Variations in Canonical Star-Forming Laws at Low Metallicity
NASA Astrophysics Data System (ADS)
Monkiewicz, Jacqueline; Bowman, Judd D.; Scowen, Paul
2018-01-01
Empirically-determined star formation relations link observed galaxy luminosities to extrapolated star formation rates at almost every observable wavelength range. These laws are a cornerstone of extragalactic astronomy, and will be critically important for interpreting upcoming observations of early high-redshift protogalaxies with JWST and WFIRST. There are indications at a variety of wavelengths that these canonical relations may become unreliable at the lowest metallicities observed. This potentially complicates interpretation of the earliest protogalaxies, which are expected to be pristine and largely unenriched by stellar nucleosynthesis. Using a sample of 15 local dwarf galaxies with 12+[O/H] < 8.2, I focus on two of these relations: the far-infrared/radio relation and the H-alpha/ultraviolet relation. The sample is chosen to have pre-existing far-IR and UV observations, and to span the full spread of the galaxy mass-metallicity relationship at low luminosity, so that luminosity and metallicity may be examined separately. Radio continuum observations of low metallicity dwarf galaxies 1 Zw 18 and SBS 0335-052E suggest that the far-IR/radio relation probably deviates at low metallicities, but the low luminosity end of the relation is not well sampled. The upgraded Jansky Very Large Array has the sensitivity to fill in this gap. I have obtained 45 hours of L- and C-band continuum data of my dwarf galaxy sample. I present radio continuum imaging of an initial sub-sample of Local Group dwarfs, some of which have never before been detected in radio continuum. The H-alpha/UV relationship is likewise known to become unreliable for dwarf galaxies, though this has been attributed to dwarf galaxy "bursty-ness" rather than metallicity effects. I have conducted a parallel survey of emission line imaging to study the underlying astrophysics of the H-alpha/UV relation. Using Balmer decrement imaging, I map out the pixel-to-pixel dust distribution and geometry within the nearest galaxies in my sample. I compare this to GALEX UV imaging. I discuss implications for UV escape fraction, and present initial results of the canonical star-forming relations at low galaxy luminosity and metallicity. THIS IS A POSTER AND WILL BE LOCATED IN THE AAS BOOTH.
Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Pike, G. F.; Krolik, J. H.
1990-01-01
A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.
AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi
We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlationsmore » with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.« less
On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.
2015-03-01
We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ~0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ~0.13 dex.
The mean ultraviolet spectrum of a representative sample of faint z ˜ 3 Lyman alpha emitters
NASA Astrophysics Data System (ADS)
Nakajima, Kimihiko; Fletcher, Thomas; Ellis, Richard S.; Robertson, Brant E.; Iwata, Ikuru
2018-06-01
We discuss the rest-frame ultraviolet (UV) emission line spectra of a large (˜100) sample of low luminosity redshift z ˜ 3.1 Lyman alpha emitters (LAEs) drawn from a Subaru imaging survey in the SSA22 survey field. Our earlier work based on smaller samples indicated that such sources have high [O III]/[O II] line ratios possibly arising from a hard ionizing spectrum that may be typical of similar sources in the reionization era. With optical spectra secured from VLT/VIMOS, we re-examine the nature of the ionizing radiation in a larger sample using the strength of the high ionization diagnostic emission lines of CIII]λ1909, CIVλ1549, HEIIλ1640, and O III]λλ1661, 1666 Å in various stacked subsets. Our analysis confirms earlier suggestions of a correlation between the strength of Ly α and CIII] emission and we find similar trends with broad-band UV luminosity and rest-frame UV colour. Using various diagnostic line ratios and our stellar photoionization models, we determine both the gas phase metallicity and hardness of the ionization spectrum characterized by ξion - the number of Lyman continuum photons per UV luminosity. We confirm our earlier suggestion that ξion is significantly larger for LAEs than for continuum-selected Lyman break galaxies, particularly for those LAEs with the faintest UV luminosities. We briefly discuss the implications for cosmic reionization if the metal-poor intensely star-forming systems studied here are representative examples of those at much higher redshift.
ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.
2015-03-01
We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1more » galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.« less
Calibration and Limitations of the Mg II Line-based Black Hole Masses
NASA Astrophysics Data System (ADS)
Woo, Jong-Hak; Le, Huynh Anh N.; Karouzos, Marios; Park, Dawoo; Park, Daeseong; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.
2018-06-01
We present single-epoch black hole mass ({M}BH}) calibrations based on the rest-frame ultraviolet (UV) and optical measurements of Mg II 2798 Å and Hβ 4861 Å lines and the active galactic nucleus (AGN) continuum, using a sample of 52 moderate-luminosity AGNs at z ∼ 0.4 and z ∼ 0.6 with high-quality Keck spectra. We combine this sample with a large number of luminous AGNs from the Sloan Digital Sky Survey to increase the dynamic range for a better comparison of UV and optical velocity and luminosity measurements. With respect to the reference {M}BH} based on the line dispersion of Hβ and continuum luminosity at 5100 Å, we calibrate the UV and optical mass estimators by determining the best-fit values of the coefficients in the mass equation. By investigating whether the UV estimators show a systematic trend with Eddington ratio, FWHM of Hβ, Fe II strength, or UV/optical slope, we find no significant bias except for the slope. By fitting the systematic difference of Mg II-based and Hβ-based masses with the L 3000/L 5100 ratio, we provide a correction term as a function of the spectral index as ΔC = 0.24 (1 + α λ ) + 0.17, which can be added to the Mg II-based mass estimators if the spectral slope can be well determined. The derived UV mass estimators typically show >∼0.2 dex intrinsic scatter with respect to the Hβ-based {M}BH}, suggesting that the UV-based mass has an additional uncertainty of ∼0.2 dex, even if high-quality rest-frame UV spectra are available.
Search for correlated UV and x ray absorption of NGC 3516
NASA Technical Reports Server (NTRS)
Martin, Christopher; Halpern, Jules P.; Kolman, Michiel
1991-01-01
NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.
The active quiescence of HR Del (Nova Del 1967). The ex-nova HR Del
NASA Astrophysics Data System (ADS)
Selvelli, P.; Friedjung, M.
2003-04-01
This new UV study of the ex-nova HR Del is based on all of the data obtained with the International Ultraviolet Explorer (IUE) satellite, and includes the important series of spectra taken in 1988 and 1992 that have not been analyzed so far. This has allowed us to make a detailed study of both the long-timescale and the short-timescale UV variations, after the return of the nova, around 1981-1982, to the pre-outburst optical magnitude. After the correction for the reddening (EB-V=0.16), adopting a distance d =850 pc we have derived a mean UV luminosity close to LUV ~ 56 Lsun, the highest value among classical novae in ``quiescence". Also the ``average" optical absolute magnitude (Mv=+2.30) is indicative of a bright object. The UV continuum luminosity, the HeII 1640 Å emission line luminosity, and the optical absolute magnitude all give a mass accretion rate dot {M} very close to 1.4x 10-7 Msun yr-1, if one assumes that the luminosity of the old nova is due to a non-irradiated accretion disk. The UV continuum has declined by a factor less than 1.2 over the 13 years of the IUE observations, while the UV emission lines have faded by larger factors. The continuum distribution is well fitted with either a black body of 33 900 K, or a power-law Flambda ~ lambda -2.20. A comparison with the grid of models of Wade & Hubeny (\\cite{Wade}) indicates a low M1 value and a relatively high dot {M} but the best fittings to the continuum and the line spectrum come from different models. We show that the ``quiescent" optical magnitude at mv ~ 12 comes from the hot component and not from the companion star. Since most IUE observations correspond to the ``quiescent" magnitude at mv ~ 12, the same as in the pre-eruption stage, we infer that the pre-nova, for at least 70 years prior to eruption, was also very bright at near the same LUV, Mv, dot {M}, and T values as derived in the present study for the ex-nova. The wind components in the P Cyg profiles of the CIV 1550 Å and NV 1240 Å resonance lines are strong and variable on short timescales, with vedge up to -5000 km s-1, a remarkably high value. The phenomenology of the short-time variations of the wind indicates the presence of an inhomogeneous outflow. We discuss the nature of the strong UV continuum and wind features and the implications of the presence of a ``bright" state a long time before and after outburst on our present knowledge of the pre-nova and post-nova behavior. Based on observations made with the International Ultraviolet Explorer and de-archived from the ESA VILSPA Database. }
NASA Astrophysics Data System (ADS)
Talia, M.; Cimatti, A.; Pozzetti, L.; Rodighiero, G.; Gruppioni, C.; Pozzi, F.; Daddi, E.; Maraston, C.; Mignoli, M.; Kurk, J.
2015-10-01
Aims: In this paper we use a well-controlled spectroscopic sample of galaxies at 1
Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279
NASA Astrophysics Data System (ADS)
Patiño-Álvarez, V. M.; Fernandes, S.; Chavushyan, V.; López-Rodríguez, E.; León-Tavares, J.; Schlegel, E. M.; Carrasco, L.; Valdés, J.; Carramiñana, A.
2018-06-01
In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.
ALMA Reveals Metals yet No Dust within Multiple Components in CR7
NASA Astrophysics Data System (ADS)
Matthee, J.; Sobral, D.; Boone, F.; Röttgering, H.; Schaerer, D.; Girard, M.; Pallottini, A.; Vallini, L.; Ferrara, A.; Darvish, B.; Mobasher, B.
2017-12-01
We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]{}158μ {{m}} line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by ≈ 150 km s‑1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by ≈ 300 and ≈80 km s‑1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity {L}{IR}({T}d=35 {{K}})< 3.1× {10}10 {L}ȯ . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 {M}ȯ yr‑1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and {L}[{{C}{{II}}]}, implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7's clumps have metallicities of 0.1< {{Z}}/{{{Z}}}ȯ < 0.2. The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites.
Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars
NASA Astrophysics Data System (ADS)
Jun, Hyunsung David; Im, Myungshin; Lee, Hyung Mok; Ohyama, Youichi; Woo, Jong-Hak; Fan, Xiaohui; Goto, Tomotsugu; Kim, Dohyeong; Kim, Ji Hoon; Kim, Minjin; Lee, Myung Gyoon; Nakagawa, Takao; Pearson, Chris; Serjeant, Stephen
2015-06-01
We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3 < z < 6.4 taken with the AKARI space telescope, including the first detection of the Hα emission line as far out as z ∼ 6. We extend the scaling relation between the rest-frame optical continuum and the line luminosity of active galactic nuclei (AGNs) to the high-luminosity, high-redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100 Å and Hα AGN luminosities over a wide range of luminosity (1042 < L5100 < 1047 ergs s-1) or redshift (0 < z < 6), suggesting that the physical mechanism governing this relation is unchanged from z = 0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the Hβ black hole (BH) mass (MBH) estimator of local AGNs, we derive the MBH estimators based on the Hα, Mg ii, and C iv lines, finding that the UV-line-based masses are overall consistent with the Balmer-line-based, but with a large intrinsic scatter of 0.40 dex for the C iv estimates. Our 43 MBH estimates from Hα confirm the existence of BHs as massive as ∼ 1010 M⊙ out to z ∼ 5 and provide a secure footing for previous results from Mg ii-line-based studies that a rapid MBH growth has occurred in the early universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouwens, R. J.; Franx, M.; Labbe, I.
2012-08-01
Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta}more » measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolving along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from z {approx} 4-7 to z {approx} 2.« less
SWIFT Observations of a Far UV Luminosity Component in SS433
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.
2007-01-01
SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi
2014-04-01
We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.
NASA Astrophysics Data System (ADS)
Corbin, Michael R.; Boroson, Todd A.
1996-11-01
We present combined ultraviolet and optical spectra of 48 QSOs and Seyfert 1 galaxies in the redshift range 0.034-0.774. The UV spectra were obtained non-simultaneously with the optical and are derived from archival Hubble Space Telescope (HST) Faint Object Spectrograph and International Ultraviolet Explorer (IUE) observations. The sample consists of 22 radio- quiet objects, 12 flat radio spectrum radio-loud objects, and 14 steep radio spectrum objects, and it covers approximately 2.5 decades in ultraviolet continuum luminosity. The sample objects are among the most luminous known in this redshift range and include 3C 273 and Fairall 9, as well as many objects discovered in the Bright Quasar Survey. We measure and compare an array of emission-line and continuum parameters, including 2 keV X-ray luminosities derived from the Einstein database. We examine individual correlations and also apply a principal components analysis (PCA) in an effort to determine the underlying sources of variance among these observables. Our main results are as follows. 1. The C IV λ1549 profile asymmetry is correlated with the UV continuum luminosity measured at the position of that line, such that increasing continuum luminosity produces increasing redward asymmetry. This is the same correlation found between Hβ asymmetry and 2 keV luminosity in a larger sample of objects and appears to be followed by both radio-loud and radio-quiet sources. The C IV profile asymmetry is also correlated with the FWZI of the Lyα profile, with more redward asymmetric profiles associated with wider profile bases. The PCA reveals that the correlated increase in luminosity, C IV redward asymmetry, and profile base width accounts for over half the statistical variance in the sample. 2. There is a statistically significant difference between the FWZI distributions of the Lyα and Hβ lines, such that the former is wider on average by ~10^4^ km s^-1^. The FWHM values of the broad Hβ line are weakly correlated with those of C IV λ1549 and Lyα, and in contrast to the FWZI values the Hβ profiles are wider. Measures of the asymmetry of the Hβ and C IV profiles also show a weak correlation. The wavelength centroids at 3/4 maximum of the Lyα and C IV lines also show average blueshifts ~50-200 km s^-1^ from [O III] λ5007, versus an average redshift of 75 km s^-1^ for broad Hβ. 3. There is no clear evidence of narrow components to the stronger UV lines, even among objects in which the optical narrow lines including [O III] λλ4959, 5007 are unusually strong. We measure the average fractional contributions of such components to the Lyα and C III] λ1909 lines to be ~4%-5%, consistent with the findings from smaller samples. However, a sizable fraction (50%) of radio-loud objects display a narrow component of He II λ1640, the same as in the QSO population at intermediate redshifts, and such a component is likely to contribute to the other UV lines. We interpret the first result as the effect of a black hole mass/luminosity relation in which the profile widths and redward asymmetries are produced respectively by the virialized motions and gravitational redshift associated with 10^9^-10^10^ M_sun_ holes. This does not explain the cases of blueward profile asymmetries and blueshifted profile peaks, which require an effect acting oppositely to gravitational redshift. The peak redshift differences and relative weakness of the correlations between the UV profile widths and asymmetries and those of Hβ suggests a stratified ionization structure of the broad-line region (BLR), consistent with the variability studies of Seyfert 1 galaxies. Continuum variability and the dynamical evolution of the BLR gas may also influence these results. The difference between the Lyα and Hβ FWZI values provides additional evidence of an optically thin very broad line region (VBLR) lying interior to an intermediate line region (ILR) producing the profile cores. The smaller average FWHM values of the UV lines compared to Hβ indicate that they have a higher relative contribution of ILR emission, versus a more dominant VBLR component in the Balmer lines. The narrow He II λ1640 feature of radio-loud objects is likely associated with the inner regions of extended (100 kpc) ionized halos that are not present around radio-quiet objects, and which appear to be best explained as cooling flows around the QSO host galaxies.
Simulations of dust in interacting galaxies
NASA Astrophysics Data System (ADS)
Jonsson, Patrik
This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Kyle; Dickinson, Mark; Dey, Arjun
Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {submore » Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Kazuaki; Walter, Fabian; Da Cunha, Elisabete
We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum)more » suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.« less
Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power
NASA Astrophysics Data System (ADS)
Baum, Stefi A.; Zirbel, Esther L.; O'Dea, Christopher P.
1995-09-01
In Paper I we presented the results of a study of the interrelationships between host galaxy magnitude, optical line luminosity, and radio luminosity in a large sample of Fanaroff-Riley classes 1 and 2 (FR 1 and FR 2) radio galaxies. We report several important differences between the FR 1 and FR 2 radio galaxies. At the same host galaxy magnitude or radio luminosity, the FR 2's produce substantially more optical line emission (by roughly an order of magnitude or more) than do FR 1's. Similarly, FR 2 sources produce orders of magnitude more line luminosity than do radio-quiet galaxies of the same optical magnitude, while FR 1 sources and radio-quiet galaxies of the same optical magnitude produce similar line luminosities. Combining these results with previous results from the literature, we conclude that while the emission-line gas in the FR 2's is indeed photoionized by a nuclear UV continuum source from the AGN, the emission-line gas in the FR 1's may be energized predominantly by processes associated with the host galaxy itself. The apparent lack of a strong UV continuum source from the central engine in FR 1 sources can be understood in two different ways. In the first scenario, FR l's are much more efficient at covering jet bulk kinetic energy into radio luminosity than FR 2's, such that an FR 1 has a much lower bolometric AGN luminosity (hence nuclear UV continuum source) than does an FR 2 of the same radio luminosity. We discuss the pros and cons of this model and conclude that the efficiency differences needed between FR 2 and FR 1 radio galaxies are quite large and may lead to difficulties with the interpretation since it would suggest that FR 2 radio source deposit very large amounts of kinetic energy into the ISM Intracluster Medium. However, this interpretation remains viable. Alternatively, it may be that the AGNs in FR 1 sources simply produce far less radiant UV energy than do those in FR 2 sources. That is, FR 1 sources may funnel a higher fraction of the total energy output from the AGNs into jet kinetic energy versus radiant energy than do FR 2 sources. If this interpretation is correct, then this suggests that there is a fundamental difference in the central engine and/or in the immediate "accretion region" around the engine in FR 1 and FR 2 radio galaxies. We note also the absence of FR 1 sources with nuclear broad line regions and suggest that the absence of the BLR is tied to the absence of the "isotropic" nuclear UV continuum source in FR 1 sources. We put forth the possibility that the FR 1/FR 2 dichotomy (i.e., the observed differences in the properties of low- and high-power radio sources) is due to qualitative differences in the structural properties of the central engines in these two types of sources. Following early work by Rees et al. (1982), we suggest the possibility that FR 1 sources are produced when the central engine is fed at a lower accretion rate, leading to the creation of a source in which the ratio of radiant to jet bulk kinetic energy is low, while FR 2 sources are produced when the central engine is fed at a higher accretion rate, causing the central engine to deposit a higher fraction of its energy in radiant energy. We further suggest the possibility that associated differences in the spin properties of the central black hole between FR 1 (lower spin) and FR 2 (higher spin) sources may be responsible for the different collimation properties and Mach numbers of the jets produced by these two types of radio-loud galaxies. This scenario, although currently clearly speculative, is nicely consistent with our current picture of the triggering, feeding, environments, and evolution of powerful radio galaxies. This model allows for evolution of these properties with time for example, the mass accretion rate and BH spin may decline with time causing an FR 2 radio source or quasar to evolve into a FR 1 radio source.
NASA Astrophysics Data System (ADS)
Matthee, Jorryt; Sobral, David; Darvish, Behnam; Santos, Sérgio; Mobasher, Bahram; Paulino-Afonso, Ana; Röttgering, Huub; Alegre, Lara
2017-11-01
We present spectroscopic follow-up of candidate luminous Ly α emitters (LAEs) at z = 5.7-6.6 in the SA22 field with VLT/X-SHOOTER. We confirm two new luminous LAEs at z = 5.676 (SR6) and z = 6.532 (VR7), and also present HST follow-up of both sources. These sources have luminosities LLy α ≈ 3 × 1043 erg s-1, very high rest-frame equivalent widths of EW0 ≳ 200 Å and narrow Ly α lines (200-340 km s-1). VR7 is the most UV-luminous LAE at z > 6.5, with M1500 = -22.5, even brighter in the UV than CR7. Besides Ly α, we do not detect any other rest-frame UV lines in the spectra of SR6 and VR7, and argue that rest-frame UV lines are easier to observe in bright galaxies with low Ly α equivalent widths. We confirm that Ly α line widths increase with Ly α luminosity at z = 5.7, while there are indications that Ly α lines of faint LAEs become broader at z = 6.6, potentially due to reionization. We find a large spread of up to 3 dex in UV luminosity for >L⋆ LAEs, but find that the Ly α luminosity of the brightest LAEs is strongly related to UV luminosity at z = 6.6. Under basic assumptions, we find that several LAEs at z ≈ 6-7 have Ly α escape fractions ≳ 100 per cent, indicating bursty star formation histories, alternative Ly α production mechanisms, or dust attenuating Ly α emission differently than UV emission. Finally, we present a method to compute ξion, the production efficiency of ionizing photons, and find that LAEs at z ≈ 6-7 have high values of log10(ξion/Hz erg-1) ≈ 25.51 ± 0.09 that may alleviate the need for high Lyman-Continuum escape fractions required for reionization.
NASA Astrophysics Data System (ADS)
Bouwens, Rychard J.; Aravena, Manuel; Decarli, Roberto; Walter, Fabian; da Cunha, Elisabete; Labbé, Ivo; Bauer, Franz E.; Bertoldi, Frank; Carilli, Chris; Chapman, Scott; Daddi, Emanuele; Hodge, Jacqueline; Ivison, Rob J.; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Ota, Kazuaki; Riechers, Dominik; Smail, Ian R.; van der Werf, Paul; Weiss, Axel; Cox, Pierre; Elbaz, David; Gonzalez-Lopez, Jorge; Infante, Leopoldo; Oesch, Pascal; Wagg, Jeff; Wilkins, Steve
2016-12-01
We make use of deep 1.2 mm continuum observations (12.7 μJy beam-1 rms) of a 1 arcmin2 region in the Hubble Ultra Deep Field to probe dust-enshrouded star formation from 330 Lyman-break galaxies spanning the redshift range z = 2-10 (to ˜2-3 M ⊙ yr-1 at 1σ over the entire range). Given the depth and area of ASPECS, we would expect to tentatively detect 35 galaxies, extrapolating the Meurer z ˜ 0 IRX-β relation to z ≥ 2 (assuming dust temperature T d ˜ 35 K). However, only six tentative detections are found at z ≳ 2 in ASPECS, with just three at >3σ. Subdividing our z = 2-10 galaxy samples according to stellar mass, UV luminosity, and UV-continuum slope and stacking the results, we find a significant detection only in the most massive (>109.75 M ⊙) subsample, with an infrared excess (IRX = L IR/L UV) consistent with previous z ˜ 2 results. However, the infrared excess we measure from our large selection of sub-L ∗ (<109.75 M ⊙) galaxies is {0.11}-0.42+0.32 ± 0.34 (bootstrap and formal uncertainties) and {0.14}-0.14+0.15 ± 0.18 at z = 2-3 and z = 4-10, respectively, lying below even an IRX-β relation for the Small Magellanic Cloud (95% confidence). These results demonstrate the relevance of stellar mass for predicting the IR luminosity of z ≳ 2 galaxies. We find that the evolution of the IRX-stellar mass relationship depends on the evolution of the dust temperature. If the dust temperature increases monotonically with redshift (\\propto {(1+z)}0.32) such that T d ˜ 44-50 K at z ≥ 4, current results are suggestive of little evolution in this relationship to z ˜ 6. We use these results to revisit recent estimates of the z ≥ 3 star formation rate density.
Ultraviolet Opacity and Fluorescence in Supernova Envelopes
NASA Technical Reports Server (NTRS)
Li, Hongwei; McCray, Richard
1996-01-01
By the time the expanding envelope of a Type 2 supernova becomes transparent in the optical continuum, most of the gamma-ray luminosity produced by radioactive Fe/Co/Ni clumps propagates into the hydrogen/helium envelope and is deposited there, if at all. The resulting fast electrons excite He 1 and H 1, the two- photon continua of which are the dominant internal sources of ultraviolet radiation. The UV radiation is blocked by scattering in thousands of resonance lines of metals and converted by fluorescence into optical and infrared emission lines that escape freely. We describe results of Monte Carlo calculations that simulate non-LTE scattering and fluorescence in more than five million allowed lines of Ca, Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. For a model approximating conditions in the envelope of SN 1987A, the calculated emergent spectrum resembles the observed one. For the first 2 yr after explosion, the ultraviolet radiation (lambda less than or approximately equals 3000) is largely blocked and converted into a quasi continuum of many thousands of weak optical and infrared emission lines and some prominent emission features, such as the Ca 2 lambdalambda8600 triplet. Later, as the envelope cools and expands, it becomes more transparent, and an increasing fraction of the luminosity emerges in the UV band.
Binarity and Accretion in AGB Stars: HST/STIS Observations of UV Flickering in Y Gem
NASA Astrophysics Data System (ADS)
Sahai, R.; Sánchez Contreras, C.; Mangan, A. S.; Sanz-Forcada, J.; Muthumariappan, C.; Claussen, M. J.
2018-06-01
Binarity is believed to dramatically affect the history and geometry of mass loss in AGB and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to search for hot binary companions to cool AGB stars using the GALEX archive, we discovered a late-M star, Y Gem, to be a source of strong and variable UV and X-ray emission. Here we report UV spectroscopic observations of Y Gem obtained with the Hubble Space Telescope that show strong flickering in the UV continuum on timescales of ≲20 s, characteristic of an active accretion disk. Several UV lines with P-Cygni-type profiles from species such as Si IV and C IV are also observed, with emission and absorption features that are red- and blueshifted by velocities of ∼500 {km} {{{s}}}-1 from the systemic velocity. Our model for these (and previous) observations is that material from the primary star is gravitationally captured by a companion, producing a hot accretion disk. The latter powers a fast outflow that produces blueshifted features due to the absorption of UV continuum emitted by the disk, whereas the redshifted emission features arise in heated infalling material from the primary. The outflow velocities support a previous inference by Sahai et al. that Y Gem’s companion is a low-mass main-sequence star. Blackbody fitting of the UV continuum implies an accretion luminosity of about 13 L ⊙, and thus a mass-accretion rate >5 × 10‑7 M ⊙ yr‑1 we infer that Roche-lobe overflow is the most likely binary accretion mode for Y Gem.
The Diversity of Diffuse Ly α Nebulae around Star-forming Galaxies at High Redshift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun
2017-03-10
We report the detection of diffuse Ly α emission, or Ly α halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ∼1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly α images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly α radial profile into a compact galaxy-like andmore » an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Ly α luminosities, but not on Ly α equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Ly α emitters ( M {sub UV} ≳ −21), exhibit LAH sizes of 5–6 kpc. However, the most UV- or Ly α- luminous galaxies have more extended halos with scale-lengths of 7–9 kpc. The stacked Ly α radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H i column density, and outflow velocity) change with halo mass and/or star formation rates.« less
The Diversity of Diffuse Lyα Nebulae around Star-forming Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun; Reddy, Naveen; Hong, Sungryong; Prescott, Moire K. M.; Inami, Hanae; Jannuzi, Buell T.; Gonzalez, Anthony H.
2017-03-01
We report the detection of diffuse Lyα emission, or Lyα halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ˜1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Lyα images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Lyα radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Lyα luminosities, but not on Lyα equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Lyα emitters (M UV ≳ -21), exhibit LAH sizes of 5-6 kpc. However, the most UV- or Lyα-luminous galaxies have more extended halos with scale-lengths of 7-9 kpc. The stacked Lyα radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H I column density, and outflow velocity) change with halo mass and/or star formation rates.
Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.
1980-01-01
The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danforth, Charles W.; Stocke, John T.; France, Kevin
The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Ly α recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope ( HST ) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Ly α emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of themore » supermassive black hole in these radio-mode active galactic nuclei. We observe strong Ly α emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Ly α , which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Ly α luminosities ∼10{sup 40} erg s{sup -1} are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Ly α -emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Ly α luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Ly α , a clear indicator of relativistic beaming in our direction. Given their substantial space density (∼4 × 10{sup -3} Mpc{sup -3}), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (∼10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.« less
NASA Astrophysics Data System (ADS)
Kriss, G.; Storm Team
2015-07-01
The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
NASA Technical Reports Server (NTRS)
Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph
2015-01-01
We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.
WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF-RAYET/LUMINOUS BLUE VARIABLE HD 5980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgiev, Leonid; Koenigsberger, Gloria; Hillier, D. John
Over the past 40 years, the massive luminous blue variable/Wolf-Rayet system HD 5980 in the Small Magellanic Cloud (SMC) has undergone a long-term S Doradus-type variability cycle and two brief and violent eruptions in 1993 and 1994. In this paper we analyze a collection of UV and optical spectra obtained between 1979 and 2009 and perform CMFGEN model fits to spectra of 1994, 2000, 2002, and 2009. The results are as follows: (1) the long-term S Dor-type variability is associated with changes of the hydrostatic radius; (2) the 1994 eruption involved changes in its bolometric luminosity and wind structure; (3)more » the emission-line strength, the wind velocity, and the continuum luminosity underwent correlated variations in the sense that a decreasing V{sub {infinity}} is associated with increasing emission line and continuum levels; and (4) the spectrum of the third star in the system (Star C) is well fit by a T{sub eff} = 32 K model atmosphere with SMC chemical abundances. For all epochs, the wind of the erupting star is optically thick at the sonic point and is thus driven mainly by the continuum opacity. We speculate that the wind switches between two stable regimes driven by the 'hot' (during the eruption) and the 'cool' (post-eruption) iron opacity bumps as defined by Lamers and Nugis and Graefener and Hamann, and thus the wind may undergo a bi-stability jump of a different nature from that which occurs in OB stars.« less
UNVEILING THE PHYSICS OF LOW-LUMINOSITY AGNs THROUGH X-RAY VARIABILITY: LINER VERSUS SEYFERT 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-García, L.; Masegosa, J.; Márquez, I.
X-ray variability is very common in active galactic nuclei (AGNs), but these variations may not occur similarly in different families of AGNs. We aim to disentangle the structure of low-ionization nuclear emission-line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sourcesmore » generally do not show variations, most probably because the AGN is not accesible in the 0.5–10 keV energy band. The changes are mostly related to variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disk where the UV emission might take place, with UV variations being common in them. This result might be compatible with the disappeareance of the torus and/or the broad-line region in at least some LINERs.« less
NASA Astrophysics Data System (ADS)
Holoien, T. W.-S.; Kochanek, C. S.; Prieto, J. L.; Stanek, K. Z.; Dong, Subo; Shappee, B. J.; Grupe, D.; Brown, J. S.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Danilet, A. B.; Falco, E.; Guo, Z.; Jose, J.; Herczeg, G. J.; Long, F.; Pojmanski, G.; Simonian, G. V.; Szczygieł, D. M.; Thompson, T. A.; Thorstensen, J. R.; Wagner, R. M.; Woźniak, P. R.
2016-01-01
We present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the centre of PGC 043234 (d ≃ 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L ≃ 1044 erg s-1 and a total integrated energy of E ≃ 7 × 1050 erg radiated over the ˜6 months of observations presented. The UV/optical emission of the source is well fitted by a blackbody with roughly constant temperature of T ˜ 35 000 K, while the luminosity declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, L∝ e^{-t/t_0}, with t0 ≃ 60 d. ASASSN-14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. We use the discoveries of ASASSN-14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of r ≃ 4.1 × 10-5 yr-1 per galaxy with a 90 per cent confidence interval of (2.2-17.0) × 10-5 yr-1 per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.
Luminosity function of faint galaxies with ultraviolet continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanyan, D.A.
1985-05-01
The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less
FUSE Observations of the Dwarf Seyfert Nucleus of NGC 4395
NASA Astrophysics Data System (ADS)
Kraemer, Steven B.
The Sd IV dwarf galaxy NGC 4395 is the nearest (d approx. 2.6 Mpc) and least luminous (L_bol < 1041 ergs s-1) example of a Seyfert 1 galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines, a non-stellar continuum, and highly variable X-ray emission, presumably powered by a small (105 M_sun) black hole. Furthermore, there is evidence for blue-shifted, intrinsic absorption lines in the UV (C IV lambda lambda 1548.2, 1550.8), while X-ray spectra show the presence of bound-free edges from O VII and O VIII and evidence for even more highly ionized gas. The UV absorption could arise within the X-ray absorbers or, alternatively, within the emission-line gas, which we have determined to have a high covering factor. The unique capabilities of FUSE provide the means with which to constrain the ionization state, column density, and covering factor of the absorbers and, hence, distinguish between these two possibilities. By extending our investigation of intrinsic absorption to the low luminosity extreme of the Seyfert population, we will obtain crucial insight into the effects of luminosity, global covering factor, and central black hole mass on the intrinsic absorbers. A second goal of this project is to constrain the spectral energy distribution of the non-stellar continuum radiation, which may be unique in this object as a consequence of its small black hole mass.
NASA Astrophysics Data System (ADS)
Jiang, Linhua; Egami, Eiichi; Mechtley, Matthew; Fan, Xiaohui; Cohen, Seth H.; Windhorst, Rogier A.; Davé, Romeel; Finlator, Kristian; Kashikawa, Nobunari; Ouchi, Masami; Shimasaku, Kazuhiro
2013-08-01
We present deep Hubble Space Telescope near-IR and Spitzer mid-IR observations of a large sample of spectroscopically confirmed galaxies at z >= 6. The sample consists of 51 Lyα emitters (LAEs) at z ~= 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 <= z <= 6.5. The near-IR images were mostly obtained with WFC3 in the F125W and F160W bands, and the mid-IR images were obtained with IRAC in the 3.6 μm and 4.5 μm bands. Our galaxies also have deep optical imaging data from Subaru Suprime-Cam. We utilize the multi-band data and secure redshifts to derive their rest-frame UV properties. These galaxies have steep UV-continuum slopes roughly between β ~= -1.5 and -3.5, with an average value of β ~= -2.3, slightly steeper than the slopes of LBGs in previous studies. The slope shows little dependence on UV-continuum luminosity except for a few of the brightest galaxies. We find a statistically significant excess of galaxies with slopes around β ~= -3, suggesting the existence of very young stellar populations with extremely low metallicity and dust content. Our galaxies have moderately strong rest-frame Lyα equivalent width (EW) in a range of ~10 to ~200 Å. The star formation rates are also moderate, from a few to a few tens of solar masses per year. The LAEs and LBGs in this sample share many common properties, implying that LAEs represent a subset of LBGs with strong Lyα emission. Finally, the comparison of the UV luminosity functions between LAEs and LBGs suggests that there exists a substantial population of faint galaxies with weak Lyα emission (EW < 20 Å) that could be the dominant contribution to the total ionizing flux at z >= 6. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Based in part on data collected at Subaru Telescope and obtained from SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan.
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.
Copernicus observations of Nova Cygni 1975
NASA Technical Reports Server (NTRS)
Jenkins, E. B.; Snow, T. P.; Upson, W. L.; Anderson, R.; Starrfield, S. G.; Gallagher, J. S.; Friedjung, M.; Linsky, J. L.; Henry, R. C.; Moos, H. W.
1977-01-01
Near-ultraviolet radiation from Nova Cygni 1975 was detected by the Copernicus satellite on five occasions from 1975 September 1 to 1975 September 9. The nova was not seen in the UV after this date. The principal result was the observation of a broad emission feature from the Mg II doublet at 2800 A. The absence of strong UV radiation at shorter wavelengths suggests that these lines are produced by collisional excitation in the outer layers of an expanding shell with electron temperature of approximately 4000 K. The absence of observed emission lines from highly ionized species indicates that the amount of material with log T between 4.4 and 5.7 is less than 0.001 times that which produces the Mg II emission. The continuum flux in the near-UV decreased as the nova evolved, showing that the total luminosity decreased as the nova faded in the visible.
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.
2014-06-01
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
Comparation between different tracers of SFR in the CALIFA sample
NASA Astrophysics Data System (ADS)
Catalán-Torrecilla, C.; Armando Gil de Paz, A.; África Castillo-Morales, A.; Jorge Iglesias-Páramo, J.; Almudena Alonso-Herrero, A.; Califa Team
2013-05-01
The Calar Alto Legacy Integral Field Area survey (CALIFA survey) has been designed to be the first survey to provide Integral Field Spectroscopy (IFS) data for a statistical sample of all galaxy types (˜ 600 galaxies) in the Local Universe (0.005
Holoien, Thomas W. -S.; Kochanek, C. S.; Prieto, J. L.; ...
2015-11-25
In this paper, we present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the centre of PGC 043234 (d ≃ 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L ≃ 10 44 erg s -1 and a total integrated energy of E ≃ 7 × 10 50 erg radiated over the ~6 months of observations presented. The UV/optical emission of the source is well fitted by a blackbody with roughly constant temperature of T ~ 35 000 K, while the luminositymore » declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, L∝e -t/t0, with t 0 ≃ 60 d. ASASSN-14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. Finally, we use the discoveries of ASASSN-14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of r ≃ 4.1 × 10 -5 yr -1 per galaxy with a 90 per cent confidence interval of (2.2–17.0) × 10 -5 yr -1 per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.« less
ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc
NASA Astrophysics Data System (ADS)
Holoien, T. W.-S.; Kochanek, C. S.; Prieto, J. L.; Grupe, D.; Chen, Ping; Godoy-Rivera, D.; Stanek, K. Z.; Shappee, B. J.; Dong, Subo; Brown, J. S.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Carlson, E. K.; Falco, E.; Johnston, E.; Madore, B. F.; Pojmanski, G.; Seibert, M.
2016-12-01
We present ground-based and Swift photometric and spectroscopic observations of the tidal disruption event (TDE) ASASSN-15oi, discovered at the centre of 2MASX J20390918-3045201 (d ≃ 216 Mpc) by the All-Sky Automated Survey for SuperNovae. The source peaked at a bolometric luminosity of L ≃ 1.3 × 1044 erg s-1 and radiated a total energy of E ≃ 6.6 × 1050 erg over the first ˜3.5 months of observations. The early optical/UV emission of the source can be fit by a blackbody with temperature increasing from T ˜ 2 × 104 K to T ˜ 4 × 104 K while the luminosity declines from L ≃ 1.3 × 1044 erg s-1 to L ≃ 2.3 × 1043 erg s-1, requiring the photosphere to be shrinking rapidly. The optical/UV luminosity decline during this period is most consistent with an exponential decline, L∝ e^{-(t-t_0)/τ}, with τ ≃ 46.5 d for t0 ≃ 57241.6 (MJD), while a power-law decline of L ∝ (t - t0)-α with t0 ≃ 57 212.3 and α = 1.62 provides a moderately worse fit. ASASSN-15oi also exhibits roughly constant soft X-ray emission that is significantly weaker than the optical/UV emission. Spectra of the source show broad helium emission lines and strong blue continuum emission in early epochs, although these features fade rapidly and are not present ˜3 months after discovery. The early spectroscopic features and colour evolution of ASASSN-15oi are consistent with a TDE, but the rapid spectral evolution is unique among optically selected TDEs.
The Lyman continuum escape fraction of low mass star-forming galaxies at z~1.
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian D.; Rafelski, Marc; Henry, Alaina L.; Hayes, Matthew; Salvato, Mara; Pahl, Anthony; Mehta, Vihang; Beck, Melanie; Malkan, Matthew Arnold; Teplitz, Harry I.
2016-01-01
Star-forming galaxies (SFGs) in the high redshift universe (z>6) are believed to ionize neutral hydrogen in the intergalactic medium during the epoch of reionization. We tested this assumption by studying likely analogs of these SFGs in archival HST grism spectroscopy with GALEX UV and ground-based optical images at the redshift range in which we can directly measure the rest-frame Lyman continuum (λ<912Å, LyC) emission. We selected ~1400 SFGs for study on the presence of strong Hα emission and strongly selected against those SFGs whose GALEX FUV photometry could be contaminated by low redshift interlopers along the line of sight to produce a sample of ~600 z~1 SFGs. We made no unambiguous detection of escaping Lyman continuum radiation in individual galaxies in this sample, and stacked the individual non-detections in order to constrain the absolute Lyman continuum escape fraction, fesc<2% (3σ). We sub-divided this sample and stacked SFGs to measure upper limits to fesc with respect to stellar mass,luminosity and relative orientation. For z~1 high Hα equivalent width (EW>200Å) SFGs, we found for the first time an upper limit to fesc<9%. We discuss the implications of these limits for the ionizing emissivity of high redshift SFGs during the epoch of reionization. We conclude that reionization by SFGs is only marginally consistent with independent Planck observations of the CMB electron scattering opacity unless the LyC escape fraction of SFGs increases with redshift and an unobserved population of faint (MUV<-13 AB) SFGs contributes significantly to the UV background.
Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Fausnaugh, M. M.; Starkey, D. A.; Horne, Keith; Kochanek, C. S.; Peterson, B. M.; Bentz, M. C.; Denney, K. D.; Grier, C. J.; Grupe, D.; Pogge, R. W.; De Rosa, G.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.
2018-02-01
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.
The line continuum luminosity ratio in AGN: Or on the Baldwin Effect
NASA Technical Reports Server (NTRS)
Mushotzky, R.; Ferland, F. J.
1983-01-01
The luminosity dependence of the equivalent width of CIV in active galaxies, the "Baldwin" effect, is shown to be a consequence of a luminosity dependent ionization parameter. This law also agrees with the lack of a "Baldwin" effect in Ly alpha or other hydrogen lines. A fit to the available data gives a weak indication that the mean covering factor decreases with increasing luminosity, consistent with the inference from X-ray observations. The effects of continuum shape and density on various line ratios of interest are discussed.
NASA Astrophysics Data System (ADS)
Orellana, G.; Nagar, N. M.; Isaak, K. G.; Priddey, R.; Maiolino, R.; McMahon, R.; Marconi, A.; Oliva, E.
2011-07-01
Context. We present near-IR spectroscopy of a sample of luminous (MB - 27.5; Lbol > 1014 L⊙), sub-millimeter-detected, dusty (Md ~ 109 M⊙), radio-quiet quasi-stellar objects (QSOs) at z ~ 2. Aims: A primary aim is to provide a more accurate QSO redshift determination in order to trace kinematics and inflows/outflows in these sub-mm bright QSOs. Additionally, the Hα and continuum properties allow an estimation of the black hole mass and accretion rate, offering insights into the starburst-AGN connection in sub-mm bright QSOs. Methods: We measure the redshift, width, and luminosity of the Hα line, and the continuum luminosity near Hα. Relative velocity differences between Hα and rest-frame UV emission lines are used to study the presence and strength of outflows/inflows. Luminosities and line widths are used to estimate the black hole masses, bolometric luminosities, Eddington fractions, and accretion rates; these are compared to the star-formation-rate (SFR), estimated from the sub-mm derived far-infrared (FIR) luminosity. Finally our sub-mm-bright QSO sample is compared with other QSO samples at similar redshifts. Results: The Hα emission line was strongly detected in all sources. Two components - a very broad (≳5000 km s-1) Gaussian and an intermediate-width (≳1500 km s-1) Gaussian, were required to fit the Hα profile of all observed QSOs. Narrow (≲1000 km s-1) lines were not detected in the sample QSOs. The rest-frame UV emission lines in these sub-mm bright QSOs show larger than average blue-shifted velocities, potentially tracing strong - up to 3000 km s-1 - outflows in the broad line region. With the exception of the one QSO which shows exceptionally broad Hα lines, the black hole masses of the QSO sample are in the range log MBH = 9.0-9.7 and the Eddington fractions are between 0.5 and ~1. In black hole mass and accretion rate, this sub-mm bright QSO sample is indistinguishable from the Shemmer et al. (2004, ApJ, 614, 547) optically-bright QSO sample at z ~ 2; the latter is likely dominated by sub-mm dim QSOs. Previous authors have demonstrated a correlation, over six orders of magnitude, between SFR and accretion rate in active galaxies: the sub-mm bright QSOs lie at the upper extremes of both quantities and their SFR is an order of magnitude higher than that predicted from the correlation.
A Size-Luminosity Relationship for Protoplanetary Disks in Lupus
NASA Astrophysics Data System (ADS)
Terrell, Marie; Andrews, Sean
2018-01-01
The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.
Solar UV Radiation and the Origin of Life on Earth
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)
2000-01-01
We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.
The correlation between far-IR and radio continuum emission from spiral galaxies
NASA Technical Reports Server (NTRS)
Dickey, John M.; Garwood, Robert W.; Helou, George
1987-01-01
A sample of 30 galaxies selected for their intense IRAS flux at 60 and 100 micron using the Arecibo telescope at 21 cm to measure the continuum and HI line luminosities were observed. The centimeter wave continuum correlates very well with the far-infrared flux, with a correlation coefficient as high as that found for other samples, and the same ratio between FIR and radio luminosities. Weaker correlations are seen between the FIR and optical luminosity and between the FIR and radio continuum. There is very little correlation between the FIR and the HI mass deduced from the integral of the 21 cm line. The strength of the radio continuum correlation suggests that there is little contribution to either the radio and FIR from physical processes not affecting both. If they each reflect time integrals of the star formation rate then the time constants must be similar, or the star formation rate must change slowly in these galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouwens, R. J.; Labbé, I.; Franx, M.
2014-10-01
We measure the UV-continuum slope β for over 4000 high-redshift galaxies over a wide range of redshifts z ∼ 4-8 and luminosities from the HST HUDF/XDF, HUDF09-1, HUDF09-2, ERS, CANDELS-N, and CANDELS-S data sets. Our new β results reach very faint levels at z ∼ 4 (–15.5 mag: 0.006 L{sub z=3}{sup ∗}), z ∼ 5 (–16.5 mag: 0.014 L{sub z=3}{sup ∗}), and z ∼ 6 and z ∼ 7 (–17 mag: 0.025 L{sub z=3}{sup ∗}). Inconsistencies between previous studies led us to conduct a comprehensive review of systematic errors and develop a new technique for measuring β that is robustmore » against biases that arise from the impact of noise. We demonstrate, by object-by-object comparisons, that all previous studies, including our own and those done on the latest HUDF12 data set, suffered from small systematic errors in β. We find that after correcting for the systematic errors (typically Δβ ∼ 0.1-0.2) all β results at z ∼ 7 from different groups are in excellent agreement. The mean β we measure for faint (–18 mag: 0.1 L{sub z=3}{sup ∗}) z ∼ 4, z ∼ 5, z ∼ 6, and z ∼ 7 galaxies is –2.03 ± 0.03 ± 0.06 (random and systematic errors), –2.14 ± 0.06 ± 0.06, –2.24 ± 0.11 ± 0.08, and –2.30 ± 0.18 ± 0.13, respectively. Our new β values are redder than we have reported in the past, but bluer than other recent results. Our previously reported trend of bluer β's at lower luminosities is confirmed, as is the evolution to bluer β's at high redshifts. β appears to show only a mild luminosity dependence faintward of M {sub UV,AB} ∼ –19 mag, suggesting that the mean β asymptotes to ∼–2.2 to –2.4 for faint z ≥ 4 galaxies. At z ∼ 7, the observed β's suggest non-zero, but low dust extinction, and they agree well with values predicted in cosmological hydrodynamical simulations.« less
NASA Astrophysics Data System (ADS)
Shibuya, Takatoshi; Ouchi, Masami; Harikane, Yuichi; Rauch, Michael; Ono, Yoshiaki; Mukae, Shiro; Higuchi, Ryo; Kojima, Takashi; Yuma, Suraphong; Lee, Chien-Hsiu; Furusawa, Hisanori; Konno, Akira; Martin, Crystal L.; Shimasaku, Kazuhiro; Taniguchi, Yoshiaki; Kobayashi, Masakazu A. R.; Kajisawa, Masaru; Nagao, Tohru; Goto, Tomotsugu; Kashikawa, Nobunari; Komiyama, Yutaka; Kusakabe, Haruka; Momose, Rieko; Nakajima, Kimihiko; Tanaka, Masayuki; Wang, Shiang-Yu
2018-01-01
We present Lyα and UV-nebular emission line properties of bright Lyα emitters (LAEs) at z = 6-7 with a luminosity of log LLyα/[erg s-1] = 43-44 identified in the 21 deg2 area of the SILVERRUSH early sample developed with the Subaru Hyper Suprime-Cam survey data. Our optical spectroscopy newly confirms 21 bright LAEs with clear Lyα emission, and contributes to making a spectroscopic sample of 96 LAEs at z = 6-7 in SILVERRUSH. From the spectroscopic sample, we select seven remarkable LAEs as bright as Himiko and CR7 objects, and perform deep Keck/MOSFIRE and Subaru/nuMOIRCS near-infrared spectroscopy reaching the 3 σ flux limit of ˜2 × 10-18 erg s-1 for the UV-nebular emission lines of He II λ1640, C IV λλ1548,1550, and O III]λλ1661,1666. Except for one tentative detection of C IV, we find no strong UV-nebular lines down to the flux limit, placing the upper limits of the rest-frame equivalent widths (EW0) of ˜2-4 Å for C IV, He II, and O III] lines. We also investigate the VLT/X-SHOOTER spectrum of CR7 whose 6 σ detection of He II is claimed by Sobral et al. Although two individuals and the ESO archive service carefully reanalyzed the X-SHOOTER data that are used in the study of Sobral et al., no He II signal of CR7 is detected, supportive of weak UV-nebular lines of the bright LAEs even for CR7. The spectral properties of these bright LAEs are thus clearly different from those of faint dropouts at z ˜ 7 that have strong UV-nebular lines shown in the various studies. Comparing these bright LAEs and the faint dropouts, we find anti-correlations between the UV-nebular line EW0 and the UV-continuum luminosity, which are similar to those found at z ˜ 2-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ly, Chun; Malkan, Matthew A.; Ross, Nathaniel R.
We present the first detailed study of the stellar populations of star-forming galaxies at z {approx} 1.5, which are selected by their [O II] emission line, detected in narrowband surveys. We identified {approx}1300 [O II] emitters at z = 1.47 and z = 1.62 in the Subaru Deep Field with rest-frame equivalent widths (EWs) above 13 A. Optical and near-infrared spectroscopic observations for Almost-Equal-To 10% of our samples show that our separation of [O II] from [O III] emission-line galaxies in two-color space is 99% successful. We analyze the multi-wavelength properties of a subset of {approx}1200 galaxies with the bestmore » photometry. They have average rest-frame EW of 45 A, stellar mass of 3 Multiplication-Sign 10{sup 9} M{sub Sun }, and stellar age of 100 Myr. In addition, our spectral energy distribution (SED) fitting and broadband colors indicate that [O II] emitters span the full range of galaxy populations at z {approx} 1.5. We also find that 80% of [O II] emitters are also photometrically classified as 'BX/BM' (UV) galaxies and/or the star-forming 'BzK' (near-IR) galaxies. Our [O II] emission line survey produces a far more complete and somewhat deeper sample of z {approx} 1.5 galaxies than either the BX/BM or sBzK selection alone. We constructed average SEDs and find that higher [O II] EW galaxies have somewhat bluer continua. SED model-fitting shows that they have on average half the stellar mass of galaxies with lower [O II] EW. The observed [O II] luminosity is well correlated with the far-UV continuum with a logarithmic slope of 0.89 {+-} 0.22. The scatter of the [O II] luminosity against the far-UV continuum suggests that [O II] can be used as a star formation rate indicator with a reliability of 0.23 dex.« less
NASA Astrophysics Data System (ADS)
Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2016-10-01
In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.
Ultraviolet and X-ray Variability of the Seyfert 1.5 Galaxy Markarian 817
NASA Astrophysics Data System (ADS)
Winter, Lisa M.; Danforth, Charles; Vasudevan, Ranjan; Brandt, W. N.; Scott, Jennifer; Froning, Cynthia; Keeney, Brian; Shull, J. Michael; Penton, Steve; Mushotzky, Richard; Schneider, Donald P.; Arav, Nahum
2011-02-01
We present an investigation of the ultraviolet and X-ray spectra of the Seyfert 1.5 galaxy Markarian 817. The ultraviolet analysis includes two recent observations taken with the Cosmic Origins Spectrograph (COS) in 2009 August and December, as well as archival spectra from the International Ultraviolet Explorer and the Hubble Space Telescope. Twelve Lyα absorption features are detected in the 1997 Goddard High Resolution Spectrograph (GHRS) and 2009 COS spectra—of these, four are associated with high-velocity clouds in the interstellar medium, four are at low significance, and the remaining four are intrinsic features, which vary between the GHRS and COS observations. The strongest intrinsic absorber in the 1997 spectrum has a systemic velocity of ~-4250 km s-1. The corresponding feature in the COS data is five times weaker than the GHRS absorber. The three additional weak (equivalent width from 13 to 54 mÅ) intrinsic Lyα absorbers are at systemic velocities of -4100 km s-1, -3550 km s-1, and -2600 km s-1. However, intrinsic absorption troughs from highly ionized C IV and N V are not detected in the COS observations. No ionized absorption signatures are detected in the ~14 ks XMM-Newton EPIC spectra. The factor of five change in the intrinsic Lyα absorber is most likely due to bulk motions in the absorber, since there is no drastic change in the UV luminosity of the source from the GHRS to the COS observations. In a study of the variability of Mrk 817, we find that the X-ray luminosity varies by a factor of ~40 over 20 years, while the UV continuum/emission lines vary by at most a factor of ~2.3 over 30 years. The variability of the X-ray luminosity is strongly correlated with the X-ray power-law index, but no correlation is found with the simultaneous optical/UV photometry.
Lyman continuum leaking AGN in the SSA22 field
NASA Astrophysics Data System (ADS)
Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.
2017-02-01
Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.
Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars
NASA Astrophysics Data System (ADS)
Honnappa, Vijayakumar; Prabhakar, Vedavvathi
Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These results suggest that the BLR is spatially stratified into different regions from the central compact nuclear engine. Keywords: Active galaxies, Seyfert galaxies, Quasars, Line and continuum, Variability, Supermassive black hole
A simultaneous search for High-z LAEs and LBGs in the SHARDS survey
NASA Astrophysics Data System (ADS)
Haro, P. Arrabal; Espinosa, J. M. Rodríguez; Muñoz-Tuñón, C.; Pérez-González, P. G.; Dannerbauer, H.; Bongiovann, Á.; Barro, G.; Cava, A.; Lumbreras-Calle, A.; Hernán-Caballero, A.; Eliche-Moral, M. C.; Sánchez, H. Dománguez; Conselice, C. J.; Tresse, L.; Pampliega, B. Alcalde; Balcells, M.; Daddi, E.; Rodighiero, G.
2018-05-01
We have undertaken a comprehensive search for both Lyman Alpha Emitters (LAEs) and Lyman Break Galaxies (LBGs) in the SHARDS Survey of the GOODS-N field. SHARDS is a deep imaging survey, made with the 10.4 m Gran Telescopio Canarias (GTC), employing 25 medium band filters in the range from 500 to 941 nm. This is the first time that both LAEs and LBGs are surveyed simultaneously in a systematic way in a large field. We draw a sample of 1558 sources; 528 of them are LAEs. Most of the sources (1434) show rest-frame UV continua. A minority of them (124) are pure LAEs with virtually no continuum detected in SHARDS. We study these sources from z ˜ 3.35 up to z ˜ 6.8, well into the epoch of reionization. Note that surveys done with just one or two narrow band filters lack the possibility to spot the rest-frame UV continuum present in most of our LAEs. We derive redshifts, Star Formation Rates (SFRs), Lyα Equivalent Widths (EWs) and Luminosity Functions (LFs). Grouping within our sample is also studied, finding 92 pairs or groups of galaxies at the same redshift separated by less than 60 comoving kpc. In addition, we relate 87 and 55 UV-selected objects with two known overdensities at z = 4.05 and z = 5.198, respectively. Finally, we show that surveys made with broad band filters are prone to introduce many unwanted sources (˜20% interlopers), which means that previous studies may be overestimating the calculated LFs, specially at the faint end.
The evidence for clumpy accretion in the Herbig Ae star HR 5999
NASA Technical Reports Server (NTRS)
Perez, M. R.; Grady, C. A.; The, P. S.
1993-01-01
Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I, and C IV emission lines, which are correlated with the UV excess luminosity. Variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state, was also observed. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M greater than or equal to 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as plus 300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, V sini=180 plus or minus 20 km/s for this system) also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, is consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 Myr less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.
Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns
NASA Astrophysics Data System (ADS)
Kriss, Gerard
2015-08-01
Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
Optical Variability of Two High-Luminosity Radio-Quiet Quasars, PDS 456 and PHL 1811
NASA Astrophysics Data System (ADS)
Gaskell, C. M.; Benker, A. J.; Campbell, J. S.; Crowley, K. A.; George, T. A.; Hedrick, C. H.; Hiller, M. E.; Klimek, E. S.; Leonard, J. P.; Peterson, B. W.; Sanders, K. M.
2003-12-01
PDS 456 and PHL 1811 are two of the highest luminosity low-redshift quasars. Both have optical luminosities comparable to 3C 273, but they have low radio luminosities. PDS 456 is a broad line object but PHL 1811 could be classified as a high-luminosity Narrow-Line Seyfert 1 (NLS1) object. We present the results of optical (V-band) continuum monitoring of PDS 456 and PHL 1811. We compare the variability properties of these two very different AGNs compared with the radio-loud AGN 3C 273, and we discuss the implications for the origin of the optical continuum variability in AGNs. This research has been supported in part by the Howard Hughes Foundation, Nebraska EPSCoR, the University of Nebraska Layman Fund, the University of Nebraska Undergraduate Creative Activities and Research Experiences, Pepsi-Cola, and the National Science Foundation through grant AST 03-07912.
The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey
NASA Astrophysics Data System (ADS)
Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro
2018-01-01
We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.
DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.
2011-08-01
Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Ly{alpha} emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Ly{alpha} halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central {approx}1''-more luminous halos are observed for galaxies with stronger central Ly{alpha} emission. We show that whether or not a galaxy is classified as a giant 'Ly{alpha} blob' (LAB) depends sensitively on the Ly{alpha} surface brightness threshold reached by an observation. Accounting for diffuse Ly{alpha} halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Ly{alpha} surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.« less
Disk Evaporation in Star Forming Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for approx. greater than 10(exp 5) years for disk masses M(sub d) approx. 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We apply the results to Ae and Be stars in order to determine the lifetimes of disks around such stars. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1) C.
Star-formation rate in compact star-forming galaxies
NASA Astrophysics Data System (ADS)
Izotova, I. Y.; Izotov, Y. I.
2018-03-01
We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.
The near-infrared radius-luminosity relationship for active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita
2011-05-01
Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).
NASA Astrophysics Data System (ADS)
Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration
2015-12-01
Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005
Ly α and UV Sizes of Green Pea Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Wang, Junxian; Malhotra, Sangeeta
Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lymore » α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.« less
Lyα and UV Sizes of Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Wang, Junxian
2017-03-01
Green Peas are nearby analogs of high-redshift Lyα-emitting galaxies (LAEs). To probe their Lyα escape, we study the spatial profiles of Lyα and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. We extract the spatial profiles of Lyα emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Lyα emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lyα spatial profile is about 2-4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high-z LAEs probably have larger Lyα sizes than UV sizes. We also compare the spatial profiles of Lyα photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Lyα line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Lyα line wings. We show that Green Peas and MUSE z = 3-6 LAEs have similar Lyα and UV continuum sizes, which probably suggests that starbursts in both low-z and high-z LAEs drive similar gas outflows illuminated by Lyα light. Five Lyman continuum (LyC) leakers in this sample have similar Lyα to UV continuum size ratios (˜1.4-4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.
A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results
NASA Technical Reports Server (NTRS)
Drake, S. A.; Simon, T.; Linsky, J. L.
1985-01-01
Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.
The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu
The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely mechanism is Ly α -driven dissociation of H{sub 2}O in the inner disk, r ≲ 2 au. We demonstrate that non-thermally populated H{sub 2}O fragments can qualitatively account for the observed emission (discrete and continuum) and find that the average Ly α -driven H{sub 2}O dissociation rate is 1.7 × 10{sup 42} water molecules s{sup −1}.« less
Comparison of solar hard X-ray and UV line and continuum bursts with high time resolution
NASA Technical Reports Server (NTRS)
Orwig, L. E.; Woodgate, B. E.
1986-01-01
A comparison of data sets from the UV Spectrometer and Polarimeter and Hard X-ray Burst Spectrometer instruments on SMM has established the close relationship of the impulsive phase hard X-ray and UV continuum and OV line emissions, lending support to the notion that they have a similar origin low in the solar atmosphere. These results severely constrain models that attempt to explain impulsive phase hard X-rays and UV emission; alternative processes of impulsive-phase UV continuum production should accordingly be considered. Attention is given to an electron beam 'hole boring' mechanism and a photoionization radiation transport mechanism.
A Glimpse at Quasar Host Galaxy Far-UV Emission, Using Damped Lyα's as Natural Coronagraphs
Cai, Zheng; Fan, Xiaohui; Noterdaeme, Pasquier; ...
2014-09-16
In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. Here, we have stacked the spectra of ~2000 DLA systems (N HI > 10 20.6cm –2) with a median absorption redshiftmore » $$\\langle$$z$$\\rangle$$ = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual flux in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift $$\\langle$$z$$\\rangle$$ = 3.1) that is not blocked by the intervening DLA. Finally, assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ($$\\langle$$L$$\\rangle$$ = 2.5 × 10 13 L ⊙), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10 40 erg s –1 Å –1; this corresponds to an unobscured UV star formation rate of 9 M ⊙ yr –1.« less
A glimpse at quasar host galaxy far-UV emission using damped Lyα's as natural coronagraphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zheng; Fan, Xiaohui; Wang, Ran
2014-10-01
In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. We have stacked the spectra of ∼2000 DLA systems (N {sub H} {sub I} > 10{sup 20.6} cm{sup –2}) with a median absorption redshift (z) = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual fluxmore » in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift (z) = 3.1) that is not blocked by the intervening DLA. Assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ((L) = 2.5 × 10{sup 13} L {sub ☉}), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10{sup 40} erg s{sup –1} Å{sup –1}; this corresponds to an unobscured UV star formation rate of 9 M {sub ☉} yr{sup –1}.« less
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.
2014-01-01
We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙
NASA Technical Reports Server (NTRS)
Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai
1994-01-01
We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.
Spectrophotometry of 2 complete samples of flat radio spectrum quasars
NASA Technical Reports Server (NTRS)
Wampler, E. J.; Gaskell, C. M.; Burke, W. L.; Baldwin, J. A.
1983-01-01
Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given.
Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field
NASA Astrophysics Data System (ADS)
Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.
2018-05-01
We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.
The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars
NASA Technical Reports Server (NTRS)
Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael
1996-01-01
Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.
Continuum radiation from active galactic nuclei: A statistical study
NASA Technical Reports Server (NTRS)
Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.
1986-01-01
The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.
NASA Astrophysics Data System (ADS)
Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.
2016-12-01
We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L [C II] ˜ (1.6-2.5) × 108 L ⊙. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.
NASA Astrophysics Data System (ADS)
Heinis, S.; Buat, V.; Béthermin, M.; Bock, J.; Burgarella, D.; Conley, A.; Cooray, A.; Farrah, D.; Ilbert, O.; Magdis, G.; Marsden, G.; Oliver, S. J.; Rigopoulou, D.; Roehlly, Y.; Schulz, B.; Symeonidis, M.; Viero, M.; Xu, C. K.; Zemcov, M.
2014-01-01
We study the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ˜ 4, ˜ 3 and ˜1.5. We measure by stacking at 250, 350 and 500 μm in the Herschel/Spectral and Photometric Imaging Receiver images from the Herschel Multi-Tiered Extragalactic Survey (HerMES) program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate (SFR) and stellar mass at z ˜ 4, ˜3 and ˜1.5. The SFR-stellar mass relations are well described by power laws (SFR∝ M_*^{0.7}), with the amplitudes being similar at z ˜ 4 and ˜3, and decreasing by a factor of 4 at z ˜ 1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific SFR. Our results are in the upper range of previous measurements, in particular at z ˜ 3, and are consistent with a plateau at 3 < z < 4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the main sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5 < z < 4) stay around 1 Gyr on the main sequence. With decreasing redshift, this time increases such that z = 1 main-sequence galaxies with 108
Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate
NASA Technical Reports Server (NTRS)
Swank, J. H.; Fabian, A. C.; Ross, R. R.
1983-01-01
Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.
NASA Astrophysics Data System (ADS)
Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki
2018-02-01
We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.
Calibrating Star Formation in WISE Using Total Infrared Luminosity
NASA Astrophysics Data System (ADS)
Cluver, M. E.; Jarrett, T. H.; Dale, D. A.; Smith, J.-D. T.; August, Tamlyn; Brown, M. J. I.
2017-11-01
We present accurate resolved WISE photometry of galaxies in the combined SINGS and KINGFISH sample. The luminosities in the W3 12 μm and W4 23 μm bands are calibrated to star formation rates (SFRs) derived using the total infrared luminosity, avoiding UV/optical uncertainties due to dust extinction corrections. The W3 relation has a 1σ scatter of 0.15 dex that is over nearly 5 orders of magnitude in SFR and 12 μm luminosity, and a range in host stellar mass from dwarfs (107 {M}⊙ ) to ˜ 3× {M}{\\star } (1011.5 {M}⊙ ) galaxies. In the absence of deep silicate absorption features and powerful active galactic nuclei, we expect this to be a reliable SFR indicator chiefly due to the broad nature of the W3 band. By contrast, the W4 SFR relation shows more scatter (1σ =0.18 dex). Both relations show reasonable agreement with radio-continuum-derived SFRs and excellent accordance with so-called “hybrid” Hα + 24 μm and FUV+24 μm indicators. Moreover, the WISE SFR relations appear to be insensitive to the metallicity range in the sample. We also compare our results with IRAS-selected luminous infrared galaxies, showing that the WISE relations maintain concordance, but systematically deviate for the most extreme galaxies. Given the all-sky coverage of WISE and the performance of the W3 band as an SFR indicator, the {L}12μ {{m}} SFR relation could be of great use to studies of nearby galaxies and forthcoming large-area surveys at optical and radio wavelengths.
A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.; Oliversen, Ronald K. (Technical Monitor)
2001-01-01
Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe. The major study of a sample of z=3 and its comparison with a sample of z=0.l quasars across the whole X-ray to radio spectrum was completed and accepted for publication in ApJ Supplements. This study comprises the thesis work of Olga Kuhn. The two samples are matched in evolved luminosity, and so should be sampling the same black hole population at different z, and in different accretion states. Despite this no strong differences were found between the samples, except in the 'small bump' region of the optical/UV. This region is dominated by FeII emission, and may indicate abundance evolution in quasars. The lack of overall spectral changes argues strongly against a single population of quasars fading over cosmic time, and for a multiple generation, or multiple outburst model for quasars. A study of the total luminosity absorbed from quasars and re-emitted in the infrared produced two results (reported in two papers): The minimum intrinsic luminosity/Gpc(3) from AGN compared with the measured mass density in supermassive black holes [Gpc(-3)] requires a conversion efficiency of accreted mass into luminosity of greater than 15%. Non-rotating black holes cannot exceed 5% efficiency, while rapidly rotating black holes can reach 47%. Hence our result requires that most supermassive black holes must be rapidly rotating. The second result comes from considering the contribution that the re-radiated quasar radiation makes to the far infrared background (FIRB). The effective temperature of the re radiation is tightly constrained, but the detailed shape (e.g. line emission, range of temperature) is only of second order importance. At least 15perhaps 20-25% of the FIR background must come from AGN. This contribution significantly relieves problems in galaxy evolution that come from trying to use only starlight to make the FIRB. The third paper addresses the origin of the dust obscuration that is so widespread in AGN. The standard assumption is that the dust comes from the normal star-formation processes in galaxies and is drawn close to the nucleus along with the gas that powers the accretion. In complete contrast, using a wind outflow model for the broad emission line (BEL) region (Elvis 2000) as a basis, we show that BEL clouds will expand, cool and form dust as they flow outward, in strict analogy to the stellar winds of red supergiants.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-07-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-05-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
Massive Star Formation of the SGR a East H (sub II) Regions Near the Galactic Center
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, F.; Lacy, J. H.; Wardle, M.; Whitney, B.; Bushouse, H.; Roberts, D. A.; Arendt, R. G.
2010-01-01
A group of four compact H II regions associated with the well-known 50 km/s molecular cloud is the closest site of on-going star formation to the dynamical center of the Galaxy, at a projected distance of approximately 6 pc. We present a study of ionized gas based on the [Ne II] (12.8 micron) line, as well as multi-frequency radio continuum, Hubble Space Telescope Pa alpha, and Spitzer Infrared Array Camera observations of the most compact member of the H II group, Sgr A East H II D. The radio continuum image at 6 cm shows that this source breaks up into two equally bright ionized features, D1 and D2. The spectral energy distribution of the D source is consistent with it being due to a 25 =/- 3 solar mass star with a luminosity of 8 +/- 3 x 10(exp 4) Solar luminosity . The inferred mass, effective temperature of the UV source, and the ionization rate are compatible with a young O9-B0 star. The ionized features D1 and D2 are considered to be ionized by UV radiation collimated by an accretion disk. We consider that the central massive star photoevaporates its circumstellar disk on a timescale of 3x (exp 4) years giving a mass flux approximately 3 x 10(exp -5) Solar Mass / year and producing the ionized material in D1 and D2 expanding in an inhomogeneous medium. The ionized gas kinematics, as traced by the [Ne II] emission, is difficult to interpret, but it could be explained by the interaction of a bipolar jet with surrounding gas along with what appears to be a conical wall of lower velocity gas. The other H II regions, Sgr A East A-C, have morphologies and kinematics that more closely resemble cometary flows seen in other compact H II regions, where gas moves along a paraboloidal surface formed by the interaction of a stellar wind with a molecular cloud.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Technical Reports Server (NTRS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-01-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-03-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation
NASA Astrophysics Data System (ADS)
France, Kevin; Roueff, Evelyne; Abgrall, Hervé
2017-08-01
The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r ≲ 2 au. We demonstrate that non-thermally populated H2O fragments can qualitatively account for the observed emission (discrete and continuum) and find that the average Lyα-driven H2O dissociation rate is 1.7 × 1042 water molecules s-1. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.
Revisiting Optical Tidal Disruption Events with iPTF16axa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, T.; Gezari, S.; Blagorodnova, N.
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t -5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ~5 × 10 6 M ⊙ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ~ 3 × 10 4 K over the monitoring period, with an observed peak luminosity of 1.1 × 10 44 erg s -1. The optical spectra are characterized by a strong blue continuum and broad He ii and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s -1]) = 43.4–44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. In conclusion, we find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to havemore » $$\\dot{M}\\propto {M}_{\\mathrm{BH}}^{-1/2}$$.« less
Revisiting Optical Tidal Disruption Events with iPTF16axa
Hung, T.; Gezari, S.; Blagorodnova, N.; ...
2017-06-08
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t -5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ~5 × 10 6 M ⊙ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ~ 3 × 10 4 K over the monitoring period, with an observed peak luminosity of 1.1 × 10 44 erg s -1. The optical spectra are characterized by a strong blue continuum and broad He ii and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s -1]) = 43.4–44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. In conclusion, we find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to havemore » $$\\dot{M}\\propto {M}_{\\mathrm{BH}}^{-1/2}$$.« less
Revisiting Optical Tidal Disruption Events with iPTF16axa
NASA Astrophysics Data System (ADS)
Hung, T.; Gezari, S.; Blagorodnova, N.; Roth, N.; Cenko, S. B.; Kulkarni, S. R.; Horesh, A.; Arcavi, I.; McCully, C.; Yan, Lin; Lunnan, R.; Fremling, C.; Cao, Y.; Nugent, P. E.; Wozniak, P.
2017-06-01
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t -5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ˜5 × 106 M ⊙ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ˜ 3 × 104 K over the monitoring period, with an observed peak luminosity of 1.1 × 1044 erg s-1. The optical spectra are characterized by a strong blue continuum and broad He II and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s-1]) = 43.4-44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. We find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to have \\dot{M}\\propto {M}{BH}-1/2.
The ionizing radiation of Seyfert 2 galactic nuclei
NASA Technical Reports Server (NTRS)
Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.
1993-01-01
We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.
The contribution of faint AGNs to the ionizing background at z 4
NASA Astrophysics Data System (ADS)
Grazian, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; Vanzella, E.; Scarlata, C.; Santini, P.; Pentericci, L.; Merlin, E.; Menci, N.; Fontanot, F.; Fontana, A.; Fiore, F.; Civano, F.; Castellano, M.; Brusa, M.; Bonchi, A.; Carini, R.; Cusano, F.; Faccini, M.; Garilli, B.; Marchetti, A.; Rossi, A.; Speziali, R.
2018-05-01
Context. Finding the sources responsible for the hydrogen reionization is one of the most pressing issues in observational cosmology. Bright quasi-stellar objects (QSOs) are known to ionize their surrounding neighborhood, but they are too few to ensure the required HI ionizing background. A significant contribution by faint active galactic nuclei (AGNs), however, could solve the problem, as recently advocated on the basis of a relatively large space density of faint active nuclei at z > 4. Aims: This work is part of a long-term project aimed at measuring the Lyman Continuum escape fraction for a large sample of AGNs at z 4 down to an absolute magnitude of M1450 -23. We have carried out an exploratory spectroscopic program to measure the HI ionizing emission of 16 faint AGNs spanning a broad U - I color interval, with I 21-23, and 3.6 < z < 4.2. These AGNs are three magnitudes fainter than the typical SDSS QSOs (M1450 ≲-26) which are known to ionize their surrounding IGM at z ≳ 4. Methods: We acquired deep spectra of these faint AGNs with spectrographs available at the VLT, LBT, and Magellan telescopes, that is, FORS2, MODS1-2, and LDSS3, respectively. The emission in the Lyman Continuum region, close to 900 Å rest frame, has been detected with a signal to noise ratio of 10-120 for all 16 AGNs. The flux ratio between the 900 Å rest-frame region and 930 Å provides a robust estimate of the escape fraction of HI ionizing photons. Results: We have found that the Lyman Continuum escape fraction is between 44 and 100% for all the observed faint AGNs, with a mean value of 74% at 3.6 < z < 4.2 and - 25.1 ≲ M1450 ≲-23.3, in agreement with the value found in the literature for much brighter QSOs (M1450 ≲-26) at the same redshifts. The Lyman Continuum escape fraction of our faint AGNs does not show any dependence on the absolute luminosities or on the observed U - I colors of the objects. Assuming that the Lyman Continuum escape fraction remains close to 75% down to M1450 - 18, we find that the AGN population can provide between 16 and 73% (depending on the adopted luminosity function) of the whole ionizing UV background at z 4, measured through the Lyman forest. This contribution increases to 25-100% if other determinations of the ionizing UV background are adopted from the recent literature. Conclusions: Extrapolating these results to z 5-7, there are possible indications that bright QSOs and faint AGNs can provide a significant contribution to the reionization of the Universe, if their space density is high at M1450 -23. Based on observations made at the Large Binocular Telescope (LBT) at Mt. Graham (Arizona, USA). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 098.A-0862. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region
NASA Technical Reports Server (NTRS)
Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)
2002-01-01
We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external check on the UV estimates of the star formation rates, and on the use of X-ray luminosities to infer these rates in rapidly starforming galaxies at high redshift.
Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst
NASA Technical Reports Server (NTRS)
Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.
2010-01-01
We report the detection of 158 micrometer [C II] fine-structure line emission from MIPS J 142824.0+3526l9, a hyperluminous (L(sub IR) approx. 10(exp 13) Solar Luminosity starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L[C II]/L(sub FIR) approx. equals 2 x l0(exp -3) of the far-IR(FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approx. 10(exp 4.2)/cu cm., and that are illuminated by a far-UV radiation field approx. 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L[C II]/L(sub F1R) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L[CII]/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies
A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.
2017-10-20
We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less
An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Chiang, James; White, Nicholas E. (Technical Monitor)
2002-01-01
Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; Agn Storm Team
2015-01-01
The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.
Physical Properties of 15 Quasars at z ≳ 6.5
NASA Astrophysics Data System (ADS)
Mazzucchelli, C.; Bañados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Walter, F.; Eilers, A.-C.; Rix, H.-W.; Simcoe, R.; Stern, D.; Fan, X.; Schlafly, E.; De Rosa, G.; Hennawi, J.; Chambers, K. C.; Greiner, J.; Burgett, W.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E.; Metcalfe, N.; Waters, C.; Wainscoat, R. J.
2017-11-01
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at z> 6.5 (<800 Myr after the big bang). In this work, we present six additional z≳ 6.5 quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 z≳ 6.5 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of z≳ 6.5 quasars show large blueshifts of the broad C IV λ1549 emission line compared to the systemic redshift of the quasars, with a median value ˜3× higher than a quasar sample at z˜ 1; (2) we estimate the quasars’ black hole masses ({M}{BH} ˜ (0.3-5) × 109 M ⊙) via modeling of the Mg II λ2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with < ({L}{bol}/{L}{Edd})> =0.39) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe II/Mg II abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for z˜ 6 quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C II] 158 μm emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C II]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.; Stalder, B.; Bayliss, M.
In this paper, we present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M ⊙ yr -1. We find that the BCG SFR exceeds 10 M ⊙ yr -1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z ≳ 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. Finally, the high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less
The dusty aftermath of SN Hunt 248: merger-burst remnant?
NASA Astrophysics Data System (ADS)
Mauerhan, Jon C.; Van Dyk, Schuyler D.; Johansson, Joel; Fox, Ori D.; Filippenko, Alexei V.; Graham, Melissa L.
2018-01-01
SN Hunt 248 was classified as a non-terminal eruption (a supernova 'impostor') from a directly identified and highly variable cool hypergiant star. The 2014 outburst achieved peak luminosity equivalent to that of the historic eruption of luminous blue variable (LBV) η Car, and exhibited a multipeaked optical light curve which rapidly faded after ∼100 d. We report ultraviolet (UV) through optical observations of SN Hunt 248 with the Hubble Space Telescope (HST) about 1 yr after the outburst, and mid-infrared observations with the Spitzer Space Telescope before the burst and in decline. The HST data reveal a source which is a factor of ∼10 dimmer in apparent brightness than the faintest available measurement of the precursor star. The UV-optical spectral energy distribution (SED) requires a strong Balmer continuum, consistent with a hot B4-B5 photosphere attenuated by grey circumstellar extinction. Substantial mid-infrared excess of the source is consistent with thermal emission from hot dust with a mass of ∼10-6-10-5 M⊙ and a geometric extent which is comparable to the expansion radius of the ejecta from the 2014 event. SED modelling indicates that the dust consists of relatively large grains ( > 0.3 μm), which could be related to the grey circumstellar extinction which we infer for the UV-optical counterpart. Revised analysis of the precursor photometry is also consistent with grey extinction by circumstellar dust, and suggests that the initial mass of the star could be twice as large as previously estimated (nearly ∼ 60 M⊙). Re-analysis of the earlier outburst data shows that the peak luminosity and outflow velocity of the eruption are consistent with a trend exhibited by stellar merger candidates, prompting speculation that SN Hunt 248 may also have stemmed from a massive stellar merger or common-envelope ejection.
Star-forming brightest cluster galaxies at 0.25
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.; Stalder, B.; Bayliss, M.
2016-01-22
We present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z gsim 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z gsim 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less
Star-forming brightest cluster galaxies at 0.25 < z < 1.25: A transitioning fuel supply
McDonald, M.; Stalder, B.; Bayliss, M.; ...
2016-01-22
In this paper, we present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M ⊙ yr -1. We find that the BCG SFR exceeds 10 M ⊙ yr -1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z ≳ 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. Finally, the high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less
NASA Astrophysics Data System (ADS)
Malkan, Matthew A.; Cohen, Daniel P.; Maruyama, Miyoko; Kashikawa, Nobunari; Ly, Chun; Ishikawa, Shogo; Shimasaku, Kazuhiro; Hayashi, Masao; Motohara, Kentaro
2017-11-01
We combined deep U-band and optical/near-infrared imaging, in order to select Lyman Break Galaxies (LBGs) at z˜ 3 using U - V and V-{R}c colors in the Subaru Deep Field. The resulting sample of 5161 LBGs gives a UV luminosity function (LF) down to {M}{UV}=-18, with a steep faint-end slope of α =-1.78+/- 0.05. We analyze UV-to-NIR energy distributions (SEDs) from optical photometry and photometry on IR median-stacked images. In the stacks, we find a systematic background depression centered on the LBGs. This results from the difficulty of finding faint galaxies in regions with higher-than-average surface densities of foreground galaxies, so we corrected for this deficit. Best-fit stellar population models for the LBG SEDs indicate stellar masses and star formation rates of {{log}}10({M}* /{M}⊙ )≃ 10 and ≃ 50 M ⊙ yr-1 at < {i}{AB}{\\prime }> =24, down to {{log}}10({M}* /{M}⊙ )≃ 8 and ≃ 3 {M}⊙ yr-1 at < {i}{AB}{\\prime }> =27. The faint LBGs show a ˜1 mag excess over the stellar continuum in K-band. We interpret this excess flux as redshifted [O III]λ λ {4959,5007} lines. The observed excesses imply equivalent widths that increase with decreasing mass, reaching {{EW}}0([{{O}} {{iii}}]4959,5007+{{H}}β )≳ 1500 Å (rest-frame). Such strong [O III] emission is seen only in a miniscule fraction of local emission-line galaxies, but is probably universal in the faint galaxies that reionized the universe. Our halo occupation distribution analysis of the angular correlation function gives a halo mass of {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.29+/- 0.12 for the full sample of LBGs, and {{log}}10(< {M}{{h}}> /{h}-1{M}⊙ )=11.49+/- 0.1 for the brightest half of the sample.
NASA Astrophysics Data System (ADS)
Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan
2017-12-01
We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.
A near-infrared relationship for estimating black hole masses in active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita
2013-06-01
Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.
NASA Technical Reports Server (NTRS)
Finkelstein, Steven L.; Ryan, Russell E., Jr.; Papovich, Casey; Dickinson, Mark; Song, Mimi; Somerville, Rachel; Ferguson, Henry C.; Salmon, Brett; Giavalisco, Mauro; Koekomoer, Anton M.;
2014-01-01
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z = 4 to 8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Hubble Frontier Field deep parallel observations near the Abell 2744 and MACS J0416.1- 2403 clusters. The combination of these surveys provides an effective volume of 0.6-1.2 ×10(exp 6) Mpc(exp 3) over this epoch, allowing us to perform a robust search for bright (M(sub UV) less than -21) and faint (M(sub UV) = -18) galaxies. We select galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5 less than z less than 8.5, with more than 1000 galaxies at z of approximately 6 - 8. We measure both a stepwise luminosity function for galaxies in our redshift samples, as well as a Schechter function, using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our UV luminosity functions agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z of greater than or equal to 6. Our bestfit value of the characteristic magnitude M* is consistent with -21 at z of greater than or equal to 5, different than that inferred based on previous trends at lower redshift. At z = 8, a single power-law provides an equally good fit to the UV luminosity function, while at z = 6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare our luminosity functions to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift, though a decreasing impact of feedback may also be possible. We measure the evolution of the cosmic star-formation rate (SFR) density by integrating our observed luminosity functions to M(sub UV) = -17, correcting for dust attenuation, and find that the SFR density declines proportionally to (1 + z)((exp -4.3)(+/-)(0.5)) at z greater than 4, consistent with observations at z greater than or equal to 9. Our observed luminosity functions are consistent with a reionization history that starts at redshift of approximately greater than 10, completes at z greater than 6, and reaches a midpoint (x(sub HII) = 0.5) at 6.7 less than z less than 9.4. Finally, using a constant cumulative number density selection and an empirically derived rising star-formation history, our observations predict that the abundance of bright z = 9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z similar to 10 galaxies.
PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe
NASA Astrophysics Data System (ADS)
Bottacini, E.; Ajello, M.; Greiner, J.; Pian, E.; Rau, A.; Palazzi, E.; Covino, S.; Ghisellini, G.; Krühler, T.; Küpcü Yoldaş, A.; Cappelluti, N.; Afonso, P.
2010-01-01
Context. The high-redshift (z = 3.1) blazar PKS 0537-286, belonging to the flat spectrum radio quasar blazar subclass, is one of the most luminous active galactic nuclei (AGN) in the Universe. Blazars are very suitable candidates for multiwavelength observations. Indeed, the relativistic beaming effect at work within the jet enhances their luminosity. This in turn allows the properties of the extragalactic jets, the powering central engine, and the surrounding environment to be derived. Aims: Our aim is to present the results of a multifrequency campaign from the near-IR to hard X-ray energies on PKS 0537-286 and give insight into the physical environment where the radiation processes take place. Methods: We observed the source at different epochs from 2006 to 2008 with INTEGRAL and Swift, and nearly simultaneously with ground-based optical telescopes. We also analyzed two archival spectra taken with XMM-Newton in 1999 and 2005. A comparative analysis of the results is performed. Results: The X-ray continuum of the blazar, as sampled by XMM, is described by a power law of index Γ = 1.2, modified by variable absorption at the soft X-rays, as found in other high-redshift QSOs. Modest X-ray continuum variability is found in the Swift observations. The combined Swift/BAT and Swift/XRT spectrum is very hard (Γ = 1.3). This, together with the non simultaneous EGRET detection and the more recent non detection by Fermi-LAT, constrains the peak of the high-energy component robustly. The optical/UV data, heavily affected by intervening Ly α absorption, indicate the presence of a bright thermal accretion disk that decreased in luminosity between 2006 and 2008. We infer from this a reduction of the BLR radius. When taking this into account, the 2006 and 2008 SEDs are compatible with a model based on synchrotron radiation and external inverse Compton scattering where the accretion-disk luminosity decreases between the 2 epochs by a factor 2, while the bulk Lorentz factor remains unchanged and the magnetic field changed only marginally.
Observations of two peculiar emission objects in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.
1983-01-01
Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.
NASA Astrophysics Data System (ADS)
Sawicki, Marcin; Thompson, David
2006-09-01
We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
Can Low-Luminosity Galaxies Reionize the Universe?
NASA Astrophysics Data System (ADS)
Ferguson, Harry
2017-08-01
The prevailing wisdom is that low-luminosity galaxies are responsible for cosmic reionization. If this is true, then low-luminosity galaxies at high redshift have to be different from most of the low-luminosity galaxies studied to date at low redshift, which absorb too much of their ionizing radiation. While it is possible that high-z dwarf galaxies have the same metallicity at fixed mass and star-formation rate as low-redshift galaxies, they are different in one key respect. At fixed dark-halo mass, they are probably much denser (having collapsed earlier). This could lead to higher star-formation surface densities more capable of creating cavities in the ISM. But the denser halos of surrounding gas could be harder to clear. There is a critical need for further observations to validate and test physical models for the trends of escaping ionizing continuum with redshift, luminosity, and surface density. JWST will not be able to measure ionizing radiation during the epoch of reionization because the IGM absorbs most of the photons. To prepare for JWST, we need to use the ultraviolet capabilities of HST to measure diverse samples of galaxies at z<3, where we can see the photons and quantify the trends with other galaxy properties. As a complement to other studies, we propose to constrain the Lyman-continuum emission from 8 relatively low-luminosity strongly-lensed galaxies at 1
The XMM-Newton Wide Angle Survey (XWAS): the X-ray spectrum of type-1 AGN
NASA Astrophysics Data System (ADS)
Mateos, S.; Carrera, F. J.; Page, M. J.; Watson, M. G.; Corral, A.; Tedds, J. A.; Ebrero, J.; Krumpe, M.; Schwope, A.; Ceballos, M. T.
2010-02-01
Aims: We discuss the broad band X-ray properties of one of the largest samples of X-ray selected type-1 AGN to date (487 objects in total), drawn from the XMM-Newton Wide Angle Survey (XWAS). The objects presented in this work cover 2-10 keV (rest-frame) luminosities from 1042-1045 erg s-1 and are detected up to redshift 4. We constrain the overall properties of the broad band continuum, soft excess and X-ray absorption, along with their dependence on the X-ray luminosity and redshift. We discuss the implications for models of AGN emission. Methods: We fitted the observed 0.2-12 keV broad band spectra with various models to search for X-ray absorption and soft excess. The F-test was used with a significance threshold of 99% to statistically accept the detection of additional spectral components. Results: We constrained the mean spectral index of the broad band X-ray continuum to <Γ> = 1.96 ± 0.02 with intrinsic dispersion {σ< Γ >} = 0.27-0.02+0.01. The continuum becomes harder at faint fluxes and at higher redshifts and hard (2-10 keV) luminosities. The dependence of Γ with flux is likely due to undetected absorption rather than to spectral variation. We found a strong dependence of the detection efficiency of objects on the spectral shape. We expect this effect to have an impact on the measured mean continuum shapes of sources at different redshifts and luminosities. We detected excess absorption in ⪆3% of our objects, with rest-frame column densities a few ×1022 cm-2. The apparent mismatch between the optical classification and X-ray properties of these objects is a challenge for the standard orientation-based AGN unification model. We found that the fraction of objects with detected soft excess is 36%. Using a thermal model, we constrained the soft excess mean rest-frame temperature and intrinsic dispersion to kT 100 eV and σkT 34 eV. The origin of the soft excess as thermal emission from the accretion disk or Compton scattered disk emission is ruled out on the basis of the temperatures detected and the lack of correlation of the soft excess temperature with the hard X-ray luminosity over more than 2 orders of magnitude in luminosity. Furthermore, the high luminosities of the soft excess rule out an origin in the host galaxy.
THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.
2016-09-20
Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less
The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.
2017-01-01
The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 < z < 10 from the complete Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.
Swift and SALT observations of the multiple outbursts of MAXI J1957+032
NASA Astrophysics Data System (ADS)
Mata Sánchez, D.; Charles, P. A.; Armas Padilla, M.; Buckley, D. A. H.; Israel, G. L.; Linares, M.; Muñoz-Darias, T.
2017-06-01
The new recurrent X-ray transient MAXI J1957+032 has had four X-ray outbursts within 16 months, all very briefly detected (lasting <5 d). During the most recent event (2016 September/October), we obtained with the Southern African Large Telescope the first optical spectrum of the transient counterpart, showing the classic blue continuum of an X-ray irradiated disc in an LMXB and no other features. At high Galactic latitude below the plane (-13°) reddening is low but there is no quiescent counterpart visible on any of the existing sky surveys, nor any other known X-ray source in the region. Swift monitoring of three of the four events is presented, showing rapidly fading X-ray outbursts together with significant UVOT detections in the UV (W1,M2,W2), U and B bands. The optical properties are most like those of the short-period LMXBs, which, combined with the softening witnessed during the decay to quiescence would place the system at d < 13 kpc. The short duration and short recurrence time of the outbursts are reminiscent of the accreting millisecond X-ray pulsars, which exhibit peak luminosities of ˜ 1 per cent LEdd. Assuming this peak luminosity would place MAXI J1957+032 at a distance of d ˜ 5-6 kpc.
Ultraviolet Imaging Telescope observations of the Crab Nebula
NASA Technical Reports Server (NTRS)
Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.
1992-01-01
We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.
A New Catalog of H II Regions in M31
NASA Astrophysics Data System (ADS)
Azimlu, M.; Marciniak, R.; Barmby, P.
2011-10-01
We present a new catalog of H II regions in M31. The full disk of the galaxy (~24 kpc from the galaxy center) is covered in a 2.2 deg2 mosaic of 10 fields observed with the Mosaic Camera on the Mayall 4 m telescope as part of the Local Group Galaxies survey. We used HIIphot, a code for automated photometry of H II regions, to identify the regions and measure their fluxes and sizes. A 10σ detection level was used to exclude diffuse gas fluctuations and star residuals after continuum subtraction. That selection limit may result in missing some faint H II regions, but our catalog of 3691 H II regions is still complete to a luminosity of L Hα = 1034 erg s-1. This is five times fainter than the only previous CCD-based study which contained 967 objects in the NE half of M31. We determined the Hα luminosity function (LF) by fitting a power law to luminosities larger than L Hα = 1036.7 and determined a slope of 2.52 ± 0.07. The in-arm and inter-arm LFs peak at different luminosities but they have similar bright-end slopes. The inter-arm regions are less populated (40% of total detected regions) and constitute only 14% of the total luminosity of L Hα = 5.6 × 1040 erg s-1 (after extinction correction and considering 65% contribution from diffused ionized gas). A star formation rate of 0.44 M sun yr-1 was estimated from the Hα total luminosity; this value is consistent with the determination from the Spitzer 8 μm image. We removed all known and potential planetary nebulae, yet we found a double-peaked LF. The inter-arm older population suggests a starburst between 15 and 20 million years ago. This result is in agreement with UV studies of the star formation history in M31 which found a star formation rate decrease in the recent past. We found a fair spatial correlation between the H II regions and stellar clusters in selected star-forming regions. Most of the matched regions lie within the arm regions.
Reverberation Mapping of the Continuum Source in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael Martin
I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently variable to measure continuum-Hbeta lags and super-massive black hole masses: MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. I also obtain Hgamma and HeII lags for all objects except 3C 382. The HeII lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines to continuum variations are also in qualitative agreement with photoionization models. Finally, I measure optical continuum lags for the two most variable targets, MCG+08-11-011 and NGC 2617. I again find lags consistent with geometrically thin accretion-disk models that have temperature profiles T ∝ R-3/4. The observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. Using a physical model, these differences can be explained if the mass accretion rates are larger than inferred from the optical continuum luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.
NASA Astrophysics Data System (ADS)
Ono, Yoshiaki; Ouchi, Masami; Harikane, Yuichi; Toshikawa, Jun; Rauch, Michael; Yuma, Suraphong; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Oguri, Masamune; Willott, Chris; Akhlaghi, Mohammad; Akiyama, Masayuki; Coupon, Jean; Kashikawa, Nobunari; Komiyama, Yutaka; Konno, Akira; Lin, Lihwai; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nakajima, Kimihiko; Silverman, John; Tanaka, Masayuki; Taniguchi, Yoshiaki; Wang, Shiang-Yu
2018-01-01
We study the UV luminosity functions (LFs) at z ˜ 4, 5, 6, and 7 based on the deep large-area optical images taken by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). On the 100 deg2 sky of the HSC SSP data available to date, we take enormous samples consisting of a total of 579565 dropout candidates at z ˜ 4-7 by the standard color selection technique, 358 out of which are spectroscopically confirmed by our follow-up spectroscopy and other studies. We obtain UV LFs at z ˜ 4-7 that span a very wide UV luminosity range of ˜0.002-100 L_UV^\\ast (-26 < MUV < -14 mag) by combining LFs from our program and the ultra-deep Hubble Space Telescope legacy surveys. We derive three parameters of the best-fit Schechter function, ϕ*, M_UV^{ \\ast}, and α, of the UV LFs in the magnitude range where the active galactic nucleus (AGN) contribution is negligible, and find that α and ϕ* decrease from z ˜ 4 to 7 with no significant evolution of M_UV^{ \\ast}. Because our HSC SSP data bridge the LFs of galaxies and AGNs with great statistical accuracy, we carefully investigate the bright end of the galaxy UV LFs that are estimated by the subtraction of the AGN contribution either aided by spectroscopy or the best-fit AGN UV LFs. We find that the bright end of the galaxy UV LFs cannot be explained by the Schechter function fits at >2 σ significance, and require either double power-law functions or modified Schechter functions that consider a magnification bias due to gravitational lensing.
A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, J.; Homan, J.; Rahoui, F.
2016-05-01
During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley and Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on themore » orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.
2014-06-10
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less
NASA Astrophysics Data System (ADS)
Barth, Aaron
2017-08-01
The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.
On the evidence for axionlike particles from active galactic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettinari, Guido Walter; Crittenden, Robert
2010-10-15
Burrage, Davis, and Shaw recently suggested exploiting the correlations between high and low energy luminosities of astrophysical objects to probe possible mixing between photons and axionlike particles (ALP) in magnetic field regions. They also presented evidence for the existence of ALP's by analyzing the optical/UV and x-ray monochromatic luminosities of active galactic nuclei. We extend their work by using the monochromatic luminosities of 320 unobscured active galactic nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar Survey which allows the exploration of 18 different combinations of optical/UV and x-ray monochromatic luminosities. However, we do not find compelling evidence for the existencemore » of ALPs. Moreover, it appears that the signal reported by Burrage et al. is more likely due to x-ray absorption rather than to photon-ALP oscillation.« less
Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232
NASA Astrophysics Data System (ADS)
Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.
2017-11-01
Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.
Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions
NASA Astrophysics Data System (ADS)
Povich, Matthew Samuel; Binder, Breanna Arlene
2018-01-01
We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki
2015-01-20
We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functionsmore » with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.« less
ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu
2016-12-10
We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less
NASA Astrophysics Data System (ADS)
Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice
2016-03-01
We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.
NASA Astrophysics Data System (ADS)
Banerji, Manda; McMahon, Richard G.; Hewett, Paul C.; Alaghband-Zadeh, Susannah; Gonzalez-Solares, Eduardo; Venemans, Bram P.; Hawthorn, Melanie J.
2012-12-01
We present a new sample of purely near-infrared-selected KVega < 16.5 [KAB < 18.4] extremely red [(J - K)Vega > 2.5] quasar candidates at z ˜ 2 from ≃900 deg2 of data in the UKIDSS Large Area Survey (LAS). Five of these are spectroscopically confirmed to be heavily reddened type 1 active galactic nuclei (AGN) with broad emission lines bringing our total sample of reddened quasars from the UKIDSS-LAS to 12 at z = 1.4-2.7. At these redshifts, Hα (6563 Å) is in the K band. However, the mean Hα equivalent width of the reddened quasars is only 10 per cent larger than that of the optically selected population and cannot explain the extreme colours. Instead, dust extinction of AV ˜ 2-6 mag is required to reproduce the continuum colours of our sources. This is comparable to the dust extinctions seen in submillimetre galaxies at similar redshifts. We argue that the AGN are likely being observed in a relatively short-lived breakout phase when they are expelling gas and dust following a massive starburst, subsequently turning into UV-luminous quasars. Some of our quasars show direct evidence for strong outflows (v ˜ 800-1000 km s-1) affecting the Hα line consistent with this scenario. We predict that a larger fraction of reddened quasar hosts are likely to be submillimetre bright compared to the UV-luminous quasar population. We use our sample to place new constraints on the fraction of obscured type 1 AGN likely to be missed in optical surveys. Taken at face value our findings suggest that the obscured fraction depends on quasar luminosity. The space density of obscured quasars is approximately five times that inferred for UV-bright quasars from the Sloan Digital Sky Survey (SDSS) luminosity function at Mi < -30 but seems to drop at lower luminosities even accounting for various sources of incompleteness in our sample. We find that at Mi ˜ -28 for example, this fraction is unlikely to be larger than ˜20 per cent although these fractions are highly uncertain at present due to the small size of our sample. A deeper K-band survey for highly obscured quasars is clearly needed to test this hypothesis fully and is now becoming possible with new sensitive all-sky infrared surveys such as the VISTA Hemisphere Survey and the Wide Infrared Survey Explorer (WISE) All Sky Survey.
A Faint Flux-limited Lyα Emitter Sample at z ˜ 0.3
NASA Astrophysics Data System (ADS)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.; Cowie, Lennox L.; Rosenwasser, Benjamin
2017-10-01
We present a flux-limited sample of z ˜ 0.3 Lyα emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism spectroscopic data. The published GALEX z ˜ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Lyα emission line directly from our sample. We examine the evolution of these quantities from z ˜ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shown by previous studies, the Lyα luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Lyα luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the Hα luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Lyα escape fraction. Finally, we show that the observed Lyα luminosity density from AGNs is comparable to the observed Lyα luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Lyα luminosity density persists out to z ˜ 2.2. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data
NASA Astrophysics Data System (ADS)
Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.
2017-09-01
Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.
Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441
NASA Technical Reports Server (NTRS)
Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.;
2002-01-01
PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.
IR Variability of Eta Carinae: The 2009 Event
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-08-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur in January 2009. The last event in June/July 2003 was poorly observed because the star was very low in the sky, but this next event is perfectly suited for an intense ground-based monitoring campaign. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the mass in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. Because the nebular geometry is known very well from previous observations in this program, monitoring the changes in nebular ionization will yield a 3-D map of the changing asymmetric UV radiation field geometry in the binary system, and the first estimate of the orientation of its orbit.
NASA Astrophysics Data System (ADS)
Dittenber, Benjamin; Hodges-Kluck, Edmund J.; Gallo, Elena
2018-06-01
Supermassive black holes (SMBHs) are known to commonly reside in the centers of large galaxies, but it is unclear whether they reside in smaller galaxies (M_* < M_sun x 10^10). X-rays are the most efficient way to detect low-level accretion, and provide the best measurement of the occupation fraction. X-ray binaries can be nearly as bright as SMBHs that have sub-Eddington accretion rates. High-mass XRBs (HMXBs) are especially problematic because they can get brighter than low-mass XRBs. However, previous estimates of HMXB contamination (based on the optical continuum to get the fraction of HMXBs expected in the nucleus) may be too high. A better approach is to use FUV or H-alpha, which directly trace ongoing star formation. We did this in a sample of 30 late-type galaxies with Chandra data. We calculate the total Expected X-ray Luminosity from XRBs (L_x) for each sample galaxy using existing relationships between X-ray luminosity and SFR. We estimate the fraction of the stellar formation in the nucleus by measuring the fraction of nuclear UV or H-alpha light there (total SFR is from the far infrared). Our Galex data is scaled with a sample of 6 Swift UVOT galaxies to measure with the same aperture size that previous works have used in the B-band. We found that the mean L_x,c for Swift scaled FUV ratios is ~2.025 x 10^36 and the mean L_x,c for H-alpha ratios is 7.693 x 10^35. These luminosities are 1.9 and 5 times smaller than B-band measured luminosities respectively. These results suggest that HMXBs do not contribute as much contamination in these galaxies as previously thought. Therefore, with a lower contamination, estimates of the occupation fraction from late-type galaxies are more reliable.
WPVS 007: Dramatic Broad Absorption Line Variability in a Narrow-line Seyfert 1
NASA Astrophysics Data System (ADS)
Cooper, Erin M.; Leighly, K.; Hamann, F. W.; Grupe, D.; Dietrich, M.
2014-01-01
Blue-shifted broad absorption lines are the manifestation of gaseous outflows in astrophysical phenomena. In active galaxies, these outflowing winds may play a key role in the central engine physics by removing angular momentum and in influencing host galaxy evolution by imparting energy and chemically enriched gas to the surrounding medium. AGN wind variability affords us a valuable tool to study this still poorly understood phenomenon. The existence of a high velocity broad line outflow in WPVS007 is especially extraordinary, as Seyfert-luminosity active galaxies are unexpected to produce them. With its lower luminosity and compact size, the NLS1 galaxy WPVS007 (M_V=-19.7, z=0.02882) provides us the ability to study even colossal variability on merely human timescales. Since its 1996 FOS observation, displaying miniBALs but no true broad absorption lines, WPVS007 has experienced a short but rich history of UV BAL variability. By the 2003 FUSE observation, WPVS007 had developed a BAL with v_max ~ 6000km/s, indicating an optically thick, high velocity outflow. We present the 2010 and 2013 June and December HST COS spectra. Between 2003 and 2010, both the maximum and minimum outflow velocity had increased substantially. As of 2013 June, the continuum emission has since dimmed by a factor of ~2 and the BALs have appeared to weaken, with both decreased maximum and minimum velocities. Such dramatic shifts in BAL velocity are unprecedented, as BAL variability is typically confined to changes in optical depth. What is the nature of the variability in this BAL wind? The upcoming (as of the writing of this abstract) December observation should give us more insight into tackling that question, whether it be the transient response of a continuous flow to a fluctuating continuum or perhaps the continued decline of a discrete outflow event.
Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.
2008-01-01
We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.
iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova
Whitesides, L.; Lunnan, R.; Kasliwal, M. M.; ...
2017-12-18
Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. We present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova (SN). With a rest-frame rise time of just four days and a peak absolute magnitude of M g = -20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline.more » We show that while the late-time light curve could plausibly be powered by 56Ni decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.« less
iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova
NASA Astrophysics Data System (ADS)
Whitesides, L.; Lunnan, R.; Kasliwal, M. M.; Perley, D. A.; Corsi, A.; Cenko, S. B.; Blagorodnova, N.; Cao, Y.; Cook, D. O.; Doran, G. B.; Frederiks, D. D.; Fremling, C.; Hurley, K.; Karamehmetoglu, E.; Kulkarni, S. R.; Leloudas, G.; Masci, F.; Nugent, P. E.; Ritter, A.; Rubin, A.; Savchenko, V.; Sollerman, J.; Svinkin, D. S.; Taddia, F.; Vreeswijk, P.; Wozniak, P.
2017-12-01
Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here we present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova (SN). With a rest-frame rise time of just four days and a peak absolute magnitude of {M}{{g}}=-20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by 56Ni decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.
Infrared emission of young HII regions: a Herschel/Hi-GAL study
NASA Astrophysics Data System (ADS)
Cesaroni, R.; Pestalozzi, M.; Beltrán, M. T.; Hoare, M. G.; Molinari, S.; Olmi, L.; Smith, M. D.; Stringfellow, G. S.; Testi, L.; Thompson, M. A.
2015-07-01
Context. Investigating the relationship between radio and infrared emission of Hii regions may help shed light on the nature of the ionizing stars and the formation mechanism of early-type stars in general. Aims: We have taken advantage of recent unbiased surveys of the Galactic plane such as Herschel/Hi-GAL and VLA/CORNISH to study a bona fide sample of young Hii regions located in the Galactic longitude range 10°-65° by comparing the mid- and far-IR continuum emission to the radio free-free emission at 5 GHz. Methods: We have identified the Hi-GAL counterparts of 230 CORNISH Hii regions and reconstructed the spectral energy distributions of 204 of these by complementing the Hi-GAL fluxes with ancillary data at longer and shorter wavelengths. Using literature data, we obtained a kinematical distance estimate for 200 Hii regions with Hi-GAL counterparts and determined their luminosities by integrating the emission of the corresponding spectral energy distributions. We have also estimated the mass of the associated molecular clumps from the (sub)millimeter flux densities. Results: Our main finding is that for ~1/3 of the Hii regions the Lyman continuum luminosity appears to be greater than the value expected for a zero-age main-sequence star with the same bolometric luminosity. This result indicates that a considerable fraction of young, embedded early-type stars presents a "Lyman excess" possibly due to UV photons emitted from shocked material infalling onto the star itself and/or a circumstellar disk. Finally, by comparing the bolometric and Lyman continuum luminosities with the mass of the associated clump, we derive a star formation efficiency of 5%. Conclusions: The results obtained suggest that accretion may still be present during the early stages of the evolution of Hii regions, with important effects on the production of ionizing photons and thus on the circumstellar environment. More reliable numerical models describing the accretion process onto massive stars are required to shed light on the origin of the observed Lyman excess. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAM P (France); MPIA (Germany); IAPS, OAP/OAT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA , LAM (France); IAPS, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NA OC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA).Appendix A is available in electronic form at http://www.aanda.org
Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field
NASA Astrophysics Data System (ADS)
Bouwens, R. J.; Thompson, R. I.; Illingworth, G. D.; Franx, M.; van Dokkum, P. G.; Fan, X.; Dickinson, M. E.; Eisenstein, D. J.; Rieke, M. J.
2004-12-01
We have detected likely z~7-8 galaxies in the 144''×144'' Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) observations of the Hubble Ultra Deep Field. Objects are required to be >=3 σ detections in both NICMOS bands, J110 and H160. The selection criteria for this sample are (z850-J110)AB>0.8, (z850-J110)AB>0.66(J110-H160)AB+0.8, (J110-H160)AB<1.2 and no detection at less than 8500 Å. The five selected sources have total magnitudes H160,AB~27. Four of the five sources are quite blue compared to typical lower redshift dropout galaxies and are clustered within a 1 arcmin2 region. Because all five sources are near the limit of the NICMOS data, we have carefully evaluated their reality. Each of the candidates is visible in different splits of the data and a median stack. We analyzed several noise images and estimate the number of spurious sources to be 1+/-1. A search using an independent reduction of this same data set clearly revealed three of the five candidates and weakly detected a fourth candidate, suggesting that the contamination could be higher. For comparison with predictions from lower redshift samples, we take a conservative approach and adopt four z~7-8 galaxies as our sample. With the same detection criteria on simulated data sets, assuming no evolution from z~3.8, we predict 10 sources at z~7-8, or 14 if we use a more realistic (1+z)-1 size scaling. We estimate that the rest-frame continuum UV (~1800 Å) luminosity density at z~7.5 (integrated down to 0.3L*z=3) is just 0.20+0.12-0.08 times that found at z~3.8 (or 0.20+0.23-0.12 times this quantity including cosmic variance). Effectively this sets an upper limit on the luminosity density down to 0.3L*z=3 and is consistent with significant evolution at the bright end of the luminosity function from z~7.5 to 3.8. Even with the lower UV luminosity density at z~7.5, it appears that galaxies could still play an important role in reionization at these redshifts, although definitive measurements remain to be made. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Ya; Wang, Junxian; Rhoads, James; Infante, Leopoldo; Malhotra, Sangeeta; Hu, Weida; Walker, Alistair R.; Jiang, Linhua; Jiang, Chunyan; Hibon, Pascale; Gonzalez, Alicia; Kong, Xu; Zheng, XianZhong; Galaz, Gaspar; Barrientos, L. Felipe
2017-06-01
We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ˜ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg2 COSMOS field. We have identified 23 Lyα Emitter candidates at z = 6.9 in the central 2-deg2 region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF) can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L Lyα ˜ 1043.4±0.2 erg s-1). The number density at L Lyα ˜ 1043.4±0.2 erg s-1 is little changed from z = 6.6, while at fainter L Lyα it is substantially reduced. Overall, we see a fourfold reduction in Lyα luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ˜3 suppression of Lyα by radiative transfer through the z ˜ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x H I ˜ 0.4-0.6 (assuming Lyα velocity offsets of 100-200 km s-1). The changing shape of the Lyα LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ˜ 7.
Cosmic Reionization after Planck and before JWST: An Analytic Approach
NASA Astrophysics Data System (ADS)
Madau, Piero
2017-12-01
The reionization of cosmic hydrogen marks a critical juncture in the history of structure formation. Here we present a new formulation of the standard reionization equation for the evolution of the volume-averaged H II fraction that is more consistent with the accepted conceptual model of inhomogeneous intergalactic absorption. The revised equation explicitly accounts for the presence of the optically thick “Lyman-limit systems” that are known to determine the mean-free path of ionizing radiation after overlap. Integration of this equation provides a better characterization of the timing of reionization by smoothly linking the pre-overlap with the post-overlap phases of such a process. We confirm the validity of the quasi-instantaneous approximation as a predictor of reionization completion/maintenance and discuss new insights on the sources of cosmic reionization using the improved formalism. A constant emission rate into the intergalactic medium (IGM) of three Lyman continuum (LyC) photons per atom per gigayear leads to a reionization history that is consistent with a number of observational constraints on the ionization state of the z = 5–9 universe. While star-forming galaxies can dominate the reionization process if the luminosity-weighted fraction of LyC photons that escape into the IGM, {f}{esc}, exceeds 15% (for a faint magnitude cut-off of the galaxy UV luminosity function of {M}{lim}=-13 and a LyC photon yield per unit 1500 Å luminosity of {ξ }{ion}={10}25.3 {{erg}}-1 {Hz}), simple models where the product of the two unknowns {f}{esc}{ξ }{ion} is not evolving with redshift fail to reproduce the changing neutrality of the IGM observed at these epochs.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng
2017-06-01
We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
NASA Astrophysics Data System (ADS)
Wang, L.; Norberg, P.; Gunawardhana, M. L. P.; Heinis, S.; Baldry, I. K.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Cooray, A.; da Cunha, E.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Grootes, M. W.; Holwerda, B. W.; Hopkins, A. M.; Ibar, E.; Ivison, R.; Lacey, C.; Lara-Lopez, M. A.; Loveday, J.; Maddox, S. J.; Michałowski, M. J.; Oteo, I.; Owers, M. S.; Popescu, C. C.; Smith, D. J. B.; Taylor, E. N.; Tuffs, R. J.; van der Werf, P.
2016-09-01
We compare common star formation rate (SFR) indicators in the local Universe in the Galaxy and Mass Assembly (GAMA) equatorial fields (˜160 deg2), using ultraviolet (UV) photometry from GALEX, far-infrared and sub-millimetre (sub-mm) photometry from Herschel Astrophysical Terahertz Large Area Survey, and Hα spectroscopy from the GAMA survey. With a high-quality sample of 745 galaxies (median redshift
NASA Astrophysics Data System (ADS)
Grazian, A.; Giallongo, E.; Paris, D.; Boutsia, K.; Dickinson, M.; Santini, P.; Windhorst, R. A.; Jansen, R. A.; Cohen, S. H.; Ashcraft, T. A.; Scarlata, C.; Rutkowski, M. J.; Vanzella, E.; Cusano, F.; Cristiani, S.; Giavalisco, M.; Ferguson, H. C.; Koekemoer, A.; Grogin, N. A.; Castellano, M.; Fiore, F.; Fontana, A.; Marchi, F.; Pedichini, F.; Pentericci, L.; Amorín, R.; Barro, G.; Bonchi, A.; Bongiorno, A.; Faber, S. M.; Fumana, M.; Galametz, A.; Guaita, L.; Kocevski, D. D.; Merlin, E.; Nonino, M.; O'Connell, R. W.; Pilo, S.; Ryan, R. E.; Sani, E.; Speziali, R.; Testa, V.; Weiner, B.; Yan, H.
2017-06-01
Context. The reionization of the Universe is one of the most important topics of present-day astrophysical research. The most plausible candidates for the reionization process are star-forming galaxies, which according to the predictions of the majority of the theoretical and semi-analytical models should dominate the H I ionizing background at z ≳ 3. Aims: We measure the Lyman continuum escape fraction, which is one of the key parameters used to compute the contribution of star-forming galaxies to the UV background. It provides the ratio between the photons produced at λ ≤ 912 Å rest-frame and those that are able to reach the inter-galactic medium, I.e. that are not absorbed by the neutral hydrogen or by the dust of the galaxy's inter-stellar medium. Methods: We used ultra-deep U-band imaging (U = 30.2 mag at 1σ) from Large Binocular Camera at the Large Binocular Telescope (LBC/LBT) in the CANDELS/GOODS-North field and deep imaging in the COSMOS and EGS fields in order to estimate the Lyman continuum escape fraction of 69 star-forming galaxies with secure spectroscopic redshifts at 3.27 ≤ z ≤ 3.40 to faint magnitude limits (L = 0.2L∗, or equivalently M1500 - 19). The narrow redshift range implies that the LBC U-band filter exclusively samples the λ ≤ 912 Å rest-frame wavelengths. Results: We measured through stacks a stringent upper limit (<1.7% at 1σ) for the relative escape fraction of H I ionizing photons from bright galaxies (L>L∗), while for the faint population (L = 0.2L∗) the limit to the escape fraction is ≲ 10%. We computed the contribution of star-forming galaxies to the observed UV background at z 3 and find that it is not sufficient to keep the Universe ionized at these redshifts unless their escape fraction increases significantly (≥ 10%) at low luminosities (M1500 ≥ - 19). Conclusions: We compare our results on the Lyman continuum escape fraction of high-z galaxies with recent estimates in the literature, and discuss future prospects to shed light on the end of the Dark Ages. In the future, strong gravitational lensing will be fundamental in order to measure the Lyman continuum escape fraction down to faint magnitudes (M1500 - 16) that are inaccessible with the present instrumentation on blank fields. These results will be important in order to quantify the role of faint galaxies to the reionization budget. Based on observations made at the Large Binocular Telescope (LBT) at Mt. Graham (Arizona, USA).
Metallicity Differences in Type Ia Supernova Progenitors Inferred from Ultraviolet Spectra
NASA Astrophysics Data System (ADS)
Foley, Ryan J.; Kirshner, Robert P.
2013-05-01
Two "twin" Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower 56Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities (ΔMV ≈ 0.6 mag), which correspond to different 56Ni yields: M_11fe(^{56}Ni) / M_11by(^{56}Ni) = 1.7^{+0.7}_{-0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in 56Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Shine, R. A.; Linsky, J. L.
1975-01-01
Existing high resolution stellar profiles of the Ca II and Mg II resonance lines suggest a possible width-luminosity correlation of the K1 minimum features. It is shown that such a correlation can be simply understood if the continuum optical depth of the stellar temperature minimum is relatively independent of surface gravity as suggested by three stars studied in detail.
A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.
Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources
NASA Astrophysics Data System (ADS)
Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto
2017-09-01
We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.
Hydrogen line ratios in Seyfert galaxies and low redshift quasars
NASA Technical Reports Server (NTRS)
Kriss, G. R.
1984-01-01
New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.
NASA Astrophysics Data System (ADS)
Bonato, M.; Negrello, M.; Cai, Z.-Y.; De Zotti, G.; Bressan, A.; Lapi, A.; Gruppioni, C.; Spinoglio, L.; Danese, L.
2014-03-01
While continuum imaging data at far-infrared to submillimetre wavelengths have provided tight constraints on the population properties of dusty star-forming galaxies up to high redshifts, future space missions like the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and ground-based facilities like the Cerro Chajnantor Atacama Telescope (CCAT) will allow detailed investigations of their physical properties via their mid-/far-infrared line emission. We present updated predictions for the number counts and the redshift distributions of star-forming galaxies spectroscopically detectable by these future missions. These predictions exploit a recent upgrade of evolutionary models, that include the effect of strong gravitational lensing, in the light of the most recent Herschel and South Pole Telescope data. Moreover the relations between line and continuum infrared luminosity are re-assessed, considering also differences among source populations, with the support of extensive simulations that take into account dust obscuration. The derived line luminosity functions are found to be highly sensitive to the spread of the line to continuum luminosity ratios. Estimates of the expected numbers of detections per spectral line by SPICA/SpicA FAR-infrared Instrument (SAFARI) and by CCAT surveys for different integration times per field of view at fixed total observing time are presented. Comparing with the earlier estimates by Spinoglio et al. we find, in the case of SPICA/SAFARI, differences within a factor of 2 in most cases, but occasionally much larger. More substantial differences are found for CCAT.
A RESOLVED MAP OF THE INFRARED EXCESS IN A LYMAN BREAK GALAXY AT z = 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koprowski, M. P.; Coppin, K. E. K.; Geach, J. E.
We have observed the dust continuum of 10 z = 3.1 Lyman break galaxies with the Atacama Large Millimeter/submillimeter Array at ∼450 mas resolution in Band 7. We detect and resolve the 870 μ m emission in one of the targets with a flux density of S {sub 870} = 192 ± 57 μ Jy, and measure a stacked 3 σ signal of S {sub 870} = 67 ± 23 μ Jy for the remaining nine. The total infrared luminosities are L {sub 8–1000} = (8.4 ± 2.3) × 10{sup 10} L {sub ⊙} for the detection and L {submore » 8–1000} = (2.9 ± 0.9) × 10{sup 10} L {sub ⊙} for the stack. With Hubble Space Telescope Advanced Camera for Surveys I -band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the “infrared excess” (IRX = L {sub FIR}/ L {sub UV}) in a normal galaxy at z = 3. Integrated over the galaxy we measure IRX = 0.56 ± 0.15, and the galaxy-averaged UV slope is β = −1.25 ± 0.03. This puts the galaxy a factor of ∼10 below the IRX– β relation for local starburst nuclei of Meurer et al. However, IRX varies by more than a factor of 3 across the galaxy, and we conclude that the complex relative morphology of the dust relative to UV emission is largely responsible for the scatter in the IRX– β relation at high- z . A naive application of a Meurer-like dust correction based on the UV slope would dramatically overestimate the total star formation rate, and our results support growing evidence that when integrated over the galaxy, the typical conditions in high- z star-forming galaxies are not analogous to those in the local starburst nuclei used to establish the Meurer relation.« less
NASA Astrophysics Data System (ADS)
Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.
2010-11-01
The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z < 1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, LIR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 < z < 1 exhibit a mean dust attenuation AUV of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of β and LIR/LUV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.
Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae
de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; ...
2016-03-21
Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, wemore » introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.« less
Molecular gas properties of a lensed star-forming galaxy at z 3.6: a case study
NASA Astrophysics Data System (ADS)
Dessauges-Zavadsky, M.; Zamojski, M.; Rujopakarn, W.; Richard, J.; Sklias, P.; Schaerer, D.; Combes, F.; Ebeling, H.; Rawle, T. D.; Egami, E.; Boone, F.; Clément, B.; Kneib, J.-P.; Nyland, K.; Walth, G.
2017-09-01
We report on the galaxy MACSJ0032-arc at zCO = 3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACS J0032.1+1808. The successful detections of its rest-frame ultraviolet (UV), optical, far-infrared (FIR), millimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8+ 0.5-1.0 × 109M⊙, and a moderate IR luminosity of 4.8+ 1.2-0.6 × 1011L⊙. By combining the stretching effect of the lens with the high angular resolution imaging of the CO(1-0) line emission and the radio continuum at 5 GHz, we find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J = 6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H2 conversion factor. Indeed, the respective CO-to-H2 conversion factors as derived from the correlation with metallicity and the FIR dust continuum can only be reconciled if excitation is accounted for. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 60-79% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z 1.5 and z 2.5. Based on observations carried out with the IRAM Plateau de Bure Interferometer, the IRAM 30 m telescope, and the NRAO Karl G. Jansky Very Large Array. The Institut de Radioastronomie Millimétrique (IRAM) is supported by CNRS/INSU (France), the MPG (Germany), and the IGN (Spain). The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
500 days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Kromer, M.; Fox, O. D.; Zheng, W.; Challis, P.; Clubb, K. I.; Filippenko, A. V.; Folatelli, G.; Graham, M. L.; Hillebrandt, W.; Kirshner, R. P.; Lee, W. H.; Pakmor, R.; Patat, F.; Phillips, M. M.; Pignata, G.; Röpke, F.; Seitenzahl, I.; Silverman, J. M.; Simon, J. D.; Sternberg, A.; Stritzinger, M. D.; Taubenberger, S.; Vinko, J.; Wheeler, J. C.
2015-10-01
SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ˜ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B) = 0.92 mag), shallow Si II λ 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0^{+4.8}_{-3.8} × 10^{42} erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model.
Local Group ultra-faint dwarf galaxies in the reionization era
NASA Astrophysics Data System (ADS)
Weisz, Daniel R.; Boylan-Kolchin, Michael
2017-07-01
Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (I) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (II) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (III) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (IV) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.
IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.
1981-01-01
The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.
NASA Astrophysics Data System (ADS)
Meusinger, H.; Balafkan, N.
2014-08-01
Aims: A tiny fraction of the quasar population shows remarkably weak emission lines. Several hypotheses have been developed, but the weak line quasar (WLQ) phenomenon still remains puzzling. The aim of this study was to create a sizeable sample of WLQs and WLQ-like objects and to evaluate various properties of this sample. Methods: We performed a search for WLQs in the spectroscopic data from the Sloan Digital Sky Survey Data Release 7 based on Kohonen self-organising maps for nearly 105 quasar spectra. The final sample consists of 365 quasars in the redshift range z = 0.6 - 4.2 (z¯ = 1.50 ± 0.45) and includes in particular a subsample of 46 WLQs with equivalent widths WMg ii< 11 Å and WC iv< 4.8 Å. We compared the luminosities, black hole masses, Eddington ratios, accretion rates, variability, spectral slopes, and radio properties of the WLQs with those of control samples of ordinary quasars. Particular attention was paid to selection effects. Results: The WLQs have, on average, significantly higher luminosities, Eddington ratios, and accretion rates. About half of the excess comes from a selection bias, but an intrinsic excess remains probably caused primarily by higher accretion rates. The spectral energy distribution shows a bluer continuum at rest-frame wavelengths ≳1500 Å. The variability in the optical and UV is relatively low, even taking the variability-luminosity anti-correlation into account. The percentage of radio detected quasars and of core-dominant radio sources is significantly higher than for the control sample, whereas the mean radio-loudness is lower. Conclusions: The properties of our WLQ sample can be consistently understood assuming that it consists of a mix of quasars at the beginning of a stage of increased accretion activity and of beamed radio-quiet quasars. The higher luminosities and Eddington ratios in combination with a bluer spectral energy distribution can be explained by hotter continua, i.e. higher accretion rates. If quasar activity consists of subphases with different accretion rates, a change towards a higher rate is probably accompanied by an only slow development of the broad line region. The composite WLQ spectrum can be reasonably matched by the ordinary quasar composite where the continuum has been replaced by that of a hotter disk. A similar effect can be achieved by an additional power-law component in relativistically boosted radio-quiet quasars, which may explain the high percentage of radio quasars. The full catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hua; Li, Hong; Shen, Yue
2014-10-10
Based on an updated Hβ reverberation mapping (RM) sample of 44 nearby active galactic nuclei (AGNs), we propose a novel approach for black hole (BH) mass estimation using two filtered luminosities computed from single-epoch (SE) AGN spectra around the Hβ region. We found that the two optimal-filter luminosities extract virial information (size and virial velocity of the broad-line region, BLR) from the spectra, justifying their usage in this empirical BH mass estimator. The major advantages of this new recipe over traditional SE BH mass estimators utilizing continuum luminosity and broad-line width are (1) it has a smaller intrinsic scatter ofmore » 0.28 dex calibrated against RM masses, (2) it is extremely simple to use in practice, without any need to decompose the spectrum, and (3) it produces unambiguous and highly repeatable results even with low signal-to-noise spectra. The combination of the two luminosities can also cancel out, to some extent, systematic luminosity errors potentially introduced by uncertainties in distance or flux calibration. In addition, we recalibrated the traditional SE mass estimators using broad Hβ FWHM and monochromatic continuum luminosity at 5100 Å (L {sub 5100}). We found that using the best-fit slopes on FWHM and L {sub 5100} (derived from fitting the BLR radius-luminosity relation and the correlation between rms line dispersion and SE FWHM, respectively) rather than simple assumptions (e.g., 0.5 for L {sub 5100} and 2 for FWHM) leads to more precise SE mass estimates, improving the intrinsic scatter from 0.41 dex to 0.36 dex with respect to the RM masses. We compared different estimators and discussed their applications to the Sloan Digital Sky Survey quasar sample. Due to the limitations of the current RM sample, application of any SE recipe calibrated against RM masses to distant quasars should be treated with caution.« less
The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs
NASA Astrophysics Data System (ADS)
Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.
2008-01-01
Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alavi, Anahita; Siana, Brian; Freeman, William R.
We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in themore » range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust extinction correction of 4.2 over all luminosities and a Kroupa initial mass function) of 0.148{sub −0.020}{sup +0.023} M {sub ☉} yr{sup –1} Mpc{sup –3}, significantly higher than previous determinations because of the additional population of fainter galaxies and the larger dust correction factors.« less
UV chromospheric and circumstellar diagnostic features among F supergiant stars
NASA Technical Reports Server (NTRS)
Stencel, R. E.; Worden, S. P.; Giampapa, M. S.
1981-01-01
A survey of F supergiant stars to evaluate the extension of chromospheric and circumstellar characteristics commonly observed in the slightly cooler G, K, and M supergiant is discussed. An ultraviolet survey was elected since UV features of Mg II and Fe II might persist in revealing outer atmosphere phenomena even among F supergiants. The encompassed spectral types F0 to G0, and luminosity classes Ib, Ia, and Ia-0. In addition, the usefulness of the emission line width-to-luminosity correlation for the G-M stars in both the Ca II and Mg II lines is examined.
Emission Line Properties of Seyfert Galaxies in the 12 μm Sample
NASA Astrophysics Data System (ADS)
Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian
2017-09-01
We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S II]6720/[O II]3727 ratio—we find the average E(B-V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C IV equivalent width correlates more strongly with [O III]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O II]λ3727 Å, [O III]λ5007 Å, and [S II]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H II+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable measures of the total non-stellar luminosity, estimated from our extensive multi-wavelength database. The hard X-ray or near-ultraviolet continuum luminosity can be crudely predicted from either the [O III]λ5007 Å luminosity or the combinations of [O III]+Hβ or [N II]+Hα lines, with a scatter of +/- 4 times for Sy 1s and +/- 10 times for Sy 2s. Although these uncertainties are large, the latter two hybrid (NLR+BLR) indicators have the advantage of predicting the same HX luminosity independent of Seyfert type.
NASA Astrophysics Data System (ADS)
Guo, Hengxiao; Malkan, Matthew A.; Gu, Minfeng; Li, Linlin; Prochaska, J. Xavier; Ma, Jingzhe; You, Bei; Zafar, Tayyaba; Liao, Mai
2016-08-01
We have collected near-infrared to X-ray data of 20 multi-epoch heavily reddened SDSS quasars to investigate the physical mechanism of reddening. Of these, J2317+0005 is found to be a UV cutoff quasar. Its continuum, which usually appears normal, decreases by a factor 3.5 at 3000 Å, compared to its more typical bright state during an interval of 23 days. During this sudden continuum cut-off the broad emission line fluxes do not change, perhaps due to the large size of the broad-line region (BLR), r \\gt 23/(1+z) days. The UV continuum may have suffered a dramatic drop out. However, there are some difficulties with this explanation. Another possibility is that the intrinsic continuum did not change but was temporarily blocked out, at least toward our line of sight. As indicated by X-ray observations, the continuum rapidly recovers after 42 days. A comparison of the bright state and dim states would imply an eclipse by a dusty cloud with a reddening curve having a remarkably sharp rise shortward of 3500 Å. Under the assumption of being eclipsed by a Keplerian dusty cloud, we characterized the cloud size with our observations, however, which is a little smaller than the 3000 Å continuum-emitting size inferred from accretion disk models. Therefore, we speculate that this is due to a rapid outflow or inflow with a dusty cloud passing through our line of sight to the center.
Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela
We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functionsmore » (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.« less
Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN
NASA Technical Reports Server (NTRS)
Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack
2008-01-01
We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.
Differential evolution of the UV luminosity function of Lyman break galaxies from z ~ 5 to 3
NASA Astrophysics Data System (ADS)
Iwata, I.; Ohta, K.; Tamura, N.; Akiyama, M.; Aoki, K.; Ando, M.; Kiuchi, G.; Sawicki, M.
2007-04-01
We report the ultraviolet luminosity function (UVLF) of Lyman break galaxies at z ~ 5 derived from a deep and wide survey using the prime focus camera of the 8.2 m Subaru telescope (Suprime-Cam). Target fields consist of two blank regions of the sky, namely, the region including the Hubble Deep Field-North and the J0053+1234 region, and the total effective surveyed area is 1290 arcmin2. Applications of carefully determined colour selection criteria in V - Ic and Ic - z' yield a detection of 853 z ~ 5 candidates with z'AB < 26.5 mag. The UVLF at z ~ 5 based on this sample shows no significant change in the number density of bright (L >~ L*z=3) LBGs from that at z ~ 3, while there is a significant decline in the LF's faint end with increasing look-back time. This result means that the evolution of the number densities is differential with UV luminosity: the number density of UV luminous objects remains almost constant from z ~ 5 to 3 (the cosmic age is about 1.2 to 2.1 Gyr) while the number density of fainter objects gradually increases with cosmic time. This trend becomes apparent thanks to the small uncertainties in number densities both in the bright and faint parts of LFs at different epochs that are made possible by the deep and wide surveys we use. We discuss the origins of this differential evolution of the UVLF along the cosmic time and suggest that our observational findings are consistent with the biased galaxy evolution scenario: a galaxy population hosted by massive dark haloes starts active star formation preferentially at early cosmic time, while less massive galaxies increase their number density later. We also calculated the UV luminosity density by integrating the UVLF and at z ~ 5 found it to be 38.8+6.7-4.1 per cent of that at z ~ 3 for the luminosity range L > 0.1L*z=3. By combining our results with those from the literature, we find that the cosmic UV luminosity density marks its peak at and then slowly declines towards higher redshift. Based on data collected at Subaru Telescope and partly obtained from the SMOKA science archive at Astronomical Data Analysis Center, which are operated by the National Astronomical Observatory of Japan. E-mail: iwata@oao.nao.ac.jp (II)
NASA Astrophysics Data System (ADS)
Faisst, Andreas L.; Capak, Peter L.; Yan, Lin; Pavesi, Riccardo; Riechers, Dominik A.; Barišić, Ivana; Cooke, Kevin C.; Kartaltepe, Jeyhan S.; Masters, Daniel C.
2017-09-01
Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope (β UV) and the infrared excess (IRX; L IR/L UV) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX-β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX-β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX-β diagram.
The 'Baldwin Effect' in Wolf-Rayet stars
NASA Technical Reports Server (NTRS)
Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria
1993-01-01
The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.
Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core
NASA Technical Reports Server (NTRS)
Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.
1994-01-01
We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is relatively constant over approximately 14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (less than 5 solar luminosity) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust.
NASA Astrophysics Data System (ADS)
Huard, Tracy L.; Pound, Marc W.; Mundy, Lee; Dunham, Michael
2018-01-01
Very Low Luminosity Objects (VeLLOs) are young stellar sources that are defined by luminosities less than 0.1 solar luminosity and rising mid-infrared spectral energy distributions. But, what exactly are they? Brown dwarfs or low-mass stars in formation? Systems exhibiting low accretion rates? Extremely young objects? We have completed an ALMA survey of 33 candidates in the nearby Serpens, Ophiuchus, and Lupus star-forming molecular clouds. Continuum emission at 1.3 mm, consistent with the presence of an inner envelope and/or disk, was detected toward 17 candidates, with at least 6 of these candidates exhibiting CO outflow emission, suggesting ongoing formation. We will present these observations and results, and discuss their implications concerning the nature of VeLLOs.
NASA Technical Reports Server (NTRS)
Cheng, Chung-Chieh; Vanderveen, K.; Orwig, L. E.; Tandberg-Hanssen, E.
1988-01-01
The impulsive phase of solar flares has been simultaneously observed in the ultraviolet O V line, the UV continuum, and hard X-rays with a time resolution of 0.128 s by the SMM satellite. A close time correspondence between the three impulsive components is found, with the best correlation being at the peak of the impulsive phase. Individual bursts or fast features in the O V and the UV continuum are shown to lag behind the corresponding hard X-ray features. None of the considered energy transport mechanisms (thermal conduction, a nonthermal electron beam, electron hole boring, UV radiation, and Alfven waves) are able to consistently account for the observed temporal correlations.
NASA Astrophysics Data System (ADS)
Ota, Kazuaki; Iye, Masanori; Kashikawa, Nobunari; Konno, Akira; Nakata, Fumiaki; Totani, Tomonori; Kobayashi, Masakazu A. R.; Fudamoto, Yoshinobu; Seko, Akifumi; Toshikawa, Jun; Ichikawa, Akie; Shibuya, Takatoshi; Onoue, Masafusa
2017-07-01
We detect 20 z = 7.0 Lyα emitter (LAE) candidates to L(Lyα) ˜ 2 × 1042 erg s-1 or 0.3 {L}z=7* and in a volume of 6.1 × 105 Mpc3 in the Subaru Deep Field and the Subaru/XMM-Newton Deep Survey field by 82 hr and 37 hr of Subaru Suprime-Cam narrowband NB973 and reddest optical y-band imaging. We compare their Lyα and UV luminosity functions (LFs) and densities and Lyα equivalent widths (EWs) to those of z = 5.7, 6.6, and 7.3 LAEs from previous Suprime-Cam surveys. The Lyα LF (density) rapidly declines by a factor of ×1.5 (1.9) in L(Lyα) at z = 5.7-6.6 (160 Myr), ×1.5 (1.6) at z = 6.6-7.0 (60 Myr) at the faint end, and ×2.0 (3.8) at z = 7.0-7.3 (40 Myr). Also, in addition to the systematic decrease in EW at z = 5.7-6.6 previously found, two-thirds of the z = 7.0 LAEs detected in the UV continuum exhibit lower EWs than the z = 6.6 ones. Moreover, while the UV LF and density do not evolve at z = 5.7-6.6, they modestly decline at z = 6.6-7.0, implying galaxy evolution contributing to the decline of the Lyα LF. Comparison of the z = 7.0 Lyα LF to the one predicted by an LAE evolution model further reveals that galaxy evolution alone cannot explain all of the decline of the Lyα LF. If we attribute the discrepancy to Lyα attenuation by neutral hydrogen, the intergalactic medium transmission of Lyα photons at z = 7.0 would be {T}{Lyα }{IGM}≤slant 0.6{--}0.7. It is lower (higher) than the {T}{Lyα }{IGM} at z = 6.6 (7.3) derived by previous studies, suggesting rapid increase in neutral fraction at z > 6. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641
NASA Astrophysics Data System (ADS)
Barnett, R.; Warren, S. J.; Banerji, M.; McMahon, R. G.; Hewett, P. C.; Mortlock, D. J.; Simpson, C.; Venemans, B. P.; Ota, K.; Shibuya, T.
2015-03-01
We present new observations of the highest-redshift quasar known, ULAS J1120+0641, redshift z = 7.084, obtained in the optical, at near-, mid-, and far-infrared wavelengths, and in the sub-mm. We combine these results with published X-ray and radio observations to create the multiwavelength spectral energy distribution (SED), with the goals of measuring the bolometric luminosity Lbol, and quantifying the respective contributions from the AGN and star formation. We find three components are needed to fit the data over the wavelength range 0.12-1000 μm: the unobscured quasar accretion disk and broad-line region, a dusty clumpy AGN torus, and a cool 47K modified black body to characterise star formation. Despite the low signal-to-noise ratio of the new long-wavelength data, the normalisation of any dusty torus model is constrained within ±40%. We measure a bolometric luminosity Lbol = 2.6 ± 0.6 × 1047 erg s-1 = 6.7 ± 1.6 × 1013 L⊙, to which the three components contribute 31%,32%,3%, respectively, with the remainder provided by the extreme UV < 0.12 μm. We tabulate the best-fit model SED. We use local scaling relations to estimate a star formation rate (SFR) in the range 60-270 M⊙/yr from the [C ii] line luminosity and the 158 μm continuum luminosity. An analysis of the equivalent widths of the [C ii] line in a sample of z> 5.7 quasars suggests that these indicators are promising tools for estimating the SFR in high-redshift quasars in general. At the time observed the black hole was growing in mass more than 100 times faster than the stellar bulge, relative to the mass ratio measured in the local universe, i.e. compared to MBH/Mbulge ≃ 1.4 × 10-3, for ULAS J1120+0641 we measure ṀBH/Ṁbulge ≃ 0.2. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A31
Changes in the ultraviolet spectrum of EG Andromedae
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1984-01-01
Ultraviolet observations of EG Andromedae, a symbiotic star, are reported which clearly show pronounced eclipse-like effects on the high-temperature far-UV continuum. Continuum and emission-line variations with phase are reported and related to synoptic hydrogen alpha data. System parameters are characterized.
Non-LTE effects on the strength of the Lyman edge in quasar accretion disks
NASA Technical Reports Server (NTRS)
Stoerzer, H.; Hauschildt, P. H.; Allard, F.
1994-01-01
We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.
The high velocity symbiotic star AG Draconis after its 1980 outburst
NASA Technical Reports Server (NTRS)
Viotti, R.; Altamore, A.; Baratta, G. B.; Cassatella, A.; Friedjung, M.; Giangrande, A.; Ponz, D.; Ricciardi, O.
1982-01-01
High and low resolution spectra of AG Dra taken in 1981 are analyzed. The UV spectrum of AG Dra is characterized by prominent high ionization emission lines superimposed on a strong continuum. At high resolution, several intense absorption lines of interstellar origin are seen, in spite of the low interstellar extinction. A similar situation is displayed by the high galactic latitude sd0 stars. The radial velocity difference between the emission lines and the i.s. lines is about -105 Km/sec in agreement with the optical observations. The He II 1640 A line appears much stronger than in other symbiotic stars and suggests the presence of a hot source which is variable according to the activity of the star. The line also exhibits broad emission wings which could be formed in a rotating disk. The NV resonance doublet displays a P Cygni profile and is probably formed in a warm wind. Two components in the UV continuum are identified: a steep component dominating the far UV probably associated with the hot source, and a flatter continuum in the near UV which cannot be accounted for by f-f and f-b emission alone, but which is probably emitted by an optically thick region or disk.
Exploring the Faint End of the Luminosity-Metallicity Relation with Hα Dots
NASA Astrophysics Data System (ADS)
Hirschauer, Alec S.; Salzer, John J.
2015-01-01
The well-known correlation between a galaxy's luminosity and its gas-phase oxygen abundance (the luminosity-metallicity (L-Z) relation) offers clues toward our understanding of chemical enrichment histories and evolution. Bright galaxies are comparatively better studied than faint ones, leaving a relative dearth of observational data points to constrain the L-Z relation in the low-luminosity regime. We present high S/N nebular spectroscopy of low-luminosity star-forming galaxies observed with the KPNO 4m using the new KOSMOS spectrograph to derive direct-method metallicities. Our targets are strong point-like emission-line sources discovered serendipitously in continuum-subtracted narrowband images from the ALFALFA Hα survey. Follow-up spectroscopy of these "Hα dots" shows that these objects represent some of the lowest luminosity star-forming systems in the local Universe. Our KOSMOS spectra cover the full optical region and include detection of [O III] λ4363 in roughly a dozen objects. This paper presents some of the first scientific results obtained using this new spectrograph, and demonstrates its capabilities and effectiveness in deriving direct-method metallicities of faint objects.
NASA Astrophysics Data System (ADS)
Alavi, Anahita; Siana, Brian; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Freeman, William R.; Scarlata, Claudia; Robertson, Brant; Stark, Daniel P.; Teplitz, Harry I.; Desai, Vandana
2016-11-01
We present a robust measurement of the rest-frame UV luminosity function (LF) and its evolution during the peak epoch of cosmic star formation at 1\\lt z\\lt 3. We use our deep near-ultraviolet imaging from WFC3/UVIS on the Hubble Space Telescope and existing Advanced Camera for Surveys (ACS)/WFC and WFC3/IR imaging of three lensing galaxy clusters, Abell 2744 and MACS J0717 from the Hubble Frontier Field survey and Abell 1689. Combining deep UV imaging and high magnification from strong gravitational lensing, we use photometric redshifts to identify 780 ultra-faint galaxies with {M}{UV}\\lt -12.5 AB mag at 1\\lt z\\lt 3. From these samples, we identified five new, faint, multiply imaged systems in A1689. We run a Monte Carlo simulation to estimate the completeness correction and effective volume for each cluster using the latest published lensing models. We compute the rest-frame UV LF and find the best-fit faint-end slopes of α =-1.56+/- 0.04, α =-1.72+/- 0.04, and α =-1.94+/- 0.06 at 1.0\\lt z\\lt 1.6, 1.6\\lt z\\lt 2.2, and 2.2\\lt z\\lt 3.0, respectively. Our results demonstrate that the UV LF becomes steeper from z˜ 1.3 to z˜ 2.6 with no sign of a turnover down to {M}{UV}=-14 AB mag. We further derive the UV LFs using the Lyman break “dropout” selection and confirm the robustness of our conclusions against different selection methodologies. Because the sample sizes are so large and extend to such faint luminosities, the statistical uncertainties are quite small, and systematic uncertainties (due to the assumed size distribution, for example) likely dominate. If we restrict our analysis to galaxies and volumes above \\gt 50 % completeness in order to minimize these systematics, we still find that the faint-end slope is steep and getting steeper with redshift, though with slightly shallower (less negative) values (α =-1.55+/- 0.06, -1.69 ± 0.07, and -1.79 ± 0.08 for z˜ 1.3, 1.9, and 2.6, respectively). Finally, we conclude that the faint star-forming galaxies with UV magnitudes of -18.5\\lt {M}{UV}\\lt -12.5 covered in this study produce the majority (55%-60%) of the unobscured UV luminosity density at 1\\lt z\\lt 3. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Evidence for different accretion regimes in GRO J1008-57
NASA Astrophysics Data System (ADS)
Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn
2017-11-01
We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.
GRS 1739-278 Observed at Very Low Luminosity with XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Fürst, F.; Tomsick, J. A.; Yamaoka, K.; Dauser, T.; Miller, J. M.; Clavel, M.; Corbel, S.; Fabian, A.; García, J.; Harrison, F. A.; Loh, A.; Kaaret, P.; Kalemci, E.; Migliari, S.; Miller-Jones, J. C. A.; Pottschmidt, K.; Rahoui, F.; Rodriguez, J.; Stern, D.; Stuhlinger, M.; Walton, D. J.; Wilms, J.
2016-12-01
We present a detailed spectral analysis of XMM-Newton and NuSTAR observations of the accreting transient black hole GRS 1739-278 during a very faint low hard state at ˜0.02% of the Eddington luminosity (for a distance of 8.5 kpc and a mass of 10 {M}⊙ ). The broadband X-ray spectrum between 0.5 and 60 keV can be well-described by a power-law continuum with an exponential cutoff. The continuum is unusually hard for such a low luminosity, with a photon index of Γ = 1.39 ± 0.04. We find evidence for an additional reflection component from an optically thick accretion disk at the 98% likelihood level. The reflection fraction is low, with {{ R }}{refl}={0.043}-0.023+0.033. In combination with measurements of the spin and inclination parameters made with NuSTAR during a brighter hard state by Miller et al., we seek to constrain the accretion disk geometry. Depending on the assumed emissivity profile of the accretion disk, we find a truncation radius of 15-35 {R}{{g}} (5-12 {R}{ISCO}) at the 90% confidence limit. These values depend strongly on the assumptions and we discuss possible systematic uncertainties.
A Spectroscopic Search for Leaking Lyman Continuum at Zeta Approximately 0.7
NASA Technical Reports Server (NTRS)
Bridge, Carrie R.; Teplitz, Harry I.; Siana, Brian; Scarlata, Claudia; Rudie, Gwen C.; Colbert, James; Ferguson, Henry C.; Brown, Thomas M.; Conselice, Christopher J.; Armus, Lee;
2010-01-01
We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z approx. 0.7 Lyman Break Galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel (SBC) on HST. While we find no direct detections of the Lyman Continuum we achieve individual limits (3sigma) of the observed non-ionizing UV to Lyman continuum flux density ratios, f(sub nu)(1500A)/f(sub nu)(830A) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman Break of 3.4 and an optical depth of Lyman continuum photons along the line of sight to the galaxy of 85% we report an upper limit for the relative escape fraction in individual galaxies of 0.02 - 0.19 and a stacked 3sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z approx. 3. Our UV spectra achieve the deepest limits to date at any redshift on the escape fraction in individual sources. The contrast between these z approx. 0.7 low escape fraction LBG analogs with z approx. 3 LBGs suggests that either the processes conducive to high f(sub esc) are not being selected for in the z less than or approx.1 samples or the average escape fraction is decreasing from z approx. 3 to z approx. 1. We discuss possible mechanisms which could affect the escape of Lyman continuum photons
Imaging the nuclear environment of NGC 1365 with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Kristen, Helmuth; Jorsater, Steven; Lindblad, Per Olof; Boksenberg, Alec
1997-12-01
The region surrounding the active nucleus of the barred spiral galaxy NGC 1365 is observed in the [Oiii] lambda 5007 line and neighbouring continuum using the Faint Object Camera (FOC) aboard the Hubble Space Telescope (HST). In the continuum light numerous bright ``super star clusters'' (SSCs) are seen in the nuclear region. They tend to fall on an elongated ring around the nucleus and contribute about 20 % of the total continuum flux in this wavelength regime. Without applying any extinction correction the brightest SSCs have an absolute luminosity M_B=-14fm1 +/- 0fm3 and are very compact with radii R la 3 pc. Complementary ground-based spectroscopy gives an extinction estimate A_B = 2fm5 +/- 0fm5 towards these regions, indicating a true luminosity M_B = -16fm6 +/- 0fm6 . The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that it is a ``radio supernova''. The HST observations resolve the inner structure of the conical outflow previously seen in the [Oiii] lambda 5007 line in ground-based observations, and reveal a complicated structure of individual emission-line clouds, some of which gather in larger agglomerations. The total luminosity in the [Oiii] line amounts to L_[OIII] =~ 3.7x 10(40) erg s(-1) where about 40 % is emitted by the clouds. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, and observations at the European Southern Observatory (ESO), La Silla, Chile.
EVLA Observation of Centimeter Continuum Emission from Protostars in Serpens South
NASA Astrophysics Data System (ADS)
Kern, Nicholas S.; Tobin, John J.; Keown, Jared A.; Gutermuth, Robert A.
2015-01-01
Serpens South is a protocluster with an unusually high abundance of Class 0 and I protostars, suggesting it is in a very early phase of star formation and may eventually form a star cluster. Following its discovery in 2008 with the Spitzer space telescope, infrared and millimeter observations and analysis quickly followed, however, Serpens South has yet to be fully explored in the radio. Radio observations at centimeter wavelengths have long been used as a tool to probe the dynamical processes of young protostars that are still heavily shrouded in their protostellar envelopes and thus cannot be seen at longer wavelengths. Radio observations then become an important tool in understanding Serpens South due to its young age. To this end, we have conducted EVLA C band continuum observations of the central region of the Serpens South protostellar cluster in order to map the centimeter continuum emission in a region of high Class 0 / I protostellar surface density. We report the detection of centimeter emission corresponding to protostars identified by Spitzer, and to protostars identified but blended by Herschel. We characterize their centimeter emission, and put them in context with previous Spitzer and Herschel infrared and far-infrared observations, as well as IRAM millimeter observations. Additionally, we make an assessment of the protostars' bolometric luminosity, and compare them to the known protostellar 3.6 cm to 6.0 cm luminosity vs. bolometric luminosity relation. With the EVLA, we present a mid-resolution map of centimeter emission from the central region of Serpens South with the highest sensitivity to date, with a beam size of ~5 arcseconds and rms on the order of 15 microJansky.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zhen-Ya; Jiang, Chunyan; Wang, Junxian
2017-06-20
We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ∼ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg{sup 2} COSMOS field. We have identified 23 Ly α Emitter candidates at z = 6.9 in the central 2-deg{sup 2} region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF)more » can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L {sub Lyα∼} 10{sup 43.4±0.2} erg s{sup −1}). The number density at L {sub Ly} {sub α} ∼ 10{sup 43.4±0.2} erg s{sup −1} is little changed from z = 6.6, while at fainter L {sub Lyα} it is substantially reduced. Overall, we see a fourfold reduction in Ly α luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ∼3 suppression of Ly α by radiative transfer through the z ∼ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x {sub Hi} ∼ 0.4–0.6 (assuming Ly α velocity offsets of 100–200 km s{sup −1}). The changing shape of the Ly α LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ∼ 7.« less
Super-Eddington accreting massive black holes as long-lived cosmological standards.
Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai
2013-02-22
Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler.
NASA Technical Reports Server (NTRS)
Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.
1994-01-01
We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.
A STUDY OF RO-VIBRATIONAL OH EMISSION FROM HERBIG Ae/Be STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brittain, Sean D.; Reynolds, Nickalas; Najita, Joan R.
2016-10-20
We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also similar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the polycyclic aromatic hydrocarbon (PAH) luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is notmore » a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.« less
Line-profile and continuum variations of the contact binary SV Centauri
NASA Technical Reports Server (NTRS)
Rahe, J.; Drechsel, H.; Wargau, W.
1982-01-01
A total of five high and ten low dispersion UV spectra of the interacting contact binary SV Centauri obtained between 1979 and 1982 are analyzed. The low resolution observations cover the whole phase range, while a few selected phases were observed in high dispersion. The UV data were complemented with optical photometric and spectroscopic observations, in order to determine the tructure and absolute dimensions of the system. The profiles of prominent UV resonance and metastable lines undergo drastic changes with phase angle and time. Their overall appearance indicates relatively strong mass loss from the system, exhibiting pronounced variations of the stellar wind. The far UV continuum distribution suggests the presence of a luminous hot radiation source with maximum emission in the soft X-ray range, which is most apparently seen during the first quadrature phase, while it is weakest close to primary minimum. The case exchange and mass loss process as well as the evolutionary stage of SV Centauri are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C.
Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β {sub UV}) and the infrared excess (IRX; L {sub IR}/ L {sub UV}) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. Themore » trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.« less
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia
2018-04-01
We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II]/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia
2018-06-01
We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II}]}/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.
The Amazing COS FUV (1320 - 1460 A) Spectrum of (lambda) Vel (K4Ib-II)
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2010-01-01
The FUV spectrum (1320-1460 A) of the K4 lb-11 supergiant (lambda) Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously recorded in (lambda) Vel at high resolution and, in a mere 20 minutes of exposure, reveals a treasure trove of information. It shows a wide variety of strong emission lines, superposed on a bright continuum, with contributions from both atomic and molecular species. Multiple absorptions, including numerous Ni II and Fe II lines, are visible over this continuum, which is likely generated in the chromosphere of the star. Evidence of the stellar wind is seen in the P Cygni profiles of the CII lines near 1335 A and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of (alpha) Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 Iab supergiant (alpha) Ori, but minus the CO fundamental absorption bands seen in the spectrum of the latter star. However, fluoresced CO emission is present, as in the K-giant stars (alpha) Boo and (alpha) Tau (K5 III). The presence of hot plasma in the atmosphere of the star, indicated by previous GHRS observations of Si III] and C III] lines near 1900 A and FUSE observations of O VI 1032 A, is further confirmed by the detection in this COS spectrum of the Si IV UV 1 lines near 1400 A, though both lines are contaminated by overlying fluorescent H2 emission. We present the details of this spectrum, in comparison with stars of similar temperature or luminosity and discuss the implications for the structure of, and the radiative processes active in, the outer atmospheres of these stars.
The Coma Cluster Luminosity Function from Ultraviolet to Near-Infrared
NASA Astrophysics Data System (ADS)
Andreon, S.; Cuillandre, J.-C.; Pello, R.
The Coma cluster luminosity function (LF) from ultraviolet (2000 AA ) to the near-infrared (H band) is summarized. In the UV the LF is very steep, much steeper than in the optical. The steep Coma UV LF implies that faint and bright galaxies give similar contributions to the total UV flux and to the total metal production rate. The ComaUV LF is dominated in number and luminosity by blue galaxies, which are often faint in the optical. Therefore the Coma UV LF is dominated by star forming galaxies, not by massive and large galaxies. The optical Coma LF is relatively steep (alpha=-1.4) over the 11 magnitudes sampled, but its slope and shape depend on considered filter and magnitude. We found a clear steeping of the FL going from B to R bands, indicative of the presence of a large number of red dwarfs, as faint as three bright globular clusters. Furthermore, using Hubble Space Telescope images, we discover that blends of globular clusters, not resolved in individual components due to seeing, look like dwarf galaxies when observed from the ground and are numerous and bright. The existence of these fake extended sources increases the steepness of the LF at faint magnitudes, if not deal on. This concern affects previous deep probing of the luminosity function, but not the present work. The near-infrared LF wa s computed on a near-infrared selected sample of galaxies which photometry is complete down to the typical dwarf (M* +5) luminosity. The Coma LF can be described by a Schechter function with intermediate slope (alpha sim-1.3), plus a dip at MH~-22 mag. The shape of the Coma LF in H band is quite similar to th e one found in the B band. The similarity of the LF in the optical and H bands implies that in the central region of Coma there is no new population of galaxies which is too faint to be observed in the optical band (because dust enshrouded, for instance), down to the magnitudes of dwarfs. The exponential cut of the LF at the bright end is in good agreement with the one derived from shallower near-infrared samples o f galaxies, both in clusters and in the field. The faint end of the LF, reaching MH~-19 mag (roughly MB~ -15), is steep, but less than previously suggested from shallower near-infrared observations of an adjacent region in the Coma cluster.
NASA Technical Reports Server (NTRS)
Salama, F.; Allamandola, L. J.
1992-01-01
The properties of the cation of the PAH naphthalene (C10H8(+)) isolated in inert gas matrices under conditions relevant to astrophysical environments are described. The band at 6741 A is the strongest and falls close to the weak 6742 A diffuse interstellar bands (DIBs). Five other weaker bands also fall remarkably close to the positions of known DIBs. A very intense and broad continuum extended from the UV to the visible, which seems to be associated with the ion, is reported. The molar absorption coefficient at the peak of the continuum is 2.0 x 10 exp 6 cu dm/mol cm. If a continuum is a general property of PAH cations, this characteristic will have a strong impact on the understanding of how PAHs convert interstellar UV and visible radiation into IR radiation.
NASA Astrophysics Data System (ADS)
González-Alfonso, Eduardo; Smith, Howard A.; Ashby, Matthew L. N.; Fischer, Jacqueline; Spinoglio, Luigi; Grundy, Timothy W.
2008-03-01
The ISO LWS far-infrared spectrum of the ultraluminous galaxy Mrk 231 shows OH and H2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 μm and [C II] 158 μm lines. Our analysis shows that OH and H2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (Tdust = 70-100 K), optically thick (τ100μ m = 1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity LIR, the observed OH and H2O high-lying lines arise from a luminous (L/LIR ~ 0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH) gtrsim 1017 cm-2 and N(H2O) gtrsim 6 × 1016 cm-2 may indicate X-ray dominated region (XDR) chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 μm, and [O I] 63 μm lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mrk 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the principal investigator countries: France, Germany, Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.
Study of Star Formation Regions with Molecular Hydrogen Emission Lines
NASA Astrophysics Data System (ADS)
Pak, Soojong
The goal of my dissertation is to understand the large-scale, near-infrared (near-IR) H2 emission from the central kiloparsec (kpc) regions of galaxies, and to study the structure and physics of photon-dominated regions (or photodissociation regions, hereafter PDRs). In order to explore the near-IR H2 lines, our group built the University of Texas near-IR Fabry-Perot Spectrometer optimized for observations of extended, low surface brightness sources. In this instrument project, I designed and built a programmable high voltage DC amplifier for the Fabry-Perot piezoelectric transducers, a temperature-controlled cooling box for the Fabry-Perot etalon, instrument control software, and data reduction software. With this instrument, we observed H2 emission lines in the inner 400 pc of the Galaxy, the central ~1 kpc of NGC 253 and M82, and the star formation regions in the Magellanic Clouds. We also observed the Magellanic Clouds in the CO J=1/to0 line. We found that the H2 emission is very extended in the central kpc of the galaxies and is mostly UV-excited. The ratios of the H2 (1,0) S(1) luminosities to the far-IR continuum luminosities in the central kpc regions do not change from the Galactic center to starburst galaxies and to ultraluminous IR bright galaxies. Using the data from the Magellanic Clouds, we studied the microscopic structure of star forming clouds. We compiled data sets including our H2 (1,0) S(1) and CO J=1/to0 results and published (C scII) and far-IR data from the Magellanic Clouds, and compared these observations with models we made using a PDR code and a radiative transfer code. Assuming the cloud is spherical, we derived the physical sizes of H2, (C scII), and CO emission regions. The average cloud size appears to increase as the metallicity decreases. Our results agree with the theory of photoionization-regulated star formation in which the interplay between the ambipolar diffusion and ionization by far-UV photons determines the size of stable clouds.
SHARDS Frontier Fields: Physical Properties of a Low-mass Lyα Emitter at z = 5.75
NASA Astrophysics Data System (ADS)
Hernán-Caballero, Antonio; Pérez-González, Pablo G.; Diego, Jose M.; Lagattuta, David; Richard, Johan; Schaerer, Daniel; Alonso-Herrero, Almudena; Marino, Raffaella Anna; Sklias, Panos; Alcalde Pampliega, Belén; Cava, Antonio; Conselice, Christopher J.; Dannerbauer, Helmut; Domínguez-Sánchez, Helena; Eliche-Moral, Carmen; Esquej, Pilar; Huertas-Company, Marc; Marques-Chaves, Rui; Pérez-Fournon, Ismael; Rawle, Tim; Rodríguez Espinosa, José Miguel; Rosa González, Daniel; Rujopakarn, Wiphu
2017-11-01
We analyze the properties of a multiply imaged Lyα (Lyα) emitter at z = 5.75 identified through SHARDS Frontier Fields intermediate-band imaging of the Hubble Frontier Fields (HFF) cluster Abell 370. The source, A370-L57, has low intrinsic luminosity (M UV ˜ -16.5), steep UV spectral index (β = -2.4 ± 0.1), and extreme rest-frame equivalent width of Lyα ({{EW}}0({Ly}α )={420}-120+180 Å). Two different gravitational lens models predict high magnification (μ ˜ 10-16) for the two detected counterimages, separated by 7″, while a predicted third counterimage (μ ˜ 3-4) is undetected. We find differences of ˜50% in magnification between the two lens models, quantifying our current systematic uncertainties. Integral field spectroscopy of A370-L57 with MUSE shows a narrow (FWHM = 204 ± 10 km s-1) and asymmetric Lyα profile with an integrated luminosity L(Lyα) ˜ 1042 erg s-1. The morphology in the Hubble Space Telescope bands comprises a compact clump (r e < 100 pc) that dominates the Lyα and continuum emission and several fainter clumps at projected distances ≲1 kpc that coincide with an extension of the Lyα emission in the SHARDS F823W17 and MUSE observations. The latter could be part of the same galaxy or an interacting companion. We find no evidence of a contribution from active galactic nuclei to the Lyα emission. Fitting of the spectral energy distribution with stellar population models favors a very young (t < 10 Myr), low-mass ({M}* ˜ {10}6.5 {M}⊙ ), and metal-poor (Z ≲ 4 × 10-3) stellar population. Its modest star formation rate (SFR ˜ 1.0 {M}⊙ yr-1) implies high specific SFR (sSFR ˜ 2.5 × 10-7 yr-1) and SFR density ({{{Σ }}}{SFR}˜ 7{--}35 {M}⊙ yr-1 kpc-2). The properties of A370-L57 make it a good representative of the population of galaxies responsible for cosmic reionization.
Spectral features of tidal disruption candidates and alternative origins for such transient flares
NASA Astrophysics Data System (ADS)
Saxton, Curtis J.; Perets, Hagai B.; Baskin, Alexei
2018-03-01
UV and optically selected candidates for stellar tidal disruption events (TDEs) often exhibit broad spectral features (He II emission, H α emission, or absorption lines) on a blackbody-like continuum (104 K≲ T≲ 105 K). The lines presumably emit from TDE debris or circumnuclear clouds photoionized by the flare. Line velocities however are much lower than expected from a stellar disruption by supermassive black hole (SMBH), and are somewhat faster than expected for the broad line region (BLR) clouds of a persistently active galactic nucleus (AGN). The distinctive spectral states are not strongly related to observed luminosity and velocity, nor to SMBH mass estimates. We use exhaustive photoionization modelling to map the domain of fluxes and cloud properties that yield (e.g.) an He-overbright state where a large He II(4686 Å)/H α line ratio creates an illusion of helium enrichment. Although observed line ratios occur in a plausible minority of cases, AGN-like illumination cannot reproduce the observed equivalent widths. We therefore propose to explain these properties by a light-echo photoionization model: the initial flash of a hot blackbody (detonation) excites BLR clouds, which are then seen superimposed on continuum from a later, expanded, cooled stage of the luminous source. The implied cloud mass is substellar, which may be inconsistent with a TDE. Given these and other inconsistencies with TDE models (e.g. host-galaxies distribution) we suggest to also consider alternative origins for these nuclear flares, which we briefly discuss (e.g. nuclear supernovae and starved/subluminous AGNs).
Simulating the assembly of galaxies at redshifts z = 6-12
NASA Astrophysics Data System (ADS)
Dayal, Pratika; Dunlop, James S.; Maio, Umberto; Ciardi, Benedetta
2013-09-01
We use state-of-the-art simulations to explore the physical evolution of galaxies in the first billion years of cosmic time. First, we demonstrate that our model reproduces the basic statistical properties of the observed Lyman-break galaxy (LBG) population at z = 6-8, including the evolving ultraviolet (UV) luminosity function (LF), the stellar mass density (SMD) and the average specific star-formation rates (sSFRs) of LBGs with MUV < -18 (AB mag). Encouraged by this success we present predictions for the behaviour of fainter LBGs extending down to MUV ≃ -15 (as will be probed with the James Webb Space Telescope) and have interrogated our simulations to try to gain insight into the physical drivers of the observed population evolution. We find that mass growth due to star formation in the mass-dominant progenitor builds up about 90 per cent of the total z ˜ 6 LBG stellar mass, dominating over the mass contributed by merging throughout this era. Our simulation suggests that the apparent `luminosity evolution' depends on the luminosity range probed: the steady brightening of the bright end of the LF is driven primarily by genuine physical luminosity evolution and arises due to a fairly steady increase in the UV luminosity (and hence star-formation rates) in the most massive LBGs; for example the progenitors of the z ≃ 6 galaxies with MUV < -18.5 comprised ≃90 per cent of the galaxies with MUV < -18 at z ≃ 7 and ≃75 per cent at z ≃ 8. However, at fainter luminosities the situation is more complex, due in part to the more stochastic star-formation histories of lower mass objects; the progenitors of a significant fraction of z ≃ 6 LBGs with MUV > -18 were in fact brighter at z ≃ 7 (and even at z ≃ 8) despite obviously being less massive at earlier times. At this end, the evolution of the UV LF involves a mix of positive and negative luminosity evolution (as low-mass galaxies temporarily brighten and then fade) coupled with both positive and negative density evolution (as new low-mass galaxies form, and other low-mass galaxies are consumed by merging). We also predict that the average sSFR of LBGs should rise from sSFR ≃ 4.5 Gyr- 1 at z ≃ 6 to sSFR ≃ 11 Gyr- 1 by z ≃ 9.
Star formation in AGNs at the hundred parsec scale using MIR high-resolution images
NASA Astrophysics Data System (ADS)
Ruschel-Dutra, Daniel; Rodríguez Espinosa, José Miguel; González Martín, Omaira; Pastoriza, Miriani; Riffel, Rogério
2017-04-01
It has been well established in the past decades that the central black hole masses of galaxies correlate with dynamical properties of their harbouring bulges. This notion begs the question of whether there are causal connections between the active galactic nucleus (AGN) and its immediate vicinity in the host galaxy. In this paper, we analyse the presence of circumnuclear star formation in a sample of 15 AGN using mid-infrared observations. The data consist of a set of 11.3 μm polycyclic aromatic hydrocarbon emission and reference continuum images, taken with ground-based telescopes, with sub-arcsecond resolution. By comparing our star formation estimates with AGN accretion rates, derived from X-ray luminosities, we investigate the validity of theoretical predictions for the AGN-starburst connection. Our main results are: (I) circumnuclear star formation is found, at distances as low as tens of parsecs from the nucleus, in nearly half of our sample (7/15); (II) star formation luminosities are correlated with the bolometric luminosity of the AGN (LAGN) only for objects with LAGN ≥ 1042 erg s-1; (III) low-luminosity AGNs (LAGN < 1042 erg s-1) seem to have starburst luminosities far greater than their bolometric luminosities.
Narrow vs. Broad line Seyfert 1 galaxies: X-ray, optical and mid-infrared AGN characteristics
NASA Astrophysics Data System (ADS)
Lakićević, Maša; Popović, Luka Č.; Kovačević-Dojčinović, Jelena
2018-05-01
We investigated narrow line Seyfert 1 galaxies (NLS1s) at optical, mid-infrared (MIR) and X-ray wavelengths, comparing them to the broad line active galactic nuclei (BLAGNs). We found that black hole mass, coronal line luminosities, X-ray hardness ratio and X-ray, optical and MIR luminosities are higher for the BLAGNs than for NLS1s, while policyclic aromatic hydrocarbon (PAH) contribution and the accretion rates are higher for the NLS1s. Furthermore, we found some trends among spectral parameters that NLS1s have and BLAGNs do not have. The evolution of FWHM(Hβ) with the luminosities of MIR and coronal lines, continuum luminosities, PAH contribution, Hβ broad line luminosity, FWHM[O III] and EW(HβNLR), are important trends found for NLS1s. That may contribute to the insight that NLS1s are developing AGNs, growing their black holes, while their luminosities and FWHM(Hβ) consequently grow, and that BLAGNs are mature, larger objects of slower and/or different evolution. Black hole mass is related to PAH contribution only for NLS1s, which may suggest that PAHs are more efficiently destroyed in NLS1s.
GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.
2012-09-01
Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve. Table of multi-colour photometry for the 751 galaxies is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A141
A comparison of the emission line properties between quasars and type 1 Seyfert galaxies
NASA Technical Reports Server (NTRS)
Wu, C. C.; Boggess, A.; Gull, T. R.
1982-01-01
For quasars and Seyfert galaxies, the equivalent width of C IV lambda 1550 increases as the continuum luminosity of an object decreases. A reasonable interpretation is that the covering factor increases as luminosity decreases. This is consistent with the fact that the L alpha and C IV equivalent widths for Seyferts are a factor of 2 larger than those for high redshift quasars. The C IV/C III ratio, which is a sensitive indicator of the ionization parameter, is about 5 for many Seyferts while it is about 2 for high redshift quasars.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O
2016-05-21
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.
2016-01-01
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978
Achieving BLISS: Challenges for Building Fast, Ultra-Sensitive Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.
2012-01-01
Topics: 1.Motivation and Intro to TESs. 2. BLISS Specifications-tolerance to dark power. 3.Measuring stray (dark) power-Tc (alpha) and G measurements. a) Overview two methods: JTD vs. TES. b) TES arrays: measurement and complications for Pd, Tc, and alpha. 4. Results: Pd compare, NEP, tau, 1/f issues. LIRGs and ULIRGs: Excellent example of distinct optical/UV and IR luminosity. Interaction long known, but huge luminosity is not predicted based on optical studies. (greater than 90% of the energy is emitted at in the far-IR). Large luminosity has both starburst and accretion components.
NASA Astrophysics Data System (ADS)
Kriss, Gerard A.; Agn Storm Team
2015-01-01
The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.
An Iwasawa-Taniguchi effect for Compton-thick active galactic nuclei
NASA Astrophysics Data System (ADS)
Boorman, Peter G.; Gandhi, Poshak; Baloković, Mislav; Brightman, Murray; Harrison, Fiona; Ricci, Claudio; Stern, Daniel
2018-07-01
We present the first study of an Iwasawa-Taniguchi/`X-ray Baldwin' effect for Compton-thick active galactic nuclei (AGN). We report a statistically significant anticorrelation between the rest-frame equivalent width (EW) of the narrow core of the neutral Fe Kα fluorescence emission line, ubiquitously observed in the reflection spectra of obscured AGN, and the mid-infrared 12 μ m continuum luminosity (taken as a proxy for the bolometric AGN luminosity). Our sample consists of 72 Compton-thick AGN selected from pointed and deep-field observations covering a redshift range of z ˜ 0.0014-3.7. We employ a Monte Carlo-based fitting method, which returns a Spearman's Rank correlation coefficient of ρ = - 0.28 ± 0.12, significant to 98.7 per cent confidence. The best-fitting found is log(EW_{Fe Kα }) ∝ -0.08± 0.04 log(L_{12 {μ } m}), which is consistent with multiple studies of the X-ray Baldwin effect for unobscured and mildly obscured AGN. This is an unexpected result, as the Fe Kα line is conventionally thought to originate from the same region as the underlying reflection continuum, which together constitute the reflection spectrum. We discuss the implications this could have if confirmed on larger samples, including a systematic underestimation of the line-of-sight X-ray obscuring column density and hence the intrinsic luminosities and growth rates for the most luminous AGN.
Measuring supermassive black holes via reverberation mapping in the UV
NASA Astrophysics Data System (ADS)
Kaspi, Shai
2018-04-01
Over the past three decades the reverberation mapping technique was used to measure the central regions of Active Galactic Nuclei (AGN), their size, velocity field, and the mass of the black hole in the center. This technique was used mainly in the optical with several studies in the UV. Reverberation mapping in the UV adds essential information to the AGN studies. This paper reviews these recent studies done in the UV, presents results from the recent HST campaign toward NGC 5548, and discuss two projects of reverberation mapping of UV emission lines in high-luminosity quasars. The advantages of reverberation mapping in the UV will be discussed as well as the needs from new UV missions in order to be able to advance UV reverberation mapping campaigns.
NASA Technical Reports Server (NTRS)
Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.
1994-01-01
The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.
ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.
2010-06-10
We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s{sup -1}) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR{sub UV}, of the total star formation rate, SFR{sub TOTAL}. We use Spitzer MIPS 24 {mu}m photometry to estimate SFR{sub IR}, the component of SFR{sub TOTAL} that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR{sub TOTAL} estimates for all HCG galaxies. We obtainmore » total stellar mass, M {sub *}, estimates by means of Two Micron All Sky Survey K{sub s} -band luminosities, and use them to calculate specific star formation rates, SSFR {identical_to} SFR{sub TOTAL}/M {sub *}. SSFR values show a clear and significant bimodality, with a gap between low ({approx}<3.2 x 10{sup -11} yr{sup -1}) and high-SSFR ({approx_gt}1.2 x 10{sup -10} yr{sup -1}) systems. We compare this bimodality to the previously discovered bimodality in {alpha}{sub IRAC}, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 {mu}m data for these galaxies. We find that all galaxies with {alpha}{sub IRAC} {<=} 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and {alpha}{sub IRAC} bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total galaxy luminosity and (2) are not strongly interacting and largely isolated. This selection eliminates mostly low-luminosity dwarfs and galaxies with some degree of peculiarity, providing a substantially improved, quiescent control sample. Unlike HCG galaxies, galaxies in the comparison SINGS subsample are continuously distributed both in SSFR and {alpha}{sub IRAC}, although they show ranges in SFR{sub TOTAL} values, morphologies and stellar masses similar to those for HCG systems. We test the SSFR bimodality against a number of uncertainties, and find that these can only lead to its further enhancement. Excluding galaxies belonging to HCGs with three giant galaxies (triplets) leaves both the SSFR and the {alpha}{sub IRAC} bimodality completely unaffected. We interpret these results as further evidence that an environment characterized by high galaxy number densities and low galaxy velocity dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star formation processes in galaxies and favoring a fast transition to quiescence.« less
NASA Astrophysics Data System (ADS)
Otí-Floranes, H.; Mas-Hesse, J. M.; Jiménez-Bailón, E.; Schaerer, D.; Hayes, M.; Östlin, G.; Atek, H.; Kunth, D.
2012-10-01
Context. Lyman-α emission is commonly used as star formation tracer in cosmological studies. Nevertheless, resonant scattering strongly affects the resulting luminosity, leading to variable and unpredictable escape fractions in different objects. Aims: To understand how the Lyα escape fraction depends on the properties of the star-forming regions, we need high spatial resolution multiwavelength studies of nearby Lyα emitters, like Haro 2. Methods: We study the Lyα emission of Haro 2 in connection with the properties of the young stellar population, the characteristics of the interstellar medium, the distribution and intensity of the Balmer emission lines and the properties of the X-ray emission. We have used HST-STIS spectral images along the major and minor axes of Haro 2 to characterize the Lyα emission, as well as FOC UV, WFPC-2 optical and NICMOS near infrared broadband-filter images to analyze the properties of the stellar population. WFPC-2 Hα image and ground-based spectroscopy allow us to study the Balmer emission lines. Finally, Chandra/ACIS X-ray images provide resolved distribution of the X-ray emission at various energy bands. The observational data are analyzed by comparison with the predictions from evolutionary synthesis models to constrain the properties of the star formation episode. Results: The UV, Hα and far infrared luminosities of the Haro 2 nuclear starburst are well reproduced assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential intestellar extinctions. A significant fraction of the stars are completely obscured in the UV, being identifiable only indirectly by their contribution to the ionization of the gas and to the far infrared emission. The diffuse soft X-ray emission extending over the whole source is attributed to gas heated by the mechanical energy released by the starburst. A compact hard X-ray emission (likely an UltraLuminous X-ray source) has been identified in a star-forming condensation to the southeast. Both compact and diffuse Lyα emission components are observed along the major and minor axes in STIS spectral images. Lyα is spatially decoupled from Balmer lines emission, Balmer decrement and UV continuum. However, the diffuse Lyα component is spatially correlated with the diffuse soft X-ray emission. Moreover, unlike the compact Lyα emission, diffuse Lyα shows luminosities larger than predicted from Hα, assuming case B recombination and considering the dust extinction as derived from Hα/Hβ. Conclusions: The Lyα emission closely associated to the massive stellar clusters is strongly affected by the properties of the surrounding neutral gas (presence of outflows, dust abundance), leading to even a range of escape fractions at different locations within the same starburst. On the other hand, we propose that the diffuse Lyα emission originates in gas ionized by the hot plasma responsible for the soft X-ray radiation, as suggested by their spatial correlation and by the measured L(Hα)/L0.4-2.4 keV ratios. Calibration of Lyα as star formation rate tracer should therefore include both effects (destruction vs. enhancement) to avoid biases in the study of galaxies at cosmological distances.
Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.
2010-01-01
We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km/s) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000A) photometry to estimate the dust-unobscured component, SFR(sub uv), of the total star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately <3.2 x 10(exp -11) / yr) and high-SSFR (approximately > 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC <= 0 (> 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in the low-SSFR locus, while 22 out of 24 spirals / irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and alpha-IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total galaxy luminosity and (2) are not strongly interacting and largely isolated. This selection eliminates mostly low-luminosity dwarfs and galaxies with some degree of peculiarity, providing a substantially improved, quiescent control sample. Unlike HCG galaxies, galaxies in the comparison SINGS subsample are continuously distributed both in SSFR and alpha-IRAC, although they show ranges in SFR(sub TOTAL) values, morphologies and stellar masses similar to those for HCG systems. We test the SSFR bimodality against a number of uncertainties, and find that these can only lead to its further enhancement. Excluding galaxies belonging to HCGs with three giant galaxies (triplets) leaves both the SSFR and the alpha-IRAC bimodality completely unaffected. We interpret these results as further evidence that an environment characterized by high galaxy number densities and low galaxy velocity dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star formation processes in galaxies and favoring a fast transition to quiescence.
Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar
NASA Technical Reports Server (NTRS)
Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)
2002-01-01
We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r(sub k) is greater than or equal to 4.6. Its low luminosity (2 solar masses) and high veiling dictate that its central protostar is very low mass, M is approx. 0.1 solar masses. We also evaluate multi-epoch X ray data along with these spectra and conclude that the X ray variabilities of these sources are not directly related to their protostellar rotation velocities.
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa
2018-07-01
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 105 M_{⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.
NASA Astrophysics Data System (ADS)
Bublitz, Jesse
Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (<1.5 kpc) planetary nebulae using the 30 m telescope at the Institut de Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.
Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS
NASA Astrophysics Data System (ADS)
Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.
2017-01-01
We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.
The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia
Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizingmore » UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.« less
Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47
NASA Technical Reports Server (NTRS)
Schwartz, R. D.
1983-01-01
IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Linsky, Jeffrey L.; Brown, Alexander
1994-01-01
We present far-UV (1200-1930 A) observations of the prototypical red supergiant star alpha Ori, obtained with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). The observations, obtained in both low- (G140L) and medium- (G160/200M) resolution modes, unamibiguously confirm that the UV 'continuum' tentatively seen with (IUE) is in fact a true continuum and is not due to a blend of numerous faint emission features or scattering inside the IUE spectrograph. This continuum appears to originate in the chromospheric of the star at temperatures ranging from 3000-5000 K, and we argue that it is not related to previously reported putative companions or to bright spots on the stellar disk. Its stellar origin is further confirmed by overlying atomic and molecular absorptions from the chromosphere and circumstellar shell. The dominant structure in this spectral region is due to nine strong, broad absorption bands of the fourth-positive A-X system of CO, superposed on this continuum in the 1300-1600 A region. Modeling of this CO absorption indicates that it originates in the circumstellar shell in material characterized by T = 500 K, N(CO) = 1.0 x 10(exp 18) per sq cm, and V(sub turb) = 5.0 km per sec. The numerous chromospheric emission features are attributed mostly to fluorescent lines of Fe II and Cr II (both pumped by Lyman Alpha) and S I lines, plus a few lines of O I, C I, and Si II. The O I and C I UV 2 multiplets are very deficient in flux, compared to both the flux observed in lines originating from common upper levels but with markedly weaker intrinsic strength (i.e., O I UV 146 and C I UV 32) and to the UV 2 line fluxes seen in other cool, less luminous stars. This deficiency appears to be caused by strong self-absorption of these resonance lines in the circumstellar shell and/or upper chromosphere of alpha Ori. Atomic absorption features, primarily due to C I and Fe II are clearly seen in the G160M spectrum centered near 1655 A. These Fe II features are formed at temperatures that can occur only in the chromosphere of the star and are clearly not photospheric or circumstellar in origin.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2007-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and trace dust formation episodes. This will provide a direct measurement of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars
NASA Astrophysics Data System (ADS)
Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot
2017-11-01
The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.
Early Emission from Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Rabinak, Itay; Livne, Eli; Waxman, Eli
2012-09-01
A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a ~103 s long UV/optical flash with a luminosity of ~1 to ~3 × 1039 erg s-1. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t drop ~ 1 hr due to the deviation from pure radiation domination.
Accretion Disks in Supersoft X-ray Sources
NASA Technical Reports Server (NTRS)
Popham, Robert; DiStefano, Rosanne
1996-01-01
We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.
UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wethers, C. F.; Banerji, M.; Hewett, P. C.
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less
UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey
Wethers, C. F.; Banerji, M.; Hewett, P. C.; ...
2018-01-05
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2018-04-01
I discuss a scenario in which the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is primarily due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs), which subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central giant elliptical galaxy in the Virgo cluster of galaxies. Data taken from the literature reveal a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parameterization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that the observed correlation between UV upturn strength and GC specific frequency can be explained by variations in the characteristic truncation mass {{ \\mathcal M }}{{c}} such that {{ \\mathcal M }}{{c}} increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in massive galactic spheroids. With this in mind, I predict that future studies will find that [N/Fe] decreases with increasing galactocentric radius in massive ETGs, and that such gradients have the largest amplitudes in ETGs with the strongest UV upturns.
On the faint-end of the high-z galaxy luminosity function
NASA Astrophysics Data System (ADS)
Yue, Bin; Ferrara, Andrea; Xu, Yidong
2016-12-01
Recent measurements of the luminosity function (LF) of galaxies in the Epoch of Reionization (EoR, z ≳ 6) indicate a very steep increase of the number density of low-mass galaxies populating the LF faint-end. However, as star formation in low-mass haloes can be easily depressed or even quenched by ionizing radiation, a turnover is expected at some faint UV magnitudes. Using a physically motivated analytical model, we quantify reionization feedback effects on the LF faint-end shape. We find that if reionization feedback is neglected, the power-law Schechter parametrization characterizing the LF faint-end remains valid up to absolute UV magnitude ˜-9. If instead radiative feedback is strong enough that quenches star formation in haloes with circular velocity smaller than 50 km s-1, the LF starts to drop at absolute UV magnitude ˜-15, I.e. slightly below the detection limits of current (unlensed) surveys at z ˜ 5. The LFs may rise again at higher absolute UV magnitude, where, as a result of interplay between reionization process and galaxy formation, most of the galaxy light is from relic stars formed before the EoR. We suggest that the galaxy number counts data, particularly in lensed fields, can put strong constraints on reionization feedback. In models with stronger reionization feedback, stars in galaxies with absolute UV magnitude higher than ˜-13 and smaller than ˜-8 are typically older. Hence, the stellar age-UV magnitude relation can be used as an alternative feedback probe.
Mass Accretion Rate of Very Low Luminosity Objects
NASA Astrophysics Data System (ADS)
Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao
2013-08-01
We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin
2017-05-01
Low-redshift active galactic nuclei (AGNs) with extremely blue optical spectral indices are shown to have a mean, velocity-averaged, broad-line Hα/Hβ ratio of ≈2.72 ± 0.04, consistent with a Baker-Menzel Case B value. Comparison of a wide range of properties of the very bluest AGNs with those of a luminosity-matched subset of the Dong et al. blue AGN sample indicates that the only difference is the internal reddening. Ultraviolet fluxes are brighter for the bluest AGNs by an amount consistent with the flat AGN reddening curve of Gaskell et al. The lack of a significant difference in the GALEX (far-ultraviolet-near-ultraviolet) colour index strongly rules out a steep Small Magellanic Cloud-like reddening curve and also argues against an intrinsically harder spectrum for the bluest AGNs. For very blue AGNs, the Ly α/Hβ ratio is also consistent with being the Case B value. The Case B ratios provide strong support for the self-shielded broad-line model of Gaskell, Klimek & Nazarova. It is proposed that the greatly enhanced Ly α/Hβ ratio at very high velocities is a consequence of continuum fluorescence in the Lyman lines (Case C). Reddenings of AGNs mean that the far-UV luminosity is often underestimated by up to an order of magnitude. This is a major factor causing the discrepancies between measured accretion disc sizes and the predictions of simple accretion disc theory. Dust covering fractions for most AGNs are lower than has been estimated. The total mass in lower mass supermassive black holes must be greater than hitherto estimated.
The Ionization Source in the Nucleus of M84
NASA Technical Reports Server (NTRS)
Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.
2000-01-01
We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.
Stellar mass buildup in galaxies in the first 1.5 Gyr of the universe
NASA Astrophysics Data System (ADS)
Gonzalez, Valentino
In this thesis we have made extensive use of the deepest optical and infrared images currently available from the Hubble Space Telescope (HST) and the Spitzer Space Telescope to study the properties of the stellar populations and the stellar mass buildup in galaxies in the first 1.5 Gyr after the Big Bang. The star formation Rates (SFRs) estimated for LBGs at z ≳ 4 are generally in the range 1 -- 100 M⊙ yr--1. The stellar mass estimates are most robust for sources with good Spitzer/IRAC detections, corresponding to galaxies with stellar masses ≳ 108.5 M⊙ at z ˜ 4 ( ≳ 109.5 M⊙ at z ˜ 7). For sources with lower rest-frame optical luminosities, that, as a result, are individually undetected in IRAC, their average stellar masses have been studied in a stacking analysis of a large number of sources. This enables us to reach stellar masses ˜ 10 7.8 M⊙ at z ˜ 4. The stellar masses show a fairly tight correlation with UV luminosity or SFR, and the zeropoint of the relation does not seem to evolve strongly with redshift. We have taken advantage of the UV luminosity vs. stellar mass relation observed in LBGs at z ≳ 4 -- 7 to derive the stellar mass function (SMF) of galaxies at these redshifts. The method uses a combination of the UV LF and the mean UV vs. stellar mass relation (including the scatter, estimated to be ˜ 0.5 dex at bright luminosities at z ˜ 4). This method allows an analytic estimate of the low mass slope of the SMF. This slope (the power-law exponent of the SMF at low masses), is estimated to be in the --1.44 -- --1.55, range which is flatter than the UV LF faint end slope at these redshifts ( ≲ --1.74). This means that low mass systems contribute less to the total stellar mass density (SMD) of the Universe than would have been estimated assuming a constant mass-to-UV-light ratio. We show that this is also much flatter than the theoretical predictions from simulations, which generally over-predict the number density of low mass systems at these redshifts. The UV luminosity vs. stellar mass relation indicates only a small variation of the mass-to-light ratio as a function of UV luminosity. This is confirmed in a stacking analysis of a large number of sources from the HUDF and the Early Release Science fields (˜ 400 z ˜ 4, ˜ 120 z ˜ 5, ˜ 60 z ˜ 6, 36 at z ˜ 7). Interestingly, the stacked SEDs at z ≳ 5 in the rest-frame optical shows a color [3.6] -- [4.5] ˜ 0.3 mag. This color is hard to reproduce by synthetic stellar population models that only include stellar continua, and it probably indicates the presence of moderately strong emission lines (Halpha EWrest ˜ 300 A). The contribution from such emission lines in the IRAC fluxes indicates that the stellar masses and ages could both be over-estimated by a factor ˜ 2. One of the most interesting results presented in this thesis is the apparent plateau of the specific SFR (sSFR = SFR / stellar mass). In early results, the similarity in the SEDs of galaxies at a given UV luminosity in the z ˜ 4 -- 7 redshift range resulted in very similar estimates of the SFR and stellar masses of these galaxies. Furthermore, we find that the reported sSFR estimates at z ˜ 2 are also very similar to the ones in the z ˜ 4 -- 7 redshift range (˜ 2 Gyr--1 for ˜ 5 x 109 M⊙ galaxies). A puzzle arises from the fact that the dark matter accretion rate onto halos is predicted to decrease monotonically and rather fast as a function of cosmic time (approximately ∝ (1 + z) 2.5). If gas and star formation follow the inflow of dark matter, the sSFR at a constant mass should also decrease monotonically with time, which is contrary to the indication from these observations. When we include the possible effects of emission lines, the stellar masses decrease by a factor ˜ 2x at z ≳ 5. The revised stellar masses may favor a slowly rising sSFR at z ≳ 2, but the rise as a function of redshift is still much slower (sSFR(z) ∝ (1 + z)0.7) than that of specific dark matter accretion rate. This suggests that the stellar mass buildup is somehow decoupled from the dark matter buildup at early times. (Abstract shortened by UMI.)
A study of (OI) 63.2 and 145.5 micron emission from M17 and SGR A from the Lear jet
NASA Technical Reports Server (NTRS)
Melnick, G. G.
1986-01-01
The Lear Jet Observatory was used to observe the 157.7 micron (C II) line from the galactic H II regions W3 and W51. These measurements established a lower limit in the 157.7 micron line for solar luminosity of 360 from W3, assuming adistance of 2 kpc, and a solar luminosity of 4100 from W51, assuming a distance of 7 kpc. The data indicated that the CII/far infrared continuum ratio for both W3 and W51 were within the range found for other galactic H II regions.
The linear polarization of 3C 345 in the ultraviolet
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Boyd, Patricia T.; Wolinski, Karen G.; Smith, Paul S.; Impey, C. D.; Bless, Robert C.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Elliot, J. L.
1994-01-01
The linear polarization of 3C 345, a superluminal radio source and OVV quasar, was observed in two bandpasses in the ultraviolet (centered at 2160 A and 2770 A) in 1993 April using the High Speed Photometer on the Hubble Space Telescope. The quasar is significantly polarized in the UV (p greater than 5%). Ground-based polarimetry was obtained 11 days later, but a difference in the position angle between the observations in the visible and those in the UV indicate that the magnitude of the polarization of 3C 345 may have changed over that time. If the two observation sets represent the same state of spectral polarization, then the large UV flux implies that either the polarization of the synchrotron continuum must stop decreasing in the UV, or that there is an additional source of polarized flux in the ultraviolet. Only if the UV observations represent a spectral polarization state with the same position angle in the visible seen previously in 3C 345 can the polarized flux be represented by a single power law consistent with the three-component model of Smith et al. This model consists of a polarized synchrotron component, an unpolarized component from the broad-line region, and an unpolarized component attributed to thermal radiation from an optically thick accretion disk. Additional simultaneous polarimetry in the UV and visible will be required to further constrain models of the continuum emission processes in 3C 345 and determine if the UV polarized flux is synchrotron in origin.
NASA Astrophysics Data System (ADS)
Pettini, Max; Shapley, Alice E.; Steidel, Charles C.; Cuby, Jean-Gabriel; Dickinson, Mark; Moorwood, Alan F. M.; Adelberger, Kurt L.; Giavalisco, Mauro
2001-06-01
We present the first results of a spectroscopic survey of Lyman break galaxies (LBGs) in the near-infrared aimed at detecting the emission lines of [O II], [O III], and Hβ from the H II regions of normal star-forming galaxies at z~=3. From observations of 15 objects with the Keck telescope and the Very Large Telescope augmented with data from the literature for an additional four objects, we reach the following main conclusions. The rest-frame optical properties of LBGs at the bright end of the luminosity function are remarkably uniform, their spectra are dominated by emission lines, [O III] is always stronger than Hβ and [O II], and projected velocity dispersions are between 50 and 115 km s-1. Contrary to expectations, the star formation rates deduced from the Hβ luminosity are on average no larger than those implied by the stellar continuum at 1500 Å presumably any differential extinction between rest-frame optical and UV wavelengths is small compared to the relative uncertainties in the calibrations of these two star formation tracers. For the galaxies in our sample, the abundance of oxygen can only be determined to within 1 order of magnitude without recourse to other emission lines ([N II] and Hα), which are generally not available. Even so, it seems well established that LBGs are the most metal-enriched structures at z~=3, apart from quasi-stellar objects, with abundances greater than about 1/10 solar and generally higher than those of damped Lyα systems at the same epoch. They are also significantly overluminous for their metallicities; this is probably an indication that their mass-to-light ratios are low compared to present-day galaxies. At face value, the measured velocity dispersions imply virial masses of about 1010 Msolar within half-light radii of 2.5 kpc. The corresponding mass-to-light ratios, M/L~0.15 in solar units, are indicative of stellar populations with ages between 108 and 109 yr, consistent with the UV-optical spectral energy distributions. However, we are unable to establish conclusively whether or not the widths of the emission lines reflect the motions of the H II regions within the gravitational potential of the galaxies, even though in two cases we see hints of rotation curves. All 19 LBGs observed show evidence for galactic-scale superwinds; such outflows have important consequences for regulating star formation, distributing metals over large volumes, and allowing Lyman continuum photons to escape and ionize the intergalactic medium. Based on data obtained at the European Southern Observatory on Paranal, Chile, and at the W. M. Keck Observatory on Mauna Kea, Hawaii. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)
NASA Astrophysics Data System (ADS)
Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.
2007-11-01
We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).
Deep UV Luminosity Functions at the Infall Region of the Coma Cluster
NASA Technical Reports Server (NTRS)
Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.
2011-01-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng
2018-03-01
The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.
VizieR Online Data Catalog: Optical spectroscopic atlas of MOJAVE AGNs (Torrealba+, 2012)
NASA Astrophysics Data System (ADS)
Torrealba, J.; Chavushyan, V.; Cruz-Gonzalez, I.; Arshakian, T. G.; Bertone, E.; Rosa-Gonzalez, D.
2014-09-01
The atlas includes spectral parameters for the emission lines Hβ, [OIII] 5007, MgII 2798 and/or CIV 1549 and corresponding data for the continuum, as well as the luminosities and equivalent widths of the FeII UV/optical. It also contains homogeneous photometric information in the B-band for 242 sources of the MOJAVE/2cm sample. These data were acquired at 2.1m mexican telescopes: Observatorio Astronomico Nacional in San Pedro Martir (OAN-SPM), B. C., Mexico and at Observatorio Astronomico Guillermo Haro, in Cananea, Sonora (OAGH), Mexico. It is supplemented with spectroscopic data found in the archives of the Sloan Digital Sky Survey (SDSS), the Hubble Space Telescope (HST), in the AGN sample of Marziani et al. (2003ApJS..145..199M, Cat. J/ApJS/145/199), and in Lawrence et al. 1996ApJS..107..541L. We present the continuum emission and/or line parameters for 41 sources in the Hβ region, 78 in the MgII region, and 35 in the CIV region. Also, there are 14 sources with information available for both Hβ and MgII regions, 12 with MgII and CIV, and 5 with Hβ, MgII and CIV. The spectroscopic information information for the statistically complete sample MOJAVE-1 (Lister & Homan, 2005AJ....130.1389L, Cat. J/AJ/130/1389) included in the Atlas is as follows: 28 sources in the Hβ region, 46 in the MgII region, and 23 in the CIV region. All the emission lines parameters are for the broad component of the line, except for [OIII] 5007. (7 data files).
Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei
NASA Astrophysics Data System (ADS)
Baskin, Alexei; Laor, Ari
2018-02-01
The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.
EVIDENCE FOR CO SHOCK EXCITATION IN NGC 6240 FROM HERSCHEL SPIRE SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meijerink, R.; Spaans, M.; Kristensen, L. E.
2013-01-10
We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 lines are detected, including CO J = 4 - 3 through J = 13 - 12, 6 H{sub 2}O rotational lines, and [C I] and [N II] fine-structure lines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the CO ladders of NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for the excitation of the gas in NGC 6240. We applied both C and J shockmore » models to the H{sub 2} v = 1-0 S(1) and v = 2-1 S(1) lines and the CO rotational ladder. The CO ladder is best reproduced by a model with shock velocity v{sub s} = 10 km s{sup -1} and a pre-shock density n{sub H} = 5 Multiplication-Sign 10{sup 4} cm{sup -3}. We find that the solution best fitting the H{sub 2} lines is degenerate. The shock velocities and number densities range between v{sub s} = 17-47 km s{sup -1} and n{sub H} = 10{sup 7}-5 Multiplication-Sign 10{sup 4} cm{sup -3}, respectively. The H{sub 2} lines thus need a much more powerful shock than the CO lines. We deduce that most of the gas is currently moderately stirred up by slow (10 km s{sup -1}) shocks while only a small fraction ({approx}< 1%) of the interstellar medium is exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.« less
MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froning, Cynthia S.; France, Kevin; Khargharia, Juthika
2011-12-10
We present contemporaneous X-ray, ultraviolet, optical, near-infrared, and radio observations of the black hole binary system, A0620-00, acquired in 2010 March. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00 as well as NUV observations with the Space Telescope Imaging Spectrograph. The observed spectrum is flat in the FUV and very faint (with continuum fluxes {approx_equal} 1e - 17 erg cm{sup -2} s{sup -1} A{sup -1}). The UV spectra also show strong, broad (FWHM {approx} 2000 km s{sup -1}) emission lines of Si IV, C IV, He II, Fe II,more » and Mg II. The C IV doublet is anomalously weak compared to the other lines, which is consistent with the low carbon abundance seen in NIR spectra of the source. Comparison of these observations with previous NUV spectra of A0620-00 shows that the UV flux has varied by factors of 2-8 over several years. We compiled the dereddened, broadband spectral energy distribution (SED) of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at {approx_equal}3000 A. The peak can be fit with a T = 10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that {approx}90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10{sup 5} the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion. We compared our broadband SED to two models of A0620-00 in quiescence: the advection-dominated accretion flow model and the maximally jet-dominated model. The comparison suggests that strong outflows may be present in the system, indicated by the discrepancies in accretion rates and the FUV upturn in flux in the SED.« less
NASA Astrophysics Data System (ADS)
Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.
2017-09-01
We present the results of a study investigating the dust attenuation law at z ≃ 5, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N = 498 galaxies drawn from the First Billion Years (FiBY) simulation project. The simulated galaxies at z ≃ 5, which have M1500 ≤ -18.0 and 7.5 ≤ log(M/M}_{⊙}) ≤ 10.2, display a mass-dependent α-enhancement, with a median value of [α /{Fe}]_{z=5} ˜eq 4 × [α /{Fe}]_{Z_{⊙}}. The median Fe/H ratio of the simulated galaxies is 0.14 ± 0.05 which produces steep intrinsic ultraviolet (UV) continuum slopes; 〈βI〉 = -2.4 ± 0.05. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form A(λ) ∝ λn, we explore the parameter values which best reproduce the observed z = 5 luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass (A1500 = 0.5 × log(M/M⊙) - 3.3), and the dust attenuation slope (n) is within the range -0.7 ≤ n ≤ -0.3, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model assumptions, including the effects of massive binaries. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV (n = -0.55). In contrast, curves as steep as the Small Magellanic Cloud extinction curve (n = -1.24) are formally ruled out. Finally, we show that our models are consistent with recent 1.3 mm Atacama Large Millimeter Array observations of the Hubble Ultra Deep Field, and predict the form of the z ≃ 5 infrared excess (IRX)-β relation.
Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability
NASA Astrophysics Data System (ADS)
Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.
2016-04-01
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
The role of environment in the observed Fundamental Plane of radio Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Shabala, Stanislav S.
2018-05-01
The optical Fundamental Plane of black hole activity relates radio continuum luminosity of Active Galactic Nuclei to [O III] luminosity and black hole mass. We examine the environments of low redshift (z < 0.2) radio-selected AGN, quantified through galaxy clustering, and find that halo mass provides similar mass scalings to black hole mass in the Fundamental Plane relations. AGN properties are strongly environment-dependent: massive haloes are more likely to host radiatively inefficient (low-excitation) radio AGN, as well as a higher fraction of radio luminous, extended sources. These AGN populations have different radio - optical luminosity scaling relations, and the observed mass scalings in the parent AGN sample are built up by combining populations preferentially residing in different environments. Accounting for environment-driven selection effects, the optical Fundamental Plane of supermassive black holes is likely to be mass-independent, as predicted by models.
A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.
2017-06-01
The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6
Uv Spectroscopy of Low-Redshift Active Galaxies -- Cyc 4
NASA Astrophysics Data System (ADS)
Boggess, Albert
1994-01-01
FOS will be used to measure the ultraviolet spectrum of active galaxies. Complementary and simultaneous visual and infrared data will also be obtained. The profile of the emission lines will provide information on the broadening mechanism and dynamics of the emitting regions. Comparison of the profile and radial velocity of the emission lines produced by species of different ioni- zation potential will allow the study of the thermal and density stratification of the emitting regions. The degree of asymmetry of lines at different wave- lengths will allow the absorbing material be identified and located. The ratio of the UV to visible lines, such as those for O I and He II will be used to estimate the reddening along the line of sight. Ratio of emission line fluxes will be compared with models in order to derive the ionization mechanism, elec- tron temperature and density, and chemical composition of the emitting gas. The emission line properties of low luminosity will be compared with those of high luminosity objects in order to investigate the covering factor and evolutionary effects. The continumm spectrum from the UV to the IR will be used to establish the emission mechanism and the nature and luminosity of the energy source. The weak absorption lines will be used to establish the physical conditions and the chemical composition of the gas in: our Galaxy, intergalactic medium and the parent galaxy. Absorption produced by broad line clouds will give information on cloud motion and covering factor.
NASA Astrophysics Data System (ADS)
Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Godet, Olivier; Grupe, Dirk; Webb, Natalie A.; Barret, Didier; Irwin, Jimmy A.
2018-03-01
The ultrasoft X-ray flare 2XMMi J184725.1-631724 was serendipitously detected in two XMM-Newton observations in 2006 and 2007, with a peak luminosity of 6 × 1043 erg s-1. It was suggested to be a tidal disruption event (TDE) because its position is consistent with the centre of an inactive galaxy. It is the only known X-ray TDE candidate whose X-ray spectra showed evidence of a weak steep power-law component besides a dominant supersoft thermal disc. We have carried out multiwavelength follow-up observations of the event. Multiple X-ray monitorings show that the X-ray luminosity has decayed significantly after 2011. Especially, in our deep Chandra observation in 2013, we detected a very faint counterpart that supports the nuclear origin of 2XMMi J184725.1-631724 but had an X-ray flux a factor of ˜1000 lower than in the peak of the event. Compared with follow-up ultraviolet (UV) observations, we found that there might be some enhanced UV emission associated with the TDE in the first XMM-Newton observation. We also obtained a high-quality UV-optical spectrum with the Southern Astrophysical Research (SOAR) Telescope and put a very tight constraint on the persistent nuclear activity, with a persistent X-ray luminosity expected to be lower than the peak of the flare by a factor of >2700. Therefore, our multiwavelength follow-up observations strongly support the TDE explanation of the event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, Daniel R.; Johnson, Benjamin D.; Conroy, Charlie, E-mail: drw@ucsc.edu
We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies are used to reconstruct the LF down to M {sub UV} ∼–5 at z ∼ 5 and M {sub UV} ∼–1.5 at z < 1. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next-generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, aremore » well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint-end slope, α, steepens from ≈ – 1.2 at z < 1 to ≈ – 1.6 at 4 < z < 5. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest LG galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key role in the reionization of the universe.« less
NASA Astrophysics Data System (ADS)
Park, Daeseong; Barth, Aaron J.; Woo, Jong-Hak; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.; Assef, Roberto J.; Pancoast, Anna
2017-04-01
We provide an updated calibration of C IV λ 1549 broad emission line–based single-epoch (SE) black hole (BH) mass estimators for active galactic nuclei (AGNs) using new data for six reverberation-mapped AGNs at redshift z=0.005{--}0.028 with BH masses (bolometric luminosities) in the range {10}6.5{--}{10}7.5 {M}ȯ ({10}41.7{--}{10}43.8 erg s‑1). New rest-frame UV-to-optical spectra covering 1150–5700 Å for the six AGNs were obtained with the Hubble Space Telescope (HST). Multicomponent spectral decompositions of the HST spectra were used to measure SE emission-line widths for the C IV, Mg II, and Hβ lines, as well as continuum luminosities in the spectral region around each line. We combine the new data with similar measurements for a previous archival sample of 25 AGNs to derive the most consistent and accurate calibrations of the C IV-based SE BH mass estimators against the Hβ reverberation-based masses, using three different measures of broad-line width: full width at half maximum (FWHM), line dispersion ({σ }line}), and mean absolute deviation (MAD). The newly expanded sample at redshift z=0.005{--}0.234 covers a dynamic range in BH mass (bolometric luminosity) of {log}{M}BH}/{M}ȯ =6.5{--}9.1 ({log}{L}bol}/ erg s‑1 = 41.7{--}46.9), and we derive the new C IV-based mass estimators using a Bayesian linear regression analysis over this range. We generally recommend the use of {σ }line} or MAD rather than FWHM to obtain a less biased velocity measurement of the C IV emission line, because its narrow-line component contribution is difficult to decompose from the broad-line profile. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12922.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, Lucia; Krucker, Säm; Heinzel, Petr
2016-01-10
Enhanced continuum brightness is observed in many flares (“white light flares”), yet it is still unclear which processes contribute to the emission. To understand the transport of energy needed to account for this emission, we must first identify both the emission processes and the emission source regions. Possibilities include heating in the chromosphere causing optically thin or thick emission from free-bound transitions of Hydrogen, and heating of the photosphere causing enhanced H{sup −} continuum brightness. To investigate these possibilities, we combine observations from Interface Region Imaging Spectrograph (IRIS), SDO/Helioseismic and Magnetic Imager, and the ground-based Facility Infrared Spectrometer instrument, coveringmore » wavelengths in the far-UV, near-UV (NUV), visible, and infrared during the X1 flare SOL20140329T17:48. Fits of blackbody spectra to infrared and visible wavelengths are reasonable, yielding radiation temperatures ∼6000–6300 K. The NUV emission, formed in the upper photosphere under undisturbed conditions, exceeds these simple fits during the flare, requiring extra emission from the Balmer continuum in the chromosphere. Thus, the continuum originates from enhanced radiation from photosphere (visible-IR) and chromosphere (NUV). From the standard thick-target flare model, we calculate the energy of the nonthermal electrons observed by Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and compare it to the energy radiated by the continuum emission. We find that the energy contained in most electrons >40 keV, or alternatively, of ∼10%–20% of electrons >20 keV is sufficient to explain the extra continuum emission of ∼(4–8) × 10{sup 10} erg s{sup −1} cm{sup −2}. Also, from the timing of the RHESSI HXR and the IRIS observations, we conclude that the NUV continuum is emitted nearly instantaneously when HXR emission is observed with a time difference of no more than 15 s.« less
NASA Astrophysics Data System (ADS)
Le Mouelic, S.; Langevin, Y.; Erard, S.; Pinet, P.; Daydou, Y.; Chevrel, S.
1999-01-01
The Clementine UV-VIS dataset has greatly improved our understanding of the Moon. The UV-VIS camera was limited to five spectral channels from 415 to 1000 nm. The Clementine near-infrared (NIR) camera was designed to complement this spectral coverage. The NIR filter at 2000 run allows the discrimination between olivine and pyroxene within identified mare basalts. In addition, we will show that the integration of Clementine UV-VIS and NIR datasets allows a better evaluation of the ferrous 1-micron absorption band depth and gives access to the slope of the continuum. The discrimination between maturity and FeO composition can be achieved by a principal component analysis performed on spectral parameters. We selected 952 Clementine UV-VIS and NIR images to compute a multispectral cube covering the Aristarchus Plateau. Aristarchus Plateau is one of the most heterogeneous areas on the Moon. Highland-type materials, mare basalts, and dark mantle deposits have previously been mentioned. The mosaic represents a set of about 500 x 600 nine-channel spectra. UV-VIS filters at 415, 750, 900, 950, and 1000 run were calibrated using the ISIS software. We applied the reduction method described elsewhere to reduce the NIR filters at 1100, 1250, 1500 and 2000 nm. Absolute gain and offset values were refined for the NIR images by using eight telescopic spectra acquired as references. With this calibration test, we were able to reproduce the eight telescopic spectra with a maximum error of 1.8%. The integration of UV-VIS and NIR spectral channels allows the visualization of complete low-resolution spectra. In order to investigate the spectral effects of the space-weathering processes, we focused our analysis on a small mare crater and its immediate surroundings. According to the small size of the crater (about 2-km) and its location on an homogeneous mare area, we can reasonably assume that the content in FeO is homogeneous. The impact event has induced a variation of the maturity of the soil by excavating fresh material. Graphs displays five absolute reflectance spectra extracted from this area. One graph displays the same spectra divided by a continuum, which is considered to be a right line fitting the spectra at 0.75 and 1.5 micron. Spectrum 1 is extracted from the brightest part of the crater interior, and spectrum 5 is extracted from the surrounding mare material. Spectra 2, 3, and 4 are extracted from intermediate distances between the two areas. The 1-and-2 micron absorption band depths and the overall reflectance increase from spectrum 5 (corresponding to a mature area) to spectrum 1 (the most immature area). Conversely, the continuum slope decreases from spectrum 5 to spectrum 1. These three spectral effects of maturity have also been identified on laboratory spectra of lunar samples. Most of the lunar soils exhibit a signature near 1 micron. This absorption band is due to the presence of Fe2+ in mafic minerals such as orthopyroxene, clinopyroxene, and olivine. In the case of Clementine UV-VIS data alone, the depth of the 1-micron feature is evaluated by the 950/750-nm reflectance ratio. This ratio combined to the reflectance at 750nm has been used to evaluate the global content in FeO of the lunar surface. Near-infrared data makes a more precise evaluation of the 1 micron band depth possible by providing the right side of the band. The continuum in the vicinity of the band can be evaluated by an arithmetic mean or a geometric interpolation of both sides of the band, which are taken at 750 and 1500nm. The geometric interpolation is less sensitive to residual calibration uncertainties. With this method, the 1-micron absorption band depth for the Aristarchus; Plateau can be refined by as much as 10%. The difference is maximum on Fe-poor, highland-type materials. Similarly, the NIR data provide the possibility to investigate the continuum slope of the spectra. The continuum slope is a key parameter in any spectral analysis. The continuum slope variations seem to be mainly dominated by maturity effects, as suggested by the high correlation with the independent evaluation of maturity (OMAT parameter). We have also found a good correlation between the continuum slope and the OMAT parameter on laboratory spectra of lunar samples of the J. B. Adams collection. The discrimination between maturity effects and composition effects can be achieved by using a principal component analysis (PCA) on three spectral parameters, which are the reflectance at 0.75 micron the depth of the 1-micron feature, and the continuum slope. These parameters are mostly affected by maturity and FeO content. The effects of various glass content are assimilated to maturity. The aim of the PCA is to decorrelate the FeO content and maturity effects in the three input parameters. The integration of UV-VIS and NIR datasets allows for a better understanding of the spectral properties of the lunar surface by giving access to key parameters such as the 1 and 2-micron band depths and the continuum slope. The continuum slope can be combined with the depth of the mafic 1-micron absorption feature and the reflectance at 750 nm to discriminate between maturity and composition. NIR images of the sample return stations will be very interesting to refine absolute FeO content and maturity evaluations. Additional information is available in original.
THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Yan, Lin; Capak, Peter
We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, basedmore » on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.« less
DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.
2012-02-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M{sub UV} = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes ({alpha} Almost-Equal-To -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechtermore » model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of {alpha} Almost-Equal-To -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than {alpha} = -1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M{sub UV} Almost-Equal-To -14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M{sub *} = 10{sup 8} M{sub Sun }. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.« less
Two UV colours of the central part of M 31
NASA Technical Reports Server (NTRS)
Deharveng, J. M.; Laget, M.; Monnet, G.; Vuillemin, A.
1976-01-01
Two photographs of the galaxy M 31 have been obtained in the far UV with a Faust rocket experiment and in the near UV with the S 183 experiment aboard Skylab. Only the central part of the galaxy is detected. Reductions provide both the energy received and the angular area over M 31 from which it is emitted. The UV flux is brighter than expected from extrapolation of the visible spectrum. The distribution below 300 A is rather flat and different from previous OAO-2 observations. These results, combined with Lyman continuum flux evaluation, are used to discuss the temperature and the age of the stars which may be responsible for this anomalous UV distribution.
NASA Technical Reports Server (NTRS)
Hathi, N. P.; Cohen, S. H.; Ryan, R. E., Jr.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H.; Koekemoer, A. M.; Rutkowski, M. J.; OConnell, R. W.;
2012-01-01
We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Zauderer, B. A.; Chary, R.-R.
2014-12-01
We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000more » μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.« less
1.0 Mm Maps and Radial Density Distributions of Southern Hii/molecular Cloud Complexes
NASA Technical Reports Server (NTRS)
Cheung, L. H.; Frogel, J. A.; Gezar, D. Y.; Hauser, M. G.
1980-01-01
Several 1.0 continuum mapping observations were made of seven southern hemisphere h12/molecular cloud complexes with 65 arcsec resolution. The radial density distribution of the clouds with central luminosity sources was determined observationally. Strong similarities in morphology and general physical conditions were found to exist among all of the southern clouds in the sample.
Observations of Cygnus X-2 with IUE: Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Garcia, M. R.; Verbunt, F.; Hasinger, Guenther; Kuerster, M.
1989-01-01
The observations of the low-mass x ray binary, Cyg X-2, taken with the International Ultraviolet Explorer (IUE) in a campaign conducted in June and October of 1988 are reported. A direct relationship between the strength of the UV continuum and line emission and the placement of the x ray spectrum in one of three branches of the so-called Z-shaped curve is found by comparison with simultaneous x ray observations. All three previously known x ray spectral states are detected; the UV continuum and line emission increase monotonically along the Z with the least emission in the horizontal branch, and the most in the flaring branch. Emission lines due to HeII, CIV, NIII, NIV, NV, SiIV, and MgII are observed.
TESTING WIND AS AN EXPLANATION FOR THE SPIN PROBLEM IN THE CONTINUUM-FITTING METHOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Bei; Czerny, Bożena; Sobolewska, Małgosia
2016-04-20
The continuum-fitting method is one of the two most advanced methods of determining the black hole spin in accreting X-ray binary systems. There are, however, still some unresolved issues with the underlying disk models. One of these issues manifests as an apparent decrease in spin for increasing source luminosity. Here, we perform a few simple tests to establish whether outflows from the disk close to the inner radius can address this problem. We employ four different parametric models to describe the wind and compare these to the apparent decrease in spin with luminosity measured in the sources LMC X-3 andmore » GRS 1915+105. Wind models in which parameters do not explicitly depend on the accretion rate cannot reproduce the spin measurements. Models with mass accretion rate dependent outflows, however, have spectra that emulate the observed ones. The assumption of a wind thus effectively removes the artifact of spin decrease. This solution is not unique; the same conclusion can be obtained using a truncated inner disk model. To distinguish among the valid models, we will need high-resolution X-ray data and a realistic description of the Comptonization in the wind.« less
The secrets of T Pyxidis. I. UV observations
NASA Astrophysics Data System (ADS)
Gilmozzi, R.; Selvelli, P.
2007-01-01
Aims:We study the UV spectral behavior of the recurrent nova T Pyx during 16 years of
Far-UV HST Spectroscopy of an Unusual Hydrogen-poor Superluminous Supernova: SN2017egm
NASA Astrophysics Data System (ADS)
Yan, Lin; Perley, D. A.; De Cia, A.; Quimby, R.; Lunnan, R.; Rubin, Kate H. R.; Brown, P. J.
2018-05-01
SN2017egm is the closest (z = 0.03) H-poor superluminous supernova (SLSN-I) detected to date, and a rare example of an SLSN-I in a massive, metal-rich galaxy. We present the HST UV and optical spectra covering 1000–5500 Å, taken at +3 day relative to the peak. Our data reveal two absorption systems at redshifts matching the host galaxy NGC 3191 (z = 0.0307) and its companion galaxy (z = 0.0299) 73″ apart. Weakly damped Lyα absorption lines are detected at these two redshifts, with H I column densities of (3.0 ± 0.8) × 1019 and (3.7 ± 0.9) × 1019 cm‑2, respectively. This is an order of magnitude smaller than the H I column densities in the disks of nearby galaxies (>1010 M ⊙) and suggests that SN2017egm is on the near side of NGC 3191 and has a low host extinction (E(B ‑ V) ∼ 0.007). Using unsaturated metal absorption lines, we find that the host of SN2017egm probably has a solar or higher metallicity and is unlikely to be a dwarf companion to NGC 3191. Comparison of early-time UV spectra of SN2017egm, Gaia16apd, iPTF13ajg, and PTF12dam finds that the continuum at λ > 2800 Å is well fit by a blackbody, whereas the continuum at λ < 2800 Å is considerably below the model. The degree of UV suppression varies from source to source, with the 1400–2800 Å continuum flux ratio of 1.5 for Gaia16apd and 0.4 for iPTF13ajg. This cannot be explained by the differences in magnetar power or blackbody temperature. Finally, the UV spectra reveal a common set of seven broad absorption features and their equivalent widths are similar (within a factor of 2) among the four events.
X-ray and multiwavelength insights into the inner structure of high-luminosity disc-like emitters
NASA Astrophysics Data System (ADS)
Luo, B.; Brandt, W. N.; Eracleous, M.; Wu, Jian; Hall, P. B.; Rafiee, A.; Schneider, D. P.; Wu, Jianfeng
2013-02-01
We present X-ray and multiwavelength studies of a sample of eight high-luminosity active galactic nuclei (AGN) with disc-like Hβ emission-line profiles selected from the Sloan Digital Sky Survey Data Release 7. These sources have higher redshift (z ≈ 0.6) than the majority of the known disc-like emitters, and they occupy a largely unexplored space in the luminosity-redshift plane. Seven sources have typical AGN X-ray spectra with power-law photon indices of Γ ≈ 1.4-2.0; two of them show some X-ray absorption (column density NH ≈ 1021-1022 cm-2 for neutral gas). The other source, J0850+4451, has only three hard X-ray photons detected and is probably heavily obscured (NH ≳ 3 × 1023 cm-2). This object is also identified as a low-ionization broad absorption line (BAL) quasar based on Mg II λ2799 absorption; it is the first disc-like emitter reported that is also a BAL quasar. The infrared-to-ultraviolet (UV) spectral energy distributions (SEDs) of these eight sources are similar to the mean SEDs of typical quasars with a UV `bump', suggestive of standard accretion discs radiating with high efficiency, which differs from low-luminosity disc-like emitters. Studies of the X-ray-to-optical power-law slope parameters (αOX) indicate that there is no significant excess X-ray emission in these high-luminosity disc-like emitters. Energy budget analysis suggests that for disc-like emitters in general, the inner disc must illuminate and ionize the outer disc efficiently (≈15 per cent of the nuclear ionizing radiation is required on average) via direct illumination and/or scattering. Warped accretion discs are probably needed for direct illumination to work in high-luminosity objects, as their geometrically thin inner discs decrease the amount of direct illumination possible for a flat disc.
Cosmic reionization on computers: The faint end of the galaxy luminosity function
Gnedin, Nickolay Y.
2016-07-01
Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions atmore » $$z\\gtrsim 6$$. A commonly used Schechter function approximation with the magnitude cut at $${M}_{{\\rm{cut}}}\\sim -13$$ provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut $${M}_{{\\rm{cut}}}$$ is found to vary between -12 and -14 with a mild redshift dependence. Here, an analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.« less
Cosmic reionization on computers: The faint end of the galaxy luminosity function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions atmore » $$z\\gtrsim 6$$. A commonly used Schechter function approximation with the magnitude cut at $${M}_{{\\rm{cut}}}\\sim -13$$ provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut $${M}_{{\\rm{cut}}}$$ is found to vary between -12 and -14 with a mild redshift dependence. Here, an analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.« less
NASA Astrophysics Data System (ADS)
Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.
2006-06-01
Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07
Long time scale hard X-ray variability in Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Markowitz, Alex Gary
This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. This experiment yields further support for spectral softening as continuum flux increases.
Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy
NASA Astrophysics Data System (ADS)
Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz
2018-04-01
The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagg, J.; Carilli, C. L.; Lentati, L.
2014-03-10
We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J = 2-1 line emission in BRI 1202–0725 at z = 4.7 (a starburst galaxy and quasar pair) and BRI 1335–0417 at z = 4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the low-J CO line emission. The measured CO J = 2-1 line luminosities of BRI 1202–0725 are L{sub CO}{sup ′}=(8.7±0.8)×10{sup 10} Kmore » km s{sup –1} pc{sup 2} and L{sub CO}{sup ′}=(6.0 ± 0.5)×10{sup 10} K km s{sup –1} pc{sup 2} for the submillimeter galaxy (SMG) and quasar, respectively, which are equal to previous measurements of the CO J = 5-4 line luminosities implying thermalized line emission, and we estimate a combined cold molecular gas mass of ∼9×10{sup 10} M {sub ☉}. In BRI 1335–0417 we measure L{sub CO}{sup ′}=(7.3±0.6)×10{sup 10} K km s{sup –1} pc{sup 2}. We detect continuum emission in the SMG BRI 1202–0725 North (S {sub 44} {sub GHz} = 51 ± 6 μJy), while the quasar is detected with S {sub 44} {sub GHz} = 24 ± 6 μJy and in BRI 1335–0417 we measure S {sub 44} {sub GHz} = 40 ± 7 μJy. Combining our continuum observations with previous data at (rest-frame) far-infrared and centimeter wavelengths, we fit three-component models in order to estimate the star formation rates. This spectral energy distribution fitting suggests that the dominant contribution to the observed 44 GHz continuum is thermal dust emission, while either thermal free-free or synchrotron emission contributes less than 30%.« less
A New Compton-Thick AGN in Our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR
NASA Technical Reports Server (NTRS)
Annuar, A.; Alexander, D. M.; Ghandi, P.; Lansbury, G. B.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.;
2017-01-01
NGC 1448 is one of the nearest luminous galaxies [L(sub 8) - 1000 micrometers is greater than 10(exp. 9) Solar Luminosity] to ours (z = 0.00390), and yet the active galactic nucleus (AGN) it hosts was only recently discovered, in 2009. In this paper, we present an analysis of the nuclear source across three wavebands: mid-infrared (MIR) continuum, optical, and X-rays. We observed the source with the Nuclear Spectroscopic Telescope Array (NuSTAR), and combined these data with archival Chandra data to perform broadband X-ray spectral fitting ( approx. equals 0.5 - 40 keV) of the AGN for the first time. Our X-ray spectral analysis reveals that the AGN is buried under a Compton-thick (CT) column of obscuring gas along our line of sight, with a column density of N(sub H)(los) approx. greater than 2.5 x 10(exp. 24) cm(exp. -2). The best-fitting torus models measured an intrinsic 2-10 keV luminosity of L(sub 2)-10,int = (3.5 - 7.6) x 10(exp. 40) erg s(exp. -1), making NGC 1448 one of the lowest luminosity CTAGNs known. In addition to the NuSTAR observation, we also performed optical spectroscopy for the nucleus in this edge-on galaxy using the European Southern Observatory New Technology Telescope. We reclassify the optical nuclear spectrum as a Seyfert on the basis of the Baldwin- Philips-Terlevich diagnostic diagrams, thus identifying the AGN at optical wavelengths for the first time. We also present high spatial resolution MIR observations of NGC 1448 with Gemini/T-ReCS, in which a compact nucleus is clearly detected. The absorption-corrected 2-10 keV luminosity measured from our X-ray spectral analysis agrees with that predicted from the optical [O III] Lamda 5007 A emission line and the MIR 12 micrometer continuum, further supporting the CT nature ofthe AGN.
NASA Technical Reports Server (NTRS)
Baum, S. A.; Kleijn, G. A. Verdoes; Xu, C.; ODea, C. P.; deZeeuw, P. T.
2004-01-01
We combine the results of an HST STIS and WFPC study of a complete sample of 21 nearby UGC low luminosity radio galaxies with the results of a radio VLA and VLBA study of the same sample. We examine the relationship between the stellar and gaseous properties of the galaxies on tens to hundreds of parsec scale with the properties of the radio jets on the same scale. From the VLA and VLBA data we constrain the physics of the outflowing radio plasma from the tens of parsecs to hundreds of kiloparsec scales. From the WFPC2 H alpha and dust images and the STIS kinematics of the near nuclear gas we obtain constraints on the orientation of near nuclear disks of gas and measures of the nuclear stellar, continuum point source, and line emission fluxes. Under the statistically supported assumption that the radio jet issues perpendicular to the disk, we use the orientation of the optical (large scale accretion?) disks to constrain the three-dimensional orientation of the radio ejection. From HST/STIS spectroscopy of the near-nuclear emission line gas we obtain measures/limits on the black hole masses. We examine correlations between the VLBA and VLA-scale radio emission, the nuclear line emission, and the nuclear optical and radio continuum emission. Though our sample is relatively small, it is uniquely well defined, spans a narrow range in redshift and we have a consistent set of high resolution data with which to carefully examine these relationships. We use the combined radio and optical data to: 1) Constrain the orientation, physics, and bulk outflow speed of the radio plasma; 2) Put limits on the mass accretion rate and study the relationship between black hole mass, radio luminosity, and near nuclear gaseous content; 3) Provide insight into the relationship between BL Lac objects and low luminosity radio galaxies.
HST/COS Observations Of Lyman-α Emission From
NASA Astrophysics Data System (ADS)
Wofford, Aida; Leitherer, C.; Salzer, J.; COS Science Team
2012-01-01
Although HI Lyman-alpha (Lyα, 1216 Å) is expected to be the strongest recombination line in HII nebulae, it is resonantly scattered by neutral hydrogen and is easily destroyed by dust. And yet, some star-forming galaxies show Lyα in emission. As evidenced by high dispersion HST/GHRS+STIS FUV spectroscopy of a handful of local (z<0.03) galaxies, the velocity shift between the neutral gas and the ionized gas plays a key role in driving the observed Lyα escape. We present HST/COS/G130M 1150-1450 Å (observed-frame) spectroscopy of 20 new targets located at a mean redshift of
Imprints of quasar duty cycle on the 21cm signal from the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Bolgar, Florian; Eames, Evan; Hottier, Clément; Semelin, Benoit
2018-05-01
Quasars contribute to the 21-cm signal from the Epoch of Reionization (EoR) primarily through their ionizing UV and X-ray emission. However, their radio continuum and Lyman-band emission also regulates the 21-cm signal in their direct environment, potentially leaving the imprint of their duty cycle. We develop a model for the radio and UV luminosity functions of quasars from the EoR, and constrain it using recent observations. Our model is consistent with the recent discovery of the quasar J1342+0928 at redshift ˜7.5, and also predicts only a few quasars suitable for 21-cm forest observations (˜10 mJy) in the sky. We exhibit a new effect on the 21-cm signal observed against the CMB: a radio-loud quasar can leave the imprint of its duty cycle on the 21-cm tomography. We apply this effect in a cosmological simulation and conclude that the effect of typical radio-loud quasars is most likely negligible in an SKA field of view. For a ˜10mJy quasar the effect is stronger though hardly observable at SKA resolution. Then we study the contribution of the lyman band (Ly-α to Ly-β) emission of quasars to the Wouthuisen-Field coupling. The collective effect of quasars on the 21-cm power spectrum is larger than the thermal noise at low k, though featureless. However, a distinctive pattern around the brightest quasars in an SKA field of view may be observable in the tomography, encoding the duration of their duty cycle. This pattern has a high signal-to-noise ratio for the brightest quasar in a typical SKA shallow survey.
The Relationship Between Stellar Populations and Lyα Emission in Lyman Break Galaxies
NASA Astrophysics Data System (ADS)
Kornei, Katherine; Shapley, A. E.; Erb, D. K.; Steidel, C. C.; Reddy, N. A.; Pettini, M.; Bogosavljevic, M.
2010-01-01
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (EWs) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (EW ≥ 20 angstroms) as Lyα-emitters (LAEs) and the latter group (EW < 20 angstroms) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punsly, Brian, E-mail: brian.punsly@verizon.net, E-mail: brian.punsly@comdev-usa.com; ICRANet, Piazza della Repubblica 10, I-65100 Pescara
It has been previously determined that there is a highly significant correlation between the spectral index from 10 GHz to 1350 A and the amount of excess luminosity in the red wing of quasar C IV {lambda}1549 broad emission lines (BELs). Ostensibly, the prominence of the red excess is associated with the radio jet emission mechanism and is most pronounced for lines of sight close to the jet axis. Studying the scant significant differences in the UV spectra of radio-loud and radio-quiet quasars might provide vital clues to the origin of the unknown process that creates powerful relativistic jets thatmore » appear in only about 10% of quasars. In this study, the phenomenon is explored with multi-epoch observations of the Mg II {lambda}2798 broad line in 3C 279 which has one of the largest known red wing excesses in a quasar spectrum. The amount of excess that is detected appears to be independent of all directly observed optical continuum, radio, or submillimeter properties (fluxes or polarizations). The only trend that occurs in this sparse data is: the stronger the BEL, the larger the fraction of flux that resides in the red wing. It is concluded that more monitoring is needed and spectropolarimetry with a large telescope is essential during low states to understand more.« less
Near-Infrared Mass Loss Diagnostics for Massive Stars
NASA Technical Reports Server (NTRS)
Sonneborn, George; Bouret, J. C.
2010-01-01
Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur at the very end of 2008. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the massw in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with Phoenix will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
IR Variability During a Shell Ejection of Eta Carinae
NASA Astrophysics Data System (ADS)
Smith, Nathan
2006-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to a very eccentric binary system with a shell ejection occurring at periastron. Mid-IR images and spectra with T-ReCS are needed to measure changes in the current bolometric luminosity and to trace dust formation episodes. This will provide a direct estimate of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula. The complex kinematic structure of η Car's ejecta also holds important clues to its mass ejection history, and is essential for interpreting other data. Phoenix can provide a unique kinematic map of the complex density and time-variable ionization structure of η Car's nebula, which is our best example of the pre-explosion environment of very massive stars.
The Ionized Nuclear Environment in NGC 985 as seen by Chandra and BeppoSAX
NASA Astrophysics Data System (ADS)
Krongold, Y.; Nicastro, F.; Elvis, M.; Brickhouse, N. S.; Mathur, S.; Zezas, A.
2005-02-01
We investigate the ionized environment of the Seyfert 1 galaxy NGC 985 with a new Chandra HETGS observation and an archival BeppoSAX observation. Both spectra exhibit strong residuals to a single-power-law model, indicating the presence of an ionized absorber and a soft excess. A detailed model over the Chandra data shows that the 0.6-8 keV intrinsic continuum can be well represented by a power law (Γ~1.6) plus a blackbody component (kT=0.1 keV). Two absorption components are clearly required to fit the absorption features observed in the Chandra spectrum. The components have a difference of 29 in ionization parameter and 3 in column density. The presence of the low-ionization component is evidenced by an Fe M-shell unresolved transition array produced by charge states VII-XIII. The high-ionization phase is required by the presence of broad absorption features arising from several blends of Fe L-shell transitions (Fe XVII-XXII). A third highly ionized component might also be present, but the data do not allow us to constrain its properties. Although poorly constrained, the outflow velocities of the components (581+/-206 km s-1 for the high-ionization phase and 197+/-184 km s-1 for the low-ionization one) are consistent with each other and with the outflow velocities of the absorption components observed in the UV. In addition, the low-ionization component produces significant amounts of O VI, N V, and C IV, which suggests that a single outflow produces the UV and X-ray features. The broadband (0.1-100 keV) continuum in the BeppoSAX data can be parameterized by a power law (Γ~1.4), a blackbody (kT=0.1 keV), and a high-energy cutoff (Ec~70 keV). An X-ray luminosity variation by a factor of 2.3 is observed between the BeppoSAX and Chandra observations (separated by almost 3 yr). Variability in the opacity of the absorbers is detected in response to the continuum variation, but while the colder component is consistent with a simple picture of photoionization equilibrium, the ionization state of the hotter component seems to increase, while the continuum flux drops. The most striking result in our analysis is that during both the Chandra and the BeppoSAX observations, the two absorbing components appear to have the same pressure. Thus, we suggest that the absorption arises from a multiphase wind. Such a scenario can explain the change in the opacity of both absorption components during the observations, but it requires that a third, hotter component be pressure-confining the two phases. Hence, our analysis points to a three-phase medium similar to the wind found in NGC 3783, and it further suggests that such a wind might be a common characteristic in active galactic nuclei. The pressure-confining scenario requires fragmentation of the confined phases into a large number of clouds.
UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.
2018-04-01
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near-infrared VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atek, Hakim; Kneib, Jean-Paul; Richard, Johan
2015-02-10
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin{sup 2} in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we weremore » able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M {sub UV} ∼ –15.5. We find a characteristic magnitude of M{sub UV}{sup ⋆}=−20.90{sub −0.73}{sup +0.90} mag and a faint-end slope α=−2.01{sub −0.28}{sup +0.20}, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L {sup *}. Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L {sup *}. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization.« less
X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association
NASA Technical Reports Server (NTRS)
deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.;
2013-01-01
Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case, it would be the first associated with a high-energy gamma-ray source.
AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi
2014-10-20
We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction ofmore » buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.« less
NASA Astrophysics Data System (ADS)
Bonato, Matteo; Negrello, Mattia; Mancuso, Claudia; De Zotti, Gianfranco; Ciliegi, Paolo; Cai, Zhen-Yi; Lapi, Andrea; Massardi, Marcella; Bonaldi, Anna; Sajina, Anna; Smolčić, Vernesa; Schinnerer, Eva
2017-08-01
The assessment of the relationship between radio continuum luminosity and star formation rate (SFR) is of crucial importance to make reliable predictions for the forthcoming ultra-deep radio surveys and to allow a full exploitation of their results to measure the cosmic star formation history. We have addressed this issue by matching recent accurate determinations of the SFR function up to high redshifts with literature estimates of the 1.4 GHz luminosity functions of star-forming galaxies (SFGs). This was done considering two options, proposed in the literature, for the relationship between the synchrotron emission (Lsynch), that dominates at 1.4 GHz, and the SFR: a linear relation with a decline of the Lsynch/SFR ratio at low luminosities or a mildly non-linear relation at all luminosities. In both cases, we get good agreement with the observed radio luminosity functions but, in the non-linear case, the deviation from linearity must be small. The luminosity function data are consistent with a moderate increase of the Lsynch/SFR ratio with increasing redshift, indicated by other data sets, although a constant ratio cannot be ruled out. A stronger indication of such increase is provided by recent deep 1.4-GHz counts, down to μJy levels. This is in contradiction with models predicting a decrease of that ratio due to inverse Compton cooling of relativistic electrons at high redshifts. Synchrotron losses appear to dominate up to z ≃ 5. We have also updated the Massardi et al. evolutionary model for radio loud AGNs.
Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group
NASA Astrophysics Data System (ADS)
Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael
2018-06-01
We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.
Lyα-Lyman continuum connection in 3.5 ≤ z ≤ 4.3 star-forming galaxies from the VUDS survey
NASA Astrophysics Data System (ADS)
Marchi, F.; Pentericci, L.; Guaita, L.; Schaerer, D.; Verhamme, A.; Castellano, M.; Ribeiro, B.; Garilli, B.; Fèvre, O. Le; Amorin, R.; Bardelli, S.; Cassata, P.; Durkalec, A.; Grazian, A.; Hathi, N. P.; Lemaux, B. C.; Maccagni, D.; Vanzella, E.; Zucca, E.
2018-06-01
Context. To identify the galaxies responsible for the reionization of the Universe, we must rely on the investigation of the Lyman continuum (LyC) properties of z ≲ 5 star-forming galaxies, where we can still directly observe their ionizing radiation. Aims: The aim of this work is to explore the correlation between the LyC emission and some of the proposed indirect indicators of LyC radiation at z 4 such as a bright Lyα emission and a compact UV continuum size. Methods: We selected a sample of 201 star-forming galaxies from the Vimos Ultra Deep Survey (VUDS) at 3.5 ≤ z ≤ 4.3 in the COSMOS, ECDFS, and VVDS-2h fields, including only those with reliable spectroscopic redshifts, a clean spectrum in the LyC range and clearly not contaminated by bright nearby sources in the same slit. For all galaxies we measured the Lyα EW, the Lyα velocity shift with respect to the systemic redshift, the Lyα spatial extension and the UV continuum effective radius. We then selected different sub-samples according to the properties predicted to be good LyC emission indicators: in particular we created sub-samples of galaxies with EW(Lyα) ≥ 70 Å, Lyαext ≤ 5.7 kpc, rUV ≤ 0.30 kpc and |ΔvLyα|≤ 200 km s-1. We stacked all the galaxies in each sub-sample and measured the flux density ratio (fλ(895)/fλ(1470)), that we considered to be a proxy for LyC emission. We then compared these ratios to those obtained for the complementary samples. Finally, to estimate the statistical contamination from lower redshift inter-lopers in our samples, we performed dedicated Monte Carlo simulations using an ultradeep U-band image of the ECDFS field. Results: We find that the stacks of galaxies which are UV compact (rUV ≤ 0.30 kpc) and have bright Lyα emission (EW(Lyα) ≥ 70 Å), have much higher LyC fluxes compared to the rest of the galaxy population. These parameters appear to be good indicators of LyC radiation in agreement with theoretical studies and previous observational works. In addition we find that galaxies with a low Lyα spatial extent (Lyαext ≤ 5.7 kpc) have higher LyC flux compared to the rest of the population. Such a correlation had never been analysed before and seems even stronger than the correlation with high EW(Lyα) and small rUV. These results assume that the stacks from all sub-samples present the same statistical contamination from lower redshift interlopers. If we subtract a statistical contamination from low redshift interlopers obtained with the simulations from the flux density ratios (fλ(895)/fλ(1470)) of the significant sub-samples we find that these samples contain real LyC leaking flux with a very high probability, although the true average escape fractions are very uncertain. Conclusions: Our work indicates that galaxies with very high EW(Lyα), small Ly αext and small rUV are very likely the best candidates to show Lyman continuum radiation at z 4 and could therefore be the galaxies that have contributed most to reionisation. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.
NASA Astrophysics Data System (ADS)
Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.
2015-09-01
We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.
A census of the Carina Nebula - II. Energy budget and global properties of the nebulosity
NASA Astrophysics Data System (ADS)
Smith, Nathan; Brooks, Kate J.
2007-08-01
The first paper in this series took a direct census of energy input from the known OB stars in the Carina Nebula, and in this paper we study the global properties of the surrounding nebulosity. This detailed comparison may prove useful for interpreting observations of extragalactic giant HII regions and ultraluminous infrared (IR) galaxies. We find that the total IR luminosity of Carina is about 1.2 × 107Lsolar, accounting for only about 50-60 per cent of the known stellar luminosity from Paper I. Similarly, the ionizing photon luminosity derived from the integrated radio continuum is about 7 × 1050 s-1, accounting for ~75 per cent of the expected Lyman continuum from known OB stars. The total kinetic energy of the nebula is about 8 × 1051 erg, or ~30 per cent of the mechanical energy from stellar winds over the lifetime of the nebula, so there is no need to invoke a supernova (SN) explosion based on energetics. Warm dust grains residing in the HII region interior dominate emission at 10-30μm, but cooler grains at 30-40K dominate the IR luminosity and indicate a likely gas mass of ~106Msolar. We find an excellent correlation between the radio continuum and 20-25μm emission, consistent with the idea that the ~80-K grain population is heated by trapped Lyα photons. Similarly, we find a near perfect correlation between the far-IR optical depth map of cool grains and 8.6-μm hydrocarbon emission, indicating that most of the nebular mass resides as atomic gas in photodissociation regions and not in dense molecular clouds. Synchronized star formation around the periphery of Carina provides a strong case that star formation here was indeed triggered by stellar winds and ultraviolet radiation. This second generation appears to involve a cascade toward preferentially intermediate- and low-mass stars, but this may soon change when ηCarinae and its siblings explode. If the current reservoir of atomic and molecular gas can be tapped at that time, massive star formation may be rejuvenated around the periphery of Carina much as if it were a young version of Gould's Belt. Furthermore, when these multiple SNe occur, the triggered second generation will be pelted repeatedly with SN ejecta bearing short-lived radioactive nuclides. Carina may therefore represent the most observable analogue to the cradle of our own Solar system.
Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models
NASA Astrophysics Data System (ADS)
Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken'ichi; Sorokina, Elena; Kozyreva, Alexandra; Blinnikov, Sergei
2017-08-01
Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.
Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.
1988-01-01
Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.
2015-06-01
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
Structure and kinematics of the broad-line regions in active galaxies from IUE variability data
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Gaskell, C. Martin
1991-01-01
IUE archival data are used here to investigate the structure nad kinematics of the broad-line regions (BLRs) in nine AGN. It is found that the centroid of the line-continuum cross-correlation functions (CCFs) can be determined with reasonable reliability. The errors in BLR size estimates from CCFs for irregularly sampled light curves are fairly well understood. BLRs are found to have small luminosity-weighted radii, and lines of high ionization tend to be emitted closer to the central source than lines of low ionization, especially for low-luminosity objects. The motion of the gas is gravity-dominated with both pure inflow and pure outflow of high-velocity gas being excluded at a high confidence level for certain geometries.
HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szkody, Paula; Mukadam, Anjum S.; Brown, Justin
2013-09-20
Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible inmore » the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.« less
Radio properties of type 1.8 and 1.9 Seyfert galaxies
NASA Technical Reports Server (NTRS)
Ulvestad, James S.
1986-01-01
A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle.
The Non-Stellar Infrared Continuum of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.
2000-01-01
JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests that the near-infrared emission in Seyfert galaxies is produced in an extended component illuminated by the central source, that is more visible from all viewing angles, providing a good explanation for the differing N(sub H)/A(sub V) ratios found in some Seyfert 2s. We discuss possible implications of mid-infrared surveys for the search of counterparts of highly obscured hard X-ray sources.
Morphology and luminosity segregation of galaxies in nearby loose groups
NASA Astrophysics Data System (ADS)
Girardi, M.; Rigoni, E.; Mardirossian, F.; Mezzetti, M.
2003-08-01
We study morphology and luminosity segregation of galaxies in loose groups. We analyze the two catalogs of groups identified in the Nearby Optical Galaxy (NOG) sample, by means of hierarchical and percolation ``friends-of-friends'' methods (HG and PG catalogs, respectively). In the first part of our analysis we consider 387 and 436 groups of HG and PG and compare morphology- (luminosity-) weighted to unweighted group properties: velocity dispersion, mean pairwise distance, and mean groupcentric distance of member galaxies. The second part of our analysis is based on two ensemble systems, one for each catalog, built by suitably combining together galaxies of all groups (1584 and 1882 galaxies for HG and PG groups). We find that earlier-type (brighter) galaxies are more clustered and lie closer to the group centers, both in position and in velocity, than later-type (fainter) galaxies. Spatial segregations are stronger than kinematical segregations. These effects are generally detected at the >˜ 3-sigma level. Luminosity segregation is shown to be independent of morphology segregation. Our main conclusions are strengthened by the detection of segregation in both hierarchical and percolation catalogs. Our results agree with a continuum of segregation properties of galaxies in systems, from low-mass groups to massive clusters.
Interpreting the evolution of galaxy colours from z = 8 to 5
NASA Astrophysics Data System (ADS)
Mancini, Mattia; Schneider, Raffaella; Graziani, Luca; Valiante, Rosa; Dayal, Pratika; Maio, Umberto; Ciardi, Benedetta
2016-11-01
We attempt to interpret existing data on the evolution of the UV luminosity function and UV colours, β, of galaxies at 5 ≤ z ≤ 8, to improve our understanding of their dust content and interstellar medium properties. To this aim, we post-process the results of a cosmological hydrodynamical simulation with a chemical evolution model, which includes dust formation by supernovae and intermediate-mass stars, dust destruction in supernova shocks, and grain growth by accretion of gas-phase elements in dense gas. We find that observations require a steep, Small Magellanic Cloud-like extinction curve and a clumpy dust distribution, where stellar populations younger than 15 Myr are still embedded in their dusty natal clouds. Investigating the scatter in the colour distribution and stellar mass, we find that the observed trends can be explained by the presence of two populations: younger, less massive galaxies where dust enrichment is mainly due to stellar sources, and massive, more chemically evolved ones, where efficient grain growth provides the dominant contribution to the total dust mass. Computing the IR-excess-UV colour relation, we find that all but the dustiest model galaxies follow a relation shallower than the Meurer et al. one, usually adopted to correct the observed UV luminosities of high-z galaxies for the effects of dust extinction. As a result, their total star formation rates might have been overestimated. Our study illustrates the importance to incorporate a proper treatment of dust in simulations of high-z galaxies, and that massive, dusty, UV-faint galaxies might have already appeared at z ≲ 7.
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
NASA Astrophysics Data System (ADS)
Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.
2017-06-01
Context. GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. Aims: We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multiwavelength approach the link between the inner and outer galaxy regions of a set of 11 early-type galaxies that were selected because of their nearly passive stage of evolution in the nuclear region. Methods: This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, which trace recent star formation, and the galaxy optical structure, which maps older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with the Swift-UVOT UV filters W2 2030 Å λ0, M2 2231 Å λ0, W1 2634 Å λ0 and the UBV bands. BVRI photometry from other sources in the literature was also used. Our integrated magnitude measurements were analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure that best fits the UV and optical luminosity profiles using a single Sérsic law. Results: The galaxies NGC 1366, NGC 1426, NGC 3818, NGC 3962, and NGC 7192 show featureless luminosity profiles. Excluding NGC 1366, which has a clear edge-on disk (n ≈ 1-2), and NGC 3818, the remaining three galaxies have Sérsic's indices n ≈ 3-4 in the optical and a lower index in the UV. Bright ring- or arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974, and IC 2006. The ring- or arm-like structures differ from galaxy to galaxy. Sérsic indices of UV profiles for these galaxies are in the range n = 1.5-3 both in S0s and in galaxies classified as bona fide ellipticals, such as NGC 2974 and IC 2006. We note that in our sample optical Sérsic indices are usually higher than in the UV indices. (M2-V) color profiles are bluer in ring- or arm-like structures than in the galaxy body. Conclusions: The lower values of Sérsic indices in the UV bands with respect to optical bands, suggesting the presence of a disk, point out that the role of the dissipation cannot be neglected in recent evolutionary phases of these early-type galaxies. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A97
A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.
1998-01-01
The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.
Dusty Quasars at High Redshifts
NASA Astrophysics Data System (ADS)
Weedman, Daniel; Sargsyan, Lusine
2016-09-01
A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.
UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst
NASA Technical Reports Server (NTRS)
Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.
1992-01-01
IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.
A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Beverly J.; Olmsted, Susan; Jones, Keith
2016-03-15
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger starmore » formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.« less
Cinematica del gas ionizado y perfiles de luminosidad de las Galaxias Porotos Verdes
NASA Astrophysics Data System (ADS)
Diaz, R. J.; Aguero, M.; Schirmer, M.; Holheim, K.; Levenson, N.; Winge, C.
We present preliminary spectroscopic results of a sample of green bean galaxies (GBG); known to show ultra-luminous; galaxy-wide; narrow-line regions. We analyze Gemini GMOS-S;N spectra of a sample of 12 GBG in order to obtain emission line ratios; gas kinematics and luminosity profiles in some continuous bands. We report here new results that confirm that the 5008 emission extends from 5 to 17 kpc; in all cases scales similar or larger than the stellar continuums at the spectra. In the extreme case of J145533.6+044643 the emission reaches a diameter of 17.51.6kpc. We find that the continuum half light radii extend from 3 to 7 kpc; the largest scale radius at shortest wavelengths; which is consistent with the scale lengths of large spiral galaxies or merging systems. Another new result is that the spatial variation of the continuum color profiles indicate the presence of extinction and possibly star formation. FULL TEXT IN SPANISH
Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.
2018-01-01
We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.
NASA Astrophysics Data System (ADS)
Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.
2016-03-01
We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.
BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui
2015-02-01
We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ andmore » Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.« less
The X-ray and ultraviolet absorbing outflow in 3C 351
NASA Astrophysics Data System (ADS)
Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio
1994-10-01
3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.
Multiwavelength spectropolarimetric observations of an Ellerman bomb
NASA Astrophysics Data System (ADS)
Rezaei, R.; Beck, C.
2015-10-01
Context. Ellerman bombs (EBs) are enhanced emission in the wings of the Hα line in the solar spectrum. Aims: We study the structure of an EB in the photosphere and chromosphere. Methods: We analyze simultaneous observations of four chromospheric lines (Hα, Ca ii H, Ca ii IR 854 nm, and He i 1083 nm) as well as two photospheric lines (Fe i 630 and Si i 1082.7 nm) along with high-cadence 160 and 170 nm ultraviolet (UV) continuum filtergrams. Full Stokes data from the Helioseismic and Magnetic Imager (HMI) are used to trace the temporal evolution of the magnetic structure. Results: We identify the EB by excess emission in the wings of the Hα line, a brightening in the UV continuum, and large emission peaks in the core of the two Ca ii lines. The EB shows a blueshift in all chromospheric lines, while no shifts are observed in the photospheric lines. The blueshift in the chromospheric layer causes very asymmetric emission peaks in the Ca ii H line. The photospheric Si i spectral line shows a shallower line depth at the location of the EB. The UV continuum maps show that the EB was substantially brighter than its surroundings for about 30 min. The continuum contrast of the EB from 170 nm to 1080 nm shows a power-law dependency on the wavelength. The temperature enhancement amounts to 130 K in the low photosphere and 400 K at the temperature minimum level. This temperature excess is also seen in an LTE inversion of the Ca ii spectra. The total thermal and radiative energy content of the EB is about 1020 J and 1018 J in the photosphere and chromosphere, respectively. The HMI data hints at a photospheric magnetic flux cancellation as the driver of the EB. Conclusions: Ellerman bombs release the energy in a height range of several pressure scale heights around the temperature minimum such that they affect both the photosphere and the lower chromosphere.
An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholl, M.; Berger, E.; Blanchard, P. K.
Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite amore » typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10–15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M {sub ej} = 4.8(0.2/ κ ) M {sub ⊙}, where κ is the opacity in cm{sup 2} g{sup −1}, and forming a magnetar with spin period P = 2 ms, and B = 2 × 10{sup 14} G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z {sub ⊙}, is comparable to other SLSNe.« less
The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7
NASA Astrophysics Data System (ADS)
Tobin, John J.; Bos, Steven P.; Dunham, Michael M.; Bourke, Tyler L.; van der Marel, Nienke
2018-04-01
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L ⊙. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO (J=2\\to 1), C18O (J=2\\to 1), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R ‑1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M ⊙.
Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi
2017-08-10
Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the naturemore » of SLSNe and more attention should be paid to them in future follow-up observations.« less
Modeling Photodisintegration-induced TeV Photon Emission from Low-luminosity Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Liu, Xue-Wen; Wu, Xue-Feng; Lu, Tan
2012-05-01
Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like γ-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.
Hybrid accretion disks in active galactic nuclei. I - Structure and spectra
NASA Technical Reports Server (NTRS)
Wandel, Amri; Liang, Edison P.
1991-01-01
A unified treatment is presented of the two distinct states of vertically thin AGN accretion disks: a cool (about 10 to the 6th K) optically thick solution, and a hot (about 10 to the 9th K) optically thin solution. A generalized formalism and a new radiative cooling equation valid in both regimes are introduced. A new luminosity limit is found at which the hot and cool alpha solutions merge into a single solution of intermediate optical depth. Analytic solutions for the disk structure are given, and output spectra are computed numerically. This is used to demonstrate the prospect of fitting AGN broadband spectra containing both the UV bump as well as the hard X-ray and gamma-ray tail, using a single accretion disk model. Such models are found to make definite predictions about the observed spectrum, such as the relation between the hard X-ray spectral index, the UV-to-X-ray luminosity ratio, and a feature of about 1 MeV.
NASA Astrophysics Data System (ADS)
Khaire, Vikram; Srianand, Raghunathan
2016-01-01
In the standard picture, the only sources of cosmic UV background are the quasars and the star forming galaxies. The hydrogen ionizing emissivity from galaxies depends on a parameter known as escape fraction (fesc). It is the ratio of the escaping hydrogen ionizing photons from galaxies to the total produced by their stellar population. Using available multi-wavelength and multi-epoch galaxy luminosity function measurements, we update the galaxy emissivity by estimating a self-consistent combination of the star formation rate density and dust attenuation. Using the recent quasar luminosity function measurements, we present an updated hydrogen ionizing emissivity from quasars which shows a factor of ~2 increase as compared to the previous estimates at z<2. We use these in a cosmological radiative transfer code developed by us to generate the UV background and show that the recently inferred high values of hydrogen photoionization rates at low redshifts can be easily obtained with reasonable values of fesc. This resolves the problem of 'photon underproduction crisis' and shows that there is no need to invoke non-standard sources of the UV background such as decaying dark matter particles. We will present the implications of this updated quasar and galaxy emissivity on the values of fesc at high redshifts and on the cosmic reionization. We will also present the effect of the updated UV background on the inferred properties of the intergalactic medium, especially on the Lyman alpha forest and the metal line absorption systems.
The UV behaviour of GRB 161219B/SN2016jca
NASA Astrophysics Data System (ADS)
Levan, Andrew
2016-10-01
The connection between long duration gamma-ray bursts and the stripped-envelope supernova is now secure, however, central questions remain about the nature of the supernovae and the power sources that drive them. Progress in these areas can be made through in-depth observations of nearby GRBs, in which the supernova light is sufficiently bright for detailed studies. However, such events are extremely rare, with only a handful of classical long-duration GRBs being found at z<0.2. Here we request observations of the recent GRB 161219B, and its supernova SN 2016jca. Utilising the unique ultraviolet capabilities of HST we will map the UV spectrum and its evolution with time. At a minimum, this will provide a route to tracking the afterglow and decomposing afterglow and supernova and host contributions - diagnostics that ground-based observations alone struggle to achieve. However, our sensitive UV observations will also probe the UV properties of a GRB-SN for the first time, providing insight into the metal content of the progenitor, and crucially into the nature of the central engine, which may power the prompt emission of the burst, and continue to provide energy to event at much later times. Recent observations suggest that in extremum these engines may drive supernovae to exceptional luminosities (the so-called superluminous supernovae) and provide a link between the most powerful explosions in the Universe. Our observations may offer the route to identifying such an engine at work in a lower luminosity supernova, solidifying this link.
The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5
NASA Astrophysics Data System (ADS)
Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.
2007-02-01
We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.
DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groves, Brent A.; Schinnerer, Eva; Walter, Fabian
2015-01-20
We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we findmore » that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.« less
Spitzer IRS Observations of Low-Mass Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Greene, J. E.
2010-01-01
We present results from Spitzer IRS observations of a sample of 41 Seyfert galaxies with estimated black hole masses below 106 solar masses, including objects from the SDSS-selected samples of Seyfert 1 galaxies from Greene & Ho (2004) and Seyfert 2 galaxies from Barth et al. (2008), as well as NGC 4395 and POX 52. We use the IDL code PAHFIT (Smith et al. 2007) to derive measurements of continuum shapes and narrow emission line and PAH luminosities from the low-resolution spectra in order to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions.
Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates
NASA Astrophysics Data System (ADS)
Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Done, Chris; Ward, Martin; Gardner, Emma
2017-10-01
We present a detailed multiwavelength study of an unobscured, highly super-Eddington Type-1 QSO RX J0439.6-5311. We combine the latest XMM-Newton observation with all archival data from infrared to hard X-rays. The optical spectrum is very similar to that of 1H 0707-495 in having extremely weak [O III] and strong Fe II emission lines, although the black hole mass is probably slightly higher at 5-10 × 106 M⊙. The broad-band spectral energy distribution is uniquely well defined due to the extremely low Galactic and intrinsic absorption, so the bolometric luminosity is tightly constrained. The optical/UV accretion disc continuum is seen down to 900 Å, showing that there is a standard thin disc structure down to R ≥ 190-380 Rg and determining the mass accretion rate through the outer disc. This predicts a much higher bolometric luminosity than observed, indicating that there must be strong wind and/or advective energy losses from the inner disc, as expected for a highly super-Eddington accretion flow. Significant outflows are detected in both the narrow-line region (NLR) and broad-line region (BLR) emission lines, confirming the presence of a wind. We propose a global picture for the structure of a super-Eddington accretion flow where the inner disc puffs up, shielding much of the potential NLR material, and show how inclination angle with respect to this and the wind can explain very different X-ray properties of RX J0439.6-5311 and 1H 0707-495. Therefore, this source provides strong supporting evidence that 'simple' and 'complex' super-Eddington NLS1s can be unified within the same accretion flow scenario but with different inclination angles. We also propose that these extreme NLS1s could be the low-redshift analogues of weak emission-line quasars.
NASA Astrophysics Data System (ADS)
Marsan, Z. Cemile; Marchesini, Danilo; Brammer, Gabriel B.; Geier, Stefan; Kado-Fong, Erin; Labbé, Ivo; Muzzin, Adam; Stefanon, Mauro
2017-06-01
We present the analysis and results of a spectroscopic follow-up program of a mass-selected sample of six galaxies at 3< z< 4 using data from Keck-NIRPSEC and VLT-Xshooter. We confirm the z> 3 redshifts for half of the sample through the detection of strong nebular emission lines, and improve the z phot accuracy for the remainder of the sample through the combination of photometry and spectra. The modeling of the emission-line-corrected spectral energy distributions (SEDs) adopting improved redshifts confirms the very large stellar masses of the sample ({M}* ˜ 1.5{--}4× {10}11{M}⊙ ) in the first 2 Gyr of cosmic history, with a diverse range in stellar ages, star-formation rates, and dust content. From the analysis of emission-line luminosities and widths, and far-infrared (FIR) fluxes, we confirm that ≳ 80 % of the sample are hosts to luminous hidden active galactic nuclei (AGNs), with bolometric luminosities of ˜1044-46 erg s-1. We find that the MIPS 24 μm photometry is largely contaminated by AGN continuum, rendering the SFRs derived using only 24 μm photometry to be severely overestimated. By including the emission from the AGN in the modeling of the UV-to-FIR SEDs, we confirm that the presence of the AGN does not considerably bias the stellar masses (< 0.3 dex at 1σ). We show evidence for a rapid increase of the AGN fraction from ˜30% to ˜60%-100% over the 1 Gyr between z˜ 2 and z˜ 3. Although we cannot exclude some enhancement of the AGN fraction for our sample due to selection effects, the small measured [O III] contamination to the observed K-band fluxes suggests that our sample is not significantly biased toward massive galaxies hosting AGNs.
XMM-Newton study of the supersoft symbiotic system Draco C1
NASA Astrophysics Data System (ADS)
Saeedi, Sara; Sasaki, Manami; Ducci, Lorenzo
2018-01-01
We present the results of the analysis of thirty-one XMM-Newton observations of the symbiotic star Draco C1 located in the Draco dwarf spheroidal galaxy. This object had been identified as a supersoft source based on ROSAT data. We analysed X-ray, ultraviolet (UV) and optical data taken with XMM-Newton in order to obtain the physical parameters and the geometry of the system. We have also performed the first X-ray timing analysis of Draco C1. The X-ray spectrum is well fitted with a blackbody model with a temperature of (1.8 ± 0.3) × 105 K. We obtained a bolometric luminosity of ≳1038 erg s-1 for the white dwarf. The X-ray spectrum and luminosity suggest stable nuclear burning on the surface of the white dwarf. The low column density derived from the X-ray spectrum is consistent with the lack of nebular lines found in previous UV studies. The long-term variability in the optical and the UV suggests that the system is not observed face-on and that the variability is caused by the reflection effect. For the red giant companion, we estimate a radius of ∼110 R⊙ and an upper limit ≲1.5 M⊙ for its mass assuming Roche lobe overflow.
Revived STIS. II. Properties of Stars in the Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, D.
2010-01-01
Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.
Raman Scattered He II 4332 and Photoionization Model in the Symbiotic Star V1016 Cygni
NASA Astrophysics Data System (ADS)
Lee, H.-W.; Heo, J.-E.; Lee, B.-C.
2014-08-01
Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant. They exhibit unique Raman scattered features as a result of inelastic scattering of far UV line photons by atomic hydrogen. Co-existence of a far UV He II emission region and a thick H I region in symbiotic stars is necessary for the formation of Raman-scattered features blueward of hydrogen Balmer emission lines. Being a single electron atom, He II has the same atomic structure as the hydrogen atom and hence emits far UV emission lines that are slightly blueward of hydrogen Lyman lines. These far UV He II emission lines can be Raman scattered to appear blueward of hydrogen Balmer lines. In particular, the symbiotic star V1016 Cyg is found to exhibit Raman scattered He II 4332 feature in the BOES high resolution spectrum. Our profile fitting of Raman scattered He II 4332 is consistent with the mass loss geometry proposed by Jung & Lee (2004). We use the photoionization code ‘ CLOUDY' to estimate the far UV He II emission lines and make comparisons with the observed Raman scattered He II 4332 blueward of Hγ in the high resolution echelle V1016 Cyg. The emission nebula is assumed to be of uniform density of 108 cm-3 that is illuminated by a black body characterized by its temperature and total luminosity. With our comparisons we conclude that the Raman scattered He II features are consistent with the existence of a photoionized nebula by a hot black body source with temperature 7-8× 104 K with a luminosity 1038erg s-1.
NASA Astrophysics Data System (ADS)
Wang, Xiang-Yu; Huang, Zhi-Qiu
2018-01-01
Recent long-term radio follow-up observations of GW170817 reveal a simple power-law rising light curve, with a slope of {t}0.78, up to 93 days after the merger. The latest X-ray detection at 109 days is also consistent with such a temporal slope. Such a shallow rise behavior requires a mildly relativistic outflow with a steep velocity gradient profile, so that slower material with larger energy catches up with the decelerating ejecta and re-energizes it. It has been suggested that this mildly relativistic outflow may represent a cocoon of material. We suggest that the velocity gradient profile may form during the stage that the cocoon is breaking out of the merger ejecta, resulting from shock propagation down a density gradient. The cooling of the hot relativistic cocoon material immediately after it breaks out should have produced soft X-ray to UV radiation at tens of seconds to hours after the merger. The soft X-ray emission has a luminosity of {L}{{X}}∼ {10}45 {erg} {{{s}}}-1 over a period of tens of seconds for a merger event like GW170817. The UV emission shows a rise initially and peaks at about a few hours with a luminosity of {L}{UV}∼ {10}42 {erg} {{{s}}}-1. The soft X-ray transients could be detected by future wide-angle X-ray detectors, such as the Chinese mission Einstein Probe. This soft X-ray/UV emission would serve as one of the earliest electromagnetic counterparts of gravitation waves from double neutron star mergers and could provide the earliest localization of the sources.
NASA Astrophysics Data System (ADS)
Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.
2017-01-01
Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via I-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity
Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions
NASA Astrophysics Data System (ADS)
Chevallard, Jacopo; Charlot, Stéphane; Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Feltre, Anna; Gutkin, Julia; Jones, Tucker; Mainali, Ramesh; Wofford, Aida
2018-06-01
Measurements of the galaxy UV luminosity function at z ≳ 6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z ˜ 6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, ξ _{ion}^\\star, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z ≳ 6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z ≳ 6. We use the new-generation BEAGLE tool to model the UV-to-optical photometry and UV/optical emission lines of these Local `analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, ξ _{ion}^\\star, based on the equivalent width of the bright [O III]49595007 line doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate ξ _{ion}^\\star from future direct measurements of the [O III]49595007 line using JWST/NIRSpec (out to z ˜ 9.5), and by exploiting the contamination by Hβ +[O III]{4959}{5007}} of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.
GALEX Study of the UV Variability of Nearby Galaxies and a Deep Probe of the UV Luminosity Function
NASA Technical Reports Server (NTRS)
Schlegel, Eric
2005-01-01
The proposal has two aims - a deep exposure of NGC 300, about a factor of 10 deeper than the GALEX all-sky survey; and an examination of the UV variability. The data were received just prior to a series of proposal deadlines in early spring. A subsequent analysis delay includes a move from SAO to the University of Texas - San Antonio. Nevertheless, we have merged the data into a single deep exposure as well as undertaking a preliminary examination of the variability. No UV halo is present as detected in the GALEX observation of M83. No UV bursts are visible; however a more stringent limit will only be obtained through a differencing of the sub-images. Papers: we expect 2 papers at about 12 pages/paper to flow from this project. The first paper will report on the time variability while the second will focus on the deep UV image obtained from stacking the individual observations.
The HDUV Survey: Six Lyman Continuum Emitter Candidates at z ˜ 2 Revealed by HST UV Imaging
NASA Astrophysics Data System (ADS)
Naidu, R. P.; Oesch, P. A.; Reddy, N.; Holden, B.; Steidel, C. C.; Montes, M.; Atek, H.; Bouwens, R. J.; Carollo, C. M.; Cibinel, A.; Illingworth, G. D.; Labbé, I.; Magee, D.; Morselli, L.; Nelson, E. J.; van Dokkum, P. G.; Wilkins, S.
2017-09-01
We present six galaxies at z˜ 2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multiwavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high—typically > 60 % (> 13 % for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies with high escape fraction. These six galaxies compose the largest sample yet of LyC leaking candidates at z˜ 2 whose inferred LyC flux has been observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus, two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. Extensive multiwavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage. High-resolution spectroscopic follow-up of our candidates will help constrain such indirect methods, which are our only hope of studying f esc at z˜ 5-9 in the JWST era. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Reconstruction of solar UV irradiance since 1974
NASA Astrophysics Data System (ADS)
Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.
2009-09-01
Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).
IUE observations and interpretation of the symbiotic star RW Hya
NASA Astrophysics Data System (ADS)
Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.
The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with Teff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented.
The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission
Damé, Luc; Meftah, Mustapha; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain; Marchand, Marion; Irbah, Abdenour; Quémerais, Éric; Bekki, Slimane; Foujols, Thomas; Kretzschmar, Matthieu; Cessateur, Gaël; Shapiro, Alexander; Schmutz, Werner; Kuzin, Sergey; Slemzin, Vladimir; Urnov, Alexander; Bogachev, Sergey; Merayo, José; Brauer, Peter; Tsinganos, Kanaris; Paschalis, Antonis; Mahrous, Ayman; Khaled, Safinaz; Ghitas, Ahmed; Marzouk, Besheir; Zaki, Amal; Hady, Ahmed A.; Kariyappa, Rangaiah
2013-01-01
We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018. PMID:25685424
Space Weathering Trends (UV and NIR) at Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Blewett, D. T.; Denevi, B. W.; Cahill, J. T.; Klima, R. L.
2017-12-01
Areas of magnetized crustal rocks on the Moon, known as magnetic anomalies, affect the flux of solar-wind ions that bombard the lunar surface. Hence, magnetically shielded areas could experience a space weathering regime different from the lunar norm. The unusual, high-albedo markings called lunar swirls are collocated with magnetic anomalies. The high albedo in the near-ultraviolet through near-infrared is consistent with the presence of material that is less weathered than that found in mature, non-shielded areas. We have undertaken an analysis of spectral trends associated with swirls in order to gain further insight into the nature and origin of these features. We examine swirls in the near-ultraviolet (Lunar Reconnaissance Orbiter LROC-WAC) and near-infrared (Chandrayaan Moon Mineralogy Mapper and Kaguya Spectral Profiler). We find that relative to the normal weathering trend, the swirls have a steeper NIR continuum slope (i.e., the continuum is redder than expected for their albedo) and steeper UV slope (i.e., greater UV drop-off than expected for their albedo). These trends can be understood in terms of differing relative abundances of microphase and nanophase metallic iron weathering products.
IUE observations and interpretation of the symbiotic star RW Hya
NASA Technical Reports Server (NTRS)
Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.
1981-01-01
The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with T sub eff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented.
The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission.
Damé, Luc
2013-05-01
We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.
Radio astronomy aspects of the NASA SETI Sky Survey
NASA Technical Reports Server (NTRS)
Klein, Michael J.
1986-01-01
The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.
NASA Astrophysics Data System (ADS)
Leclercq, Floriane; Bacon, Roland; Wisotzki, Lutz; Mitchell, Peter; Garel, Thibault; Verhamme, Anne; Blaizot, Jérémy; Hashimoto, Takuya; Herenz, Edmund Christian; Conseil, Simon; Cantalupo, Sebastiano; Inami, Hanae; Contini, Thierry; Richard, Johan; Maseda, Michael; Schaye, Joop; Marino, Raffaella Anna; Akhlaghi, Mohammad; Brinchmann, Jarle; Carollo, Marcella
2017-11-01
We report the detection of extended Lyα haloes around 145 individual star-forming galaxies at redshifts 3 ≤ z ≤ 6 in the Hubble Ultra Deep Field observed with the Multi-Unit Spectroscopic Explorer (MUSE) at ESO-VLT. Our sample consists of continuum-faint (- 15 ≥ MUV ≥ -22) Lyα emitters (LAEs). Using a 2D, two-component (continuum-like and halo) decomposition of Lyα emission assuming circular exponential distributions, we measure scale lengths and luminosities of Lyα haloes. We find that 80% of our objects having reliable Lyα halo measurements show Lyα emission that is significantly more extended than the UV continuum detected by HST (by a factor ≈4 to >20). The median exponential scale length of the Lyα haloes in our sample is ≈4.5 kpc with a few haloes exceeding 10 kpc. By comparing the maximal detected extent of the Lyα emission with the predicted dark matter halo virial radii of simulated galaxies, we show that the detected Lyα emission of our selected sample of Lyα emitters probes a significant portion of the cold circum-galactic medium of these galaxies (>50% in average). This result therefore shows that there must be significant HI reservoirs in the circum-galactic medium and reinforces the idea that Lyα haloes are ubiquitous around high-redshift Lyα emitting galaxies. Our characterization of the Lyα haloes indicates that the majority of the Lyα flux comes from the halo (≈65%) and that their scale lengths seem to be linked to the UV properties of the galaxies (sizes and magnitudes). We do not observe a significant Lyα halo size evolution with redshift, although our sample for z> 5 is very small. We also explore the diversity of the Lyα line profiles in our sample and we find that the Lyα lines cover a large range of full width at half maximum (FWHM) from 118 to 512 km s-1. While the FWHM does not seem to be correlated to the Lyα scale length, most compact Lyα haloes and those that are not detected with high significance tend to have narrower Lyα profiles (<350 km s-1). Finally, we investigate the origin of the extended Lyα emission but we conclude that our data do not allow us to disentangle the possible processes, i.e. scattering from star-forming regions, fluorescence, cooling radiation from cold gas accretion, and emission from satellite galaxies. MUSE Ultra Deep Field Lyα haloes catalog (Table B.1) is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A8
Extremely Luminous Far-infrared Sources (ELFS)
NASA Technical Reports Server (NTRS)
Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.
1987-01-01
The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.
NASA Astrophysics Data System (ADS)
Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.
Models for infrared emission from IRAS galaxies
NASA Technical Reports Server (NTRS)
Rowan-Robinson, M.
1987-01-01
Models for the infrared emission from Infrared Astronomy Satellite (IRAS) galaxies by Rowan-Robinson and Crawford, by deJong and Brink, and by Helou, are reviewed. Rowan-Robinson and Crawford model the 12 to 100 micron radiation from IRAS galaxies in terms of 3 components: a normal disk component, due to interstellar cirrus; a starburst component, modeled as hot stars in an optically thick dust cloud; and a Seyfert component, modeled as a power-law continuum immersed in an n(r) variation r sup -1 dust cloud associated with the narrow-line region of the Seyfert nucleus. The correlations between the luminosities in the different components, the blue luminosity, and the X-ray luminosity of the galaxies are consistent with the model. Spectra from 0.1 to 1000 microns are predicted and compared with available observations. The de Jong and Brink, and Helou, model IRAS non-Seyfert galaxies in terms of a cool (cirrus) component and a warm (starburst) component. The de Jong and Brink estimate the face-on internal extinction in the galaxies and find that it is higher in galaxies with more luminous starbursts. In Helou's model the spectrum of the warm component varies strongly with the luminosity in that component. The three models are briefly compared.
NASA Astrophysics Data System (ADS)
Dou, Liming; Wang, Ting-gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan
2016-12-01
The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4× {10}42 and 2× {10}43 erg s-1 and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 1044 erg s-1 and that for warm dust masses to be in the range of 0.05-1.3 {M}⊙ within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment.
IUE observations of RW Hydrae /gM2 + pec/
NASA Astrophysics Data System (ADS)
Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.
1980-08-01
Analysis of the intense UV continuum observed between 1100 and 2000 A suggested that observations of the late type star RW Hya is a binary system in which the secondary is the central star of a planetary nebula. The UV spectrum is characterized by semiforbidden and allowed transition lines, of which the C IV doublet is particularly strong. Tidal interaction from the M giant is proposed as a method of forming a nebula with the characteristic densities inferred from the UV line analysis. RW Hya is suggested as a possible source of soft X-ray emission if material is accreting onto the surface of the secondary.
IUE observations of RW Hydrae /gM2 + pec/
NASA Technical Reports Server (NTRS)
Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.
1980-01-01
Analysis of the intense UV continuum observed between 1100 and 2000 A suggested that observations of the late type star RW Hya is a binary system in which the secondary is the central star of a planetary nebula. The UV spectrum is characterized by semiforbidden and allowed transition lines, of which the C IV doublet is particularly strong. Tidal interaction from the M giant is proposed as a method of forming a nebula with the characteristic densities inferred from the UV line analysis. RW Hya is suggested as a possible source of soft X-ray emission if material is accreting onto the surface of the secondary.
UV/Optical Detections of Candidate Tidal Disruption Events by GALEX and CFHTLS
NASA Astrophysics Data System (ADS)
Gezari, S.; Basa, S.; Martin, D. C.; Bazin, G.; Forster, K.; Milliard, B.; Halpern, J. P.; Friedman, P. G.; Morrissey, P.; Neff, S. G.; Schiminovich, D.; Seibert, M.; Small, T.; Wyder, T. K.
2008-04-01
We present two luminous UV/optical flares from the nuclei of apparently inactive early-type galaxies at z = 0.37 and 0.33 that have the radiative properties of a flare from the tidal disruption of a star. In this paper we report the second candidate tidal disruption event discovery in the UV by the GALEX Deep Imaging Survey and present simultaneous optical light curves from the CFHTLS Deep Imaging Survey for both UV flares. The first few months of the UV/optical light curves are well fitted with the canonical t-5/3 power-law decay predicted for emission from the fallback of debris from a tidally disrupted star. Chandra ACIS X-ray observations during the flares detect soft X-ray sources with Tbb = (2-5) × 105 K or Γ > 3 and place limits on hard X-ray emission from an underlying AGN down to LX(2-10 keV) lesssim 1041 ergs s-1. Blackbody fits to the UV/optical spectral energy distributions of the flares indicate peak flare luminosities of gtrsim1044-1045 ergs s-1. The temperature, luminosity, and light curves of both flares are in excellent agreement with emission from a tidally disrupted main-sequence star onto a central black hole of several times 107 M⊙. The observed detection rate of our search over ~2.9 deg2 of GALEX Deep Imaging Survey data spanning from 2003 to 2007 is consistent with tidal disruption rates calculated from dynamical models, and we use these models to make predictions for the detection rates of the next generation of optical synoptic surveys. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NGC 2024: Multi-wavelength Infrared and Radio Observations
NASA Technical Reports Server (NTRS)
Smith, H. A.; Fischer, J.; Geballe, T. R.; Thronson, H. A., Jr.; Johnston, K. J.; Schwartz, P. R.; Wilson, T. L.; Crutcher, R. M.; Henkel, C.; Bieging, J.
1984-01-01
A series of far-infrared maps obtained on the KAO find the total IR luminosity of NGC 2024 is to the 4th power L, and show a peak in flux density and optical depth about 1' south of IRS 2. High resolution spectra of IRS 2 in Brackett alfa and Pfund gamma indicate the presence of an optically thick wind with M approx. 7 x 10 to the minus 7 power M sub yr to minus 1 power, from which we infer that IRS 2 is unable to supply the luminosity observed. A six centimeter continuum map peaks near the location of the far-infrared peak and confirms it as a likely site for a source to provide this luminosity. Maps in HCN, CS, and H2CO show the gas is dense in the direction of the far IR peak. Velocity analysis shows the H2 region created by the far IR source and IRS 2 forms an expanding bubble in front of which the H2CO is seen in absorption, and which is bounded in the south and behind by dense material.
NASA Astrophysics Data System (ADS)
Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai
2018-05-01
We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kleint, L., E-mail: pheinzel@asu.cas.cz
We present a novel observation of the white light flare (WLF) continuum, which was significantly enhanced during the X1 flare on 2014 March 29 (SOL2014-03-29T17:48). Data from the Interface Region Imaging Spectrograph (IRIS) in its near-UV channel show that at the peak of the continuum enhancement, the contrast at the quasi-continuum window above 2813 Å reached 100%-200% and can be even larger closer to Mg II lines. This is fully consistent with the hydrogen recombination Balmer-continuum emission, which follows an impulsive thermal and non-thermal ionization caused by the precipitation of electron beams through the chromosphere. However, a less probable photosphericmore » continuum enhancement cannot be excluded. The light curves of the Balmer continuum have an impulsive character with a gradual fading, similar to those detected recently in the optical region on the Solar Optical Telescope on board Hinode. This observation represents a first Balmer-continuum detection from space far beyond the Balmer limit (3646 Å), eliminating seeing effects known to complicate the WLF detection. Moreover, we use a spectral window so far unexplored for flare studies, which provides the potential to study the Balmer continuum, as well as many metallic lines appearing in emission during flares. Combined with future ground-based observations of the continuum near the Balmer limit, we will be able to disentangle various scenarios of the WLF origin. IRIS observations also provide a critical quantitative measure of the energy radiated in the Balmer continuum, which constrains various models of the energy transport and deposit during flares.« less
NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814
NASA Astrophysics Data System (ADS)
Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.
2018-01-01
We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.
NASA Astrophysics Data System (ADS)
Kawamata, Ryota; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Oguri, Masamune; Ouchi, Masami; Tanigawa, Shingo
2018-03-01
We construct z ∼ 6–7, 8, and 9 faint Lyman break galaxy samples (334, 61, and 37 galaxies, respectively) with accurate size measurements with the software glafic from the complete Hubble Frontier Fields (HFF) cluster and parallel fields data. These are the largest samples hitherto and reach down to the faint ends of recently obtained deep luminosity functions. At faint magnitudes, however, these samples are highly incomplete for galaxies with large sizes, implying that derivation of the luminosity function sensitively depends on the intrinsic size–luminosity relation. We thus conduct simultaneous maximum-likelihood estimation of luminosity function and size–luminosity relation parameters from the observed distribution of galaxies on the size–luminosity plane with the help of a completeness map as a function of size and luminosity. At z ∼ 6–7, we find that the intrinsic size–luminosity relation expressed as r e ∝ L β has a notably steeper slope of β ={0.46}-0.09+0.08 than those at lower redshifts, which in turn implies that the luminosity function has a relatively shallow faint-end slope of α =-{1.86}-0.18+0.17. This steep β can be reproduced by a simple analytical model in which smaller galaxies have lower specific angular momenta. The β and α values for the z ∼ 8 and 9 samples are consistent with those for z ∼ 6–7 but with larger errors. For all three samples, there is a large, positive covariance between β and α, implying that the simultaneous determination of these two parameters is important. We also provide new strong lens mass models of Abell S1063 and Abell 370, as well as updated mass models of Abell 2744 and MACS J0416.1‑2403.
The radio-far infrared correlation: Spiral and blue compact dwarf galaxies opposed
NASA Technical Reports Server (NTRS)
Klein, U.; Wunderlich, E.
1987-01-01
The recently established correlation between radio continuum and far infrared emission in galaxies was further investigated by comparing normal spiral and blue compact dwarf galaxies. The puzzling result is that the ratio of radio to far infrared luminosity and its dispersion is the same for both samples, although their ratios of blue to far infrared luminosity, their radio spectral indices and their dust temperatures exhibit markedly different mean values and dispersions. This suggests that the amount of energy radiated in the two regimes is enhanced in the same way although the mechanisms responsible for the two components are rather different and complex. The fact that the blue light does not increase at the same proportion shows that both the radio and the far infrared emission are connected with the recent star formation history.
Morphological and Star Formation Evolution to z = 1
NASA Astrophysics Data System (ADS)
Hammer, F.
The decrease, since z = 1, of the rest-frame UV luminosity density is related to global changes in morphology, color and emission lines properties of galaxies. This is apparently followed by a similar decrease of the rest-frame IR luminosity density. I discuss the relative contribution from the different galaxy morphological types to the observed evolution. The main contributors are compact galaxies observed in large number at optical wavelengths, and the sparse population of extincted & powerful starbursts observed by ISO. This latter population is made of large and massive galaxies mostly found in interacting systems, some of which could be leading to the formation of massive ellipticals at z < 1.
A Multiwavelength Characterization of Proto-brown-dwarf Candidates in Serpens
NASA Astrophysics Data System (ADS)
Riaz, B.; Vorobyov, E.; Harsono, D.; Caselli, P.; Tikare, K.; Gonzalez-Martin, O.
2016-11-01
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3-G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source has an L bol ˜ 0.05 L ⊙. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ˜20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.
2014-02-01
The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceedsmore » that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.« less
A MULTIWAVELENGTH CHARACTERIZATION OF PROTO-BROWN-DWARF CANDIDATES IN SERPENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riaz, B.; Caselli, P.; Vorobyov, E.
2016-11-10
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3–G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source hasmore » an L {sub bol} ∼ 0.05 L {sub ☉}. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ∼20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.« less
Heating of H II regions with application to the Galactic center
NASA Technical Reports Server (NTRS)
Maloney, Philip R.; Hollenbach, David J.; Townes, Charles H.
1992-01-01
The heating and thermal equilibrium of photoionized gas is reviewed. Photon-heating mechanisms (UV photoionization heating, grain photoelectric heating, and X-ray heating) either fail to provide the required heating rates or else require that the ionization state of the gas is very high. Specific application to the Galactic center observations show that the total heating power required to maintain the gas at the derived temperatures, using the observed emission measure in the bar and the temperature distribution derived from the radio recombination lines, is about 7 x 10 exp 6 solar luminosities, comparable to the bolometric luminosity of the central source as measured by the FIR flux from grains. Thus, the cooling emission from this hot gas, if LTE-derived temperatures are correct, would supply a major fraction of the bolometric and ionizing luminosity inferred from the ionized gas in the central 1 pc cavity and the dust and neutral gas in the surrounding torus.
Shock-layer-induced ultraviolet emissions measured by rocket payloads
NASA Astrophysics Data System (ADS)
Caveny, Leonard H.; Mann, David M.
1991-08-01
Hypervelocity missiles in the continuum and near-continuum atmosphere produce high temperature shocklayers (i.e., greater than 4000 K at 3.5 km/s and 9000 K at 5.5 km/s). Atmospheric oxygen and nitrogen react and the products are excited to produce nitrogen oxide gamma-band radiation. Analyses and shock tube experiments explored the reaction chemistry and the emissions. Two rocket experiments were conducted to obtain ultraviolet (UV) data under flight conditions using innovative onboard instruments. The first (Bow Shock 1) flew onboard a Terrier-Malemute in April 1990; the second (Bow Shock 2) flew aboard a Strypi XI (Castor 1/Antares IIa/Star 27) in February 1991. The principal instruments were: (1) scanning UV spectrometers, from 190 to 400 nm, (2) quartz fiber-optic coupled photometers to measure selected spectral features, and (3) atomic oxygen (130.4 nm) and hydrogen Lyman-alpha (121.6 nm) detectors. Bow Shock 1 acquired new data on the spectral intensity from UV emissions at 3.5 km/s between 40 and 70 km. For example, at 55 km, the observations included well-defined spectra of nitrogen oxide gamma-band UV emitters with signal strengths more than 10 times stronger than recent theory predicted. Significant signal strength persisted to 70 km, 20 km higher than anticipated. Bow Shock 2 extended the velocity to 5 km/s. An additional scanning spectrometer and 8 photometers observed the downstream shock structures and shock plume interactions. Initial data interpretations indicate that aerodynamic interactions significantly enhance plume emissions.
The ultraviolet-bright stars of Omega Centauri, M3, and M13
NASA Technical Reports Server (NTRS)
Landsman, Wayne B.; O'Connell, Robert W.; Whitney, Jonathan H.; Bohlin, Ralph C.; Hill, Robert S.; Maran, Stephen P.; Parise, Ronald A.; Roberts, Morton S.; Smith, Andrew A.; Stecher, Theodore P.
1992-01-01
Two new UV-bright stars detected within 2 arcmin of the center of Omega Cen are spectroscopically investigated with the short-wavelength spectrograph of the IUE. The IUE spectra of the UV-bright stars UIT-1 and UIT-2 in the core of Omega Cen superficially resemble those of Population I mid-B stars. The absorption lines of the core UV-bright stars are significantly weaker than in Population I stars, consistent with their membership in the cluster. Synthetic spectra calculated from low-metallicity Kurucz model stellar atmospheres are compared with the spectra. These objects are insufficiently luminous to be classical hydrogen-burning post-AGB stars. They may be evolved hot horizontal branch stars which have been brightened by more than 3 mag since leaving the zero-age horizontal branch. It is inferred from the spectra and luminosity of the core UV-bright stars that similar objects could provide the source of the UV light in elliptical galaxies.
Online spectral fit tool (OSFT) for analyzing reflectance spectra
NASA Astrophysics Data System (ADS)
Penttilä, A.; Kohout, T.; Muinonen, K.
2015-10-01
We present an algorithm and its implementation for fitting continuum and absorption bands to UV/VIS/NIR reflectance spectra. The implementation is done completely in JavaScript and HTML, and will run in any modern web browser without requiring external libraries to be installed.
Ultraviolet continuum variability and visual flickering in the peculiar object MWC 560
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Perez, M.; Shore, S. N.; Maran, S. P.; Karovska, M.; Sonneborn, G.; Webb, J. R.; Barnes, Thomas G., III; Frueh, Marian L.; Oliversen, R. J.
1993-01-01
High-speed U-band photometry of the peculiar emission object MWC 560 obtained with the ground-based instrumentation, and V-band photometry obtained with the International Ultraviolet Explorer-Fine Error Sensor indicates irregular brightness variations are quasi-periodic. Multiple peaks of relative brightness power indicate statistically significant quasi periods existing in a range of 3-35 minutes, that are superposed on slower hourly varying components. We present a preliminary model that explains the minute and hourly time-scale variations in MWC 560 in terms of a velocity-shear instability that arises because a white dwarf magnetosphere impinges on an accretion disk. We also find evidence for Fe II multiplet pseudocontinuum absorption opacity in far-UV spectra of CH Cygni which is also present in MWC 560. Both CH Cyg and MWC 560 may be in an evolutionary stage that is characterized by strong UV continuum opacity which changes significantly during outburst, occurring before they permanently enter the symbiotic nebular emission phase.
Mass Loss from the Nuclei of Active Galaxies
NASA Technical Reports Server (NTRS)
Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.
2003-01-01
Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
2016-03-30
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
Ultraviolet observations of four symbiotic stars
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Feibelman, W. A.; Hobbs, R. W.; Kafatos, M.
1982-01-01
Observations were obtained with the International Ultraviolet Explorer (IUE) of four symbiotic stars. The UV spectra of YY Her, SY Mus, CL Sco, and BX Mon are characterized by varying degrees of thermal excitation. These low resolution spectra have been analyzed in terms of line-blanketed model atmospheres of early A, B, and F type stars in order to identify the nature of the hot companion in these systems. The expected emission from early main sequence stars does not fully explain the observed distribution of UV continuum energy over the entire IUE spectral range (1200-3200 A). More likely the observed continuum may be originating from an accretion disk and/or hot subdwarf that photoionizes circumstellar material, and gives rise to the high excitation lines that have been detected. The Bowen fluorescent excited lines of O III in SY Mus exhibit slightly broadened profiles that suggest possible turbulent motions in an extended circumstellar cloud with characteristic velocities of approximately 300 km/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
The Impact of Accurate Distances on UV Spectroscopy of White Dwarfs and Cataclysmic Variables
2009-01-01
evolution. Four instability strips in the HR diagram are associated with planetary nebulae nuclei (PNN) and white dwarfs (WDs). The rst instability...strip occurs during the high luminosity planetary nebula phase. The second is during the pre- WD stars of the PG 1159 spectral type, which are direct
2.0 to 2.4 micron spectroscopy of T Tauri stars
NASA Astrophysics Data System (ADS)
Hamann, F.; Simon, M.; Ridgway, S. T.
1988-03-01
Velocity-resolved 2.0-2.5-micron observations of the T Tau stars T, DF, DG, DK, HL, and RY Tau, SU Aur, and GW Ori are presented. For each of these stars except SU Aur, the Brackett gamma line was detected in emission with line widths inthe range of about 130-230 km/s. The Brackett gamma line profile of SU Aur is complex, having components of both emission and absorption. The first measurement of CO band-head emission in DG Tau is reported, and it is shown that published radio continuum fluxes of young stars far exceed what could be produced in an envelope ionized by only the stellar photospheric Lyman continuum. The excess of radio emission is found to be much greater in low-luminosity sources (e.g., the T Tau stars).
STIS Observations of the Intrinsic UV Absorption in the Dwarf Seyfert Nucleus of NGC 4395
NASA Astrophysics Data System (ADS)
Kraemer, Steven
2002-07-01
The Sd IV dwarf galaxy NGC 4395 is one of the nearest {d 4.2 Mpc} and least luminous {L_bol 10^41 ergs s^-1} examples of Seyfert 1 galaxies. Furthermore, it is the only known example of an active nucleus within a bulgeless, extreme late-type galaxy. This unique object possesses all of the classic Seyfert 1 properties in miniature, including broad and narrow emission lines and highly variable X-ray emission, presumably powered by a small {few x 10^4 M_odot} black hole. Furthermore, we have discovered evidence for blueshifted, intrinsic absorption lines in the UV {C IV LambdaLambda1548.2, 1550.8}, while X-ray spectra show the presence of bound-free edges from O VII and O VIII. We propose HST/STIS echelle observations to determine the properties {ionization states, column densities, velocity coverages, covering factors} of the intrinsic UV absorbers in NGC 4395. Due to the high covering factor of its narrow-line emission, NGC 4395 offers the best case for testing the connection between the absorbers and the narrow-line region {NLR}. Furthermore, an empirical comparison of its absorption properties with those in higher luminosity active galactic nuclei {AGN} will provide valuable constraints on dynamical models of the absorbers, which make predictions that are strongly dependent on luminosity and/or central black hole mass.
RENU 2 UV Measurements of Atomic Oxygen in the Cusp Region
NASA Astrophysics Data System (ADS)
Fritz, B.; Lessard, M.; Paxton, L. J.; Cook, T.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.
2016-12-01
The RENU 2 NASA sounding rocket mission launched from the Andoya Space Center on 13 December, 2015 into the dayside cusp region. A UV Photometer (UV PMT) provided by the University of New Hampshire was oriented to look up along the local magnetic field line as the payload passed through a poleward moving auroral form (PMAF). The bandpass filter on the UV PMT isolated emissions of atomic oxygen at both 130.4 nm and 135.6 nm. The instrument measured a clear enhancement in the topside ionosphere as the payload descended through a region of soft electron precipitation. The RENU 2 UV PMT was flown uncalibrated but measured a clear signal with both a major overall structure as well as several smaller peaks of fine structure. An identical spare has been built and calibrated using a Paresce UV light source at UMass-Lowell to compare and correlate with the flight data. An approximation of the flight data luminosity from the spare instrument and other flight data from RENU 2 is used in a radiative transport model to infer structure of upwelling neutral atomic oxygen above the PMAF.
Lyman Continuum Escape Fraction of Star-forming Dwarf Galaxies at z ˜ 1
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian; Henry, Alaina; Rafelski, Marc; Hayes, Matthew; Salvato, Mara; Pahl, Anthony J.; Mehta, Vihang; Beck, Melanie; Malkan, Matthew; Teplitz, Harry I.
2016-03-01
To date, no direct detection of Lyman continuum emission has been measured for intermediate-redshift (z˜ 1) star-forming galaxies. We combine Hubble Space Telescope grism spectroscopy with GALEX UV and ground-based optical imaging to extend the search for escaping Lyman continuum to a large (˜600) sample of z˜ 1 low-mass ({log}(\\bar{M}) ≃ 9.3{M}⊙ ), moderately star-forming (\\bar{{{\\Psi }}} ≲ 10{M}⊙ yr-1) galaxies selected initially on Hα emission. The characteristic escape fraction of LyC from star-forming galaxies (SFGs) that populate this parameter space remains weakly constrained by previous surveys, but these faint (sub-L⋆) SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift z\\gt 6. We do not make an unambiguous detection of escaping LyC radiation from this z˜ 1 sample, individual non-detections to constrain the absolute Lyman continuum escape fraction, {f}{esc} \\lt 2.1% (3σ). We measure an upper limit of {f}{esc} \\lt 9.6% from a sample of SFGs selected on high Hα equivalent width (EW \\gt 200 {{\\mathringA }}), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity-weighted escape fraction that is useful for measuring the general contribution SFGs to the ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the reionization of hydrogen in the IGM at high (z\\gt 6) redshift. If we assume our z˜ 1 SFGs, for which we measure this emissivity-weighted {f}{esc}, are analogs to the high redshift sources of reionization, we find it is difficult to reconcile reionization by faint ({M}{UV}≲ -13) SFGs with a low escape fraction ({f}{esc} \\lt 3%), with constraints from independent high redshift observations. If {f}{esc} evolves with redshift, reionization by SFGs may be consistent with observations from Planck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siana, Brian; Bridge, Carrie R.; Teplitz, Harry I.
We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z {approx} 1.3 in the GOODS fields to search for escaping Lyman continuum (LyC) photons. These are the deepest far-UV images (m{sub AB} = 28.7, 3{sigma}, 1'' diameter) over this large an area (4.83 arcmin{sup 2}) and provide some of the best escape fraction constraints for any galaxies at any redshift. We do not detect any individual galaxies, with 3{sigma} limits to the LyC ({approx}700 A) flux 50-149 times fainter (in f{sub {nu}}) than the rest-frame UV (1500 A) continuum fluxes. Correcting for the mean intergalacticmore » medium (IGM) attenuation (factor {approx}2), as well as an intrinsic stellar Lyman break (factor {approx}3), these limits translate to relative escape fraction limits of f{sub esc,rel} < [0.03, 0.21]. The stacked limit is f{sub esc,rel}(3{sigma}) < 0.02. We use a Monte Carlo simulation to properly account for the expected distribution of line-of-sight IGM opacities. When including constraints from previous surveys at z {approx} 1.3 we find that, at the 95% confidence level, no more than 8% of star-forming galaxies at z {approx} 1.3 can have relative escape fractions greater than 0.50. Alternatively, if the majority of galaxies have low, but non-zero, escaping LyC, the escape fraction cannot be more than 0.04. In light of some evidence for strong LyC emission from UV-faint regions of Lyman break galaxies (LBGs) at z {approx} 3, we also stack sub-regions of our galaxies with different surface brightnesses and detect no significant LyC flux at the f{sub esc,rel} < 0.03 level. Both the stacked limits and the limits from the Monte Carlo simulation suggest that the average ionizing emissivity (relative to non-ionizing UV emissivity) at z {approx} 1.3 is significantly lower than has been observed in LBGs at z {approx} 3. If the ionizing emissivity of star-forming galaxies is in fact increasing with redshift, it would help to explain the high photoionization rates seen in the IGM at z>4 and reionization of the IGM at z>6.« less
Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime
NASA Astrophysics Data System (ADS)
Fürst, F.; Kretschmar, P.; Kajava, J. J. E.; Alfonso-Garzón, J.; Kühnel, M.; Sanchez-Fernandez, C.; Blay, P.; Wilson-Hodge, C. A.; Jenke, P.; Kreykenbohm, I.; Pottschmidt, K.; Wilms, J.; Rothschild, R. E.
2017-10-01
The Be X-ray binary EXO 2030+375was in an extended low-luminosity state during most of 2016. We observed this state with NuSTARand Swift, supported by INTEGRALobservations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The Hα data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTARdata, taken at a 3-78 keV luminosity of 6.8 × 1035 erg s-1 (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from 1.5 to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newtonat much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1034 erg s-1 where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller effect and we only observe the neutron star surface cooling.
Fundamental Properties of O-Type Stars
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lanz, Thierry; Hubeny, Ivan
2006-01-01
We present a comprehensive analysis of high-resolution, far-ultraviolet HST STIS, FUSE, and optical spectra of 18 O stars in the Small Magellanic Cloud. Our analysis is based on the OSTAR2002 grid of NLTE metal-line-blanketed model atmospheres calculated with our code TLUSTY. We systematically explore and present the sensitivity of various UV and optical lines to different stellar parameters. We have obtained consistent fits of the UV and the optical spectrum to derive the effective temperature, surface gravity, surface composition, and microturbulent velocity of each star. Stellar radii, masses, and luminosities follow directly. For stars of the same spectral subtype, we find a general good agreement between effective temperature determinations obtained with TLUSTY, CMFGEN, and FASTWIND models, which are all lower than the standard T(sub eff) calibration of O stars. We propose a new calibration between the spectral type and effective temperature based on our results from UV metal lines, as well as optical hydrogen and helium lines. The lower effective temperatures translate into ionizing luminosities that are smaller by a factor of 3 compared to luminosities inferred from previous standard calibrations. The chemical composition analysis reveals that the surface of about 80% of the program stars is moderately to strongly enriched in nitrogen, while showing the original helium, carbon, and oxygen abundances. Our results support the new stellar evolution models that predict that the surface of fast rotating stars becomes nitrogen-rich during the main-sequence phase because of rotationally induced mixing. Enrichment factors are, however, larger than predicted by stellar evolution models. Most stars exhibit the "mass discrepancy" problem, which we interpret as a result of fast rotation that lowers the measured effective gravity. Nitrogen enrichment and low spectroscopic masses are therefore two manifestations of fast rotation. Our study thus emphasizes the importance of rotation in our understanding of the properties of massive stars and provides a framework for investigating populations of low-metallicity massive stars at low and high redshifts.
Predicted continuum spectra of type II supernovae - LTE results
NASA Technical Reports Server (NTRS)
Shaviv, G.; Wehrse, R.; Wagoner, R. V.
1985-01-01
The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parra, R.; Conway, J. E.; Aalto, S.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less
The Lick AGN Monitoring Project 2016: Extending Reverberation Mapping to Higher Luminosity AGNs
NASA Astrophysics Data System (ADS)
U, Vivian; LAMP2016 Collaboration
2017-01-01
The technique of reverberation mapping has been used to estimate virial black hole masses and, more fundamentally, to probe the broad line region structure in Seyfert I galaxies. Efforts from the previous Lick AGN Monitoring Project (LAMP) campaigns and other studies to date have culminated in a large sample of reverberation mapped AGNs and measurements of their black hole masses, which in turn enabled major improvement to various AGN scaling relations. However, the high-luminosity end of such relations remains poorly constrained; this is because of observational challenges presented by the weaker continuum flux variations and longer time dilation in these sources. To this end, we have initiated a new LAMP2016 campaign to target AGNs with luminosities of 10^44 erg/s, with predicted H-beta lags of ~20 - 60 days or black hole masses of 10^7 - 10^8.5 Msun. Designed to monitor ~20 AGNs biweekly from Spring 2016 through Winter 2017 with the Kast spectrograph on the 3-m Shane Telescope at Lick Observatory, we aim to probe luminosity-dependent trends in broad line region structure and dynamics, improve calibrations for single-epoch estimates of high-redshift quasar black hole masses, and test photoionization models for the radially-stratified structure of the broad line region. In this talk, I will present the overview and scope of LAMP2016 and show preliminary results from our ongoing campaign.
NASA Astrophysics Data System (ADS)
Shivaei, Irene; Reddy, Naveen A.; Shapley, Alice E.; Kriek, Mariska; Siana, Brian; Mobasher, Bahram; Coil, Alison L.; Freeman, William R.; Sanders, Ryan; Price, Sedona H.; de Groot, Laura; Azadi, Mojegan
2015-12-01
We present results on the star formation rate (SFR) versus stellar mass (M*) relation (i.e., the “main sequence”) among star-forming galaxies at 1.37 ≤ z ≤ 2.61 using the MOSFIRE Deep Evolution Field (MOSDEF) survey. Based on a sample of 261 galaxies with Hα and Hβ spectroscopy, we have estimated robust dust-corrected instantaneous SFRs over a large range in M* (˜109.5-1011.5 M⊙). We find a correlation between log(SFR(Hα)) and log(M*) with a slope of 0.65 ± 0.08 (0.58 ± 0.10) at 1.4 < z < 2.6 (2.1 < z < 2.6). We find that different assumptions for the dust correction, such as using the color excess of the stellar continuum to correct the nebular lines, sample selection biases against red star-forming galaxies, and not accounting for Balmer absorption, can yield steeper slopes of the log(SFR)-log(M*) relation. Our sample is immune from these biases as it is rest-frame optically selected, Hα and Hβ are corrected for Balmer absorption, and the Hα luminosity is dust corrected using the nebular color excess computed from the Balmer decrement. The scatter of the log(SFR(Hα))-log(M*) relation, after accounting for the measurement uncertainties, is 0.31 dex at 2.1 < z < 2.6, which is 0.05 dex larger than the scatter in log(SFR(UV))-log(M*). Based on comparisons to a simulated SFR-M* relation with some intrinsic scatter, we argue that in the absence of direct measurements of galaxy-to-galaxy variations in the attenuation/extinction curves and the initial mass function, one cannot use the difference in the scatter of the SFR(Hα)- and SFR(UV)-M* relations to constrain the stochasticity of star formation in high-redshift galaxies.
Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.
1991-01-01
IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline
2018-03-01
We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.
The Rest-frame Ultraviolet Spectra of UV-selected Active Galactic Nuclei at z ~ 2-3
NASA Astrophysics Data System (ADS)
Hainline, Kevin N.; Shapley, Alice E.; Greene, Jenny E.; Steidel, Charles C.
2011-05-01
We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z ~ 2-3. The rest-frame UV composite spectrum for our AGN sample shows several emission lines characteristic of AGNs, as well as interstellar absorption features detected in star-forming Lyman break galaxies (LBGs). We report a detection of N IV] λ1486, which has been observed in high-redshift radio galaxies, as well as in rare optically selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star-forming galaxies. Blueshifted Si IV absorption provides evidence for outflowing highly ionized gas in these objects at speeds of ~103 km s-1, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as the Lyα equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Lyα emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Lyα photons. However, the AGN composite does not show the same trends between Lyα strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high redshift between star-forming galaxies and similar galaxies that host AGN activity. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
The X-ray Reflectors in the Nucleus of the Seyfert Galaxy NGC 1068
NASA Technical Reports Server (NTRS)
Colbert, Edward J. M.; Weaver, Kimberly A.; Krolik, Julian H.; Mulchaey, John S.; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)
2002-01-01
Based on observations of the Seyfert nucleus in NGC 1068 with ASCA, RXTE and BeppoSAX, we report the discovery of a flare (increase in flux by a factor of approximately 1.6) in the 6.7 keV Fe K line component between observations obtained four months apart, with no significant change in the other (6.21, 6.4, and 6.97 keV) Fe Kalpha line components. During this time, the continuum flux decreased by approximately 20%. The RXTE spectrum requires an Fe K absorption edge near 8.6 keV (Fe XXIII- XXV). The spectral data indicate that the 2-10 keV continuum emission is dominated (approximately 2/3 of the luminosity) by reflection from a previously unidentified region of warm, ionized gas located approximately or less than 0.2 pc from the AGN. The remaining approximately 1/3 of the observed X-ray emission is reflected from optically thick, neutral gas. The coronal gas in the inner Narrow-Line Region (NLR) and/or the cold gas at the inner surface of the obscuring 'torus' are possible cold reflectors. The inferred properties of the warm reflector are: size (diameter) approximately or less than 0.2 pc, gas density n approximately or greater than 10(exp 5.5)/cu cm, ionization parameter xi is approximately 10(exp 3.5) erg cm s(exp -1), and covering fraction 0.003 (L(sub 0)/ 10(exp 43.5) erg s(exp -1)(exp -1) less than (omega/4pi) less than 0.024 (L(sub 0)/ 10(exp 43.5) erg s(exp -1) (exp -1) where L(sub 0) is the intrinsic 2-10 keV X-ray luminosity of the AGN. We suggest that the warm reflector gas is the source of the (variable) 6.7 keV Fe line emission, and the 6.97 keV Fe line emission. The 6.7 keV line flare is assumed to be due to an increase in the emissivity of the warm reflector gas from a decrease (by 20-30%) in L(sub 0). The properties of the warm reflector are most consistent with an intrinsically X-ray weak AGN with L(sub 0) approximately equals 10(exp 43.0) erg s(exp -1). The optical and UV emission that scatters from the warm reflector into our line of sight is required to suffer strong extinction, which can be reconciled if the line-of-sight skims the outer surface of the torus. Thermal bremsstrahlung radio emission from the warm reflector may be detectable in VLBA radio maps of the NGC 1068 nucleus.
Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes
NASA Technical Reports Server (NTRS)
Konigl, Arieh; Kartje, John F.
1994-01-01
Centrifugally driven winds from the surfaces of magnetized accretion disks have been recognized as an attractive mechanism of removing the angular momentum of the accreted matter and of producing the bipolar outflows and jets that are often associated with compact astronomical objects. As previously suggested in the context of young stellar objects, such winds have unique observational manifestations stemming from their highly stratified density and velocity structure and from their exposure to the strong continuum radiation field of the compact object. We have applied this scenario to active galactic nuclei (AGNs) and investigated the properties of hydromagnetic outflows that originate within approximately 10(M(sub 8)) pc of the central 10(exp 8)(M(sub 8)) solar mass black hole. On the basis of our results, we propose that hydromagnetic disk-driven winds may underlie the classification of broad-line and narrow-line AGNs (e.g., the Seyfert 1/Seyfert 2 dichotomy) as well as the apparent dearth of luminous Seyfert 2 galaxies. More generally, we demonstrate that such winds could strongly influence the spectral characteristics of Seyfert galaxies, QSOs, and BL Lac objects (BLOs). In our picture, the torus is identified with the outer regions of the wind where dust uplifted from the disk surfaces by gas-grain collisions is embedded in the outflow. Using an efficient radiative transfer code, we show that the infrared emission of Seyfert galaxies and QSOs can be attributed to the reprocessing of the UV/soft X-ray AGN continuum by the dust in the wind and the disk. We demonstrate that the radiation pressure force flattens the dust distribution in objects with comparatively high (but possibly sub-Eddington) bolometric luminosities, and we propose this as one likely reason for the apparent paucity of narrow-line objects among certain high-luminosity AGNs. Using the XSTAR photoionization code, we show that the inner regions of the wind could naturally account for the warm (greater than or approximately equal to 10(exp 5) K) and hot (greater than or approximately equal to 10(exp 6) K) gas components that have been inferred to exist on scales less than or approximately equal to 10(exp 2) pc in several Seyfert galaxies. We suggest that the partially ionized gas in the inner regions of the wind, rather than the dusty, neutral outflow that originates further out in the disk, could account for the bulk of the X-ray absorption in Seyferts observed at relatively small angles to their symmetry axes. Finally, we discuss the application of this model to the interpretation of the approximately 0.6 keV X-ray absorption feature reported in several BLOs.
NASA Technical Reports Server (NTRS)
Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.
1980-01-01
The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.
A New Compton-thick AGN in our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR
NASA Astrophysics Data System (ADS)
Annuar, A.; Alexander, D. M.; Gandhi, P.; Lansbury, G. B.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Farrah, D.; Goulding, A. D.; Hailey, C. J.; Harrison, F. A.; Koss, M. J.; LaMassa, S. M.; Murray, S. S.; Ricci, C.; Rosario, D. J.; Stanley, F.; Stern, D.; Zhang, W.
2017-02-01
NGC 1448 is one of the nearest luminous galaxies (L 8-1000μm > 109 L ⊙) to ours (z = 0.00390), and yet the active galactic nucleus (AGN) it hosts was only recently discovered, in 2009. In this paper, we present an analysis of the nuclear source across three wavebands: mid-infrared (MIR) continuum, optical, and X-rays. We observed the source with the Nuclear Spectroscopic Telescope Array (NuSTAR), and combined these data with archival Chandra data to perform broadband X-ray spectral fitting (≈0.5-40 keV) of the AGN for the first time. Our X-ray spectral analysis reveals that the AGN is buried under a Compton-thick (CT) column of obscuring gas along our line of sight, with a column density of N H(los) ≳ 2.5 × 1024 cm-2. The best-fitting torus models measured an intrinsic 2-10 keV luminosity of L {}2-10,{int} = (3.5-7.6) × 1040 erg s-1, making NGC 1448 one of the lowest luminosity CTAGNs known. In addition to the NuSTAR observation, we also performed optical spectroscopy for the nucleus in this edge-on galaxy using the European Southern Observatory New Technology Telescope. We re-classify the optical nuclear spectrum as a Seyfert on the basis of the Baldwin-Philips-Terlevich diagnostic diagrams, thus identifying the AGN at optical wavelengths for the first time. We also present high spatial resolution MIR observations of NGC 1448 with Gemini/T-ReCS, in which a compact nucleus is clearly detected. The absorption-corrected 2-10 keV luminosity measured from our X-ray spectral analysis agrees with that predicted from the optical [O III]λ5007 Å emission line and the MIR 12 μm continuum, further supporting the CT nature of the AGN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.
2016-03-10
We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Opticallymore » classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.« less
Looking at A 0535+26 at low luminosities with NuSTAR
NASA Astrophysics Data System (ADS)
Ballhausen, Ralf; Pottschmidt, Katja; Fürst, Felix; Wilms, Jörn; Tomsick, John A.; Schwarm, Fritz-Walter; Stern, Daniel; Kretschmar, Peter; Caballero, Isabel; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Zhang, William W.
2017-12-01
We report on two NuSTAR observations of the high-mass X-ray binary A 0535+26 taken toward the end of its normal 2015 outburst at very low 3-50 keV luminosities of 1.4 × 1036 erg s-1 and 5 × 1035 erg s-1, which are complemented by nine Swift observations. The data clearly confirm indications seen in earlier data that the source's spectral shape softens as it becomes fainter. The smooth exponential rollover at high energies seen in the first observation evolves to a much more abrupt steepening of the spectrum at 20-30 keV. The continuum evolution can be nicely described with emission from a magnetized accretion column, modeled using the compmag model modified by an additional Gaussian emission component for the fainter observation. Between the two observations, the optical depth changes from 0.75 ± 0.04 to , the electron temperature remains constant, and there is an indication that the column decreases in radius. Since the energy-resolved pulse profiles remain virtually unchanged in shape between the two observations, the emission properties of the accretion column reflect the same accretion regime. This conclusion is also confirmed by our result that the energy of the cyclotron resonant scattering feature (CRSF) at 45 keV is independent of the luminosity, implying that the magnetic field in the region in which the observed radiation is produced is the same in both observations. Finally, we also constrain the evolution of the continuum parameters with the rotational phase of the neutron star. The width of the CRSF could only be constrained for the brighter observation. Based on Monte Carlo simulations of CRSF formation in single accretion columns, its pulse phase dependence supports a simplified fan beam emission pattern. The evolution of the CRSF width is very similar to that of the CRSF depth, which is, however, in disagreement with expectations.
Multi-Wave Station of Solar Monitoring
NASA Astrophysics Data System (ADS)
Korokhin, V.; Akimov, L.; Beletsky, S.; Belkina, I.; Velikodsky, Y.; Marchenko, G.; Shaparenko, E.
A technical description of the contemporary solar telescope of the Kharkov Astronomical Observatory (http://khassm.virtualave.net) is given, and the plan to future development is sketched. A wide range monitoring of solar activity including observations near UV range in Balmer continuum and the IR line of He 1083 nm is presented.
The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4
NASA Astrophysics Data System (ADS)
Du, Xinnan; Shapley, Alice E.; Reddy, Naveen A.; Jones, Tucker; Stark, Daniel P.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Erb, Dawn K.; Ellis, Richard S.; Pettini, Max
2018-06-01
We present the first comprehensive evolutionary analysis of the rest-frame UV spectroscopic properties of star-forming galaxies at z ∼ 2–4. We match samples at different redshifts in UV luminosity and stellar mass, and perform systematic measurements of spectral features and stellar population modeling. By creating composite spectra grouped according to Lyα equivalent width (EW) and various galaxy properties, we study the evolutionary trends among Lyα, low- and high-ionization interstellar (LIS and HIS) absorption features, and integrated galaxy properties. We also examine the redshift evolution of Lyα and LIS absorption kinematics, and fine-structure emission EWs. The connections among the strengths of Lyα, LIS lines, and dust extinction are redshift independent, as is the decoupling of the Lyα and HIS line strengths, and the bulk outflow kinematics as traced by the LIS lines. Stronger Lyα emission is observed at higher redshift at fixed UV luminosity, stellar mass, SFR, and age. Much of this variation in the average Lyα strength with redshift, and the variation in Lyα strength at fixed redshift, can be explained in terms of variations in the neutral gas covering fraction and/or dust content in the ISM and CGM. However, based on the connection between Lyα and C III] emission strengths, we additionally find evidence for variations in the intrinsic production rate of Lyα photons at the highest Lyα EWs. The challenge now is to understand the observed evolution of the neutral gas covering fraction and dust extinction within a coherent model for galaxy formation, and make robust predictions for the escape of ionizing radiation at z > 6.
A VLA radio-continuum survey of a sample of confirmed and marginal barium stars
NASA Technical Reports Server (NTRS)
Drake, Stephen A.; Simon, Theodore; Linsky, Jeffrey L.
1987-01-01
Results are reported from a 6-cm VLA survey of five confirmed Ba II stars and eight mild Ba II stars, undertaken to search for evidence of gyrosynchrotron emission or thermal emission from the primary star's wind that is enhanced or photoionized by a white dwarf companion. Of these 13 stars, only Beta UMi was detected as a possible radio source at a flux level of 0.11 mJy (3sigma). The 6-cm radio luminosities (L6) of the other stars are as small as log L6 less than or equal to 14.0 and are an order of magnitude or more lower than the average levels found in RS CVn systems, but are consistent with the L6 upper limits previously found for stars of spectral type similar to the Ba II stars and normal elemental abundances. The upper limit to the radio luminosity for the possible mild Ba II star 56 Peg, when combined with its previously known X-ray luminosity, may provide useful constraints on the various models that have been proposed for this interesting object, once its orbital period is known.
UIT ultraviolet imaging of 30 Doradus
NASA Technical Reports Server (NTRS)
Hintzen, P.; Cheng, K.-P.; Michalitsianos, A.; Bohlin, R.; O'Connell, R.; Cornett, R.; Roberts, M.; Smith, A.; Smith, E.; Stecher, T.
1992-01-01
During the Astro-1 mission, near- and far-UV images of the 30 Doradus region were obtained using the Ultraviolet Imaging Telescope (UIT). These wide-field, 40 min in diameter, high spatial resolution, 2-3 sec, UIT UV images reveal a rich field of luminous UV-bright stars, clusters, and associations. There are 181 stars brighter than m(sub 2558A) = 16.5 and 197 stars brighter than m(sub 1615A) = 16.4 within 3 min diameter of the 30 Doradus central cluster. We have derived UV fluxes emitted from the 30 Doradus central cluster and from its UV bright core, R136. The region within 5 sec of R136 produces approximately 14% of the far-UV flux (lambda = 1892 A) and approximately 16% of the near-UV flux (lambda = 2558 A) emitted from the 3 min diameter central cluster. The derived UV luminosity of R136 at 1892 A is only 7.8 times that of the nearby O6-7 Iaf star, R139, and the m(sub 1892) - m(sub v) colors of R136 are similar to other O or Wolf-Rayet stars in the same region. These UIT data, combined with other published observations at longer wavelengths, indicate that there is no observational evidence for a supermassive star in R136.
UIT ultraviolet imaging of 30 Doradus
NASA Astrophysics Data System (ADS)
Hintzen, P.; Cheng, K.-P.; Michalitsianos, A.; Bohlin, R.; O'Connell, R.; Cornett, R.; Roberts, M.; Smith, A.; Smith, E.; Stecher, T.
During the Astro-1 mission, near- and far-UV images of the 30 Doradus region were obtained using the Ultraviolet Imaging Telescope (UIT). These wide-field, 40 min in diameter, high spatial resolution, 2-3 sec, UIT UV images reveal a rich field of luminous UV-bright stars, clusters, and associations. There are 181 stars brighter than m2558A = 16.5 and 197 stars brighter than m1615A = 16.4 within 3 min diameter of the 30 Doradus central cluster. We have derived UV fluxes emitted from the 30 Doradus central cluster and from its UV bright core, R136. The region within 5 sec of R136 produces approximately 14% of the far-UV flux (lambda = 1892 A) and approximately 16% of the near-UV flux (lambda = 2558 A) emitted from the 3 min diameter central cluster. The derived UV luminosity of R136 at 1892 A is only 7.8 times that of the nearby O6-7 Iaf star, R139, and the m1892 - mv colors of R136 are similar to other O or Wolf-Rayet stars in the same region. These UIT data, combined with other published observations at longer wavelengths, indicate that there is no observational evidence for a supermassive star in R136.
An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li
NASA Astrophysics Data System (ADS)
Cenko, S. Bradley; Cucchiara, Antonino; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.; Filippenko, Alexei V.; Fruchter, Andrew S.; Gezari, Suvi; Kasen, Daniel; Levan, Andrew J.; Miller, Jon M.; Pasham, Dheeraj R.; Ramirez-Ruiz, Enrico; Strubbe, Linda E.; Tanvir, Nial R.; Tombesi, Francesco
2016-02-01
We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with {T}{UV}=3.5× {10}4 K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (˜2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Δv = -(250-400) km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and “N-rich” quasars.
An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li
NASA Technical Reports Server (NTRS)
Cenko, S. Bradley; Cucchiara, Antonio; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.
2016-01-01
We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T(sub UV) = 3.5 x 10(exp. 4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry).Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad {approx. 2000-8000 km s(exp. -1)} emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta(sub v) = -(250-400) km s(exp. -1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and N-rich quasars.
An Accreting Protoplanet: Confirmation and Characterization of LkCa15b
NASA Astrophysics Data System (ADS)
Follette, Katherine; Close, Laird; Males, Jared; Macintosh, Bruce; Sallum, Stephanie; Eisner, Josh; Kratter, Kaitlin M.; Morzinski, Katie; Hinz, Phil; Weinberger, Alycia; Rodigas, Timothy J.; Skemer, Andrew; Bailey, Vanessa; Vaz, Amali; Defrere, Denis; spalding, eckhart; Tuthill, Peter
2015-12-01
We present a visible light adaptive optics direct imaging detection of a faint point source separated by just 93 milliarcseconds (~15 AU) from the young star LkCa 15. Using Magellan AO's visible light camera in Simultaneous Differential Imaging (SDI) mode, we imaged the star at Hydrogen alpha and in the neighboring continuum as part of the Giant Accreting Protoplanet Survey (GAPplanetS) in November 2015. The continuum images provide a sensitive and simultaneous probe of PSF residuals and instrumental artifacts, allowing us to isolate H-alpha accretion luminosity from the LkCa 15b protoplanet, which lies well inside of the LkCa15 transition disk gap. This detection, combined with a nearly simultaneous near-infrared detection with the Large Binocular Telescope, provides an unprecedented glimpse at a planetary system during epoch of planet formation. [Nature result in press. Please embargo until released
NASA Astrophysics Data System (ADS)
Atek, Hakim; Richard, Johan; Kneib, Jean-Paul; Jauzac, Mathilde; Schaerer, Daniel; Clement, Benjamin; Limousin, Marceau; Jullo, Eric; Natarajan, Priyamvada; Egami, Eiichi; Ebeling, Harald
2015-02-01
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ~ 7 and eight candidates at z ~ 8 in a total survey area of 0.96 arcmin2 in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ~ 7 UV LF down to an absolute magnitude of M UV ~ -15.5. We find a characteristic magnitude of M\\star UV = -20.90+0.90-0.73 mag and a faint-end slope α =-2.01+0.20-0.28, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L sstarf. Although prone to large uncertainties, our results at z ~ 8 also seem to confirm a steep faint-end slope below 0.1 L sstarf. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13495, 11386, 13389, and 11689. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The Hubble Frontier Fields data were obtained from the Mikulski Archive for Space Telescopes (MAST).
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.
1999-02-01
We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.
NASA Astrophysics Data System (ADS)
Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern
2018-01-01
A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.
The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum
NASA Astrophysics Data System (ADS)
Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2018-02-01
We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
The AGN Luminosity Fraction in Galaxy Mergers
NASA Astrophysics Data System (ADS)
Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan
2017-01-01
Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission
NASA Astrophysics Data System (ADS)
Wang, Lile; Cen, Renyue
2016-01-01
Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass 108 M⊙, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature (≥108 K) coronal gas in the inner (≤104 rsch) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.
Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Brown, Peter J.; Baron, E.; Milne, Peter; Roming, Peter W. A.; Wang, Lifan
2015-08-01
The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, 56Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of supernova explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects.
NASA Astrophysics Data System (ADS)
Konno, Akira; Ouchi, Masami; Ono, Yoshiaki; Shimasaku, Kazuhiro; Shibuya, Takatoshi; Furusawa, Hisanori; Nakajima, Kimihiko; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Iye, Masanori
2014-12-01
We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (~0.5 deg2) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 1042 erg s-1 (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z >~ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to the luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ~65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L*{Lyα } = 2.7+8.0-1.2 × 1042 {erg} {s}-1 and φ * = 3.7+17.6-3.3 × 10-4 {Mpc}-3 for a fixed α = -1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ~ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within cosmic ionized bubbles that are selectively absorbing Lyα and the large ionizing photon escape fraction of galaxies causing weak Lyα emission.
HIGH-LYING OH ABSORPTION, [C II] DEFICITS, AND EXTREME L {sub FIR}/M {sub H2} RATIOS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Alfonso, E.; Blasco, A.; Fischer, J.
Herschel/PACS observations of 29 local (ultra)luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 μm Π{sub 3/2} J = 9/2-7/2 line (W {sub eq}(OH65)) with lower level energy E {sub low} ≈ 300 K, is anticorrelated with the [C II]158 μm line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 μm far-infrared color. While all sources are in the active L {sub IR}/M {sub H2} > 50L {sub ☉}/M {sub ☉}more » mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at L {sub FIR}/M {sub H2} ≈ 100 L {sub ☉}/M {sub ☉}. In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 μm absorption. Combined with observations of the OH 71 μm Π{sub 1/2} J = 7/2-5/2 doublet (E {sub low} ≈ 415 K), radiative transfer models characterized by the equivalent dust temperature, T {sub dust}, and the continuum optical depth at 100 μm, τ{sub 100}, indicate that strong [C II]158 μm deficits are associated with far-IR thick (τ{sub 100} ≳ 0.7, N {sub H} ≳ 10{sup 24} cm{sup –2}), warm (T {sub dust} ≳ 60 K) structures where the OH 65 μm absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high L {sub FIR}/M {sub H2} ratios and columns, the presence of these structures is expected to give rise to strong [C II] deficits. W {sub eq}(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is ≳ 30%-50% in sources with high W {sub eq}(OH65). Sources with high W {sub eq}(OH65) have surface densities of both L {sub IR} and M {sub H2} higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum)nuclear starburst-AGN co-evolution.« less
Hubble's Next Generation Spectral Library
NASA Astrophysics Data System (ADS)
Heap, Sara R.; Lindler, D.
2008-03-01
Spectroscopic surveys of galaxies at z 1 or more bring the rest-frame ultraviolet into view of large, ground-based telescopes. This spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). This library contains UV-optical spectra (0.2-1.0 microns) of 378 stars having a wide range in temperature, luminosity, and metallicity. We have derived the basic stellar parameters from the optical spectral region (0.35 - 1.0 microns) and are using them to calibrate UV spectral diagnostic indices and colors.
THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Nathaniel; Kasen, Daniel; Guillochon, James
We study the emission from tidal disruption events (TDEs) produced as radiation from black hole accretion propagates through an extended, optically thick envelope formed from stellar debris. We analytically describe key physics controlling spectrum formation, and present detailed radiative transfer calculations that model the spectral energy distribution and optical line strengths of TDEs near peak brightness. The steady-state transfer is coupled to a solver for the excitation and ionization states of hydrogen, helium, and oxygen (as a representative metal), without assuming local thermodynamic equilibrium. Our calculations show how an extended envelope can reprocess a fraction of soft X-rays and producemore » the observed optical fluxes of the order of 10{sup 43} erg s{sup −1}, with an optical/UV continuum that is not described by a single blackbody. Variations in the mass or size of the envelope may help explain how the optical flux changes over time with roughly constant color. For high enough accretion luminosities, X-rays can escape to be observed simultaneously with the optical flux. Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed relative to helium line emission (with He ii-to-H line ratios of at least 5:1 in some cases) even in the disruption of a solar-composition star. We discuss the implications of our results to understanding the type of stars destroyed in TDEs and the physical processes responsible for producing the observed flares.« less
Deposing the Cool Corona of KPD 0005+5106
NASA Astrophysics Data System (ADS)
Drake, Jeremy J.; Werner, Klaus
2005-06-01
The ROSAT PSPC pulse-height spectrum of the peculiar He-rich hot white dwarf KPD 0005+5106 provided a great surprise when first analyzed by Fleming, Werner, & Barstow. It defied the best non-LTE modeling attempts in terms of photospheric emission from He-dominated atmospheres including C, N, and O and was instead interpreted as the first evidence for a coronal plasma around a white dwarf. We show here that a recent high-resolution Chandra LETGS spectrum has more structure than expected from a thermal bremsstrahlung continuum and lacks the narrow lines of H-like and He-like C expected from a coronal plasma. Moreover, a coronal model requires a total luminosity more than 2 orders of magnitude larger than that of the star itself. Instead, the observed 20-80 Å flux is consistent with photospheric models containing trace amounts of heavier elements such as Fe. The soft X-ray flux is highly sensitive to the adopted metal abundance and provides a metal abundance diagnostic. The weak X-ray emission at 1 keV announced by O'Dwyer and coworkers instead cannot arise from the photosphere and requires alternative explanations. We echo earlier speculation that such emission arises in a shocked wind. Despite the presence of UV-optical O VIII lines from transitions between levels n=7 and 10, no X-ray O VIII Lyα flux is detected. We show that O VIII Lyman photons can be trapped by resonant scattering within the emitting plasma and destroyed by photoelectric absorption.
NASA Astrophysics Data System (ADS)
Starkey, David; Agn Storm Team
2015-01-01
Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.
The 1982 ultraviolet eclipse of the symbiotic binary AR Pav
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.
1983-01-01
Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.
Supernova spectra below strong circumstellar interaction
NASA Astrophysics Data System (ADS)
Leloudas, G.; Hsiao, E. Y.; Johansson, J.; Maeda, K.; Moriya, T. J.; Nordin, J.; Petrushevska, T.; Silverman, J. M.; Sollerman, J.; Stritzinger, M. D.; Taddia, F.; Xu, D.
2015-02-01
We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a black-body continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as "SNe IInS" to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ~ 0.2-0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range -19.5 >M> -21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = -20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with the SN luminosity function needed to reproduce the observed SN Ia-CSM luminosities, it is unlikely that SNe Ibc constitute an important contaminant within this sample. We show how Type II spectra transition to IIn and how the Hα profiles vary with fV. SNe IIn fainter than M = -17.2 are unable to mask SNe IIP brighter than M = -15. A more advanced simulation, including radiative transfer, shows that our simplified model is a good first order approximation. The spectra obtained are in good agreement with real data.
THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela
2015-04-15
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; Chakraborty, Sumanta; SenGupta, Soumitra
2017-10-01
Continuum spectrum from black hole accretion disc holds enormous information regarding the strong gravity regime around the black hole and hence about the nature of gravitational interaction in extreme situations. Since in such strong gravity regime the dynamics of gravity should be modified from the Einstein-Hilbert one, its effect should be imprinted on the continuum spectrum originating from the black hole accretion. To explore the effects of these alternative theories on the black hole continuum spectrum in an explicit manner, we have discussed three alternative gravitational models having their origin in three distinct paradigms—(a) higher dimensions, (b) higher curvature gravity, and (c) generalized Horndeski theories. All of them can have signatures sculptured on the black hole continuum spectrum, distinct from the standard general relativistic scenario. Interestingly all these models exhibit black hole solutions with tidal charge parameter which in these alternative gravity scenarios can become negative, in sharp contrast with the Reissner-Nordström black hole. Using the observational data of optical luminosity for eighty Palomer Green quasars we have illustrated that the difference between the theoretical estimates and the observational results gets minimized for negative values of the tidal charge parameter. As a quantitative estimate of this result we concentrate on several error estimators, including reduced χ2 , Nash-Sutcliffe efficiency, index of agreement etc. Remarkably, all of them indicates a negative value of the tidal charge parameter, signaling the possibility of higher dimensions as well as scalar charge at play in those high gravity regimes.
RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less
The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves
NASA Technical Reports Server (NTRS)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.;
2016-01-01
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.
iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy
Blagorodnova, N.; Gezari, S.; Hung, T.; ...
2017-07-20
Here, we present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute magmore » $${M}_{g}=-17.2$$. The maximum bolometric luminosity (from optical and UV) was $${L}_{p}\\simeq (1.0\\pm 0.15)\\times {10}^{43}$$ erg s -1, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with $$L\\propto {e}^{-(t-{t}_{0})/\\tau }$$, where t 0 = 57631.0 (MJD) and $$\\tau \\simeq 15$$ days. The X-ray shows a marginal detection at $${L}_{X}={2.4}_{-1.1}^{1.9}\\times {10}^{39}$$ erg s -1 (Swift X-ray Telescope). No radio counterpart was detected down to 3σ, providing upper limits for monochromatic radio luminosities of $${\
iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagorodnova, N.; Gezari, S.; Hung, T.
Here, we present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute magmore » $${M}_{g}=-17.2$$. The maximum bolometric luminosity (from optical and UV) was $${L}_{p}\\simeq (1.0\\pm 0.15)\\times {10}^{43}$$ erg s -1, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with $$L\\propto {e}^{-(t-{t}_{0})/\\tau }$$, where t 0 = 57631.0 (MJD) and $$\\tau \\simeq 15$$ days. The X-ray shows a marginal detection at $${L}_{X}={2.4}_{-1.1}^{1.9}\\times {10}^{39}$$ erg s -1 (Swift X-ray Telescope). No radio counterpart was detected down to 3σ, providing upper limits for monochromatic radio luminosities of $${\
Ultraviolet Observations of Three Dwarf Cepheids
NASA Astrophysics Data System (ADS)
Sturch, Conrad R.
Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) have been obtained with the ANS. Analysis of these observations (Sturch and WU 1982) reveals that the flux distributions observed for each of these objects exhibit UV deficiencies which increase monotonically with decreasing wavelengths. The largest UV deficiencies are noted for SX Phe which has been identified with group of dwarf Cepheids with low metallicity and low luminosity, two attributes that are expected to have opposite effects on the UV flux distribution. It is proposed to obtain low dispersion IUE spectra of the three stars throughout each of their light cycles. Such observations will identify spectral features responsible for the flux deficiencies and will provide data necessary for a detailed comparison with model atmospheres. Knowledge of atmospheric parameters will lead to a better understanding of the evolutionary status of dwarf Cepheids.
NASA Astrophysics Data System (ADS)
Messa, M.; Adamo, A.; Östlin, G.; Calzetti, D.; Grasha, K.; Grebel, E. K.; Shabani, F.; Chandar, R.; Dale, D. A.; Dobbs, C. L.; Elmegreen, B. G.; Fumagalli, M.; Gouliermis, D. A.; Kim, H.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Ubeda, L.; Walterbos, R.; Whitmore, B. C.; Fedorenko, K.; Mahadevan, S.; Andrews, J. E.; Bright, S. N.; Cook, D. O.; Kahre, L.; Nair, P.; Pellerin, A.; Ryon, J. E.; Ahmad, S. D.; Beale, L. P.; Brown, K.; Clarkson, D. A.; Guidarelli, G. C.; Parziale, R.; Turner, J.; Weber, M.
2018-01-01
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 ± 0.12 × 105 M⊙. Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 × 104 M⊙ over this age range. The fraction of star formation happening in the form of bound clusters in M51 is ∼ 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
External inverse-Compton emission from jetted tidal disruption events
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan
2016-05-01
The recent discoveries of Sw J1644+57 and Sw J2058+05 show that tidal disruption events (TDEs) can launch relativistic jets. Super-Eddington accretion produces a strong radiation field of order Eddington luminosity. In a jetted TDE, electrons in the jet will inverse-Compton scatter the photons from the accretion disc and wind (external radiation field). Motivated by observations of thermal optical-UV spectra in Sw J2058+05 and several other TDEs, we assume the spectrum of the external radiation field intercepted by the relativistic jet to be blackbody. Hot electrons in the jet scatter this thermal radiation and produce luminosities 1045-1048 erg s- 1 in the X/γ-ray band. This model of thermal plus inverse-Compton radiation is applied to Sw J2058+05. First, we show that the blackbody component in the optical-UV spectrum most likely has its origin in the super-Eddington wind from the disc. Then, using the observed blackbody component as the external radiation field, we show that the X-ray luminosity and spectrum are consistent with the inverse-Compton emission, under the following conditions: (1) the jet Lorentz factor is Γ ≃ 5-10; (2) electrons in the jet have a power-law distribution dN_e/dγ _e ∝ γ _e^{-p} with γmin ˜ 1 and p = 2.4; (3) the wind is mildly relativistic (Lorentz factor ≳ 1.5) and has isotropic-equivalent mass-loss rate ˜ 5 M⊙ yr- 1. We describe the implications for jet composition and the radius where jet energy is converted to radiation.
X-raying the most luminous quasars at cosmic noon
NASA Astrophysics Data System (ADS)
Piconcelli, E.; Martocchia, S.; Zappacosta, L.
2017-10-01
The WISE/SDSS hyper-luminous (log L_Bol > 47) quasar (WISSH) survey is performing a multi-band systematic exploration of the most luminous AGN shining at the golden epoch of AGN activity (i.e. z ˜ 2-4). This gives the opportunity of overcoming the luminosity bias in the exploration of the accretion phenomenon and the impact of AGN radiative output on the host. In this talk, I present the results of our study of the X-ray spectra of 40 WISSH quasars. I report on the correlations between the X-ray and Optical, UV and MIR properties, and the behavior of the X-ray bolometric correction at the brightest end of the luminosity function. I discuss the relative X-ray weakness of these very powerful quasars compared to less luminous AGN. This X-ray weakness can be a key ingredient for accelerating powerful ionized outflows (ubiquitously revealed in the UV/optical spectra of WISSH quasars) and, furthermore, radiation-driven winds can be effective in destroying the X-ray corona and quenching the X-ray emission. The potential offered by Athena in studying this extreme class of AGN is also discussed.
NASA Astrophysics Data System (ADS)
Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.
2001-08-01
A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed ``Notte'' and the Aurora emission with ``Alba''. AURORA, this is the name of the experiment, will determine, with the ``Notte'' channel, the overall night-side photon background in the 300-400nm spectral range, together with a particular 2+N2 line (λc=337nm). The ``Alba'' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6nm) centered on: 367nm (continuum evaluation), 391nm (1-N+2), 535nm (continuum evaluation), 560nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 ``Satan'' rocket. The satellite orbit is nearly circular (hapogee=648km, /e=0.0022), and the inclination of the orbital plane is 64.56°. An overview of the techniques adopted is given in this paper.
NASA Technical Reports Server (NTRS)
Heath, D. F.; Repoff, T. P.; Donnelly, R. F.
1984-01-01
Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm.
Exploring a Massive Starburst in the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Marrone, Daniel; Aravena, M.; Chapman, S.; De Breuck, C.; Gonzalez, A.; Hezavehe, S.; Litke, K.; Ma, J.; Malkan, M.; Spilker, J.; Stalder, B.; Stark, D.; Strandet, M.; Tang, M.; Vieira, J.; Weiss, A.; Welikala, N.
2016-08-01
We request deep multi-band imaging of a unique dusty galaxy in the Epoch of Reionization (EoR), selected via its millimeter-wavelength dust emission in the 2500-square-degree South Pole Telescope survey. Spectroscopically confirmed to lie at z=6.900, this galaxy has a large dust mass and is likely one of the most rapidly star-forming objects in the EoR. Using Gemini-S, we have identified z-band emission from this object that could be UV continuum emission at z=6.9 or from a foreground lens. Interpretation of this object, and a complete understanding of its meaning for the census of star formation in the EoR, requires that we establish the presence or absence of gravitational lensing. The dust mass observed in this source is also unexpectedly large for its era, and measurements of the assembled stellar population, through the UV-continuum slope and restframe optical color, will help characterize the stellar mass and dust properties in this very early galaxy, the most spectacular galaxy yet discovered by the SPT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y., E-mail: zimu@uchicago.edu, E-mail: gnedin@fnal.gov
We compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting ultraviolet (UV) and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient.more » While the discrepancies with the exiting data are marginal, the future James Webb Space Telescope (JWST) data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
What the UV SED Tells us About Stellar Populations and Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara R.
2011-01-01
The UV SED parameter b as in f(sub 1) 1(sup b), is commonly used to estimate fundamental properties of high-redshift galaxies including age and metallicity. However, sources and processes other than age and metallicity can influence the value of b. We use the local starforming dwarf galaxy, I Zw 18, in a case study to investigate uncertainties in age and metallicity inferred from b due errors or uncertainties in: mode of star formation (instantaneous starburst vs. continuous SF), dust extinction, nebular continuous emission (2-photon emission, Balmer continuum flux), and presence of older stars.
Near-infrared and ultraviolet spectrophotometry of the young planetary nebula Hubble 12
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Rossano, George S.; Erwin, Peter; Puetter, R. C.; Feibelman, Walter A.
1993-01-01
The young planetary nebula Hubble 12 is observed using near-IR and UV spectrophotometry. The brightness of the O I lines, which is greater than in any other planetary nebula yet measured, indicates that fluorescent excitation by stellar continuum is the principal mechanism generating these lines. Extinction, electron density, and electron temperature are determined using infrared measurements combined with UV data and published optical observations. The range in extinction, density, and temperature implies that, within the ionized region, pockets of emission with distinctly different conditions exist. Logarithmic abundances for helium, oxygen, and sulfur are presented.
Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A
2014-09-01
Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.
The 90-day report for SL4 experiment S019: UV stellar astronomy
NASA Technical Reports Server (NTRS)
1974-01-01
The use of Experiment S019 to obtain moderate dispersion stellar spectra extending down to 1300A with sufficient spectral resolution to permit the study of ultraviolet (UV) line spectra and of spectral energy distributions of early-type stars is studied. Data obtained from this experiment should be of sufficient accuracy to permit detailed physical analysis of individual stars and nebulae, but an even more basic consideration is the expectation of obtaining spectra of a sufficient number of stars so that a statistically meaningful survey may be made of the UV spectra of a wide variety of star types. These should include all luminosity classes of spectral types O, B and A, as well as peculiar stars such as Wolf-Rayet stars and Ap or Am stars. An attempt was also made to obtain, in the no-prism mode, low dispersion UV spectra in a number of Milky Way star fields and in nearby galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendigutía, I.; Brittain, S.; Eiroa, C.
This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a meanmore » mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.« less
NASA Astrophysics Data System (ADS)
Kowalski, A. F.; Hawley, S. L.; Holtzman, J. A.; Wisniewski, J. P.; Hilton, E. J.
2012-03-01
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T≈10 000 K blackbody, and the white light in solar-flares is thought to arise primarily from hydrogen recombination. Yet, a current lack of broad-wavelength coverage solar flare spectra in the optical/near-UV region prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen-recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative hydrodynamic models to show that continuum veiling causes the measured anti-correlation. This modeling allows us to use the components' inferred properties to predict how a similar spatially resolved, multiple-component, white-light continuum might appear using analogies to several solar-flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Joel D.; Evans, Neal J. II; Rascati, Michelle R.
2013-06-20
We present 50-210 {mu}m spectral scans of 30 Class 0/I protostellar sources, obtained with Herschel-PACS, and 0.5-1000 {mu}m spectral energy distributions, as part of the Dust, Ice, and Gas in Time Key Program. Some sources exhibit up to 75 H{sub 2}O lines ranging in excitation energy from 100 to 2000 K, 12 transitions of OH, and CO rotational lines ranging from J = 14 {yields} 13 up to J = 40 {yields} 39. [O I] is detected in all but one source in the entire sample; among the sources with detectable [O I] are two very low luminosity objects. Themore » mean 63/145 {mu}m [O I] flux ratio is 17.2 {+-} 9.2. The [O I] 63 {mu}m line correlates with L{sub bol}, but not with the time-averaged outflow rate derived from low-J CO maps. [C II] emission is in general not local to the source. The sample L{sub bol} increased by 1.25 (1.06) and T{sub bol} decreased to 0.96 (0.96) of mean (median) values with the inclusion of the Herschel data. Most CO rotational diagrams are characterized by two optically thin components ( = (0.70 {+-} 1.12) x 10{sup 49} total particles). N{sub CO} correlates strongly with L{sub bol}, but neither T{sub rot} nor N{sub CO}(warm)/N{sub CO}(hot) correlates with L{sub bol}, suggesting that the total excited gas is related to the current source luminosity, but that the excitation is primarily determined by the physics of the interaction (e.g., UV-heating/shocks). Rotational temperatures for H{sub 2}O ( = 194 +/- 85 K) and OH ( = 183 +/- 117 K) are generally lower than for CO, and much of the scatter in the observations about the best fit is attributed to differences in excitation conditions and optical depths among the detected lines.« less
Rapidly evolving and luminous transients from Pan-STARRS1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drout, M. R.; Chornock, R.; Soderberg, A. M.
2014-10-10
In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t {sub 1/2}) of less than 12 days and –16.5 > M > –20 mag. This increases the numbermore » of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g {sub P1} – r {sub P1} ≲ –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 10{sup 43} erg s{sup –1}), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of {sup 56}Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M {sub ☉}) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr{sup –1} Gpc{sup –3} (4%-7% of the core-collapse SN rate at z = 0.2).« less
ALMA deep field in SSA22: Blindly detected CO emitters and [C II] emitter candidates
NASA Astrophysics Data System (ADS)
Hayatsu, Natsuki H.; Matsuda, Yuichi; Umehata, Hideki; Yoshida, Naoki; Smail, Ian; Swinbank, A. Mark; Ivison, Rob; Kohno, Kotaro; Tamura, Yoichi; Kubo, Mariko; Iono, Daisuke; Hatsukade, Bunyo; Nakanishi, Kouichiro; Kawabe, Ryohei; Nagao, Tohru; Inoue, Akio K.; Takeuchi, Tsutomu T.; Lee, Minju; Ao, Yiping; Fujimoto, Seiji; Izumi, Takuma; Yamaguchi, Yuki; Ikarashi, Soh; Yamada, Toru
2017-06-01
We report the identification of four millimeter line-emitting galaxies with the Atacama Large Milli/submillimeter Array (ALMA) in SSA22 Field (ADF22). We analyze the ALMA 1.1-mm survey data, with an effective survey area of 5 arcmin2, frequency ranges of 253.1-256.8 and 269.1-272.8 GHz, angular resolution of 0{^''.}7 and rms noise of 0.8 mJy beam-1 at 36 km s-1 velocity resolution. We detect four line-emitter candidates with significance levels above 6σ. We identify one of the four sources as a CO(9-8) emitter at z = 3.1 in a member of the proto-cluster known in this field. Another line emitter with an optical counterpart is likely a CO(4-3) emitter at z = 0.7. The other two sources without any millimeter continuum or optical/near-infrared counterpart are likely to be [C II] emitter candidates at z = 6.0 and 6.5. The equivalent widths of the [C II] candidates are consistent with those of confirmed high-redshift [C II] emitters and candidates, and are a factor of 10 times larger than that of the CO(9-8) emitter detected in this search. The [C II] luminosity of the candidates are 4-7 × 108 L⊙. The star formation rates (SFRs) of these sources are estimated to be 10-20 M⊙ yr-1 if we adopt an empirical [C II] luminosity-SFR relation. One of them has a relatively low S/N ratio, but shows features characteristic of emission lines. Assuming that at least one of the two candidates is a [C II] emitter, we derive a lower limit of [C II]-based star formation rate density (SFRD) at z ˜ 6. The resulting value of >10-2 M⊙ yr-1 Mpc-3 is consistent with the dust-uncorrected UV-based SFRD. Future millimeter/submillimeter surveys can be used to detect a number of high-redshift line emitters, with which to study the star formation history in the early universe.
GeV Observations of star-forming galaxies with the Fermi large area telescope
Ackermann, M.; Ajello, M.; Allafort, A.; ...
2012-08-07
Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less
GeV Observations of star-forming galaxies with the Fermi large area telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less
GeV Observations of star-forming glaxies with the FERMI Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We findmore » further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values lesssim 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less
On transient events in the upper atmosphere generated away of thunderstorm regions
NASA Astrophysics Data System (ADS)
Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.
2011-12-01
Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their origin may be related to electromagnetic pulses (EMP) or waves (whistler, EMW) generated by lightning. The EMP-EMW is transmitted in the ionosphere- ground channel to large distances R with low absorption. The part of EMP-EMW "visible" in the detector aperture diminishes with distance as R-1 due to observation geometry. The EMP-EMW triggers the electric discharge in the upper atmosphere (lower ionosphere, ~70 km). Estimates of resulting transients luminosity and their correlation with geomagnetic field are in progress.
NASA Technical Reports Server (NTRS)
Goldader, Jeffrey D.; Joseph, R. D.; Doyon, Rene; Sanders, D. B.
1995-01-01
We present high-quality spectra covering the K window at a resolving power of 340 for a sample of 13 ultraluminous (L(sub IR) approximately greater than 10(exp 12) solar luminosity) infrared-selected galaxies, and line fluxes for a comparison sample of 24 lower luminosity galaxies. The 2 micrometers spectra of 10 of the ultraluminous galaxies are characterized by emission and absorption features commonly associated with stars and star formation; two others have the red power-law spectra and Br gamma line widths of Seyfert 1 galaxies; the final galaxy has strong emission from hot dust. We have found no broad-line active nuclei not already known from optical observations, despite the fact that the extinction at 2 micrometers is 1/10 that at optical wavelengths; any putative Seyfert 1 nuclei must be deeply buried. Powerful continua and emission lines from H2 and Br gamma are detected in all the ultraluminous galaxies. Comparing the H2 1-0 S(1), Br gamma, and 2 micrometers and far-infrared luminosities to those of the lower luminosity galaxies yields several major results. First, the dereddened Br gamma emission, relative to the far-infrared luminosity is significantly depressed in the ultraluminous sample, when compared to the lower luminosity galaxies. Five of the ultraluminous galaxies have L(sub Br gamma)L(sub IR) ratios lower than for any of the comparison objects. Second, the H2 1-0 S(1) luminosity is also responsible, directly or indirectly, for producing the excited H2, and that the H2 apparently comes from optically thin regions in both classes of objects. Third, eight of the 13 ultraluminous systems have lower 2 micrometers/far-infrared luminosity ratios than any of the lower luminosity galaxies, and five of these are the galaxies also deficient in Br gamma. These three findings may be understood if the the H2, Br gamma, and 2 mircometers continua in the ultraluminous galaxies arise from spatially distinct regions, with the continuum and Br gamma largely coming from volumes optically thick even at 2 micrometers, and obscured in such a fashion that the extinctions measured using optical spectroscopy do not properly measure the true optical depths. If this is the case, then even near-infrared spectroscopy may be unable to exclude the presence of undetected powerful active galactive nuclei in the ultraluminous galaxies.
INDIRECT EVIDENCE FOR ESCAPING IONIZING PHOTONS IN LOCAL LYMAN BREAK GALAXY ANALOGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta
2015-09-10
A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness):more » (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star-forming region (Star formation rate/area) and the speed of the galactic outflow. This suggests that extreme feedback—a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind—combines to create significant holes in the neutral gas. These results not only shed new light on the physical mechanisms that can allow ionizing radiation to escape from intensely star-forming galaxies, they also provide indirect observational indicators that can be used at high redshift where direct measurements of escaping Lyman continuum radiation are impossible.« less
NASA Astrophysics Data System (ADS)
Gómez-Guijarro, C.; Toft, S.; Karim, A.; Magnelli, B.; Magdis, G. E.; Jiménez-Andrade, E. F.; Capak, P. L.; Fraternali, F.; Fujimoto, S.; Riechers, D. A.; Schinnerer, E.; Smolčić, V.; Aravena, M.; Bertoldi, F.; Cortzen, I.; Hasinger, G.; Hu, E. M.; Jones, G. C.; Koekemoer, A. M.; Lee, N.; McCracken, H. J.; Michałowski, M. J.; Navarrete, F.; Pović, M.; Puglisi, A.; Romano-Díaz, E.; Sheth, K.; Silverman, J. D.; Staguhn, J.; Steinhardt, C. L.; Stockmann, M.; Tanaka, M.; Valentino, F.; van Kampen, E.; Zirm, A.
2018-04-01
Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median r e = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median {log}({M}* /{M}ȯ )=10.49+/- 0.32). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = L IR/L UV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.
NASA Astrophysics Data System (ADS)
Stark, Daniel P.; Ellis, Richard S.; Bunker, Andrew; Bundy, Kevin; Targett, Tom; Benson, Andrew; Lacy, Mark
2009-06-01
We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z sime 4 and z sime 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ≈ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z gsim 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z sime 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 lsim z lsim 6. Given this rapid increase of UV luminous massive galaxies, we explore the possibility that a significant fraction of massive (1011 M sun) z sime 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 lsim z lsim 6 down to z sime 2, we find that z gsim 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z sime 2.
Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, C.; Prandoni, I.; Lapi, A.
We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less
Exceptional AGN long-timescale X-ray variability: The case of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-12-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜ 260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from - 1.57 to - 2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We present here results from our monitoring campaign.
NASA Technical Reports Server (NTRS)
Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.
1988-01-01
An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.
Is the ground state of Yang-Mills theory Coulombic?
NASA Astrophysics Data System (ADS)
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.
2008-08-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.
EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan
2015-12-01
We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less
NASA Astrophysics Data System (ADS)
Drake, A. B.; Garel, T.; Wisotzki, L.; Leclercq, F.; Hashimoto, T.; Richard, J.; Bacon, R.; Blaizot, J.; Caruana, J.; Conseil, S.; Contini, T.; Guiderdoni, B.; Herenz, E. C.; Inami, H.; Lewis, J.; Mahler, G.; Marino, R. A.; Pello, R.; Schaye, J.; Verhamme, A.; Ventou, E.; Weilbacher, P. M.
2017-11-01
We present the deepest study to date of the Lyα luminosity function in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lyα emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic detection software in the Hubble Ultra Deep Field. The deep data cubes allowed us to calculate accurate total Lyα fluxes capturing low surface-brightness extended Lyα emission now known to be a generic property of high-redshift star-forming galaxies. We simulated realistic extended LAEs to fully characterise the selection function of our samples, and performed flux-recovery experiments to test and correct for bias in our determination of total Lyα fluxes. We find that an accurate completeness correction accounting for extended emission reveals a very steep faint-end slope of the luminosity function, α, down to luminosities of log10L erg s-1< 41.5, applying both the 1 /Vmax and maximum likelihood estimators. Splitting the sample into three broad redshift bins, we see the faint-end slope increasing from -2.03-0.07+ 1.42 at z ≈ 3.44 to -2.86-∞+0.76 at z ≈ 5.48, however no strong evolution is seen between the 68% confidence regions in L∗-α parameter space. Using the Lyα line flux as a proxy for star formation activity, and integrating the observed luminosity functions, we find that LAEs' contribution to the cosmic star formation rate density rises with redshift until it is comparable to that from continuum-selected samples by z ≈ 6. This implies that LAEs may contribute more to the star-formation activity of the early Universe than previously thought, as any additional intergalactic medium (IGM) correction would act to further boost the Lyα luminosities. Finally, assuming fiducial values for the escape of Lyα and LyC radiation, and the clumpiness of the IGM, we integrated the maximum likelihood luminosity function at 5.00
NASA Astrophysics Data System (ADS)
France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Herczeg, Gregory J.; Harper, Graham M.; Brown, Alexander; Green, James C.; Linsky, Jeffrey L.; Yang, Hao; Abgrall, Hervé; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee; Ingleby, Laura; Johns-Krull, Christopher M.; Roueff, Evelyne; Valenti, Jeff A.; Walter, Frederick M.
2011-06-01
We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 ± 1) × 1017 cm-2 and T rot(CO) 500 ± 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Lyα. All three objects show emission from CO bands at λ > 1560 Å, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2, and photo-excited H2, all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Lyα emission profile. We find CO parameters in the range: N(CO) ~ 1018-1019 cm-2, T rot(CO) >~ 300 K for the Lyα-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H2 emission, concluding that the observations of UV-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio (≡ N(CO)/N(H2)) in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Inflow Generated X-Ray Corona around Supermassive Black Holes and a Unified Model for X-Ray Emission
NASA Astrophysics Data System (ADS)
Wang, Lile; Cen, Renyue
2016-02-01
Three-dimensional hydrodynamic simulations are performed, which cover the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass {10}8{M}⊙ , with detailed radiative cooling processes. The existence of a significant amount of shock heated, high temperature (≥slant {10}8 {{K}}) coronal gas in the inner (≤slant {10}4{r}{sch}) region is generally found. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures is in reasonable agreement with the overall ensemble spectrum of active galactic nuclei (AGNs) and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shapes, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey
2015-09-01
We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.
Haro 11: Where is the Lyman Continuum Source?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.
2017-10-10
Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less
SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony. H.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brandt, W. N.; de Breuck, C.; Carlstrom, J. E.; Chapman, S. C.; Gullberg, B.; Hezaveh, Y.; Litke, K.; Malkan, M.; Marrone, D. P.; McDonald, M.; Murphy, E. J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M.; Wang, S. X.
2016-12-01
We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (˜4500 M ⊙ yr-1) and SFR surface density ΣSFR (˜2000 M ⊙ yr-1 kpc-2) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 1013 L ⊙ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest ΣSFR of any known galaxy. This high ΣSFR, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.
NASA Technical Reports Server (NTRS)
Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.
2009-01-01
We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.
The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh
NASA Astrophysics Data System (ADS)
Godoy-Rivera, D.; Stanek, K. Z.; Kochanek, C. S.; Chen, Ping; Dong, Subo; Prieto, J. L.; Shappee, B. J.; Jha, S. W.; Foley, R. J.; Pan, Y.-C.; Holoien, T. W.-S.; Thompson, Todd. A.; Grupe, D.; Beacom, J. F.
2017-04-01
Given its peak luminosity and early-time spectra, ASASSN-15lh was classified as the most luminous supernova ever discovered. Here, we report a UV rebrightening of ASASSN-15lh observed with Swift during our follow-up campaign. The rebrightening began at t ≃ 90 d (observer frame) after the primary peak and was followed by a ˜120-d long plateau in the bolometric luminosity, before starting to fade again at t ≃ 210 d. ASASSN-15lh rebrightened in the Swift UV bands by ΔmUVW2 ≃ -1.75 mag, ΔmUVM2 ≃ -1.25 mag and ΔmUVW1 ≃ -0.8 mag, but did not rebrighten in the optical bands. Throughout its initial decline, subsequent rebrightening and renewed decline, the spectra did not show evidence of interactions between the ejecta and circumstellar medium such as narrow emission lines. There are hints of weak Hα emission at late-times, but Margutti et al. have shown that it is narrow line emission consistent with star formation in the host nucleus. By fitting a blackbody, we find that during the rebrightening, the effective photospheric temperature increased from TBB ≃ 11 000 K to TBB ≃ 18 000 K. Over the ˜ 550 d since its detection, ASASSN-15lh has radiated ˜1.7 -1.9 × 1052 erg. Although its physical nature remains uncertain, the evolution of ASASSN-15lh's photospheric radius, its radiated energy and the implied event rate, are all more similar to those of H-poor superluminous supernovae than to tidal disruption events.
Probing star formation relations of mergers and normal galaxies across the CO ladder
NASA Astrophysics Data System (ADS)
Greve, Thomas R.
We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.
1992-01-01
Interstellar components of early-type galaxies are established by galactic type and luminosity in order to search for relationships between the different interstellar components and to test the predictions of theoretical models. Some of the data include observations of neutral hydrogen, carbon monoxide, and radio continuum emission. An alternative distance model which yields LX varies as LB sup 2.45, a relation which is in conflict with simple cooling flow models, is discussed. The dispersion of the X-ray luminosity about this regression line is unlikely to result from stripping. The striking lack of clear correlations between hot and cold interstellar components, taken together with their morphologies, suggests that the cold gas is a disk phenomenon while the hot gas is a bulge phenomenon, with little interaction between the two. The progression of galaxy type from E to Sa is not only a sequence of decreasing stellar bulge-to-disk ratio, but also of hot-to-cold-gas ratio.
UV SEDs of early-type cluster galaxies: a new look at the UV upturn
NASA Astrophysics Data System (ADS)
Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.
2018-05-01
Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.
IUE observations of the hot components in two symbiotic stars
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Maran, S. P.; Kafatos, M.
1980-01-01
Recent IUE observations reveal striking differences in the UV spectra of two symbiotic stars, R Aqr and RW Hya. RW Hya is found to be an unexpectedly intense source of UV radiation. The measurements reported demonstrate the presence of a hot component in each star, supporting the view that each is a binary system with a luminous red primary and a hot, subluminous companion. In one case, the hot companion manifests itself by exciting a compact nebulosity; in the other case the continuous spectrum of the hot star is directly detected, while the continuum of nebulosity excited by the hot star is detected at longer wavelengths.
NASA Technical Reports Server (NTRS)
Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.
1981-01-01
Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.
[C II] 158 μm EMISSION AS A STAR FORMATION TRACER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera-Camus, R.; Bolatto, A. D.; Wolfire, M. G.
2015-02-10
The [C II] 157.74 μm transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [C II] surface brightness and luminosity with SFR. We conclude that [C II] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGNs). The uncertainty of the Σ{sub [C} {sub II]} – Σ{sub SFR} calibration is ±0.21 dex. The main source of scatter in themore » correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted Σ{sub [C} {sub II]} – Σ{sub SFR} correlation is valid over almost five orders of magnitude in Σ{sub SFR}, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [C II] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [C II] finds that heating efficiencies are 1%-3% in normal galaxies.« less
X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.
2017-02-01
We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5-7keV ≈ 5 × 1039 to 1 × 1042 ergs-1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ˜7 × 104 to 1 × 106 M ⊙), we find inferred Eddington fractions ranging from ˜0.1% to 50%, I.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (I.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.
Determining the torus covering factors for a sample of type 1 AGN in the local Universe
NASA Astrophysics Data System (ADS)
Ezhikode, Savithri H.; Gandhi, Poshak; Done, Chris; Ward, Martin; Dewangan, Gulab C.; Misra, Ranjeev; Philip, Ninan Sajeeth
2017-12-01
In the unified scheme of active galactic nuclei, a dusty torus absorbs and then reprocesses a fraction of the intrinsic luminosity which is emitted at longer wavelengths. Thus, subject to radiative transfer corrections, the fraction of the sky covered by the torus as seen from the central source (known as the covering factor fc) can be estimated from the ratio of the infrared to the bolometric luminosities of the source as fc = Ltorus/LBol. However, the uncertainty in determining LBol has made the estimation of covering factors by this technique difficult, especially for AGN in the local Universe where the peak of the observed spectral energy distributions lies in the UV (ultraviolet). Here, we determine the covering factors of an X-ray/optically selected sample of 51 type 1 AGN. The bolometric luminosities of these sources are derived using a self-consistent, energy-conserving model that estimates the contribution in the unobservable far-UV region, using multifrequency data obtained from SDSS, XMM-Newton, WISE, 2MASS and UKIDSS. We derive a mean value of fc ∼ 0.30 with a dispersion of 0.17. Sample correlations, combined with simulations, show that fc is more strongly anticorrelated with λEdd than with LBol. This points to large-scale torus geometry changes associated with the Eddington-dependent accretion flow, rather than a receding torus, with its inner sublimation radius determined solely by heating from the central source. Furthermore, we do not see any significant change in the distribution of fc for sub-samples of radio-loud sources or Narrow Line Seyfert 1 galaxies (NLS1s), though these sub-samples are small.
The SCUBA-2 850 μm Follow-up of WISE-selected, Luminous Dust-obscured Quasars
NASA Astrophysics Data System (ADS)
Fan, Lulu; Jones, Suzy F.; Han, Yunkun; Knudsen, Kirsten K.
2017-12-01
Hot dust-obscured galaxies (Hot DOGs) are a new population recently discovered in the Wide-field Infrared Survey Explorer All-Sky survey. Multiwavelength follow-up observations suggest that they are luminous, dust-obscured quasars at high redshift. Here we present the JCMT SCUBA-2 850 μm follow-up observations of 10 Hot DOGs. Four out of ten Hot DOGs have been detected at >3σ level. Based on the IR SED decomposition approach, we derive the IR luminosities of AGN torus and cold dust components. Hot DOGs in our sample are extremely luminous with most of them having {L}{IR}{tot}> {10}14 {L}⊙ . The torus emissions dominate the total IR energy output. However, the cold dust contribution is still non-negligible, with the fraction of the cold dust contribution to the total IR luminosity (˜8%-24%) being dependent on the choice of torus model. The derived cold dust temperatures in Hot DOGs are comparable to those in UV bright quasars with similar IR luminosity, but much higher than those in SMGs. Higher dust temperatures in Hot DOGs may be due to the more intense radiation field caused by intense starburst and obscured AGN activities. Fourteen and five submillimeter serendipitous sources in the 10 SCUBA-2 fields around Hot DOGs have been detected at >3σ and >3.5σ levels, respectively. By estimating their cumulative number counts, we confirm the previous argument that Hot DOGs lie in dense environments. Our results support the scenario in which Hot DOGs are luminous, dust-obscured quasars lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars.
X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldassare, Vivienne F.; Gallo, Elena; Reines, Amy E.
2017-02-10
We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies ( z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad H α emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad H α and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L {sub 0.5–7keV} ≈ 5 × 10{sup 39}more » to 1 × 10{sup 42} ergs{sup −1}. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 10{sup 4} to 1 × 10{sup 6} M {sub ⊙}), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α {sub OX} values an average of 0.36 lower than expected based on the relation between α {sub OX} and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.« less
NASA Astrophysics Data System (ADS)
Fujimoto, Seiji; Ouchi, Masami; Shibuya, Takatoshi; Nagai, Hiroshi
2017-11-01
We present the large statistics of the galaxy effective radius R e in the rest-frame far-infrared (FIR) wavelength {R}{{e}({FIR})} obtained from 1627 Atacama Large Millimeter/submillimeter Array (ALMA) 1 mm band maps that become public by 2017 July. Our ALMA sample consists of 1034 sources with the star formation rate ˜ 100{--}1000 {M}⊙ {{yr}}-1 and the stellar mass ˜ {10}10{--}{10}11.5 {M}⊙ at z = 0-6. We homogeneously derive {R}{{e}({FIR})} and FIR luminosity L FIR of our ALMA sources via the uv-visibility method with the exponential disk model, carefully evaluating selection and measurement incompletenesses by realistic Monte-Carlo simulations. We find that there is a positive correlation between {R}{{e}({FIR})} and L FIR at the >99% significance level. The best-fit power-law function, {R}{{e}({FIR})}\\propto {L}{FIR}α , provides α =0.28+/- 0.07, and shows that {R}{{e}({FIR})} at a fixed L FIR decreases toward high redshifts. The best-fit α and the redshift evolution of {R}{{e}({FIR})} are similar to those of R e in the rest-frame UV (optical) wavelength {R}{{e}({UV})} ({R}{{e}({Opt}.)}) revealed by Hubble Space Telescope (HST) studies. We identify that our ALMA sources have significant trends of {R}{{e}({FIR})}≲ {R}{{e}({UV})} and {R}{{e}({Opt}.)}, which suggests that the dusty starbursts take place in compact regions. Moreover, {R}{{e}({FIR})} of our ALMA sources is comparable to {R}{{e}({Opt}.)} of quiescent galaxies at z ˜ 1-3 as a function of stellar mass, supporting the evolutionary connection between these two galaxy populations. We also investigate rest-frame UV and optical morphologies of our ALMA sources with deep HST images, and find that ˜30%-40% of our ALMA sources are classified as major mergers. This indicates that dusty starbursts are triggered by not only the major mergers but also the other mechanism(s).
The Discovery of Pulsating Hot Subdwarfs in NGC 2808
NASA Technical Reports Server (NTRS)
Brown, Thomas M.; Landsman, Wayne B.; Randall, Suzanna K.; Sweigert, Allen V.; Lanz, Thierry
2013-01-01
We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of Omega Cen. Both NGC 2808 and ? Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous "blue-hook" stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the ? Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Shepherd, D.
1992-01-01
During the 1990 December Astro-1 Space Shuttle mission, spectropolarimetry was conducted in the wavelength region from 1400 to 3200 A of the Wolf-Rayet stars EZ CMa (WN5) and Theta Mus (WC6 + O9.5I) with the Wisconsin Ultraviolet Photo-Polarimeter Experiment. The UV polarization of EZ CMa displays features which correspond to emission lines. This indicates a large, about 0.8 percent, intrinsic UV-continuum polarization, and provides further evidence that the wind of EZ CMa is highly distorted. The polarization of Theta Mus does not change across emission lines, or the strong interstellar 2200 A feature. The polarization decreases smoothly to shorter wavelengths, at constant position angle. The combined UV-optical polarization spectrum of Theta Mus can be described well with interstellar polarization following a Serkowski law.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
Distribution of hot stars and hydrogen in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Page, T.; Carruthers, G. R.
1981-01-01
Imagery of the Large Magellanic Cloud (LMC), in the wavelength ranges 1050 to 1600 A and 1250 to 1600 A, was obtained by the S201 far ultraviolet camera during the Apollo 16 mission. These images were reduced to absolute far-UV intensity distributions over the area of the LMC, with 3 to 5 arc min angular resolution. Comparison of these far-UV measurements in the LMC with H sub alpha and 21 cm surveys reveals that interstellar hydrogen in the LMC is often concentrated in 100 pc clouds within 500 pc clouds. Furthermore, at least 25 associations of O-B stars in the LMC are outside the interstellar hydrogen clouds; four of them appear to be on the far side. Far-UV and mid-UV spectra were obtained of stars in 12 of these associations, using the International Ultraviolet Explorer. Equivalent widths of L alpha and six other lines, and relative intensities of the continuum at seven wavelength from 1300 A to 2900 A, were measured. These spectra are also discussed.
Fundamental Scaling of Microplasmas and Tunable UV Light Generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.
2016-11-01
The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deepmore » UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.« less
NASA Astrophysics Data System (ADS)
Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.
2017-11-01
We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.
NASA Technical Reports Server (NTRS)
Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.
2000-01-01
In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to ionize the diffuse medium, but to cause a typical spiral to emit significant ionizing flux into the intergalactic medium. The low scatter observed in Lstr, less than 0.1 mag rms in the still quite small sample measured to date, is an invitation to widen the data base, and to calibrate against primary standards, with the aim of obtaining a precise, approx. 10(exp 5) solar luminosity widely distributed standard candle.
Photodissociation Regions in the Interstellar Medium of Galaxies
NASA Technical Reports Server (NTRS)
Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global scale, MR models predict the existence of two stable neutral phases of the interstellar medium, elucidate the formation and destruction of star-forming molecular clouds, and suggest radiation-induced feedback mechanisms that may regulate star formation rates and the column density of gas through giant molecular clouds.
NASA Astrophysics Data System (ADS)
Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.
2017-09-01
We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.
An ALMA [C II] Survey of 27 Quasars at z > 5.94
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Walter, Fabian; Venemans, Bram P.; Bañados, Eduardo; Bertoldi, Frank; Carilli, Chris; Fan, Xiaohui; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Riechers, Dominik; Rix, Hans-Walter; Strauss, Michael A.; Wang, Ran; Yang, Yujin
2018-02-01
We present a survey of the [C II] 158 μm line and underlying far-infrared (FIR) dust continuum emission in a sample of 27 z≳ 6 quasars using the Atacama Large Millimeter Array (ALMA) at ∼ 1\\prime\\prime resolution. The [C II] line was significantly detected (at > 5-σ) in 23 sources (85%). We find typical line luminosities of {L}[{{C}{{II}}]}={10}9-10 {L}ȯ , and an average line width of ∼385 {km} {{{s}}}-1. The [C II]-to-far-infrared luminosity ratios ([C II]/FIR) in our sources span one order of magnitude, highlighting a variety of conditions in the star-forming medium. Four quasar host galaxies are clearly resolved in their [C II] emission on a few kpc scales. Basic estimates of the dynamical masses of the host galaxies give masses between 2 × 1010 and 2 × 1011 {M}ȯ , i.e., more than an order of magnitude below what is expected from local scaling relations, given the available limits on the masses of the central black holes (> 3× {10}8 {M}ȯ , assuming Eddington-limited accretion). In stacked ALMA [C II] spectra of individual sources in our sample, we find no evidence of a deviation from a single Gaussian profile. The quasar luminosity does not strongly correlate with either the [C II] luminosity or equivalent width. This survey (with typical on-source integration times of 8 minutes) showcases the unparalleled sensitivity of ALMA at millimeter wavelengths, and offers a unique reference sample for the study of the first massive galaxies in the universe.
NASA Astrophysics Data System (ADS)
Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Labbé, I.; Stefanon, M.
2018-03-01
We present an analysis of all prime HST legacy fields spanning >800 arcmin2 in the search for z ∼ 10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z ∼ 10 candidates selected from the full Hubble Frontier Field (HFF) data set. Despite the addition of these new fields, we find a low abundance of z ∼ 10 candidates with only nine reliable sources identified in all prime HST data sets that include the HUDF09/12, the HUDF/XDF, all of the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z ∼ 8 to z ∼ 10 over a four-magnitude range. This also implies a decrease of the cosmic star formation rate density by an order of magnitude within 170 Myr from z ∼ 8 to z ∼ 10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build up of the dark matter halo mass function at z > 8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z ∼ 10 galaxies as well as their progenitors at less than 400 Myr after the big bang. Based on data obtained with the Hubble Space Telescope operated by AURA, Inc. for NASA under contract NAS5-26555.
NASA Astrophysics Data System (ADS)
Yan, Lin; Quimby, R.; Gal-Yam, A.; Brown, P.; Blagorodnova, N.; Ofek, E. O.; Lunnan, R.; Cooke, J.; Cenko, S. B.; Jencson, J.; Kasliwal, M.
2017-05-01
We report the first maximum-light far-ultraviolet (FUV) to near-infrared (NIR) spectra (1000 Å - 1.62 μm, rest) of a hydrogen-poor superluminous supernova, Gaia16apd. At z = 0.1018, it is the second closest and the UV brightest SLSN-I, with 17.4 mag in Swift UVW2 band at -11 days pre-maximum. The coordinated observations with HST, Palomar, and Keck were taken at -2 to +25 days. Assuming an exponential (or t 2) form, we derived the rise time of 33 days and the peak bolometric luminosity of 3 × 1044 erg s-1. At the maximum, the photospheric temperature and velocity are 17,000 K and 14,000 km s-1, respectively. The inferred radiative and kinetic energy are roughly 1 × 1051 and 2 × 1052 erg. Gaia16apd is extremely UV luminous, and emits 50% of its total luminosity at 1000-2500 Å. Compared to the UV spectra (normalized at 3100 Å) of well studied SN1992A (Ia), SN2011fe (Ia), SN1999em (IIP), and SN1993J (IIb), it has orders of magnitude more FUV emission. This excess is interpreted primarily as a result of weaker metal-line blanketing due to a much lower abundance of iron group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, were mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-instability Supernova models with helium core masses ≥slant 90 {M}⊙ , where substantial 56Ni material is produced. A higher photospheric temperature definitely contributes to the FUV excess from Gaia16apd. Compared with Gaia16apd, we find PS1-11bam is also UV luminous.
NASA Technical Reports Server (NTRS)
Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi
2007-01-01
We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.
NASA Astrophysics Data System (ADS)
Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES
2013-01-01
We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Schilke, P.; Schmiedeke, A.; Ginsburg, A.; Cesaroni, R.; Lis, D. C.; Qin, S.-L.; Müller, H. S. P.; Bergin, E.; Comito, C.; Möller, Th.
2017-07-01
Context. The two hot molecular cores Sgr B2(M) and Sgr B2(N), which are located at the center of the giant molecular cloud complex Sagittarius B2, have been the targets of numerous spectral line surveys, revealing a rich and complex chemistry. Aims: We seek to characterize the physical and chemical structure of the two high-mass star-forming sites Sgr B2(M) and Sgr B2(N) using high-angular resolution observations at millimeter wavelengths, reaching spatial scales of about 4000 au. Methods: We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an unbiased spectral line survey of both regions in the ALMA band 6 with a frequency coverage from 211 GHz to 275 GHz. The achieved angular resolution is 0.̋4, which probes spatial scales of about 4000 au, I.e., able to resolve different cores and fragments. In order to determine the continuum emission in these line-rich sources, we used a new statistical method, STATCONT, which has been applied successfully to this and other ALMA datasets and to synthetic observations. Results: We detect 27 continuum sources in Sgr B2(M) and 20 sources in Sgr B2(N). We study the continuum emission variation across the ALMA band 6 (I.e., spectral index) and compare the ALMA 1.3 mm continuum emission with previous SMA 345 GHz and VLA 40 GHz observations to study the nature of the sources detected. The brightest sources are dominated by (partially optically thick) dust emission, while there is an important degree of contamination from ionized gas free-free emission in weaker sources. While the total mass in Sgr B2(M) is distributed in many fragments, most of the mass in Sgr B2(N) arises from a single object, with filamentary-like structures converging toward the center. There seems to be a lack of low-mass dense cores in both regions. We determine H2 volume densities for the cores of about 107-109 cm-3 (or 105-107 M⊙ pc-3), I.e., one to two orders of magnitude higher than the stellar densities of super star clusters. We perform a statistical study of the chemical content of the identified sources. In general, Sgr B2(N) is chemically richer than Sgr B2(M). The chemically richest sources have about 100 lines per GHz and the fraction of luminosity contained in spectral lines at millimeter wavelengths with respect to the total luminosity is about 20%-40%. There seems to be a correlation between the chemical richness and the mass of the fragments, where more massive clumps are more chemically rich. Both Sgr B2(N) and Sgr B2(M) harbor a cluster of hot molecular cores. We compare the continuum images with predictions from a detailed 3D radiative transfer model that reproduces the structure of Sgr B2 from 45 pc down to 100 au. Conclusions: This ALMA dataset, together with other ongoing observational projects in the range 5 GHz to 200 GHz, better constrain the 3D structure of Sgr B2 and allow us to understand its physical and chemical structure. FITS files of the continuum images as well as the spectral index are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A6
Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets
NASA Astrophysics Data System (ADS)
Patiño Álvarez, Víctor; Torrealba, Janet; Chavushyan, Vahram; Cruz González, Irene; Arshakian, Tigran; León Tavares, Jonathan; Popovic, Luka
2016-06-01
We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95%) in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.
NASA Technical Reports Server (NTRS)
Meeus, G.; Montesinos, B.; Mendigutia, I.; Kamp, I.; Thi, W. F.; Eiroa, C.; Grady, C. A.; Mathews, G.; Sandell, G.; Martin-Zaidi, C.;
2012-01-01
We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [OI], [CII], CO, CH+, H20, and OH. We have a [OI]63 micro/ detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [OI] 145 micron line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [CII] 157 micron, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux. accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [OI] 63 micron, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI] 145 micron, CO J = IS-17 and [OI] 6300 A, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux. of [OI] 63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 pm, the stellar effective temperature, and the Br-gamma luminosity. Finally, we use a combination of the [OI] 63 micron and C(12)O J = 2-1 line fluxes to obtain order of magnitude estimates of the disc gas masses, in agreement with the values that we find from detailed modelling of two Herbig Ae/Be stars, HD 163296 and HD 169142.
Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect
NASA Astrophysics Data System (ADS)
Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.
2017-01-01
We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.
Augmentation of the IUE Ultraviolet Spectral Atlas
NASA Astrophysics Data System (ADS)
Wu, Chi-Chao
Most likely IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality Low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a more complete coverage of the spectral type and luminosity class, and (2) more than one star per spectral typeluminosity class combination to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.
NASA Technical Reports Server (NTRS)
Windhorst, Rogier A.; Burstein, David; Mathis, Doug F.; Neuschaefer, Lyman W.; Bertola, F.; Buson, L. M.; Koo, David C.; Matthews, Keith; Barthel, Peter D.; Chambers, K. C.
1991-01-01
The discovery of a weak radio galaxy from the Leiden Berkeley Deep Survey at a redshift of 2.390 is presented, as well as nine-band photometry for the galaxy and for surrounding objects. The source 53W002 is not variable on the time scales of years. Its rest-frame UV continuum is compared with IUE spectra of various nearby galaxies with relatively recent starbursts, and with nearby AGNs. It is inferred from the C IV/Ly-alpha and N V/Ly-alpha ratios that 53W002 has a Seyfert 1-like AGN, and that the ratios constrain the nonthermal component to about 35 percent of the observed UV continuum. Several independent age estimates yield a consistent value of 0.25-0.32 Gyr. The available data are consistent with 53W002 being a genuinely young galaxy seen at a redshift of 2.390 during its first major starburst. It likely started forming most of its current stars at redshifts between 2.5 and 3.0, suggesting that radio galaxies do not form the bulk of their stars coevally, but start doing so over a lengthy period of cosmic time.
NASA Technical Reports Server (NTRS)
Kondo, D. M.; Worrall, D. M.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. H.; Oke, J. B.; Yee, H.; Neugebauer, G.; Matthews, K.; Feldman, P. A.
1980-01-01
Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four.
Wind asymmetry imprint in the UV light curves of the symbiotic binary SY Mus
NASA Astrophysics Data System (ADS)
Shagatova, N.; Skopal, A.
2017-06-01
Context. Light curves (LCs) of some symbiotic stars show a different slope of the ascending and descending branch of their minimum profile. The origin of this asymmetry is not well understood. Aims: We explain this effect in the ultraviolet LCs of the symbiotic binary SY Mus. Methods: We model the continuum fluxes in the spectra obtained by the International Ultraviolet Explorer at ten wavelengths, from 1280 to 3080 Å. We consider that the white dwarf radiation is attenuated by H0 atoms, H- ions, and free electrons in the red giant wind. Variation in the nebular component is approximated by a sine wave along the orbit as suggested by spectral energy distribution models. The model includes asymmetric wind velocity distribution and the corresponding ionization structure of the binary. Results: We determined distribution of the H0 and H+, as well as upper limits of H- and H0 column densities in the neutral and ionized region at the selected wavelengths as functions of the orbital phase. Corresponding models of the LCs match well the observed continuum fluxes. In this way, we suggested the main UV continuum absorbing (scattering) processes in the circumbinary environment of S-type symbiotic stars. Conclusions: The asymmetric profile of the ultraviolet LCs of SY Mus is caused by the asymmetric distribution of the circumstellar matter at the near-orbital-plane area. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A71
NASA Astrophysics Data System (ADS)
Yun, Min S.; Aretxaga, I.; Gurwell, M. A.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Rosa-González, D.; Sánchez-Argüelles, D.; Schloerb, F. P.; Snell, R. L.; Vega, O.; Wilson, G. W.; Zeballos, M.; Chavez, M.; Cybulski, R.; Díaz-Santos, T.; De La Luz, V.; Erickson, N.; Ferrusca, D.; Gim, H. B.; Heyer, M. H.; Iono, D.; Pope, A.; Rogstad, S. M.; Scott, K. S.; Souccar, K.; Terlevich, E.; Terlevich, R.; Wilner, D.; Zavala, J. A.
2015-12-01
Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 (`COSMOS AzTEC-1'), the brightest 1.1 mm continuum source found in the AzTEC/James Clerk Maxwell Telescope survey (Scott et al.), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of z = 4.3420 ± 0.0004 is confirmed by the detection of the redshifted 158 μm [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield LFIR = (1.1 ± 0.1) × 1013 L⊙ and SFR ≈ 1300 M⊙ yr-1. Its molecular gas mass derived using the ultraluminous infrared galaxy conversion factor is 1.4 ± 0.2 × 1011M⊙ while the total interstellar medium mass derived from the 1.1 mm dust continuum is 3.7 ± 0.7 × 1011M⊙ assuming Td = 35 K. Our dynamical mass analysis suggests that the compact gas disc (r ≈ 1.1 kpc, inferred from dust continuum and spectral energy distribution analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity L_[C II]= 7.8± 1.1 × 10^9 L_{⊙} is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and ΣFIR among IR-bright galaxies reported by Díaz-Santos et al. by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the `[C II] deficiency' seen among luminous starburst galaxies.
Weak and Compact Radio Emission in Early High-Mass Star Forming Regions
NASA Astrophysics Data System (ADS)
Rosero, Viviana; P. Hofner, M. Claussen, S. Kurtz, R. Cesaroni, E. D. Araya, C. Carrasco-González, L. F. Rodríguez, K. M. Menten, F. Wyrowski, L. Loinard, S. P. Ellingsen
2018-01-01
High-mass protostars are difficult to detect: they have short evolutionary timescales, they tend to be located at large distances, and they are usually embedded within complicated cluster environments. In this work, we aimed to identify and analyze candidates at the earliest stages of high-mass star formation, where only low-level (< 1 mJy) radio emission is expected. We used the Karl G. Jansky Very Large Array to achieve one of the most sensitive (image RMS < 3 -- 10 μJy/beam) centimeter continuum surveys towards high-mass star forming regions to date, with observations at 1.3 and 6 cm and an angular resolution < 0.5". The sample is composed of cold molecular clumps with and without infrared sources (CMC--IRs and CMCs, respectively) and hot molecular cores (HMCs), covering a wide range of parameters such as bolometric luminosity and distance. We detected 70 radio continuum sources that are associated with dust clumps, most of which are weak and compact. We detected centimeter wavelength sources in 100% of our HMCs, which is a higher fraction than previously expected and suggests that radio continuum may be detectable at weak levels in all HMCs. The lack of radio detections for some objects in the sample (including most CMCs) contributes strong evidence that these are prestellar clumps, providing interesting constraints and ideal follow up candidates for studies of the earliest stages of high-mass stars. Our results show further evidence for an evolutionary sequence in the formation of high-mass stars, from starless cores (i.e., CMCs) to relatively more evolved ones (i.e., HMCs). Many of our detections have morphologies and other observational parameters that resemble collimated ionized jets, which is highly relevant for recent theoretical models based on core accretion that predict that the first stages of ionization from high-mass stars are in the form of jets. Additionally, we found that properties of ionized jets from low and high-mass stars are extremely well correlated; our data improves upon previous studies of this nature and provides further evidence of a common origin for jets of any luminosity.
Night Airglow Observations from Orbiting Spacecraft Compared with Measurements from Rockets.
Koomen, M J; Gulledge, I S; Packer, D M; Tousey, R
1963-06-07
A luminous band around the night-time horizon, observed from orbiting capsules by J. H. Glenn and M. S. Carpenter, and identified as the horizon enhancement of the night airglow, is detected regularly in rocket-borne studies of night airglow. Values of luminance and dip angle of this band derived from Carpenter's observations agree remarkably well with values obtained from rocket data. The rocket results, however, do not support Carpenter's observation that the emission which he saw was largely the atomic oxygen line at 5577 A, but assign the principal luminosity to the green continuum.
2013-01-01
evolution of binaries as well as the structure of circumstellar disks. Aims. A multiwavelength high angular resolution study of the prototypical object...optical to mid-IR wave- lengths. For YSOs this has led to the discovery of an empiri- cal size-luminosity relation (Millan-Gabet et al. 2001; Monnier...Millan-Gabet 2002), which in turn has led to the current paradigm (Dullemond & Monnier 2010) of a passive dusty disk with an optically thin cavity and the
Broadband X-Ray Spectral Analysis of the Double-nucleus Luminous Infrared Galaxy Mrk 463
NASA Astrophysics Data System (ADS)
Yamada, Satoshi; Ueda, Yoshihiro; Oda, Saeko; Tanimoto, Atsushi; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio
2018-05-01
We present a broadband (0.4–70 keV) X-ray spectral analysis of the luminous infrared galaxy (LIRG) system Mrk 463 observed with Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton, which contains double active galactic nuclei (AGNs; Mrk 463E and Mrk 463W) with a separation of ∼3.8 kpc. Detecting their transmitted hard X-ray >10 keV continua with NuSTAR, we confirm that Mrk 463E and Mrk 463W have AGNs with intrinsic luminosities of (1.6–2.2) × 1043 and (0.5–0.6) × 1043 erg s‑1 (2–10 keV) obscured by hydrogen column densities of 8 × 1023 and 3 × 1023 cm‑2, respectively. Both nuclei show strong reflection components from cold matter. The luminosity ratio between X-ray (2–10 keV) and [O IV] 25.89 μm of Mrk 463E is ∼5 times smaller than those of normal Seyfert galaxies, suggesting that the intrinsic SED is X-ray weak relative to the UV luminosity. In fact, the bolometric AGN luminosity of Mrk 463E estimated from L‧-band (3.8 μm), [O IV] 25.89 μm, and [Ne V] 14.32 μm lines indicate a large bolometric-to-X-ray luminosity ratio, κ 2–10 keV ≈ 110–410, and a high Eddington ratio, λ Edd ∼ 0.4–0.8. We suggest that the merger triggered a rapid growth of the black hole in Mrk 463E, which is not yet deeply “buried” by circumnuclear dust. By contrast, the L‧-band luminosity of Mrk 463W is unusually small relative to the X-ray luminosity, suggesting that the Eddington ratio is low (<10‑3) and it might be still in an early phase of merger-driven AGN activity.
NASA Astrophysics Data System (ADS)
Blondin, Stéphane; Dessart, Luc; Hillier, D. John
2018-03-01
While Chandrasekhar-mass (MCh) models with a low 56Ni yield can match the peak luminosities of fast-declining, 91bg-like Type Ia supernovae (SNe Ia), they systematically fail to reproduce their faster light-curve evolution. Here, we illustrate the impact of a low ejecta mass on the radiative display of low-luminosity SNe Ia, by comparing a sub-MCh model resulting from the pure central detonation of a C-O white dwarf (WD) to an MCh delayed-detonation model with the same 56Ni yield of 0.12 M⊙. Our sub-MCh model from a 0.90 M⊙ WD progenitor has a ˜5 d shorter rise time in the integrated UV-optical-IR (uvoir) luminosity, as well as in the B band, and a ˜20 per cent higher peak uvoir luminosity (˜1 mag brighter peak MB). This sub-MCh model also displays bluer maximum-light colours due to the larger specific heating rate, and larger post-maximum uvoir and B-band decline rates. The luminosity decline at nebular times is also more pronounced, reflecting the enhanced escape of gamma rays resulting from the lower density of the progenitor WD. The deficit of stable nickel in the innermost ejecta leads to a notable absence of forbidden lines of [Ni II] in the nebular spectra. In contrast, the MCh model displays a strong line due to [Ni II] 1.939 μm, which could in principle serve to distinguish between different progenitor scenarios. Our sub-MCh model offers an unprecedented agreement with optical and near-infrared observations of the 91bg-like SN 1999by, making a strong case for a WD progenitor significantly below the Chandrasekhar-mass limit for this event and other low-luminosity SNe Ia.