present examples of how animal systems are utilized to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Conclusion Animal models have clear advantages and disadvantages that must both be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. PMID:25901771
Economics of human performance and systems total ownership cost.
Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z
2012-01-01
Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.
2002-01-01
The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.
Activity-Based Costing Systems for Higher Education.
ERIC Educational Resources Information Center
Day, Dennis H.
1993-01-01
Examines traditional costing models utilized in higher education and pinpoints shortcomings related to proper identification of costs. Describes activity-based costing systems as a superior alternative for cost identification, measurement, and allocation. (MLF)
NASA Technical Reports Server (NTRS)
Miller, E. F.
1982-01-01
Mathematical models used in the software package developed for use at the 1983 Regional Administrative Radio Conference on broadcasting satellites. The models described are those used in the Spectrum Orbit Utilization Program (SOUP) analysis. The geometric relationships necessary to model broadcasting satellite systems are discussed. Antenna models represent copolarized and cross polarized performance as functions of the off axis angle. The protection ratio is modelled as a co-channel value and a template representing systems with frequency offsets.
NASA Technical Reports Server (NTRS)
Fuller, H. V.
1974-01-01
A display system was developed to provide flight information to the ground based pilots of radio controlled models used in flight research programs. The display system utilizes data received by telemetry from the model, and presents the information numerically in the field of view of the binoculars used by the pilots.
Systems and methods for modeling and analyzing networks
Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W
2013-10-29
The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.
iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations
NASA Astrophysics Data System (ADS)
Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.
The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.
Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra
2015-08-15
There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.
Biological life-support systems
NASA Technical Reports Server (NTRS)
Shepelev, Y. Y.
1975-01-01
The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.
Assessing the feasibility, cost, and utility of developing models of human performance in aviation
NASA Technical Reports Server (NTRS)
Stillwell, William
1990-01-01
The purpose of the effort outlined in this briefing was to determine whether models exist or can be developed that can be used to address aviation automation issues. A multidisciplinary team has been assembled to undertake this effort, including experts in human performance, team/crew, and aviation system modeling, and aviation data used as input to such models. The project consists of two phases, a requirements assessment phase that is designed to determine the feasibility and utility of alternative modeling efforts, and a model development and evaluation phase that will seek to implement the plan (if a feasible cost effective development effort is found) that results from the first phase. Viewgraphs are given.
Modeling smoke plume patterns in drainage flows
M.A. Fosberg
1985-01-01
A three-dimensional diagnostic wind model for use in complex terrain has been combined with a three-dimensional trajectory and puff air quality model. The wind model utilizes a terrain following coordinate system and conserves both mass and momentum. The wind model provides the winds required by the predictive trajectory and puff dispersion model. Both the wind model...
Phillips, K A; Morrison, K R; Andersen, R; Aday, L A
1998-01-01
OBJECTIVE: The behavioral model of utilization, developed by Andersen, Aday, and others, is one of the most frequently used frameworks for analyzing the factors that are associated with patient utilization of healthcare services. However, the use of the model for examining the context within which utilization occurs-the role of the environment and provider-related factors-has been largely neglected. OBJECTIVE: To conduct a systematic review and analysis to determine if studies of medical care utilization that have used the behavioral model during the last 20 years have included environmental and provider-related variables and the methods used to analyze these variables. We discuss barriers to the use of these contextual variables and potential solutions. DATA SOURCES: The Social Science Citation Index and Science Citation Index. We included all articles from 1975-1995 that cited any of three key articles on the behavioral model, that included all articles that were empirical analyses and studies of formal medical care utilization, and articles that specifically stated their use of the behavioral model (n = 139). STUDY DESIGN: Design was a systematic literature review. DATA ANALYSIS: We used a structured review process to code articles on whether they included contextual variables: (1) environmental variables (characteristics of the healthcare delivery system, external environment, and community-level enabling factors); and (2) provider-related variables (patient factors that may be influenced by providers and provider characteristics that interact with patient characteristics to influence utilization). We also examined the methods used in studies that included contextual variables. PRINCIPAL FINDINGS: Forty-five percent of the studies included environmental variables and 51 percent included provider-related variables. Few studies examined specific measures of the healthcare system or provider characteristics or used methods other than simple regression analysis with hierarchical entry of variables. Only 14 percent of studies analyzed the context of healthcare by including both environmental and provider-related variables as well as using relevant methods. CONCLUSIONS: By assessing whether and how contextual variables are used, we are able to highlight the contributions made by studies using these approaches, to identify variables and methods that have been relatively underused, and to suggest solutions to barriers in using contextual variables. PMID:9685123
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Frew, Bethany A.; Gagnon, Pieter J.
In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen modelsmore » project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.« less
Evaluating gambles using dynamics
NASA Astrophysics Data System (ADS)
Peters, O.; Gell-Mann, M.
2016-02-01
Gambles are random variables that model possible changes in wealth. Classic decision theory transforms money into utility through a utility function and defines the value of a gamble as the expectation value of utility changes. Utility functions aim to capture individual psychological characteristics, but their generality limits predictive power. Expectation value maximizers are defined as rational in economics, but expectation values are only meaningful in the presence of ensembles or in systems with ergodic properties, whereas decision-makers have no access to ensembles, and the variables representing wealth in the usual growth models do not have the relevant ergodic properties. Simultaneously addressing the shortcomings of utility and those of expectations, we propose to evaluate gambles by averaging wealth growth over time. No utility function is needed, but a dynamic must be specified to compute time averages. Linear and logarithmic "utility functions" appear as transformations that generate ergodic observables for purely additive and purely multiplicative dynamics, respectively. We highlight inconsistencies throughout the development of decision theory, whose correction clarifies that our perspective is legitimate. These invalidate a commonly cited argument for bounded utility functions.
2001-08-01
Utilization of green fluorescent protein for the identification of metastasis in an in vivo breast cancer model system. In Preparation. REPRINTS OF ALL...phenotype. Utilizing the SUM-159PT cell line stably transfected with pEGFP-Ci (enhanced green fluorescent protein ) we have been able to successfully...accurately detected. To develop a model with enhanced resolution of micrometastases we created a stable cell line expressing green fluorescent protein
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Communication Architecture in Mixed-Reality Simulations of Unmanned Systems
2018-01-01
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture’s viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture. PMID:29538290
Communication Architecture in Mixed-Reality Simulations of Unmanned Systems.
Selecký, Martin; Faigl, Jan; Rollo, Milan
2018-03-14
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture's viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture.
Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu
2006-01-01
Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.
NASA Technical Reports Server (NTRS)
Parker, K. C.; Torian, J. G.
1980-01-01
A sample environmental control and life support model performance analysis using the environmental analysis routines library is presented. An example of a complete model set up and execution is provided. The particular model was synthesized to utilize all of the component performance routines and most of the program options.
NASA Technical Reports Server (NTRS)
Mizell, Carolyn Barrett; Malone, Linda
2007-01-01
The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.
NASA Astrophysics Data System (ADS)
Broadbent, A. M.; Georgescu, M.; Krayenhoff, E. S.; Sailor, D.
2017-12-01
Utility-scale solar power plants are a rapidly growing component of the solar energy sector. Utility-scale photovoltaic (PV) solar power generation in the United States has increased by 867% since 2012 (EIA, 2016). This expansion is likely to continue as the cost PV technologies decrease. While most agree that solar power can decrease greenhouse gas emissions, the biophysical effects of PV systems on surface energy balance (SEB), and implications for surface climate, are not well understood. To our knowledge, there has never been a detailed observational study of SEB at a utility-scale solar array. This study presents data from an eddy covariance observational tower, temporarily placed above a utility-scale PV array in Southern Arizona. Comparison of PV SEB with a reference (unmodified) site, shows that solar panels can alter the SEB and near surface climate. SEB observations are used to develop and validate a new and more complete SEB PV model. In addition, the PV model is compared to simpler PV modelling methods. The simpler PV models produce differing results to our newly developed model and cannot capture the more complex processes that influence PV SEB. Finally, hypothetical scenarios of PV expansion across the continental United States (CONUS) were developed using various spatial mapping criteria. CONUS simulations of PV expansion reveal regional variability in biophysical effects of PV expansion. The study presents the first rigorous and validated simulations of the biophysical effects of utility-scale PV arrays.
Flutter suppression via piezoelectric actuation
NASA Technical Reports Server (NTRS)
Heeg, Jennifer
1991-01-01
Experimental flutter results obtained from wind tunnel tests of a two degree of freedom wind tunnel model are presented for the open and closed loop systems. The wind tunnel model is a two degree of freedom system which is actuated by piezoelectric plates configured as bimorphs. The model design was based on finite element structural analyses and flutter analyses. A control law was designed based on a discrete system model; gain feedback of strain measurements was utilized in the control task. The results show a 21 pct. increase in the flutter speed.
The use of geospatial web services for exchanging utilities data
NASA Astrophysics Data System (ADS)
Kuczyńska, Joanna
2013-04-01
Geographic information technologies and related geo-information systems currently play an important role in the management of public administration in Poland. One of these tasks is to maintain and update Geodetic Evidence of Public Utilities (GESUT), part of the National Geodetic and Cartographic Resource, which contains an important for many institutions information of technical infrastructure. It requires an active exchange of data between the Geodesy and Cartography Documentation Centers and institutions, which administrate transmission lines. The administrator of public utilities, is legally obliged to provide information about utilities to GESUT. The aim of the research work was to develop a universal data exchange methodology, which can be implemented on a variety of hardware and software platforms. This methodology use Unified Modeling Language (UML), eXtensible Markup Language (XML), and Geography Markup Language (GML). The proposed methodology is based on the two different strategies: Model Driven Architecture (MDA) and Service Oriented Architecture (SOA). Used solutions are consistent with the INSPIRE Directive and ISO 19100 series standards for geographic information. On the basis of analysis of the input data structures, conceptual models were built for both databases. Models were written in the universal modeling language: UML. Combined model that defines a common data structure was also built. This model was transformed into developed for the exchange of geographic information GML standard. The structure of the document describing the data that may be exchanged is defined in the .xsd file. Network services were selected and implemented in the system designed for data exchange based on open source tools. Methodology was implemented and tested. Data in the agreed data structure and metadata were set up on the server. Data access was provided by geospatial network services: data searching possibilities by Catalog Service for the Web (CSW), data collection by Web Feature Service (WFS). WFS provides also operation for modification data, for example to update them by utility administrator. The proposed solution significantly increases the efficiency of data exchange and facilitates maintenance the National Geodetic and Cartographic Resource.
Electrical characterization of a Space Station Freedom alpha utility transfer assembly
NASA Technical Reports Server (NTRS)
Yenni, Edward J.
1994-01-01
Electrical power, command signals and data are transferred across the Space Station Freedom solar alpha rotary joint by roll rings, which are incorporated within the Utility Transfer Assembly (UTA) designed and manufactured by Honeywell Space Systems Operations. A developmental Model of the UTA was tested at the NASA Lewis Research Center using the Power Management and Distribution DC test bed. The objectives of these tests were to obtain data for calibrating system models and to support final design of qualification and flight units. This testing marked the first time the UTA was operated at high power levels and exposed to electrical conditions similar to that which it will encounter on the actual Space Station. Satisfactory UTA system performance was demonstrated within the scope of this testing.
Fine grained event processing on HPCs with the ATLAS Yoda system
NASA Astrophysics Data System (ADS)
Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre
2015-12-01
High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.
A benders decomposition approach to multiarea stochastic distributed utility planning
NASA Astrophysics Data System (ADS)
McCusker, Susan Ann
Until recently, small, modular generation and storage options---distributed resources (DRs)---have been installed principally in areas too remote for economic power grid connection and sensitive applications requiring backup capacity. Recent regulatory changes and DR advances, however, have lead utilities to reconsider the role of DRs. To a utility facing distribution capacity bottlenecks or uncertain load growth, DRs can be particularly valuable since they can be dispersed throughout the system and constructed relatively quickly. DR value is determined by comparing its costs to avoided central generation expenses (i.e., marginal costs) and distribution investments. This requires a comprehensive central and local planning and production model, since central system marginal costs result from system interactions over space and time. This dissertation develops and applies an iterative generalized Benders decomposition approach to coordinate models for optimal DR evaluation. Three coordinated models exchange investment, net power demand, and avoided cost information to minimize overall expansion costs. Local investment and production decisions are made by a local mixed integer linear program. Central system investment decisions are made by a LP, and production costs are estimated by a stochastic multi-area production costing model with Kirchhoff's Voltage and Current Law constraints. The nested decomposition is a new and unique method for distributed utility planning that partitions the variables twice to separate local and central investment and production variables, and provides upper and lower bounds on expected expansion costs. Kirchhoff's Voltage Law imposes nonlinear, nonconvex constraints that preclude use of LP if transmission capacity is available in a looped transmission system. This dissertation develops KVL constraint approximations that permit the nested decomposition to consider new transmission resources, while maintaining linearity in the three individual models. These constraints are presented as a heuristic for the given examples; future research will investigate conditions for convergence. A ten-year multi-area example demonstrates the decomposition approach and suggests the ability of DRs and new transmission to modify capacity additions and production costs by changing demand and power flows. Results demonstrate that DR and new transmission options may lead to greater capacity additions, but resulting production cost savings more than offset extra capacity costs.
Application of symbolic computations to the constitutive modeling of structural materials
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Tan, H. Q.; Dong, X.
1990-01-01
In applications involving elevated temperatures, the derivation of mathematical expressions (constitutive equations) describing the material behavior can be quite time consuming, involved and error-prone. Therefore intelligent application of symbolic systems to faciliate this tedious process can be of significant benefit. Presented here is a problem oriented, self contained symbolic expert system, named SDICE, which is capable of efficiently deriving potential based constitutive models in analytical form. This package, running under DOE MACSYMA, has the following features: (1) potential differentiation (chain rule), (2) tensor computations (utilizing index notation) including both algebraic and calculus; (3) efficient solution of sparse systems of equations; (4) automatic expression substitution and simplification; (5) back substitution of invariant and tensorial relations; (6) the ability to form the Jacobian and Hessian matrix; and (7) a relational data base. Limited aspects of invariant theory were also incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet pre-defined order and simplify expressions so as to limit expression growth. Results are displayed, when applicable, utilizing index notation. SDICE was designed to aid and complement the human constitutive model developer. A number of examples are utilized to illustrate the various features contained within SDICE. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
Urban watersheds are notoriously difficult to model due to their complex, small-scale combinations of landscape and land use characteristics including impervious surfaces that ultimately affect the hydrologic system. We utilized EPA’s Visualizing Ecosystem Land Management A...
Eco-efficiency model for evaluating feedlot rations in the Great Plains, United States
USDA-ARS?s Scientific Manuscript database
Environmental impacts attributable to beef feedlot production provide an opportunity for economically-linked environmental efficiency optimization. An adaptable eco-efficiency model was developed to assess the impacts of dietary rations. The hybridized model utilized California Net Energy System m...
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
Shin, Y S; Yeom, Y K; Hwang, H
1993-02-01
This paper describes the development of a claim review and payment model utilizing the diagnosis related groups (DRGs) for the fee for service-based payment system of the Korean health insurance. The present review process, which examines all claims manually on a case-by-case basis, has been considered to be inefficient, costly, and time-consuming. Differences in case mix among hospitals are controlled in the proposed model using the Korean DRGs. They were developed by modifying the US-DRG system. An empirical test of the model indicated that it can enhance the efficiency as well as the credibility and objectivity of the claim review. Furthermore, it is expected that it can contribute effectively to medical cost containments and to optimal practice pattern of hospitals by establishing a useful mechanism in monitoring the performance of hospitals. However, the performance of this model needs to be upgraded by refining the Korean DRGs which play a key role in the model.
NASA Astrophysics Data System (ADS)
Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong
2017-06-01
Effective application of carbon capture, utilization and storage (CCUS) systems could help to alleviate the influence of climate change by reducing carbon dioxide (CO2) emissions. The research objective of this study is to develop an equilibrium chance-constrained programming model with bi-random variables (ECCP model) for supporting the CCUS management system under random circumstances. The major advantage of the ECCP model is that it tackles random variables as bi-random variables with a normal distribution, where the mean values follow a normal distribution. This could avoid irrational assumptions and oversimplifications in the process of parameter design and enrich the theory of stochastic optimization. The ECCP model is solved by an equilibrium change-constrained programming algorithm, which provides convenience for decision makers to rank the solution set using the natural order of real numbers. The ECCP model is applied to a CCUS management problem, and the solutions could be useful in helping managers to design and generate rational CO2-allocation patterns under complexities and uncertainties.
The impact of sea surface currents in wave power potential modeling
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros
2015-11-01
The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.
Utilizing Educational Corporate Culture To Create a Quality School.
ERIC Educational Resources Information Center
Osborne, Bill
Strategies for utilizing educational corporate culture to create a quality school are presented in this paper, which argues that the understanding of the shared belief system of organizational members is crucial to the process. Creating a quality school entails moving from a "teach the process" oriented model to one that internalizes the…
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
The Economic Impact of the Community College System on the State of Florida.
ERIC Educational Resources Information Center
Weitzman, Scott M.
In an effort to assess the economic impact of the Florida Community College System (FCCS) on the state, two theoretical models were utilized. The first model determines the FCCS's total expenditures in supplies and services, and then applies to these figures a mathematical multiplier to account for the additional economic business generated by…
Electric system restructuring and system reliability
NASA Astrophysics Data System (ADS)
Horiuchi, Catherine Miller
In 1996 the California legislature passed AB 1890, explicitly defining economic benefits and detailing specific mechanisms for initiating a partial restructuring the state's electric system. Critics have since sought re-regulation and proponents have asked for patience as the new institutions and markets take shape. Other states' electric system restructuring activities have been tempered by real and perceived problems in the California model. This study examines the reduced regulatory controls and new constraints introduced in California's limited restructuring model using utility and regulatory agency records from the 1990's to investigate effects of new institutions and practices on system reliability for the state's five largest public and private utilities. Logit and negative binomial regressions indicate negative impact from the California model of restructuring on system reliability as measured by customer interruptions. Time series analysis of outage data could not predict the wholesale power market collapse and the subsequent rolling blackouts in early 2001; inclusion of near-outage reliability disturbances---load shedding and energy emergencies---provided a measure of forewarning. Analysis of system disruptions, generation capacity and demand, and the role of purchased power challenge conventional wisdom on the causality of Californian's power problems. The quantitative analysis was supplemented by a targeted survey of electric system restructuring participants. Findings suggest each utility and the organization controlling the state's electric grid provided protection from power outages comparable to pre-restructuring operations through 2000; however, this reliability has come at an inflated cost, resulting in reduced system purchases and decreased marginal protection. The historic margin of operating safety has fully eroded, increasing mandatory load shedding and emergency declarations for voluntary and mandatory conservation. Proposed remedies focused on state-funded contracts and government-managed power authorities may not help, as the findings suggest pricing models, market uncertainty, interjurisdictional conflict and an inability to respond to market perturbations are more significant contributors to reduced regional generation availability than the particular contract mechanisms and funding sources used for power purchases.
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Optimal Sizing of a Solar-Plus-Storage System for Utility Bill Savings and Resiliency Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpkins, Travis; Anderson, Kate; Cutler, Dylan
Solar-plus-storage systems can achieve significant utility savings in behind-the-meter deployments in buildings, campuses, or industrial sites. Common applications include demand charge reduction, energy arbitrage, time-shifting of excess photovoltaic (PV) production, and selling ancillary services to the utility grid. These systems can also offer some energy resiliency during grid outages. It is often difficult to quantify the amount of resiliency that these systems can provide, however, and this benefit is often undervalued or omitted during the design process. We propose a method for estimating the resiliency that a solar-plus-storage system can provide at a given location. We then present an optimizationmore » model that can optimally size the system components to minimize the lifecycle cost of electricity to the site, including the costs incurred during grid outages. The results show that including the value of resiliency during the feasibility stage can result in larger systems and increased resiliency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpkins, Travis; Anderson, Kate; Cutler, Dylan
Solar-plus-storage systems can achieve significant utility savings in behind-the-meter deployments in buildings, campuses, or industrial sites. Common applications include demand charge reduction, energy arbitrage, time-shifting of excess photovoltaic (PV) production, and selling ancillary services to the utility grid. These systems can also offer some energy resiliency during grid outages. It is often difficult to quantify the amount of resiliency that these systems can provide, however, and this benefit is often undervalued or omitted during the design process. We propose a method for estimating the resiliency that a solar-plus-storage system can provide at a given location. We then present an optimizationmore » model that can optimally size the system components to minimize the lifecycle cost of electricity to the site, including the costs incurred during grid outages. The results show that including the value of resiliency during the feasibility stage can result in larger systems and increased resiliency.« less
A Healthcare Utilization Analysis Framework for Hot Spotting and Contextual Anomaly Detection
Hu, Jianying; Wang, Fei; Sun, Jimeng; Sorrentino, Robert; Ebadollahi, Shahram
2012-01-01
Patient medical records today contain vast amount of information regarding patient conditions along with treatment and procedure records. Systematic healthcare resource utilization analysis leveraging such observational data can provide critical insights to guide resource planning and improve the quality of care delivery while reducing cost. Of particular interest to providers are hot spotting: the ability to identify in a timely manner heavy users of the systems and their patterns of utilization so that targeted intervention programs can be instituted, and anomaly detection: the ability to identify anomalous utilization cases where the patients incurred levels of utilization that are unexpected given their clinical characteristics which may require corrective actions. Past work on medical utilization pattern analysis has focused on disease specific studies. We present a framework for utilization analysis that can be easily applied to any patient population. The framework includes two main components: utilization profiling and hot spotting, where we use a vector space model to represent patient utilization profiles, and apply clustering techniques to identify utilization groups within a given population and isolate high utilizers of different types; and contextual anomaly detection for utilization, where models that map patient’s clinical characteristics to the utilization level are built in order to quantify the deviation between the expected and actual utilization levels and identify anomalies. We demonstrate the effectiveness of the framework using claims data collected from a population of 7667 diabetes patients. Our analysis demonstrates the usefulness of the proposed approaches in identifying clinically meaningful instances for both hot spotting and anomaly detection. In future work we plan to incorporate additional sources of observational data including EMRs and disease registries, and develop analytics models to leverage temporal relationships among medical encounters to provide more in-depth insights. PMID:23304306
A healthcare utilization analysis framework for hot spotting and contextual anomaly detection.
Hu, Jianying; Wang, Fei; Sun, Jimeng; Sorrentino, Robert; Ebadollahi, Shahram
2012-01-01
Patient medical records today contain vast amount of information regarding patient conditions along with treatment and procedure records. Systematic healthcare resource utilization analysis leveraging such observational data can provide critical insights to guide resource planning and improve the quality of care delivery while reducing cost. Of particular interest to providers are hot spotting: the ability to identify in a timely manner heavy users of the systems and their patterns of utilization so that targeted intervention programs can be instituted, and anomaly detection: the ability to identify anomalous utilization cases where the patients incurred levels of utilization that are unexpected given their clinical characteristics which may require corrective actions. Past work on medical utilization pattern analysis has focused on disease specific studies. We present a framework for utilization analysis that can be easily applied to any patient population. The framework includes two main components: utilization profiling and hot spotting, where we use a vector space model to represent patient utilization profiles, and apply clustering techniques to identify utilization groups within a given population and isolate high utilizers of different types; and contextual anomaly detection for utilization, where models that map patient's clinical characteristics to the utilization level are built in order to quantify the deviation between the expected and actual utilization levels and identify anomalies. We demonstrate the effectiveness of the framework using claims data collected from a population of 7667 diabetes patients. Our analysis demonstrates the usefulness of the proposed approaches in identifying clinically meaningful instances for both hot spotting and anomaly detection. In future work we plan to incorporate additional sources of observational data including EMRs and disease registries, and develop analytics models to leverage temporal relationships among medical encounters to provide more in-depth insights.
Integrated Formulation of Beacon-Based Exception Analysis for Multimissions
NASA Technical Reports Server (NTRS)
Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail
2003-01-01
Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,
Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.
2009-06-01
This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based onmore » this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.« less
Improving healthcare value through clinical community and supply chain collaboration.
Ishii, Lisa; Demski, Renee; Ken Lee, K H; Mustafa, Zishan; Frank, Steve; Wolisnky, Jean Paul; Cohen, David; Khanna, Jay; Ammerman, Joshua; Khanuja, Harpal S; Unger, Anthony S; Gould, Lois; Wachter, Patricia Ann; Stearns, Lauren; Werthman, Ronald; Pronovost, Peter
2017-03-01
We hypothesized that integrating supply chain with clinical communities would allow for clinician-led supply cost reduction and improved value in an academic health system. Three clinical communities (spine, joint, blood management) and one clinical community-like physician led team of surgeon stakeholders partnered with the supply chain team on specific supply cost initiatives. The teams reviewed their specific utilization and cost data, and the physicians led consensus-building conversations over a series of team meetings to agree to standard supply utilization. The spine and joint clinical communities each agreed upon a vendor capping model that led to cost savings of $3 million dollars and $1.5 million dollars respectively. The blood management decreased blood product utilization and achieved $1.2 million dollars savings. $5.6 million dollars in savings was achieved by a clinical community-like group of surgeon stakeholders through standardization of sutures and endomechanicals. Physician led clinical teams empowered to lead change achieved substantial supply chain cost savings in an academic health system. The model of combining clinical communities with supply chain offers hope for an effective, practical, and scalable approach to improving value and engaging physicians in other academic health systems. This clinician led model could benefit both private and academic health systems engaging in value optimization efforts. N/A. Copyright © 2016 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1996-05-24
THIS REPORT IS AN ANALYSIS OF THE BENEFITS OF A COLLISION AVOIDANCE SYSTEM IN REDUCING REAR-END CRASHES. THE COLLISION AVOIDANCE SYSTEM CONSIDERED IN THIS STUDY UTILIZES THE SIGNAL FROM A FORWARD LOOKING SENSOR TO ACTIVATE THE TRACTION CONTROL VALVE ...
NASA Astrophysics Data System (ADS)
Pangaribuan, A. B.; Rahmat, R. F.; Lidya, M. S.; Zálešák, M.
2017-01-01
The paper describes improvisation mode of energy supply source by collaboration between national utility grid as represented by fossil fuels and PV as independent renewable power resource in order to aim the energy consumptions efficiently in retrofit single family house. In this case, one existing single family house model in Medan, Indonesia was observed for the possibility of future refurbishment. The eco-design version of the house model and prediction analyses regarding nearby potential renewable energy resource (solar system) had been made using Autodesk Revit MEP 2015, Climate Consultant 6.0 and Green Building Studio Analysis. Economical evaluation of using hybrid power supply is discussed as well.
Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features
NASA Astrophysics Data System (ADS)
Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar
2017-09-01
In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The feasibility of modeling magnetic fields due to certain electrical currents flowing in the Earth's ionosphere and magnetosphere was investigated. A method was devised to carry out forward modeling of the magnetic perturbations that arise from space currents. The procedure utilizes a linear current element representation of the distributed electrical currents. The finite thickness elements are combined into loops which are in turn combined into cells having their base in the ionosphere. In addition to the extensive field modeling, additional software was developed for the reduction and analysis of the MAGSAT data in terms of the external current effects. Direct comparisons between the models and the MAGSAT data are possible.
Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.
NASA Technical Reports Server (NTRS)
Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.
2014-01-01
This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).
Chen, Ping-Shun; Yu, Chun-Jen; Chen, Gary Yu-Hsin
2015-08-01
With the growth in the number of elderly and people with chronic diseases, the number of hospital services will need to increase in the near future. With myriad of information technologies utilized daily and crucial information-sharing tasks performed at hospitals, understanding the relationship between task performance and information system has become a critical topic. This research explored the resource pooling of hospital management and considered a computed tomography (CT) patient-referral mechanism between two hospitals using the information system theory framework of Task-Technology Fit (TTF) model. The TTF model could be used to assess the 'match' between the task and technology characteristics. The patient-referral process involved an integrated information framework consisting of a hospital information system (HIS), radiology information system (RIS), and picture archiving and communication system (PACS). A formal interview was conducted with the director of the case image center on the applicable characteristics of TTF model. Next, the Icam DEFinition (IDEF0) method was utilized to depict the As-Is and To-Be models for CT patient-referral medical operational processes. Further, the study used the 'leagility' concept to remove non-value-added activities and increase the agility of hospitals. The results indicated that hospital information systems could support the CT patient-referral mechanism, increase hospital performance, reduce patient wait time, and enhance the quality of care for patients.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Su, X. H.; Wang, M. H.; Li, Z. Y.; Li, E. K.; Xu, X.
2017-08-01
Water resources vulnerability control management is essential because it is related to the benign evolution of socio-economic, environmental and water resources system. Research on water resources system vulnerability is helpful to realization of water resources sustainable utilization. In this study, the DPSIR framework of driving forces-pressure-state-impact-response was adopted to construct the evaluation index system of water resources system vulnerability. Then the co-evolutionary genetic algorithm and projection pursuit were used to establish evaluation model of water resources system vulnerability. Tengzhou City in Shandong Province was selected as a study area. The system vulnerability was analyzed in terms of driving forces, pressure, state, impact and response on the basis of the projection value calculated by the model. The results show that the five components all belong to vulnerability Grade II, the vulnerability degree of impact and state were higher than other components due to the fierce imbalance in supply-demand and the unsatisfied condition of water resources utilization. It is indicated that the influence of high speed socio-economic development and the overuse of the pesticides have already disturbed the benign development of water environment to some extents. While the indexes in response represented lower vulnerability degree than the other components. The results of the evaluation model are coincident with the status of water resources system in the study area, which indicates that the model is feasible and effective.
A Multi Agent Based Approach for Prehospital Emergency Management.
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-07-01
To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.
A Multi Agent Based Approach for Prehospital Emergency Management
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-01-01
Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061
A Design for the Evaluation of Management Information Systems.
ERIC Educational Resources Information Center
Spuck, Dennis W.; Bozeman, William C.
1980-01-01
This paper has presented a model for the evaluation of management information systems. The three levels of information considered were actual, perceptual, and attitudinal. The dimensions of evaluation discussed were function, utilization, and effects. (Author/IRT)
NASA Technical Reports Server (NTRS)
Park, Han G.; Cannon, Howard; Bajwa, Anupa; Mackey, Ryan; James, Mark; Maul, William
2004-01-01
This paper describes the initial integration of a hybrid reasoning system utilizing a continuous domain feature-based detector, Beacon-based Exceptions Analysis for Multimissions (BEAM), and a discrete domain model-based reasoner, Livingstone.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
Developing a UAS Program for Electric Utilities
NASA Astrophysics Data System (ADS)
Keltgen, James
New innovations and technologies using unmanned aerial systems (UAS), or drones, have created unique opportunities for commercial applications. Electric utilities, likewise, realize the benefits of using UAS as a tool in electric utility operations. Although the opportunities exist, establishing a UAS program for electric utilities is largely an endeavor of trial and error or research and development with no clear path defined on how to establish a UAS program. By reviewing UAS use case examples and integrating lessons learned with Federal Aviation Administration (FAA) regulations, UAS best practices, unique electric utility values, legal and insurance perspectives, equipment selection, and thoughtful planning and preparation; a solution model is developed to establish a UAS program for electric utilities.
A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations
NASA Astrophysics Data System (ADS)
Demir, I.; Agliamzanov, R.
2014-12-01
Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Greenberg, L; Cultice, J M
1997-01-01
OBJECTIVE: The Health Resources and Services Administration's Bureau of Health Professions developed a demographic utilization-based model of physician specialty requirements to explore the consequences of a broad range of scenarios pertaining to the nation's health care delivery system on need for physicians. DATA SOURCE/STUDY SETTING: The model uses selected data primarily from the National Center for Health Statistics, the American Medical Association, and the U.S. Bureau of Census. Forecasts are national estimates. STUDY DESIGN: Current (1989) utilization rates for ambulatory and inpatient medical specialty services were obtained for the population according to age, gender, race/ethnicity, and insurance status. These rates are used to estimate specialty-specific total service utilization expressed in patient care minutes for future populations and converted to physician requirements by applying per-physician productivity estimates. DATA COLLECTION/EXTRACTION METHODS: Secondary data were analyzed and put into matrixes for use in the mainframe computer-based model. Several missing data points, e.g., for HMO-enrolled populations, were extrapolated from available data by the project's contractor. PRINCIPAL FINDINGS: The authors contend that the Bureau's demographic utilization model represents improvements over other data-driven methodologies that rely on staffing ratios and similar supply-determined bases for estimating requirements. The model's distinct utility rests in offering national-level physician specialty requirements forecasts. Images Figure 1 PMID:9018213
Dynamic Evaluation of Long-Term Air Quality Model Simulations Over the Northeastern U.S.
Dynamic model evaluation assesses a modeling system's ability to reproduce changes in air quality induced by changes in meteorology and/or emissions. In this paper, we illustrate various approaches to dynamic mode evaluation utilizing 18 years of air quality simulations perform...
Haire, Timothy C.; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G.
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism. PMID:29623083
Haire, Timothy C; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii . We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.
Thresholds for conservation and management: structured decision making as a conceptual framework
Nichols, James D.; Eaton, Mitchell J.; Martin, Julien; Edited by Guntenspergen, Glenn R.
2014-01-01
changes in system dynamics. They are frequently incorporated into ecological models used to project system responses to management actions. Utility thresholds are components of management objectives and are values of state or performance variables at which small changes yield substantial changes in the value of the management outcome. Decision thresholds are values of system state variables at which small changes prompt changes in management actions in order to reach specified management objectives. Decision thresholds are derived from the other components of the decision process.We advocate a structured decision making (SDM) approach within which the following components are identified: objectives (possibly including utility thresholds), potential actions, models (possibly including ecological thresholds), monitoring program, and a solution algorithm (which produces decision thresholds). Adaptive resource management (ARM) is described as a special case of SDM developed for recurrent decision problems that are characterized by uncertainty. We believe that SDM, in general, and ARM, in particular, provide good approaches to conservation and management. Use of SDM and ARM also clarifies the distinct roles of ecological thresholds, utility thresholds, and decision thresholds in informed decision processes.
Modeling static and dynamic human cardiovascular responses to exercise.
Stremel, R W; Bernauer, E M; Harter, L W; Schultz, R A; Walters, R F
1975-08-01
A human performance model has been developed and described [9] which portrays the human circulatory, thermo regulatory and energy-exchange systems as an intercoupled set. In this model, steady state or static relationships are used to describe oxygen consumption and blood flow. For example, heart rate (HTRT) is calculated as a function of the oxygen and the thermo-regulatory requirements of each body compartment, using the steady state work values of cardiac output (CO, sum of all compartment blood flows) and stroke volume (SV, assumed maximal after 40% maximal oxygen consumption): HTRT=CO/SV. The steady state model has proven to be an acceptable first approximation, but the inclusion of transient characteristics are essential in describing the overall systems' adjustment to exercise stress. In the present study, the dynamic transient characteristics of heart rate, stroke volume and cardiac output were obtained from experiments utilizing step and sinusoidal forcing of work. The gain and phase relationships reveal a probable first order system with a six minute time constant, and are utilized to model the transient characteristics of these parameters. This approach leads to a more complex model but a more accurate representation of the physiology involved. The instrumentation and programming essential to these experiments are described.
Neuman systems model-based research: an integrative review project.
Fawcett, J; Giangrande, S K
2001-07-01
The project integrated Neuman systems model-based research literature. Two hundred published studies were located. This article is limited to the 59 full journal articles and 3 book chapters identified. A total of 37% focused on prevention interventions; 21% on perception of stressors; and 10% on stressor reactions. Only 50% of the reports explicitly linked the model with the study variables, and 61% did not include conclusions regarding model utility or credibility. No programs of research were identified. Academic courses and continuing education workshops are needed to help researchers design programs of Neuman systems model-based research and better explicate linkages between the model and the research.
A Complex Systems Model Approach to Quantified Mineral Resource Appraisal
Gettings, M.E.; Bultman, M.W.; Fisher, F.S.
2004-01-01
For federal and state land management agencies, mineral resource appraisal has evolved from value-based to outcome-based procedures wherein the consequences of resource development are compared with those of other management options. Complex systems modeling is proposed as a general framework in which to build models that can evaluate outcomes. Three frequently used methods of mineral resource appraisal (subjective probabilistic estimates, weights of evidence modeling, and fuzzy logic modeling) are discussed to obtain insight into methods of incorporating complexity into mineral resource appraisal models. Fuzzy logic and weights of evidence are most easily utilized in complex systems models. A fundamental product of new appraisals is the production of reusable, accessible databases and methodologies so that appraisals can easily be repeated with new or refined data. The data are representations of complex systems and must be so regarded if all of their information content is to be utilized. The proposed generalized model framework is applicable to mineral assessment and other geoscience problems. We begin with a (fuzzy) cognitive map using (+1,0,-1) values for the links and evaluate the map for various scenarios to obtain a ranking of the importance of various links. Fieldwork and modeling studies identify important links and help identify unanticipated links. Next, the links are given membership functions in accordance with the data. Finally, processes are associated with the links; ideally, the controlling physical and chemical events and equations are found for each link. After calibration and testing, this complex systems model is used for predictions under various scenarios.
MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation
NASA Technical Reports Server (NTRS)
Charest, Leonard
1994-01-01
This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.
Advance Appropriations for Veteran’s Health Care: Issues and Options for Congress
2009-04-28
care system. Utilization Projection Model (UPM) The UPM is based on the Milliman Health Cost Guidelines ( HCGs ), a proprietary set of utilization-rate...benchmarks derived from commercial data.31 The HCGs contain data on utilization for 37 of the 58 EHCPM health service categories. Milliman applies a...complex set of adjustments to the HCG data to reflect the health status of VA enrollees, their reliance on VA, and the relative efficiency of VA
Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.
Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G
2015-11-17
Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.
Mariotti, François; Petzke, Klaus J; Bonnet, Damien; Szezepanski, Isabelle; Bos, Cécile; Huneau, Jean-François; Fouillet, Hélène
2013-05-01
The systemic availability of oral/dietary arginine and its utilization for nitric oxide (NO) synthesis remains unknown and may be related to a competitive hydrolysis of arginine into urea in the splanchnic area and systemic circulation. We investigated the kinetics and dose-dependency of dietary arginine utilization for NO compared with urea synthesis and studied the characteristics of the arginine-NO metabolic system in healthy humans. We traced the metabolic fate and analyzed the utilization dynamics of dietary arginine after its ingestion at 2 nutritional amounts in healthy humans (n = 9) in a crossover design by using [(15)N-(15)N-(guanido)]-arginine, isotope ratio mass spectrometry techniques, and data analysis with a compartmental modeling approach. Whatever the amount of dietary arginine, 60 ± 3% (±SEM) was converted to urea, with kinetics indicative of a first-pass splanchnic phenomenon. Despite this dramatic extraction, intact dietary arginine made a major contribution to the postprandial increase in plasma arginine. However, the model identified that the plasma compartment was a very minor (~2%) precursor for the conversion of dietary arginine into NO, which, in any case, was small (<0.1% of the dose). The whole-body and plasma kinetics of arginine metabolism were consistent with the suggested competitive metabolism by the arginase and NO synthase pathways. The conversion of oral/dietary arginine into NO is not limited by the systemic availability of arginine but by a tight metabolic compartmentation at the systemic level. We propose an organization of the arginine metabolic system that explains the daily maintenance of NO homeostasis in healthy humans.
178: FORECASTING THE SHORTAGE OF NEUROSURGEONS IN IRAN USING A SYSTEM DYNAMICS MODEL APPROACH
Ezzatabadi, Mohammad Ranjbar; Zadeh, Sina Abdollah; Rafiei, Sima
2017-01-01
Background and aims Shortage of physicians particularly in specialty levels is considered as an important issue in Iran health system. Thus in an uncertain environment, long term planning is required for health professionals as a basic priority on a national scale. The study aimed to estimate the number of required neurosurgeons using system dynamic modelling. Methods System dynamic modelling was applied to predict the gap between stock and number of required neurosurgeons in Iran up to 2020. A supply and demand simulation model was constructed for neurosurgeons using system dynamic approach. The demand model included epidemiological, demographic and utilization variables. Along with, supply model incorporated current stock of neurosurgeons and flow variables such as: attrition, migration and retirement rate. Data were obtained from various governmental databases were analysed by Vensim PLE Version 3.0 to address the flow of health professionals, clinical infrastructure, population demographics and disease prevalence during the time. Results It was forecasted that shortage in number of neurosurgeons would disappear at 2020. The most dominant determinants on predicted number of neurosurgeons were the prevalence of neurosurgical diseases, the rate for service utilization and medical capacity of the region. Conclusion Results of the study suggests that shortage of neurosurgeons in some areas of the country relates to maldistribution of the specialists. Accordingly there is a need to reconsider the allocation system for health professionals within the country instead of increasing the overall number of acceptance quota in training positions.
NASA Astrophysics Data System (ADS)
Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad
2017-03-01
Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.
Systematic Development of Intelligent Systems for Public Road Transport.
García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco
2016-07-16
This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network.
Systematic Development of Intelligent Systems for Public Road Transport
García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco
2016-01-01
This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836
Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System
NASA Technical Reports Server (NTRS)
Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.
2011-01-01
The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.
Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...
2015-11-10
Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less
Financial and environmental impacts of new technologies in the energy sector
NASA Astrophysics Data System (ADS)
Duthu, Ray Charles, III
Energy industries (generation, transmission and distribution of fuels and electricity) have a long history as the key elements of the US energy economy and have operated within a mostly consistent niche in our society for the past century. However, varieties of interrelated drivers are forcing changes to these industries' business practices, relationship to their customers, and function in society. In the electric utility industry, the customer is moving towards acting as a fuller partner in the energy economy: buying, selling, and dispatching its demand according to its own incentives. Natural gas exploration and production has long operated out in rural areas farther from public concerns or regulations, but now, due to hydraulic fracturing, new exploration is occurring in more urbanized, developed regions of the country and is creating significant public concern. For these industries, the challenges to their economic development and to improvements to the energy sector are not necessarily technological; but are social, business, and policy problems. This dissertation seeks to understand and design towards these issues by building economic and life cycle assessment models that quantify value, potential monetization, and the potential difference between the monetization and value for two new technologies: customer-owned distributed generation systems and integrated development plans with pipeline water transport in hydraulically fractured oil and gas fields. An inclusive business model of a generic customer in Fort Collins, Co and its surrounding utilities demonstrates that traditional utility rates provide customers with incentives that encourage over-monetization of a customer's distributed generation resource at the expense of the utilities. Another model which compares customer behavior incented by traditional rates in three New England cities with the behavior incented through a real-time pricing market corroborates this conclusion. Daily customer load peak-shaving is shown to have a negligible and unreliable value in reducing the average cost of electricity and in some cases can increase these costs. These models support the hypothesis that distributed generation systems provide much greater value when operated during a few significant electricity price events than according to a daily cycle. New business practices which foster greater cooperation between customers and utilities, such as a real-time price market with a higher fidelity price signal, reconnect distributed generation's potential monetization to its value in the marketplace. These new business models are required to ensure that these new technologies are integrated into the electric grid and into the energy market in such a way that all of the market participants are interested and invested stakeholders. The truck transport of water associated with hydraulic fracturing creates significant local costs. A life cycle analysis of a hypothetical oil and gas field generic to the northern Colorado Denver-Julesburg basin quantifies the economic, environmental, and social costs associated with truck transport and compares these results with water pipeline systems. A literature review of incident data demonstrates that pipelines historically have spilled less hazardous material and caused fewer injuries and fatalities than truck transport systems. The life cycle analysis demonstrates that pipeline systems also emit less pollutants and cause less local road damage than comparable trucking systems. Pipeline systems are shown to be superior to trucking systems across all the metrics considered in this project. In each of these domains, this research has developed expanded-scope models of these new technologies and systems to quantify the tradeoffs that are present between monetization, environment, and economic value. The results point towards those business models, policies, and management practices that enable the development of more equitable, efficient, and sustainable energy systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, J. C.; Stephens, J. C.; Chung, Serena
As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focusmore » on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
A new modelling framework and mitigation measures for increased resilience to flooding
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Solley, Mark
2015-04-01
Flooding in rivers and estuaries is amongst the most significant challenges our society has yet to tackle effectively. Use of floodwall systems is one of the potential measures that can be used to mitigate the detrimental socio-economical and ecological impacts and alleviate the associated costs of flooding. This work demonstrates the utility of such systems for a case study via appropriate numerical simulations, in addition to conducting scaled flume experiments towards obtaining a better understanding of the performance and efficiency of the flood-wall systems. At first, the results of several characteristic inundation modeling scenarios and flood mitigation options, for a flood-prone region in Scotland. In particular, the history and hydrology of the area are discussed and the assumptions and hydraulic model input (model geometry including instream hydraulic structures -such as bridges and weirs- river and floodplain roughness, initial and boundary conditions) are presented, followed by the model results. Emphasis is given on the potential improvements brought about by mitigating flood risk using flood-wall systems. Further, the implementation of the floodwall in mitigating flood risk is demonstrated via appropriate numerical modeling, utilizing HEC-RAS to simulate the effect of a river's rising stage during a flood event, for a specific area. The later part of this work involves the design, building and utilization of a scaled physical model of a flood-wall system. These experiments are carried out at one of the research flumes in the Water Engineering laboratory of the University of Glasgow. These involve an experimental investigation where the increase of force applied on the floodwall is measured for different degrees of deflection of the water in the stream, under the maximum flow discharge that can be carried through without exceeding the floodwall height (and accounting for the effect of super-elevation). These results can be considered upon the implementation phase of floodwalls, when the floodwalls are placed at any arrangement other than parallel to the flow (e.g. along river bends in meandering channels or at river junctions). Such considerations can lead to site-specific optimal designs of direct flood defenses with the rising floodwall system, both in terms of product performance as well as cost efficiency.
Modeling Complex Cross-Systems Software Interfaces Using SysML
NASA Technical Reports Server (NTRS)
Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin
2013-01-01
The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauder, C.
This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems thatmore » interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.« less
Defense strategies for asymmetric networked systems under composite utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell
We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively.more » They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure« less
NASA Astrophysics Data System (ADS)
Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.
2010-12-01
Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.
NASA Astrophysics Data System (ADS)
Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.
2017-07-01
Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.
A collaborative molecular modeling environment using a virtual tunneling service.
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.
Utility-Scale Lithium-Ion Storage Cost Projections for Use in Capacity Expansion Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Marcy, Cara; Krishnan, Venkat K.
2016-11-21
This work presents U.S. utility-scale battery storage cost projections for use in capacity expansion models. We create battery cost projections based on a survey of literature cost projections of battery packs and balance of system costs, with a focus on lithium-ion batteries. Low, mid, and high cost trajectories are created for the overnight capital costs and the operating and maintenance costs. We then demonstrate the impact of these cost projections in the Regional Energy Deployment System (ReEDS) capacity expansion model. We find that under reference scenario conditions, lower battery costs can lead to increased penetration of variable renewable energy, withmore » solar photovoltaics (PV) seeing the largest increase. We also find that additional storage can reduce renewable energy curtailment, although that comes at the expense of additional storage losses.« less
A Model-Based Expert System for Space Power Distribution Diagnostics
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Schlegelmilch, Richard F.
1994-01-01
When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.
Integrating climatic and fuels information into National Fire Risk Decision Support Tools
W. Cooke; V. Anantharaj; C. Wax; J. Choi; K. Grala; M. Jolly; G.P. Dixon; J. Dyer; D.L. Evans; G.B. Goodrich
2007-01-01
The Wildland Fire Assessment System (WFAS) is a component of the U.S. Department of Agriculture, Forest Service Decision Support Systems (DSS) that support fire potential modeling. Fire potential models for Mississippi and for Eastern fire environments have been developed as part of a National Aeronautic and Space Agency-funded study aimed at demonstrating the utility...
ERIC Educational Resources Information Center
Gallagher Gordon, Mary
2012-01-01
This dissertation examines nurses' perceptions of the impacts of systems and technology utilized during the medication administration process on patient safety and the culture of medication error reporting. This exploratory research study was grounded in a model of patient safety based on Patricia Benner's Novice to Expert Skill Acquisition model,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan; Khemka, Bhavesh; Maciejewski, Anthony A
Rising costs of energy consumption and an ongoing effort for increases in computing performance are leading to a significant need for energy-efficient computing. Before systems such as supercomputers, servers, and datacenters can begin operating in an energy-efficient manner, the energy consumption and performance characteristics of the system must be analyzed. In this paper, we provide an analysis framework that will allow a system administrator to investigate the tradeoffs between system energy consumption and utility earned by a system (as a measure of system performance). We model these trade-offs as a bi-objective resource allocation problem. We use a popular multi-objective geneticmore » algorithm to construct Pareto fronts to illustrate how different resource allocations can cause a system to consume significantly different amounts of energy and earn different amounts of utility. We demonstrate our analysis framework using real data collected from online benchmarks, and further provide a method to create larger data sets that exhibit similar heterogeneity characteristics to real data sets. This analysis framework can provide system administrators with insight to make intelligent scheduling decisions based on the energy and utility needs of their systems.« less
2014-09-30
continuation of the evolution of the Regional Oceanic Modeling System (ROMS) as a multi-scale, multi-process model and its utilization for...hydrostatic component of ROMS (Kanarska et al., 2007) is required to increase its efficiency and generality. The non-hydrostatic ROMS involves the solution...instability and wind-driven mixing. For the computational regime where those processes can be partially, but not yet fully resolved, it will
ERIC Educational Resources Information Center
Kamis-Gould, Edna; And Others
1991-01-01
A model for quality assurance (QA) in psychiatric hospitals is described. Its functions (general QA, utilization review, clinical records, evaluation, management information systems, risk management, and infection control), subfunctions, and corresponding staffing requirements are reviewed. This model was designed to foster standardization in QA…
Catalog of selected heavy duty transport energy management models
NASA Technical Reports Server (NTRS)
Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.
1983-01-01
A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.
Developing a clinical utility framework to evaluate prediction models in radiogenomics
NASA Astrophysics Data System (ADS)
Wu, Yirong; Liu, Jie; Munoz del Rio, Alejandro; Page, David C.; Alagoz, Oguzhan; Peissig, Peggy; Onitilo, Adedayo A.; Burnside, Elizabeth S.
2015-03-01
Combining imaging and genetic information to predict disease presence and behavior is being codified into an emerging discipline called "radiogenomics." Optimal evaluation methodologies for radiogenomics techniques have not been established. We aim to develop a clinical decision framework based on utility analysis to assess prediction models for breast cancer. Our data comes from a retrospective case-control study, collecting Gail model risk factors, genetic variants (single nucleotide polymorphisms-SNPs), and mammographic features in Breast Imaging Reporting and Data System (BI-RADS) lexicon. We first constructed three logistic regression models built on different sets of predictive features: (1) Gail, (2) Gail+SNP, and (3) Gail+SNP+BI-RADS. Then, we generated ROC curves for three models. After we assigned utility values for each category of findings (true negative, false positive, false negative and true positive), we pursued optimal operating points on ROC curves to achieve maximum expected utility (MEU) of breast cancer diagnosis. We used McNemar's test to compare the predictive performance of the three models. We found that SNPs and BI-RADS features augmented the baseline Gail model in terms of the area under ROC curve (AUC) and MEU. SNPs improved sensitivity of the Gail model (0.276 vs. 0.147) and reduced specificity (0.855 vs. 0.912). When additional mammographic features were added, sensitivity increased to 0.457 and specificity to 0.872. SNPs and mammographic features played a significant role in breast cancer risk estimation (p-value < 0.001). Our decision framework comprising utility analysis and McNemar's test provides a novel framework to evaluate prediction models in the realm of radiogenomics.
Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach.
Akberdin, Ilya R; Thompson, Merlin; Hamilton, Richard; Desai, Nalini; Alexander, Danny; Henard, Calvin A; Guarnieri, Michael T; Kalyuzhnaya, Marina G
2018-02-06
Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13 C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z R an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20Z R . A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C 1 -metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
An integrated approach to system design, reliability, and diagnosis
NASA Astrophysics Data System (ADS)
Patterson-Hine, F. A.; Iverson, David L.
1990-12-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
Probabilistic Risk Assessment for Decision Making During Spacecraft Operations
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2009-01-01
Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn, provide insight into the effect of various faults or failures on the risk and failure drivers of the system and the likelihood of possible end case scenarios, thereby facilitating the decision making process during operations. This paper describes the process of adjusting PRA models based on observed spacecraft data, on one hand, and utilizing the models for insight into the future system behavior on the other hand. While PRA models are typically used as a decision aid during the design phase of a space mission, we advocate adjusting them based on the observed behavior of the spacecraft and utilizing them for decision support during the operations phase.
Nwanaji-Enwerem, Jamaji C; Weisskopf, Marc G; Baccarelli, Andrea A
2018-04-23
The multi-tissue DNA methylation estimator of chronological age (DNAm-age) has been associated with a wide range of exposures and health outcomes. Still, it is unclear how DNAm-age can have such broad relationships and how it can be best utilized as a biomarker. Understanding DNAm-age's molecular relationships is a promising approach to address this critical knowledge gap. In this review, we discuss the existing literature regarding DNAm-age's molecular relationships in six major categories: animal model systems, cancer processes, cellular aging processes, immune system processes, metabolic processes, and nucleic acid processes. We also present perspectives regarding the future of DNAm-age research, including the need to translate a greater number of ongoing research efforts to experimental and animal model systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Distributed geospatial model sharing based on open interoperability standards
Feng, Min; Liu, Shuguang; Euliss, Ned H.; Fang, Yin
2009-01-01
Numerous geospatial computational models have been developed based on sound principles and published in journals or presented in conferences. However modelers have made few advances in the development of computable modules that facilitate sharing during model development or utilization. Constraints hampering development of model sharing technology includes limitations on computing, storage, and connectivity; traditional stand-alone and closed network systems cannot fully support sharing and integrating geospatial models. To address this need, we have identified methods for sharing geospatial computational models using Service Oriented Architecture (SOA) techniques and open geospatial standards. The service-oriented model sharing service is accessible using any tools or systems compliant with open geospatial standards, making it possible to utilize vast scientific resources available from around the world to solve highly sophisticated application problems. The methods also allow model services to be empowered by diverse computational devices and technologies, such as portable devices and GRID computing infrastructures. Based on the generic and abstract operations and data structures required for Web Processing Service (WPS) standards, we developed an interactive interface for model sharing to help reduce interoperability problems for model use. Geospatial computational models are shared on model services, where the computational processes provided by models can be accessed through tools and systems compliant with WPS. We developed a platform to help modelers publish individual models in a simplified and efficient way. Finally, we illustrate our technique using wetland hydrological models we developed for the prairie pothole region of North America.
NASA Astrophysics Data System (ADS)
Giraud, Francois
1999-10-01
This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as the sole sources of power, whose variations influence the system variables. Since both subsystems have different dynamics, their respective responses are expected to impact differently the whole system behavior. The dispatchability of the battery-supported system as well as its stability and reliability during gusts and/or cloud passage is also discussed. In the fifth step, the goal is to determine to what extent the overall power quality of the grid would be affected by a proliferation of Utility-interactive hybrid system and whether recourse to bulky or individual filtering and voltage controller is necessary. The final stage of the research includes a steady-state analysis of two-year operation (May 96--Apr 98) of the system, with a discussion on system reliability, on any loss of supply probability, and on the effects of the randomness in the wind and solar radiation upon the system design optimization.
Development of a Simulation Capability for the Space Station Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Johnson, Terry L.; Tolson, Robert H.
1998-01-01
To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.
Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission
NASA Technical Reports Server (NTRS)
Fiehler, Douglas; Dougherty, Ryan; Manzella, David
2005-01-01
The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.
Integrating DXplain into a clinical information system using the World Wide Web.
Elhanan, G; Socratous, S A; Cimino, J J
1996-01-01
The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.
A catastrophe model for the prospect-utility theory question.
Oliva, Terence A; McDade, Sean R
2008-07-01
Anomalies have played a big part in the analysis of decision making under risk. Both expected utility and prospect theories were born out of anomalies exhibited by actual decision making behavior. Since the same individual can use both expected utility and prospect approaches at different times, it seems there should be a means of uniting the two. This paper turns to nonlinear dynamical systems (NDS), specifically a catastrophe model, to help suggest an 'out of the box' line of solution toward integration. We use a cusp model to create a value surface whose control dimensions are involvement and gains versus losses. By including 'involvement' as a variable the importance of the individual's psychological state is included, and it provides a rationale for how decision makers' changes from expected utility to prospect might occur. Additionally, it provides a possible explanation for what appears to be even more irrational decisions that individuals make when highly emotionally involved. We estimate the catastrophe model using a sample of 997 gamblers who attended a casino and compare it to the linear model using regression. Hence, we have actual data from individuals making real bets, under real conditions.
NASA Technical Reports Server (NTRS)
Evers, Ken H.; Bachert, Robert F.
1987-01-01
The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1990-01-01
This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
NASA Astrophysics Data System (ADS)
Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott
2012-09-01
This work presents the development of a dynamic SOFC-GT hybrid system model applied to a long-haul freight locomotive in operation. Given the expectations of the rail industry, the model is used to develop a preliminary analysis of the proposed system's operational capability on conventional diesel fuel as well as natural gas and hydrogen as potential fuels in the future. It is found that operation of the system on all three of these fuels is feasible with favorable efficiencies and reasonable dynamic response. The use of diesel fuel reformate in the SOFC presents a challenge to the electrochemistry, especially as it relates to control and optimization of the fuel utilization in the anode compartment. This is found to arise from the large amount of carbon monoxide in diesel reformate that is fed to the fuel cell, limiting the maximum fuel utilization possible. This presents an opportunity for further investigations into carbon monoxide electrochemical oxidation and/or system integration studies where the efficiency of the fuel reformer can be balanced against the needs of the SOFC.
APPLICATION OF STABLE ISOTOPE TECHNIQUES TO AIR POLLUTION RESEARCH
Stable isotope techniques provide a robust, yet under-utilized tool for examining pollutant effects on plant growth and ecosystem function. Here, we survey a range of mixing model, physiological and system level applications for documenting pollutant effects. Mixing model examp...
Decentralized solar photovoltaic energy systems
NASA Astrophysics Data System (ADS)
Krupka, M. C.
1980-09-01
Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.
Use of olive oil-in-water gelled emulsions in model turkey breast emulsions
NASA Astrophysics Data System (ADS)
Serdaroğlu, M.; Öztürk, B.
2017-09-01
Today, gelled emulsion systems offer a novel possibility in lipid modification of meat products. In this study, we aimed to investigate the quality characteristics of model turkey emulsions that were prepared with olive oil-in-water gelled emulsion (GE) as partial or total beef fat replacer. The results indicated that while most of the GE treatments showed equivalent emulsion characteristics in terms of emulsion stability, water-holding capacity and cook yield, utilization of 100% GE as the lipid source could increase total expressible fluid of the model turkey emulsion and thus negatively affect the quality. Utilization of GE was effective in total fat reduction, as the model turkey emulsions formulated with more than 50% GE had significantly lower fat content compared to full-beef fat control model emulsion. However, beef fat replacement with GE produced considerable changes in colour parameters. Finally, it was concluded that utilization of GE as a partial beef fat replacer has good potential to enhance stability and reduce total fat in turkey meat emulsion products.
Simulation technique for modeling flow on floodplains and in coastal wetlands
Schaffranek, Raymond W.; Baltzer, Robert A.
1988-01-01
The system design is premised on a proven, areal two-dimensional, finite-difference flow/transport model which is supported by an operational set of computer programs for input data management and model output interpretation. The purposes of the project are (1) to demonstrate the utility of the model for providing useful highway design information, (2) to develop guidelines and procedures for using the simulation system for evaluation, analysis, and optimal design of highway crossings of floodplain and coastal wetland areas, and (3) to identify improvements which can be effected in the simulation system to better serve the needs of highway design engineers. Two case study model implementations, being conducted to demonstrate the simulation system and modeling procedure, are presented and discussed briefly.
Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.
2017-01-01
The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.
NASA Astrophysics Data System (ADS)
Donnelly, William J., III
2012-06-01
PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
ERIC Educational Resources Information Center
Carlson, Ryan G.; Lambie, Glenn W.
2012-01-01
Supervision models for marriage and family counseling student interns primarily focus on the use of traditional systemic techniques. In addition, a supervisee's level of development may not be considered when utilizing systemic tools. Furthermore, the supervisory relationship has been identified as a significant indicator of quality supervision,…
Spaceborne power systems preference analyses. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.
1985-01-01
Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals.
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Kentucky Allied Health Project Final Report: A State System for Allied Health Education.
ERIC Educational Resources Information Center
Kentucky State Council on Higher Education, Frankfort.
The accomplishments of the Kentucky Allied Health Project, which implemented a model articulated system of allied health education, are described. The system included plans to promote transition from one education level to another and articulation in educational planning and resource utilization. The project has greatly increased…
Learning Management System with Prediction Model and Course-Content Recommendation Module
ERIC Educational Resources Information Center
Evale, Digna S.
2017-01-01
Aim/Purpose: This study is an attempt to enhance the existing learning management systems today through the integration of technology, particularly with educational data mining and recommendation systems. Background: It utilized five-year historical data to find patterns for predicting student performance in Java Programming to generate…
Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P
2017-02-01
The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.
Analysis of Water Resource Utilization Potential for Jiangsu Coastal Area ' in Nantong City
NASA Astrophysics Data System (ADS)
Ren, Li; Liu, Jin-Tao; Ni, Jian-Jun
2015-04-01
Along with the advance of the growth of population and social economy, requirements for water quality and quantity in coastal areas is getting higher and higher, but due to the uneven distribution of rainfall years and water exploitation, use and management level, the influence of the shortage of water resources is increasingly prominent, seriously restricting the social and economic sustainable development in this region. Accordingly, water resource utilization potential in Jiangsu coastal region is vital for water security in the region. Taking Nantong City as the study area, the regional water resources development and utilization status were evaluated. In this paper, the meaning of water resources, water resources development and utilization, and water resources development and utilization of the three stages of concepts such as system were discussed. Then the development and utilization of regional water resource evaluation were carried out, and the significance of regional society, economy, resources and environment and its development status quo of water resources were exploited. According to conditions and area source, an evaluation index system for development and utilization of water resources of Nantong was built up. The index layer was composed of 16 indicators. In this study, analytic hierarchy process (AHP) was used to determine of weights of indicators at all levels in the index system. Multistage fuzzy comprehensive evaluation model was selected to evaluate the water resources development and utilization status of Nantong, and then water resource utilization potential of Nantong was analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.
2009-05-01
Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.
Hydraulic model of the proposed Water Recovery and Management system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Martin, Charles E.; Bacskay, Allen S.
1991-01-01
A model of the Water Recovery and Management (WRM) system utilizing SINDA '85/FLUINT to determine its hydraulic operation characteristics, and to verify the design flow and pressure drop parameters is presented. The FLUINT analysis package is employed in the model to determine the flow and pressure characteristics when each of the different loop components is operational and contributing to the overall flow pattern. The water is driven in each loop by storage tanks pressurized with cabin air, and is routed through the system to the desired destination.
Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota
2016-01-01
The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.
Empirical testing of an analytical model predicting electrical isolation of photovoltaic models
NASA Astrophysics Data System (ADS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.
NASA Technical Reports Server (NTRS)
Taber, William; Port, Dan
2014-01-01
At the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory we make use of finite exponential based defect models to aid in maintenance planning and management for our widely used critical systems. However a number of pragmatic issues arise when applying defect models for a post-release system in continuous use. These include: how to utilize information from problem reports rather than testing to drive defect discovery and removal effort, practical model calibration, and alignment of model assumptions with our environment.
Exploring the possibility of modeling a genetic counseling guideline using agile methodology.
Choi, Jeeyae
2013-01-01
Increased demand of genetic counseling services heightened the necessity of a computerized genetic counseling decision support system. In order to develop an effective and efficient computerized system, modeling of genetic counseling guideline is an essential step. Throughout this pilot study, Agile methodology with United Modeling Language (UML) was utilized to model a guideline. 13 tasks and 14 associated elements were extracted. Successfully constructed conceptual class and activity diagrams revealed that Agile methodology with UML was a suitable tool to modeling a genetic counseling guideline.
Data management system performance modeling
NASA Technical Reports Server (NTRS)
Kiser, Larry M.
1993-01-01
This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.
A survey on hysteresis modeling, identification and control
NASA Astrophysics Data System (ADS)
Hassani, Vahid; Tjahjowidodo, Tegoeh; Do, Thanh Nho
2014-12-01
The various mathematical models for hysteresis such as Preisach, Krasnosel'skii-Pokrovskii (KP), Prandtl-Ishlinskii (PI), Maxwell-Slip, Bouc-Wen and Duhem are surveyed in terms of their applications in modeling, control and identification of dynamical systems. In the first step, the classical formalisms of the models are presented to the reader, and more broadly, the utilization of the classical models is considered for development of more comprehensive models and appropriate controllers for corresponding systems. In addition, the authors attempt to encourage the reader to follow the existing mathematical models of hysteresis to resolve the open problems.
Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrows, Clayton; Mai, Trieu; Haase, Scott
2016-03-01
The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.
Autonomous control systems - Architecture and fundamental issues
NASA Technical Reports Server (NTRS)
Antsaklis, P. J.; Passino, K. M.; Wang, S. J.
1988-01-01
A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
Tanaka, Shingo; Oguchi, Mineki; Sakagami, Masamichi
2016-11-01
To behave appropriately in a complex and uncertain world, the brain makes use of several distinct learning systems. One such system is called the "model-free process", via which conditioning allows the association between a stimulus or response and a given reward to be learned. Another system is called the "model-based process". Via this process, the state transition between a stimulus and a response is learned so that the brain is able to plan actions prior to their execution. Several studies have tried to relate the difference between model-based and model-free processes to the difference in functions of the lateral prefrontal cortex (LPFC) and the striatum. Here, we describe a series of studies that demonstrate the ability of LPFC neurons to categorize visual stimuli by their associated behavioral responses and to generate abstract information. If LPFC neurons utilize abstract code to associate a stimulus with a reward, they should be able to infer similar relationships between other stimuli of the same category and their rewards without direct experience of these stimulus-reward contingencies. We propose that this ability of LPFC neurons to utilize abstract information can contribute to the model-based learning process.
A Geant4 model of backscatter security imaging systems
NASA Astrophysics Data System (ADS)
Leboffe, Eric Matthew
The operating characteristics of x ray security scanner systems that utilize backscatter signal in order to distinguish person borne threats have never been made fully available to the general public. By designing a model using Geant4, studies can be performed which will shed light on systems such as security scanners and allow for analysis of the performance and safety of the system without access to any system data. Despite the fact that the systems are no longer in use at airports in the United States, the ability to design and validate detector models and phenomena is an important capability that can be applied to many current real world applications. The model presented provides estimates for absorbed dose, effective dose and dose depth distribution that are comparable to previously published work and explores imaging capabilities for the system embodiment modeled.
Reliability model of a monopropellant auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1971-01-01
A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.
Acceleration constraints in modeling and control of nonholonomic systems
NASA Astrophysics Data System (ADS)
Bajodah, Abdulrahman H.
2003-10-01
Acceleration constraints are used to enhance modeling techniques for dynamical systems. In particular, Kane's equations of motion subjected to bilateral constraints, unilateral constraints, and servo-constraints are modified by utilizing acceleration constraints for the purpose of simplifying the equations and increasing their applicability. The tangential properties of Kane's method provide relationships between the holonomic and the nonholonomic partial velocities, and hence allow one to describe nonholonomic generalized active and inertia forces in terms of their holonomic counterparts, i.e., those which correspond to the system without constraints. Therefore, based on the modeling process objectives, the holonomic and the nonholonomic vector entities in Kane's approach are used interchangeably to model holonomic and nonholonomic systems. When the holonomic partial velocities are used to model nonholonomic systems, the resulting models are full-order (also called nonminimal or unreduced) and separated in accelerations. As a consequence, they are readily integrable and can be used for generic system analysis. Other related topics are constraint forces, numerical stability of the nonminimal equations of motion, and numerical constraint stabilization. Two types of unilateral constraints considered are impulsive and friction constraints. Impulsive constraints are modeled by means of a continuous-in-velocities and impulse-momentum approaches. In controlled motion, the acceleration form of constraints is utilized with the Moore-Penrose generalized inverse of the corresponding constraint matrix to solve for the inverse dynamics of servo-constraints, and for the redundancy resolution of overactuated manipulators. If control variables are involved in the algebraic constraint equations, then these tools are used to modify the controlled equations of motion in order to facilitate control system design. An illustrative example of spacecraft stabilization is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhenhua; Rose, Adam Z.; Prager, Fynnwin
The state of the art approach to economic consequence analysis (ECA) is computable general equilibrium (CGE) modeling. However, such models contain thousands of equations and cannot readily be incorporated into computerized systems used by policy analysts to yield estimates of economic impacts of various types of transportation system failures due to natural hazards, human related attacks or technological accidents. This paper presents a reduced-form approach to simplify the analytical content of CGE models to make them more transparent and enhance their utilization potential. The reduced-form CGE analysis is conducted by first running simulations one hundred times, varying key parameters, suchmore » as magnitude of the initial shock, duration, location, remediation, and resilience, according to a Latin Hypercube sampling procedure. Statistical analysis is then applied to the “synthetic data” results in the form of both ordinary least squares and quantile regression. The analysis yields linear equations that are incorporated into a computerized system and utilized along with Monte Carlo simulation methods for propagating uncertainties in economic consequences. Although our demonstration and discussion focuses on aviation system disruptions caused by terrorist attacks, the approach can be applied to a broad range of threat scenarios.« less
Ehrenfeld, Jesse M; Dexter, Franklin; Rothman, Brian S; Minton, Betty Sue; Johnson, Diane; Sandberg, Warren S; Epstein, Richard H
2013-12-01
When the phase I postanesthesia care unit (PACU) is at capacity, completed cases need to be held in the operating room (OR), causing a "PACU delay." Statistical methods based on historical data can optimize PACU staffing to achieve the least possible labor cost at a given service level. A decision support process to alert PACU charge nurses that the PACU is at or near maximum census might be effective in lessening the incidence of delays and reducing over-utilized OR time, but only if alerts are timely (i.e., neither too late nor too early to act upon) and the PACU slot can be cleared quickly. We evaluated the maximum potential benefit of such a system, using assumptions deliberately biased toward showing utility. We extracted 3 years of electronic PACU data from a tertiary care medical center. At this hospital, PACU admissions were limited by neither inadequate PACU staffing nor insufficient PACU beds. We developed a model decision support system that simulated alerts to the PACU charge nurse. PACU census levels were reconstructed from the data at a 1-minute level of resolution and used to evaluate if subsequent delays would have been prevented by such alerts. The model assumed there was always a patient ready for discharge and an available hospital bed. The time from each alert until the maximum census was exceeded ("alert lead time") was determined. Alerts were judged to have utility if the alert lead time fell between various intervals from 15 or 30 minutes to 60, 75, or 90 minutes after triggering. In addition, utility for reducing over-utilized OR time was assessed using the model by determining if 2 patients arrived from 5 to 15 minutes of each other when the PACU census was at 1 patient less than the maximum census. At most, 23% of alerts arrived 30 to 60 minutes prior to the admission that resulted in the PACU exceeding the specified maximum capacity. When the notification window was extended to 15 to 90 minutes, the maximum utility was <50%. At most, 45% of alerts potentially would have resulted in reassigning the last available PACU slot to 1 OR versus another within 15 minutes of the original assignment. Despite multiple biases that favored effectiveness, the maximum potential benefit of a decision support system to mitigate PACU delays on the day on the surgery was below the 70% minimum threshold for utility of automated decision support messages, previously established via meta-analysis. Neither reduction in PACU delays nor reassigning promised PACU slots based on reducing over-utilized OR time were realized sufficiently to warrant further development of the system. Based on these results, the only evidence-based method of reducing PACU delays is to adjust PACU staffing and staff scheduling using computational algorithms to match the historical workload (e.g., as developed in 2001).
Decision support system for drinking water management
NASA Astrophysics Data System (ADS)
Janža, M.
2012-04-01
The problems in drinking water management are complex and often solutions must be reached under strict time constrains. This is especially distinct in case of environmental accidents in the catchment areas of the wells that are used for drinking water supply. The beneficial tools that can help decision makers and make program of activities more efficient are decision support systems (DSS). In general they are defined as computer-based support systems that help decision makers utilize data and models to solve unstructured problems. The presented DSS was developed in the frame of INCOME project which is focused on the long-term stable and safe drinking water supply in Ljubljana. The two main water resources Ljubljana polje and Barje alluvial aquifers are characterized by a strong interconnection of surface and groundwater, high vulnerability, high velocities of groundwater flow and pollutant transport. In case of sudden pollution, reactions should be very fast to avoid serious impact to the water supply. In the area high pressures arising from urbanization, industry, traffic, agriculture and old environmental burdens. The aim of the developed DSS is to optimize the activities in cases of emergency water management and to optimize the administrative work regarding the activities that can improve groundwater quality status. The DSS is an interactive computer system that utilizes data base, hydrological modelling, and experts' and stakeholders' knowledge. It consists of three components, tackling the different abovementioned issues in water management. The first one utilizes the work on identification, cleaning up and restoration of illegal dumpsites that are a serious threat to the qualitative status of groundwater. The other two components utilize the predictive capability of the hydrological model and scenario analysis. The user interacts with the system by a graphical interface that guides the user step-by-step to the recommended remedial measures. Consequently, the acquisition of information to support the water management's decisions is simplified and faster, thus contributing to more efficient water management and a safer supply of drinking water.
Polarimetry noise in fiber-based optical coherence tomography instrumentation
Zhang, Ellen Ziyi; Vakoc, Benjamin J.
2011-01-01
High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Systems Toxicology of Embryo Development (9th Copenhagen Workshop)
An important consideration for predictive toxicology is to identify developmental hazards utilizing mechanism-based in vitro assays (e.g., ToxCast) and in silico multiscale models. Steady progress has been made with agent-based models that recapitulate morphogenetic drivers for a...
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2005-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2007-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.
Return-to-Work Within a Complex and Dynamic Organizational Work Disability System.
Jetha, Arif; Pransky, Glenn; Fish, Jon; Hettinger, Lawrence J
2016-09-01
Background Return-to-work (RTW) within a complex organizational system can be associated with suboptimal outcomes. Purpose To apply a sociotechnical systems perspective to investigate complexity in RTW; to utilize system dynamics modeling (SDM) to examine how feedback relationships between individual, psychosocial, and organizational factors make up the work disability system and influence RTW. Methods SDMs were developed within two companies. Thirty stakeholders including senior managers, and frontline supervisors and workers participated in model building sessions. Participants were asked questions that elicited information about the structure of the work disability system and were translated into feedback loops. To parameterize the model, participants were asked to estimate the shape and magnitude of the relationship between key model components. Data from published literature were also accessed to supplement participant estimates. Data were entered into a model created in the software program Vensim. Simulations were conducted to examine how financial incentives and light duty work disability-related policies, utilized by the participating companies, influenced RTW likelihood and preparedness. Results The SDMs were multidimensional, including individual attitudinal characteristics, health factors, and organizational components. Among the causal pathways uncovered, psychosocial components including workplace social support, supervisor and co-worker pressure, and supervisor-frontline worker communication impacted RTW likelihood and preparedness. Interestingly, SDM simulations showed that work disability-related policies in both companies resulted in a diminishing or opposing impact on RTW preparedness and likelihood. Conclusion SDM provides a novel systems view of RTW. Policy and psychosocial component relationships within the system have important implications for RTW, and may contribute to unanticipated outcomes.
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...
2017-08-18
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
Optimal planning and design of a renewable energy based supply system for microgrids
Hafez, Omar; Bhattacharya, Kankar
2012-03-03
This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less
Utility of CRISPR/Cas9 systems in hematology research.
Lucas, Daniel; O'Leary, Heather A; Ebert, Benjamin L; Cowan, Chad A; Tremblay, Cedric S
2017-10-01
Since the end of the 20th century, novel approaches have emerged to manipulate experimental models of hematological disorders so that they more accurately mirror what is observed in the clinical setting. Despite these technological advances, the characterization of crucial genes for benign or malignant hematological disorders remains challenging, given the dynamic nature of the hematopoietic system and the genetic heterogeneity of these disorders. To overcome this limitation, genome-editing technologies have been developed to manipulate the genome specifically via deletion, insertion, or modification of targeted loci. These technologies have progressed swiftly, allowing their common use to investigate genetic function in experimental hematology. Among them, homologous-recombination-mediated targeting technologies have facilitated the manipulation of specific loci by generating knock-out and knock-in models. Despite promoting significant advances in our understanding of the molecular mechanisms involved in hematology, these inefficient, time-consuming, and labor-intensive approaches did not permit the development of cellular or animal models, recapitulating the complexity of hematological disorders. On October 26, 2016, Drs. Ben Ebert and Chad Cowan shared their knowledge of and experience with the utilization of CRISPR for models of myeloid malignancy, disease, and novel therapeutics in an International Society for Experimental Hematology webinar titled "Utility of CRISPR/Cas9 Systems in Hematology Research." Here, we provide an overview of the topics they covered, including their insights into the novel applications of the technique and its strengths and limitations. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Koenig, Gregory A; Machovec, Dylan
2016-01-01
Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e.,more » Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.« less
Air Force Human Resources Laboratory Annual Report - Fiscal Year 1983.
1984-08-01
were performed - digital image-generation visual system and three in the Advanced Simulator for Pilot Training at associated wide-angle windows. The...inputs by the trainee. This arrangement, and survivability in high-threat environments are , with its corresponding analog-to- digital interface... digitized models of various military vehicles and aircraft for continual update/expansion. Utilization: An interactive modeling system will be user
ERIC Educational Resources Information Center
Tsai, Yea-Ru
2015-01-01
This study illustrates a teaching model that utilizes a Blackboard (Bb) course management system (CMS) to support English writing instruction. It was implemented in a blended English research paper (RP) writing course, with specific learning resources and activities offered inside and outside the Bb CMS. A quasi-experimental study in which the…
Ten Years of Change in Sierran Stringer Meadows: An Evaluation of Range Condition Models
Barbara H. Allen
1989-01-01
Grazed Sierra Nevada stringer meadow systems were sampled on Blodgett Forest Research Station in northern California between 1977 and 1987 to determine cattle use, and to examine changes in production and species composition over time. Utilization of meadow species averaged 61 percent over the 10 years, but use increased to more than 80 percent utilization after 1985....
Mining the Dynamics of Student Utility and Strategy Use during Vocabulary Learning
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.
2013-01-01
This paper describes the development of a dynamical systems model of motivation and metacognition during learning, which explains some of the practically and theoretically important relationships among three student engagement constructs and performance metrics during learning. In order to better calibrate and understand the model, the model was…
Renewable Energy Deployment in Colorado and the West: Extended Policy Sensitivities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrows, Clayton P.; Stoll, Brady; Mooney, Meghan E.
The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.
The Determinants of Student Effort at Learning ERP: A Cultural Perspective
ERIC Educational Resources Information Center
Alshare, Khaled A.; El-Masri, Mazen; Lane, Peggy L.
2015-01-01
This paper develops a research model based on the Unified Theory of Acceptance and Use of Technology model (UTAUT) and Hofstede's cultural dimensions to explore factors that influence student effort at learning Enterprise Resource Planning (ERP) systems. A Structural Equation Model (SEM) using LISREL was utilized to validate the proposed research…
DOT National Transportation Integrated Search
2017-03-24
The Pikalert System provides high precision road weather guidance. It assesses current weather and road conditions based on observations from connected vehicles, road weather information stations, radar, and weather model analysis fields. It also for...
Goth, Ursula S.; Hammer, Hugo L.; Claussen, Bjørgulf
2014-01-01
Utilization of services is an important indicator for estimating access to healthcare. In Norway, the General Practitioner Scheme, a patient list system, was established in 2001 to enable a stable doctor-patient relationship. Although satisfaction with the system is generally high, people often choose a more accessible but inferior solution for routine care: emergency wards. The aim of the article is to investigate contact patterns in primary health care situations for the total population in urban and remote areas of Norway and for major immigrant groups in Oslo. The primary regression model had a cross-sectional study design analyzing 2,609,107 consultations in representative municipalities across Norway, estimating the probability of choosing the emergency ward in substitution to a general practitioner. In a second regression model comprising 625,590 consultations in Oslo, we calculated this likelihood for immigrants from the 14 largest groups. We noted substantial differences in emergency ward utilization between ethnic Norwegians both in rural and remote areas and among the various immigrant groups residing in Oslo. Oslo utilization of emergency ward services for the whole population declined, and so did this use among all immigrant groups after 2009. Other municipalities, while overwhelmingly ethnically Norwegian, showed diverse patterns including an increase in some and a decrease in others, results which we were unable to explain. PMID:24662997
Levy, Karen; Klein, Mitchel; Sarnat, Stefanie Ebelt; Panwhar, Samina; Huttinger, Alexandra; Tolbert, Paige; Moe, Christine
2016-08-01
Recent outbreak investigations suggest that a substantial proportion of waterborne disease outbreaks are attributable to water distribution system issues. In this analysis, we examine the relationship between modeled water residence time (WRT), a proxy for probability of microorganism intrusion into the distribution system, and emergency department visits for gastrointestinal (GI) illness for two water utilities in Metro Atlanta, USA during 1993-2004. We also examine the association between proximity to the nearest distribution system node, based on patients' residential address, and GI illness using logistic regression models. Comparing long (≥90th percentile) with intermediate WRTs (11th to 89th percentile), we observed a modestly increased risk for GI illness for Utility 1 (OR = 1.07, 95% CI: 1.02-1.13), which had substantially higher average WRT than Utility 2, for which we found no increased risk (OR = 0.98, 95% CI: 0.94-1.02). Examining finer, 12-hour increments of WRT, we found that exposures >48 h were associated with increased risk of GI illness, and exposures of >96 h had the strongest associations, although none of these associations was statistically significant. Our results suggest that utilities might consider reducing WRTs to <2-3 days or adding booster disinfection in areas with longer WRT, to minimize risk of GI illness from water consumption.
Levy, Karen; Klein, Mitchell; Sarnat, Stefanie Ebelt; Panwhar, Samina; Huttinger, Alexandra; Tolbert, Paige; Moe, Christine
2017-01-01
Recent outbreak investigations suggest that a substantial proportion of waterborne disease outbreaks are attributable to water distribution system issues. In this analysis, we examine the relationship between modeled water residence time (WRT), a proxy for probability of microorganism intrusion into the distribution system, and emergency department visits for gastrointestinal (GI) illness for two water utilities in Metro Atlanta, USA during 1993–2004. We also examine the association between proximity to the nearest distribution system node, based on patients' residential address, and GI illness using logistic regression models. Comparing long (≥90th percentile) to intermediate WRTs (11th to 89th percentile), we observed a modestly increased risk for GI illness for Utility 1 (OR=1.07, 95% CI: 1.02–1.13), which had substantially higher average WRT than Utility 2, for which we found no increased risk (OR=0.98, 95% CI: 0.94–1.02). Examining finer, 12-hour increments of WRT, we found that exposures >48 hrs were associated with increased risk of GI illness, and exposures of >96 hrs had the strongest associations, although none of these associations were statistically significant. Our results suggest that utilities might consider reducing WRTs to <2–3 days or add booster disinfection in areas with longer WRT, to minimize risk of GI illness from water consumption. PMID:27441862
Reconciliation of the cloud computing model with US federal electronic health record regulations
2011-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing. PMID:21727204
[Nursing care systematization in rehabilitation unit, in accordance to Horta's conceptual model].
Neves, Rinaldo de Souza
2006-01-01
The utilization of a conceptual model in the Nursing Attendance Systemization allows the development of activities based on theoretical references that can guide the implantation and the implementation of nursing proceedings in hospitals. In this article we examine the option made for the implementation of the Horta's conceptual model in the construction of a nursing attendance system in the Rehabilitation Unit of a public hospital located in the Federal District of Brazil. Through the utilization of these theoretical references it was possible to make available a data collection tool based on the basic human needs. The identification of these needs made possible the construction of the hierarchically disposed pyramid of the neurological patients' modified basic needs. Through this reference paper we intend to elaborate the prescription and nursing evolution based in the concepts and standards of the Horta's nursing process, making possible the inter-relationship of all phases of this attendance methodology.
Reconciliation of the cloud computing model with US federal electronic health record regulations.
Schweitzer, Eugene J
2012-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing.
Model-Based Systems Engineering Pilot Program at NASA Langley
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.
2012-01-01
NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.
Model authoring system for fail safe analysis
NASA Technical Reports Server (NTRS)
Sikora, Scott E.
1990-01-01
The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.
A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721
Advanced Communication and Control Solutions of Distributed Energy Resources (DER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron
2007-01-10
This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security wasmore » accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offers can be made electronically without human intervention. A suite of software was developed by DR SOC enabling DER usage in real time and day-ahead: Generation information file exchange with PI and the utility power flow A utility day-ahead information file Energy Offer Web Service Market Result Web Service Real-Time Meter Data Web Service Real-Time Notification Web Service Registered over 20 DER with MISO in Demand Response Market and demonstrated electronic sale to MISO.« less
The Joint Venture Model of Knowledge Utilization: a guide for change in nursing.
Edgar, Linda; Herbert, Rosemary; Lambert, Sylvie; MacDonald, Jo-Ann; Dubois, Sylvie; Latimer, Margot
2006-05-01
Knowledge utilization (KU) is an essential component of today's nursing practice and healthcare system. Despite advances in knowledge generation, the gap in knowledge transfer from research to practice continues. KU models have moved beyond factors affecting the individual nurse to a broader perspective that includes the practice environment and the socio-political context. This paper proposes one such theoretical model the Joint Venture Model of Knowledge Utilization (JVMKU). Key components of the JVMKU that emerged from an extensive multidisciplinary review of the literature include leadership, emotional intelligence, person, message, empowered workplace and the socio-political environment. The model has a broad and practical application and is not specific to one type of KU or one population. This paper provides a description of the JVMKU, its development and suggested uses at both local and organizational levels. Nurses in both leadership and point-of-care positions will recognize the concepts identified and will be able to apply this model for KU in their own workplace for assessment of areas requiring strengthening and support.
Modelling Root Systems Using Oriented Density Distributions
NASA Astrophysics Data System (ADS)
Dupuy, Lionel X.
2011-09-01
Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.
Digital data processing system dynamic loading analysis
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Tucker, A. E.
1976-01-01
Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.
Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Becker, D. A.
1977-01-01
Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.
NASA Astrophysics Data System (ADS)
Chaianong, A.; Bangviwat, A.; Menke, C.
2017-07-01
Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.
Zhang, Chunxiang; Zhang, Hongmei; Shi, Jinning; Wang, Dong; Zhang, Xiuwei; Yang, Jian; Zhai, Qizhi; Ma, Aixia
2016-01-01
Our objective is to compare the cost-utility of icotinib and gefitinib for the second-line treatment of advanced non-small cell lung cancer (NSCLC) from the perspective of the Chinese healthcare system. Model technology was applied to assess the data of randomized clinical trials and the direct medical costs from the perspective of the Chinese healthcare system. Five-year quality-adjusted life years (QALYs) and incremental cost-utility ratios (ICURs) were calculated. One-way and probabilistic sensitivity analyses (PSA) were performed. Our model suggested that the median progression-free survival (PFS) was 4.2 months in the icotinib group and 3.5 months in the gefitinib group while they were 4.6 months and 3.4 months, respectively, in the trials. The 5-year QALYs was 0.279 in the icotinib group and 0.269 in the gefitinib group, and the according medical costs were $10662.82 and $13127.57. The ICUR/QALY of icotinib versus gefitinib presented negative in this study. The most sensitive parameter to the ICUR was utility of PFS, ranging from $-1,259,991.25 to $-182,296.61; accordingly the icotinib treatment consistently represented a dominant cost-utility strategy. The icotinib strategy, as a second-line therapy for advanced NSCLC patients in China, is the preferred strategy relative to gefitinib because of the dominant cost-utility. In addition, icotinib shows a good curative effect and safety, resulting in a strong demand for the Chinese market.
Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S
2017-12-01
Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.
Data modeling and processing in deregulated power system
NASA Astrophysics Data System (ADS)
Xu, Lin
The introduction of open electricity markets and the fast pace of changes brought by modern information technology bring both opportunities and challenges to the power industry. Vast quantities of data are generated by the underlying physical system and the business operations. Fast and low cost communications allow the data to be more widely accessed. For electric utilities, it is becoming clear that data and information are vital assets. Proper management and modeling of these assets is as essential to the engineering of the power system as is the underlying physical system. This dissertation introduces several new methods to address information modeling and data processing concerns in the new utility environment. Presently, legacy information systems in the industry do not make adequate use of the data produced. Hence, a new information infrastructure using data warehousing---a data integration technology used for decision support---is proposed for novel management and utilization of data. Detailed examples and discussion are given on the schema building, extract transform and load (ETL) strategies for power system specific data. The benefits of this approach are shown through a new viewpoint of state estimation. Inaccurate grid information, especially topology information, can be a major detriment to energy market traders' ability to make appropriate bids. A two-stage DC state estimation algorithm is presented to provide them with a simpler data viewpoint to make knowledgeable trading decisions. Numerical results show how the results of a DC state estimator can be accurately made available to all concerned. Additionally, the proposed communication and information infrastructure allow for new formulations and solutions to traditional power problems. In this vein, a new distributed communication model of the power system using publisher/subscriber paradigm is presented and simulated. The simulation results prove its feasibility and show it has adequate performance under today's communication technology. Based on this model, a new state estimation algorithm, which can decentralizes computations and minimizes communication overhead, is derived using a set of overlapping areas to cover the entire network. Numerical experiments show that it is efficient, robust, and has comparable accuracy as the conventional full network state estimation.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1996-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Remote information service access system based on a client-server-service model
Konrad, A.M.
1997-12-09
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1999-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Remote information service access system based on a client-server-service model
Konrad, A.M.
1996-08-06
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1997-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.; Trezek, G.J.
1976-01-01
The overall performance of an evaporative pad greenhouse is considered in terms of the pad heat and mass transfer, the energy budget of the vegetation, and the performance of the power plant. An analytical predictive model for the pad performance was developed utilizing the Merkel total heat approximation. Data obtained from actual greenhouse performance provides an experimental verification of the pad model. Energy balance considerations on the vegetation provide a means of viewing optimal plant growth in terms of the power plant energy dissipation. In general, the results indicate that when an evaporative pad greenhouse system is used for wastemore » heat dispersal, the vegetation can be maintained within its thermal requirement zone, crop irrigation requirements are significantly reduced, and the power plant performance is comparable with conventional closed loop heat rejection systems.« less
Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
NASA Astrophysics Data System (ADS)
Cen, Zhaohui
2017-09-01
Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.
ERIC Educational Resources Information Center
Ali, Muhammad; Raza, Syed Ali; Qazi, Wasim; Puah, Chin-Hong
2018-01-01
Purpose: This study aims to examine university students' acceptance of e-learning systems in Pakistan. A Web-based learning system is a new form of utilizing technological features. Although, developed countries have initiated and established the concept for e-learning, developing countries require empirical support to implement e-learning.…
USDA-ARS?s Scientific Manuscript database
Decision-support systems (DDSs) are techniques that help decision makers utilize models to solve problems under complex and uncertain conditions. Predicting conditions that warrant intervention is a key tenet of the concept of integrated pest management (IPM) with the use of expert systems and pest ...
ETV Report:Siemens Model H-4XE-HO Open Channel UV System
Verification testing of the Siemens Barrier Sunligt H-4XE-HO UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The H-4XE System utilizes 16 high-output, low-pressure lamps oriented horizontally and parallel to the...
ETV Report: Siemens Model V-40R-A150 Open Channel UV System
Verification testing of the Siemens Barrier Sunlight V-40R-A150 UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The V-40R System supplied by Siemens utilizes 40 high-output, low-pressure amalgam lamps, oriented ...
Estimating and validating harvesting system production through computer simulation
John E. Baumgras; Curt C. Hassler; Chris B. LeDoux
1993-01-01
A Ground Based Harvesting System Simulation model (GB-SIM) has been developed to estimate stump-to-truck production rates and multiproduct yields for conventional ground-based timber harvesting systems in Appalachian hardwood stands. Simulation results reflect inputs that define harvest site and timber stand attributes, wood utilization options, and key attributes of...
Providing Services for Handicapped Persons in Rural/Sparsely Populated Areas.
ERIC Educational Resources Information Center
Weatherman, Richard
The experiences of the 3-year Minnesota Severely Handicapped Delivery System Project have led to a model which utilizes resources of regional systems as key elements of a differentiated system for educational service delivery to the handicapped in rural areas and involves state education agencies, statewide regional centers, local education units,…
Huesch, Marco D; Schetter, Susann; Segel, Joel; Chetlen, Alison
2017-08-01
The aim of this study was to understand the impact on screening mammography at our institution, comparing weekly utilization in the 2 years before and the 2 years after Ms Angelina Jolie disclosed in the New York Times on May 13, 2013, that she had had a prophylactic double mastectomy. All 48,110 consecutive screening mammograms conducted at our institution between May 16, 2011, and May 16, 2015, were selected from our electronic medical record system. We used interrupted time series statistical models and graphical methods on utilization data to understand utilization changes before and after Ms Jolie's news. The graphed trend of weekly screening mammogram utilization failed to show changes around the time of interest. Analytical models and statistical tests also failed to show a step change increase or acceleration of utilization around May 2013. However, graphical and time series analyses showed a flattening of utilization in the middle of 2014. In our well-powered analysis in a large regional breast imaging center, we found no support for the hypothesis that this celebrity news drove increased screening. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Prognostics and health management of photovoltaic systems
Johnson, Jay; Riley, Daniel
2018-04-10
The various technologies presented herein relate to providing prognosis and health management (PHM) of a photovoltaic (PV) system. A PV PHM system can eliminate long-standing issues associated with detecting performance reduction in PV systems. The PV PHM system can utilize an ANN model with meteorological and power input data to facilitate alert generation in the event of a performance reduction without the need for information about the PV PHM system components and design. Comparisons between system data and the PHM model can provide scheduling of maintenance on an as-needed basis. The PHM can also provide an approach for monitoring system/component degradation over the lifetime of the PV system.
Decision Support for Renewal of Wastewater Collection and Water Distribution Systems
The objective of this study was to identify the current decision support methodologies, models and approaches being used for determining how to rehabilitate or replace underground utilities; identify the critical gaps of these current models through comparison with case history d...
Modeling joint restoration strategies for interdependent infrastructure systems.
Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P
2018-01-01
Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.
NASA Technical Reports Server (NTRS)
Shipman, D. L.
1972-01-01
The development of a model to simulate the information system of a program management type of organization is reported. The model statistically determines the following parameters: type of messages, destinations, delivery durations, type processing, processing durations, communication channels, outgoing messages, and priorites. The total management information system of the program management organization is considered, including formal and informal information flows and both facilities and equipment. The model is written in General Purpose System Simulation 2 computer programming language for use on the Univac 1108, Executive 8 computer. The model is simulated on a daily basis and collects queue and resource utilization statistics for each decision point. The statistics are then used by management to evaluate proposed resource allocations, to evaluate proposed changes to the system, and to identify potential problem areas. The model employs both empirical and theoretical distributions which are adjusted to simulate the information flow being studied.
IPA (v1): a framework for agent-based modelling of soil water movement
NASA Astrophysics Data System (ADS)
Mewes, Benjamin; Schumann, Andreas H.
2018-06-01
In the last decade, agent-based modelling (ABM) became a popular modelling technique in social sciences, medicine, biology, and ecology. ABM was designed to simulate systems that are highly dynamic and sensitive to small variations in their composition and their state. As hydrological systems, and natural systems in general, often show dynamic and non-linear behaviour, ABM can be an appropriate way to model these systems. Nevertheless, only a few studies have utilized the ABM method for process-based modelling in hydrology. The percolation of water through the unsaturated soil is highly responsive to the current state of the soil system; small variations in composition lead to major changes in the transport system. Hence, we present a new approach for modelling the movement of water through a soil column: autonomous water agents that transport water through the soil while interacting with their environment as well as with other agents under physical laws.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Pratt, Annabelle; Bialek, Tom
2016-11-21
This paper reports on tools and methodologies developed to study the impact of adding rooftop photovoltaic (PV) systems, with and without the ability to provide voltage support, on the voltage profile of distribution feeders. Simulation results are provided from a study of a specific utility feeder. The simulation model of the utility distribution feeder was built in OpenDSS and verified by comparing the simulated voltages to field measurements. First, we set all PV systems to operate at unity power factor and analyzed the impact on feeder voltages. Then we conducted multiple simulations with voltage support activated for all the smartmore » PV inverters. These included different constant power factor settings and volt/VAR controls.« less
Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian
2018-01-01
In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.
The evaluation of basin water resources utilization efficiency based on Chaos projection mode
NASA Astrophysics Data System (ADS)
Guan, X.; Liang, S.; Meng, Y.; Wang, H.
2017-12-01
To promote the coordinated development of a healthy economy, society, and environment, and the sustainable development of water resources comprehensive utilization efficiency (WRCUE), this study investigated appropriate indicators using the trapezoidal fuzzy number method, and constructed an evaluation index system for WRCUE. A WRCUE evaluation model is applied to the areas in the Yellow River Basin in China using a genetic projection pursuit method. The comprehensive evaluation index system of water use efficiency includes 6 indicators: Water consumption per unit industrial value added, water consumption per unit GDP, eliminate the climate effect on agricultural water use efficiency, irrigation water consumption per unit area, domestic water use per capita and industrial water ratio. Then, multiple indexes in the index system are transformed to a comprehensive index by the combined model, which is used to represent the total water resources utilization efficiency. Results show that the WRCUE in Yellow River basin and the provinces have a great distance. WRCUE is well developed in Shanxi, Shandong, and Henan provinces, moderately developed in Shaanxi, Inner Mongolia, and Sichuan provinces, and poorly developed in the Ningxia Autonomous Region, Gansu Province, and Qinghai Province. According to the capacities of provinces, related measures are proposed.
Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation
NASA Astrophysics Data System (ADS)
Martukanitz, R. P.; Babu, S. S.
2004-06-01
A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.
Automated Loads Analysis System (ATLAS)
NASA Technical Reports Server (NTRS)
Gardner, Stephen; Frere, Scot; O’Reilly, Patrick
2013-01-01
ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.
NASA Astrophysics Data System (ADS)
Yates, D. N.; Basdekas, L.; Rajagopalan, B.; Stewart, N.
2013-12-01
Municipal water utilities often develop Integrated Water Resource Plans (IWRP), with the goal of providing a reliable, sustainable water supply to customers in a cost-effective manner. Colorado Springs Utilities, a 5-service provider (potable and waste water, solid waste, natural gas and electricity) in Colorado USA, recently undertook an IWRP. where they incorporated water supply, water demand, water quality, infrastructure reliability, environmental protection, and other measures within the context of complex water rights, such as their critically important 'exchange potential'. The IWRP noted that an uncertain climate was one of the greatest sources of uncertainty to achieving a sustainable water supply to a growing community of users. We describe how historic drought, paleo-climate, and climate change projections were blended together into climate narratives that informed a suite of water resource systems models used by the utility to explore the vulnerabilities of their water systems.
Interactive Schematic Integration Within the Propellant System Modeling Environment
NASA Technical Reports Server (NTRS)
Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don
2012-01-01
Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.
Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong
2015-02-01
Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Fifield, Leonard S.; Jones, Anthony M.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and NDE is conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locatemore » and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. This work examines a physics-based model of a cable system and relates it to FDR measurements for a better understanding of specific damage influences on defect detectability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hao; Ren, Shangping; Garzoglio, Gabriele
Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One of the main challenges in developing a cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching overheadmore » is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained on FermiCloud. Second, we apply the developed reference model on FermiCloud and compare calculated VM launching overhead values based on the model with measured overhead values on FermiCloud. Our empirical results on FermiCloud indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.« less
A Photogrammetric System for Model Attitude Measurement in Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Lunsford, Charles B.
2007-01-01
A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and photogrammetric principles for point tracking to compute model position including pitch, roll and yaw. A discussion of the constraints encountered during the design, and a review of the measurement results obtained from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.
Modelling healthcare systems with phase-type distributions.
Fackrell, Mark
2009-03-01
Phase-type distributions constitute a very versatile class of distributions. They have been used in a wide range of stochastic modelling applications in areas as diverse as telecommunications, finance, biostatistics, queueing theory, drug kinetics, and survival analysis. Their use in modelling systems in the healthcare industry, however, has so far been limited. In this paper we introduce phase-type distributions, give a survey of where they have been used in the healthcare industry, and propose some ideas on how they could be further utilized.
Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology
NASA Technical Reports Server (NTRS)
Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.
1991-01-01
A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.
2012-01-01
Background Multi attribute utility (MAU) instruments are used to include the health related quality of life (HRQoL) in economic evaluations of health programs. Comparative studies suggest different MAU instruments measure related but different constructs. The objective of this paper is to describe the methods employed to achieve content validity in the descriptive system of the Assessment of Quality of Life (AQoL)-6D, MAU instrument. Methods The AQoL program introduced the use of psychometric methods in the construction of health related MAU instruments. To develop the AQoL-6D we selected 112 items from previous research, focus groups and expert judgment and administered them to 316 members of the public and 302 hospital patients. The search for content validity across a broad spectrum of health states required both formative and reflective modelling. We employed Exploratory Factor Analysis and Structural Equation Modelling (SEM) to meet these dual requirements. Results and Discussion The resulting instrument employs 20 items in a multi-tier descriptive system. Latent dimension variables achieve sensitive descriptions of 6 dimensions which, in turn, combine to form a single latent QoL variable. Diagnostic statistics from the SEM analysis are exceptionally good and confirm the hypothesised structure of the model. Conclusions The AQoL-6D descriptive system has good psychometric properties. They imply that the instrument has achieved construct validity and provides a sensitive description of HRQoL. This means that it may be used with confidence for measuring health related quality of life and that it is a suitable basis for modelling utilities for inclusion in the economic evaluation of health programs. PMID:22507254
Richardson, Jeffrey R J; Peacock, Stuart J; Hawthorne, Graeme; Iezzi, Angelo; Elsworth, Gerald; Day, Neil A
2012-04-17
Multi attribute utility (MAU) instruments are used to include the health related quality of life (HRQoL) in economic evaluations of health programs. Comparative studies suggest different MAU instruments measure related but different constructs. The objective of this paper is to describe the methods employed to achieve content validity in the descriptive system of the Assessment of Quality of Life (AQoL)-6D, MAU instrument. The AQoL program introduced the use of psychometric methods in the construction of health related MAU instruments. To develop the AQoL-6D we selected 112 items from previous research, focus groups and expert judgment and administered them to 316 members of the public and 302 hospital patients. The search for content validity across a broad spectrum of health states required both formative and reflective modelling. We employed Exploratory Factor Analysis and Structural Equation Modelling (SEM) to meet these dual requirements. The resulting instrument employs 20 items in a multi-tier descriptive system. Latent dimension variables achieve sensitive descriptions of 6 dimensions which, in turn, combine to form a single latent QoL variable. Diagnostic statistics from the SEM analysis are exceptionally good and confirm the hypothesised structure of the model. The AQoL-6D descriptive system has good psychometric properties. They imply that the instrument has achieved construct validity and provides a sensitive description of HRQoL. This means that it may be used with confidence for measuring health related quality of life and that it is a suitable basis for modelling utilities for inclusion in the economic evaluation of health programs.
Economics of wind energy for utilities
NASA Technical Reports Server (NTRS)
Mccabe, T. F.; Goldenblatt, M. K.
1982-01-01
Utility acceptance of this technology will be contingent upon the establishment of both its technical and economic feasibility. This paper presents preliminary results from a study currently underway to establish the economic value of central station wind energy to certain utility systems. The results for the various utilities are compared specifically in terms of three parameters which have a major influence on the economic value: (1) wind resource, (2) mix of conventional generation sources, and (3) specific utility financial parameters including projected fuel costs. The wind energy is derived from modeling either MOD-2 or MOD-0A wind turbines in wind resources determined by a year of data obtained from the DOE supported meteorological towers with a two-minute sampling frequency. In this paper, preliminary results for six of the utilities studied are presented and compared.
Integrated modeling tool for performance engineering of complex computer systems
NASA Technical Reports Server (NTRS)
Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar
1989-01-01
This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.
Hualapai Tribal Utility Development Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hualapai Tribal Nation
The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central powermore » grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.« less
Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akberdin, Ilya R.; Thompson, Merlin; Hamilton, Richard
Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z R an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization inmore » M. alcaliphilum 20Z R. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. As a result, the computational framework of C 1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.« less
Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach
Akberdin, Ilya R.; Thompson, Merlin; Hamilton, Richard; ...
2018-02-06
Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z R an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization inmore » M. alcaliphilum 20Z R. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. As a result, the computational framework of C 1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.« less
NASTRAN as a resource in code development
NASA Technical Reports Server (NTRS)
Stanton, E. L.; Crain, L. M.; Neu, T. F.
1975-01-01
A case history is presented in which the NASTRAN system provided both guidelines and working software for use in the development of a discrete element program, PATCHES-111. To avoid duplication and to take advantage of the wide spread user familiarity with NASTRAN, the PATCHES-111 system uses NASTRAN bulk data syntax, NASTRAN matrix utilities, and the NASTRAN linkage editor. Problems in developing the program are discussed along with details on the architecture of the PATCHES-111 parametric cubic modeling system. The system includes model construction procedures, checkpoint/restart strategies, and other features.
A performability solution method for degradable nonrepairable systems
NASA Technical Reports Server (NTRS)
Furchtgott, D. G.; Meyer, J. F.
1984-01-01
The present performability model-solving algorithm identifies performance with 'reward', representing the state behavior of a system S by a finite-state stochastic process and determining reward by means of reward rates that are associated with the states of the base model. A general method is obtained for determining the probability distribution function of the performance (reward) variable, and therefore the performability, of the corresponding system. This is done for bounded utilization periods, and the result is an integral expression which is either analytically or numerically solvable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dress, W.B.
Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism.
Guimarães, Bernardo; Simões, Pedro; Marques, Rui Cunha
2010-12-01
The urban waste market has evolved significantly in the past decades, which among other changes, has led to the creation of new utilities and new business models. However, very few things have changed for the users. Urban waste collection remains mainly under the responsibility of local authorities and the charges paid by the users in most countries are very low compared to the provision costs. This situation forces the injection of public money into the system, encouraging the 'quiet-life' within the utilities and, therefore, inefficiency. The present study intends to analyze the potential for the application of the Balanced Scorecard (BSc) methodology into the waste utilities. After a comprehensive revision of the urban waste sector in Portugal, the methodology of BSc and its application in local public services is described and discussed. Focusing on implementation rather than on strategy, a set of performance indicators is proposed to be utilized in the different management models of waste utilities in Portugal: the municipalities, semi-autonomous utilities, municipal companies and mixed companies. This implementation is then exemplified through four case studies, one for each type of utility. This paper provides a flexible framework proposal to be applied to waste utilities operating both in Portugal and abroad. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zymomonas mobilis as a model system for production of biofuels and biochemicals
Yang, Shihui; Fei, Qiang; Zhang, Yaoping; ...
2016-09-15
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. Lastly, this review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.
Zymomonas mobilis as a model system for production of biofuels and biochemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shihui; Fei, Qiang; Zhang, Yaoping
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. Lastly, this review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.
NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-01-01
NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.
Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches.
Arazi, Arnon; Pendergraft, William F; Ribeiro, Ruy M; Perelson, Alan S; Hacohen, Nir
2013-10-31
Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dehzangi, Omid; Farooq, Muhamed
2018-01-01
A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.
Alternative Theoretical Bases for the Study of Human Communication: The Systems Perspective.
ERIC Educational Resources Information Center
Monge, Peter R.
Three potentially useful perspectives for the scientific development of human communication theory are the law model, the systems approach, and the rules paradigm. It is the purpose of this paper to indicate the utility of the systems approach. The first section of this paper provides a brief account of the systems view of the world. Outlined in…
ADMS State of the Industry and Gap Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agalgaonkar, Yashodhan P.; Marinovici, Maria C.; Vadari, Subramanian V.
2016-03-31
An Advanced distribution management system (ADMS) is a platform for optimized distribution system operational management. This platform comprises of distribution management system (DMS) applications, supervisory control and data acquisition (SCADA), outage management system (OMS), and distributed energy resource management system (DERMS). One of the primary objectives of this work is to study and analyze several ADMS component and auxiliary systems. All the important component and auxiliary systems, SCADA, GISs, DMSs, AMRs/AMIs, OMSs, and DERMS, are discussed in this report. Their current generation technologies are analyzed, and their integration (or evolution) with an ADMS technology is discussed. An ADMS technology statemore » of the art and gap analysis is also presented. There are two technical gaps observed. The integration challenge between the component operational systems is the single largest challenge for ADMS design and deployment. Another significant challenge noted is concerning essential ADMS applications, for instance, fault location, isolation, and service restoration (FLISR), volt-var optimization (VVO), etc. There are a relatively small number of ADMS application developers as ADMS software platform is not open source. There is another critical gap and while not being technical in nature (when compared the two above) is still important to consider. The data models currently residing in utility GIS systems are either incomplete or inaccurate or both. This data is essential for planning and operations because it is typically one of the primary sources from which power system model are created. To achieve the full potential of ADMS, the ability to execute acute Power Flow solution is an important pre-requisite. These critical gaps are hindering wider Utility adoption of an ADMS technology. The development of an open architecture platform can eliminate many of these barriers and also aid seamless integration of distribution Utility legacy systems with an ADMS.« less
NASA Astrophysics Data System (ADS)
Chakon, Ofir; Or, Yizhar
2017-08-01
Underactuated robotic locomotion systems are commonly represented by nonholonomic constraints where in mixed systems, these constraints are also combined with momentum evolution equations. Such systems have been analyzed in the literature by exploiting symmetries and utilizing advanced geometric methods. These works typically assume that the shape variables are directly controlled, and obtain the system's solutions only via numerical integration. In this work, we demonstrate utilization of the perturbation expansion method for analyzing a model example of mixed locomotion system—the twistcar toy vehicle, which is a variant of the well-studied roller-racer model. The system is investigated by assuming small-amplitude oscillatory inputs of either steering angle (kinematic) or steering torque (mechanical), and explicit expansions for the system's solutions under both types of actuation are obtained. These expressions enable analyzing the dependence of the system's dynamic behavior on the vehicle's structural parameters and actuation type. In particular, we study the reversal in direction of motion under steering angle oscillations about the unfolded configuration, as well as influence of the choice of actuation type on convergence properties of the motion. Some of the findings are demonstrated qualitatively by reporting preliminary motion experiments with a modular robotic prototype of the vehicle.
In the Environmental Protection Agency’s Triple Value Simulation (3VS) models, social, economic and environmental indicators are utilized to understand the interrelated impacts of programs and regulations on ecosystems and human communities. Critical to identifying the app...
NASA Astrophysics Data System (ADS)
Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.
2014-12-01
Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our assessment.
Hu, Zhongkai; Hao, Shiying; Jin, Bo; Shin, Andrew Young; Zhu, Chunqing; Huang, Min; Wang, Yue; Zheng, Le; Dai, Dorothy; Culver, Devore S; Alfreds, Shaun T; Rogow, Todd; Stearns, Frank; Sylvester, Karl G; Widen, Eric; Ling, Xuefeng
2015-09-22
The increasing rate of health care expenditures in the United States has placed a significant burden on the nation's economy. Predicting future health care utilization of patients can provide useful information to better understand and manage overall health care deliveries and clinical resource allocation. This study developed an electronic medical record (EMR)-based online risk model predictive of resource utilization for patients in Maine in the next 6 months across all payers, all diseases, and all demographic groups. In the HealthInfoNet, Maine's health information exchange (HIE), a retrospective cohort of 1,273,114 patients was constructed with the preceding 12-month EMR. Each patient's next 6-month (between January 1, 2013 and June 30, 2013) health care resource utilization was retrospectively scored ranging from 0 to 100 and a decision tree-based predictive model was developed. Our model was later integrated in the Maine HIE population exploration system to allow a prospective validation analysis of 1,358,153 patients by forecasting their next 6-month risk of resource utilization between July 1, 2013 and December 31, 2013. Prospectively predicted risks, on either an individual level or a population (per 1000 patients) level, were consistent with the next 6-month resource utilization distributions and the clinical patterns at the population level. Results demonstrated the strong correlation between its care resource utilization and our risk scores, supporting the effectiveness of our model. With the online population risk monitoring enterprise dashboards, the effectiveness of the predictive algorithm has been validated by clinicians and caregivers in the State of Maine. The model and associated online applications were designed for tracking the evolving nature of total population risk, in a longitudinal manner, for health care resource utilization. It will enable more effective care management strategies driving improved patient outcomes.
Hu, Zhongkai; Hao, Shiying; Jin, Bo; Shin, Andrew Young; Zhu, Chunqing; Huang, Min; Wang, Yue; Zheng, Le; Dai, Dorothy; Culver, Devore S; Alfreds, Shaun T; Rogow, Todd; Stearns, Frank
2015-01-01
Background The increasing rate of health care expenditures in the United States has placed a significant burden on the nation’s economy. Predicting future health care utilization of patients can provide useful information to better understand and manage overall health care deliveries and clinical resource allocation. Objective This study developed an electronic medical record (EMR)-based online risk model predictive of resource utilization for patients in Maine in the next 6 months across all payers, all diseases, and all demographic groups. Methods In the HealthInfoNet, Maine’s health information exchange (HIE), a retrospective cohort of 1,273,114 patients was constructed with the preceding 12-month EMR. Each patient’s next 6-month (between January 1, 2013 and June 30, 2013) health care resource utilization was retrospectively scored ranging from 0 to 100 and a decision tree–based predictive model was developed. Our model was later integrated in the Maine HIE population exploration system to allow a prospective validation analysis of 1,358,153 patients by forecasting their next 6-month risk of resource utilization between July 1, 2013 and December 31, 2013. Results Prospectively predicted risks, on either an individual level or a population (per 1000 patients) level, were consistent with the next 6-month resource utilization distributions and the clinical patterns at the population level. Results demonstrated the strong correlation between its care resource utilization and our risk scores, supporting the effectiveness of our model. With the online population risk monitoring enterprise dashboards, the effectiveness of the predictive algorithm has been validated by clinicians and caregivers in the State of Maine. Conclusions The model and associated online applications were designed for tracking the evolving nature of total population risk, in a longitudinal manner, for health care resource utilization. It will enable more effective care management strategies driving improved patient outcomes. PMID:26395541
Testing and Analytical Modeling for Purging Process of a Cryogenic Line
NASA Technical Reports Server (NTRS)
Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.
2015-01-01
To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. Test article, a 3.35m long with the diameter of 20 cm incline line, was filled with liquid (LH2)or gaseous hydrogen (GH2) and then purged with gaseous helium (GHe). Total of 10 tests were conducted. Influences of GHe flow rates and initial temperatures were evaluated. Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer, was utilized to model and simulate selective tests.
Variation in outpatient mental health service utilization under capitation.
Chou, Ann F; Wallace, Neal; Bloom, Joan R; Hu, Teh-Wei
2005-03-01
To improve the financing of Colorado's public mental health system, the state designed, implemented, and evaluated a pilot program that consisted of three reimbursement models for the provision of outpatient services. Community mental health centers (CMHCs), the primary providers of comprehensive mental health services to Medicaid recipients in Colorado, had to search for innovative ways to provide cost-effective services. This study assessed outpatient service delivery to Medicaid-eligible consumers under this program. This paper is among the first to study variations in the delivery of specific types of outpatient mental health services under capitated financing systems. This study uses claims data (1994-1997) from Colorado's Medicaid and Mental Health Services Agency. The fee-for-service (FFS) model served as the comparison model. Two capitated models under evaluation are: (i) direct capitation (DC), where the state contracts with a non-profit entity to provide both the services and administers the capitated financing, and (ii) managed behavioral health organization (MBHO), which is a joint venture between a for-profit company who manages the capitated financing and a number of non-profit entities who deliver the services. A sample of severely mentally ill patients who reported at least one inpatient visit was included in the analysis. Types of outpatient services of interest are: day-treatment visits, group therapy, individual therapy, medication monitoring, case management, testing, and all other services. Comparisons were set up to examine differences in service utilization and cost between FFS and each of the two capitated models, using a two-part model across three time periods. Results showed differences in service delivery among reimbursement models over time. Capitated providers had higher initial utilization in most outpatient service categories than their FFS counterparts and as a result of capitation, outpatient services delivered under these providers decreased to converge to the FFS pattern. Findings also suggest substitution between group therapy and individual psychotherapy. Overall, more service integration was observed and less complex service packages were provided post capitation. IMPLICATION FOR HEALTH CARE PROVISION AND POLICIES: Financing models and organizational arrangements have an impact on mental health service delivery. Changes in utilization and costs of specific types of outpatient services reflect the effects of capitation. Understanding the mechanism for these changes may lead to more streamlined service delivery allowing extra funding for expanding the range of cost-effective treatment alternatives. These changes pose implications for improving the financing of public mental health systems, coordination of mental health services with other healthcare and human services, and provision of services through a more efficient financing system.
Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan
2015-10-05
Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less
Optimized model tuning in medical systems.
Kléma, Jirí; Kubalík, Jirí; Lhotská, Lenka
2005-12-01
In medical systems it is often advantageous to utilize specific problem situations (cases) in addition to or instead of a general model. Decisions are then based on relevant past cases retrieved from a case memory. The reliability of such decisions depends directly on the ability to identify cases of practical relevance to the current situation. This paper discusses issues of automated tuning in order to obtain a proper definition of mutual case similarity in a specific medical domain. The main focus is on a reasonably time-consuming optimization of the parameters that determine case retrieval and further utilization in decision making/ prediction. The two case studies - mortality prediction after cardiological intervention, and resource allocation at a spa - document that the optimization process is influenced by various characteristics of the problem domain.
Spectral diffraction efficiency characterization of broadband diffractive optical elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony
Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the workingmore » bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.« less
The Application of a Three-Tier Model of Intervention to Parent Training
Phaneuf, Leah; McIntyre, Laura Lee
2015-01-01
A three-tier intervention system was designed for use with parents with preschool children with developmental disabilities to modify parent–child interactions. A single-subject changing-conditions design was used to examine the utility of a three-tier intervention system in reducing negative parenting strategies, increasing positive parenting strategies, and reducing child behavior problems in parent–child dyads (n = 8). The three intervention tiers consisted of (a) self-administered reading material, (b) group training, and (c) individualized video feedback sessions. Parental behavior was observed to determine continuation or termination of intervention. Results support the utility of a tiered model of intervention to maximize treatment outcomes and increase efficiency by minimizing the need for more costly time-intensive interventions for participants who may not require them. PMID:26213459
USDA-ARS?s Scientific Manuscript database
For more than three decades, researchers have utilized the Snowmelt Runoff Model (SRM) to test the impacts of climate change on streamflow of snow-fed systems. In this study, the hydrological effects of climate change are modeled over three sequential years using SRM with both typical and recommende...
A Communication Model for Teaching a Course in Mass Media and Society.
ERIC Educational Resources Information Center
Crumley, Wilma; Stricklin, Michael
Many professors of mass media and society courses have relied on a teaching model implying that students are sponges soaking up information. A more appropriate model invites concern with an active audience, transaction, the interpersonal mass media mix, a general systems approach, and process and change--in other words, utilization of current and…
NASA Technical Reports Server (NTRS)
Knezovich, F. M.
1976-01-01
A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.
Optimization of life support systems and their systems reliability
NASA Technical Reports Server (NTRS)
Fan, L. T.; Hwang, C. L.; Erickson, L. E.
1971-01-01
The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.
Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.
2016-01-01
Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
2015-06-11
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
A Goal Seeking Strategy for Constructing Systems from Alternative Components
NASA Technical Reports Server (NTRS)
Valentine, Mark E.
1999-01-01
This paper describes a methodology to efficiently construct feasible systems then modify feasible systems to meet successive goals by selecting from alternative components, a problem recognized to be n-p complete. The methodology provides a means to catalog and model alternative components. A presented system modeling Structure is robust enough to model a wide variety of systems and provides a means to compare and evaluate alternative systems. These models act as input to a methodology for selecting alternative components to construct feasible systems and modify feasible systems to meet design goals and objectives. The presented algorithm's ability to find a restricted solution, as defined by a unique set of requirements, is demonstrated against an exhaustive search of a sample of proposed shuttle modifications. The utility of the algorithm is demonstrated by comparing results from the algorithm with results from three NASA shuttle evolution studies using their value systems and assumptions.
Supply of genetic information--amount, format, and frequency.
Misztal, I; Lawlor, T J
1999-05-01
The volume and complexity of genetic information is increasing because of new traits and better models. New traits may include reproduction, health, and carcass. More comprehensive models include the test day model in dairy cattle or a growth model in beef cattle. More complex models, which may include nonadditive effects such as inbreeding and dominance, also provide additional information. The amount of information per animal may increase drastically if DNA marker typing becomes routine and quantitative trait loci information is utilized. In many industries, evaluations are run more frequently. They result in faster genetic progress and improved management and marketing opportunities but also in extra costs and information overload. Adopting new technology and making some organizational changes can help realize all the added benefits of the improvements to the genetic evaluation systems at an acceptable cost. Continuous genetic evaluation, in which new records are accepted and breeding values are updated continuously, will relieve time pressures. An online mating system with access to both genetic and marketing information can result in mating recommendations customized for each user. Such a system could utilize inbreeding and dominance information that cannot efficiently be accommodated in the current sire summaries or off-line mating programs. The new systems will require a new organizational approach in which the task of scientists and technicians will not be simply running the evaluations but also providing the research, design, supervision, and maintenance required in the entire system of evaluation, decision making, and distribution.
Endothelial cell culture in microfluidic devices for investigating microvascular processes.
Mannino, Robert G; Qiu, Yongzhi; Lam, Wilbur A
2018-07-01
Numerous conditions and disease states such as sickle cell disease, malaria, thrombotic microangiopathy, and stroke significantly impact the microvasculature function and its role in disease progression. Understanding the role of cellular interactions and microvascular hemodynamic forces in the context of disease is crucial to understanding disease pathophysiology. In vivo models of microvascular disease using animal models often coupled with intravital microscopy have long been utilized to investigate microvascular phenomena. However, these methods suffer from some major drawbacks, including the inability to tightly and quantitatively control experimental conditions, the difficulty of imaging multiple microvascular beds within a living organism, and the inability to isolate specific microvascular geometries such as bifurcations. Thus, there exists a need for in vitro microvascular models that can mitigate the drawbacks associated with in vivo systems. To that end, microfluidics has been widely used to develop such models, as it allows for tight control of system inputs, facile imaging, and the ability to develop robust and repeatable systems with well-defined geometries. Incorporating endothelial cells to branching microfluidic models allows for the development of "endothelialized" systems that accurately recapitulate physiological microvessels. In this review, we summarize the field of endothelialized microfluidics, specifically focusing on fabrication methods, limitations, and applications of these systems. We then speculate on future directions and applications of these cutting edge technologies. We believe that this review of the field is of importance to vascular biologists and bioengineers who aim to utilize microfluidic technologies to solve vascular problems.
A method for reducing the order of nonlinear dynamic systems
NASA Astrophysics Data System (ADS)
Masri, S. F.; Miller, R. K.; Sassi, H.; Caughey, T. K.
1984-06-01
An approximate method that uses conventional condensation techniques for linear systems together with the nonparametric identification of the reduced-order model generalized nonlinear restoring forces is presented for reducing the order of discrete multidegree-of-freedom dynamic systems that possess arbitrary nonlinear characteristics. The utility of the proposed method is demonstrated by considering a redundant three-dimensional finite-element model half of whose elements incorporate hysteretic properties. A nonlinear reduced-order model, of one-third the order of the original model, is developed on the basis of wideband stationary random excitation and the validity of the reduced-order model is subsequently demonstrated by its ability to predict with adequate accuracy the transient response of the original nonlinear model under a different nonstationary random excitation.
NASA Technical Reports Server (NTRS)
Warren, A. W.; Esinger, A. W.
1979-01-01
Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).
ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM
Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...
Combined sewer systems collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These combined sewer over...
NASA Astrophysics Data System (ADS)
Stylianidis, E.; Valaria, E.; Smagas, K.; Pagani, A.; Henriques, J.; Garca, A.; Jimeno, E.; Carrillo, I.; Patias, P.; Georgiadis, C.; Kounoudes, A.; Michail, K.
2016-06-01
There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures' data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 641460.
Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie
2013-01-01
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652
Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers
NASA Astrophysics Data System (ADS)
Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.
A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.
Development of task network models of human performance in microgravity
NASA Technical Reports Server (NTRS)
Diaz, Manuel F.; Adam, Susan
1992-01-01
This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.
Modeling salt movement and halophytic crop growth on marginal lands with the APEX model
NASA Astrophysics Data System (ADS)
Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.
2016-12-01
Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.
Photodynamical modeling of hierarchical stellar system KOI-126
NASA Astrophysics Data System (ADS)
Earl, Nicholas Michael
The power and precision of the Kepler space telescope has provided the astrophysical field with a valuable insight into the dynamics of extra-solar systems. KOI-126 represents the first eclipsing hierarchical triple stellar system identified in the Kepler mission's photometry. The dynamics of the system are such that ascertaining the parameters of each body accurately (better than a few percent) is possible from the photometry alone. This allows determination of the characteristics while avoiding biases inherent in traditional studies of low-mass eclipsing systems. The parameter set for KOI-126 was originally reported on by Carter et al. and is uniquely composed of a low-mass binary, KOI-126 B and KOI-126 C. This pair orbits a third, more massive star KOI-126 A. The original analysis employed a full dynamical-photometric model, utilizing a Levenberg-Marquardt algorithm and least-squares minimization, to fit the short-cadence (i.e. successive 58.84 second cadence exposures) photometric data from the Kepler spacecraft captured over a period of 247 days. The updated catalog of short-cadence data now covers a span of 1,300 days. In light of the new data, and the valuable contribution accurately sampled fully-convective stars offer to theoretical stellar models, it is therefore relevant to refine the parameters of this system. Furthermore, with the ubiquity of multi-stellar systems, a well documented, portable, scalable computer modeling code for N-body systems is introduced. Thus, a new analysis is done on KOI-126 using this parallelized dynamical-photometric modeling package written in Python, based on Carter et al.'s original code, titled Pynamic. Pynamic allows the use of several fitting algorithms, but in this analysis utilizes the affine-invariant Markov chain Monte Carlo ensemble.
CELSS experiment model and design concept of gas recycle system
NASA Technical Reports Server (NTRS)
Nitta, K.; Oguchi, M.; Kanda, S.
1986-01-01
In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Baggu, Murali
This paper evaluated the impact of smart inverter Volt-VAR function on voltage reduction energy saving and power quality in electric power distribution systems. A methodology to implement the voltage reduction optimization was developed by controlling the substation LTC and capacitor banks, and having smart inverters participate through their autonomous Volt-VAR control. In addition, a power quality scoring methodology was proposed and utilized to quantify the effect on power distribution system power quality. All of these methodologies were applied to a utility distribution system model to evaluate the voltage reduction energy saving and power quality under various PV penetrations and smartmore » inverter densities.« less
NASA Astrophysics Data System (ADS)
Li, Cheng
Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.
ERIC Educational Resources Information Center
Chen, Yi-Cheng; Lin, Yi-Chien; Yeh, Ron Chuen; Lou, Shi-Jer
2013-01-01
With accelerated progress of information and communication technologies (ICT), web-based instruction (WBI) is becoming a popular method for education resources distributing and delivering. This study was conducted to explore what factors influence college students' behavioral intentions to utilize WBI systems. To achieve this aim, a WBI system was…