NASA Astrophysics Data System (ADS)
Kumar, Raj; Sharma, Vishal
2017-03-01
The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).
Kumar, Raj; Sharma, Vishal
2017-03-15
The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.
Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca
2014-08-01
Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.
Aerosol column absorption measurements using co-located UV-MFRSR and AERONET CIMEL instruments
NASA Astrophysics Data System (ADS)
Krotkov, N.; Labow, G.; Herman, J.; Slusser, J.; Tree, R.; Janson, G.; Durham, B.; Eck, T.; Holben, B.
2009-08-01
Column aerosol absorption properties in the visible wavelengths are measured routinely in worldwide locations by NASA AERONET network (http://aeronet.gsfc.nasa.gov), while similar optical properties in UV can be derived from diffuse and global irradiance measurements measured with Multifilter Rotating Shadowband Radiometer (MFRSR) instruments of the USDA UV-MFRSR network (http://uvb.nrel.colostate.edu). To enable direct comparisons between the two techniques, we have modified our UV-MFRSR by replacing standard 300nm filter with 440nm filter used in AERONET network. The modified UV/VIS-MFRSR has been mostly deployed at AERONET calibration site at NASA GSFC in Greenbelt, MD, but also at number of field campaigns. While the UV-MSFRSR instrument is highly susceptible to calibration drifts, these drifts can be accurately assessed using co-located AERONET direct-sun AOT data. In 2006 quartz dome has been installed atop the MFRSR diffuser, which stabilized calibration drifts in 2007-2009. After correcting for remaining calibration changes, the AOT and single scattering albedo (SSA) at the UV wavelengths can be accurately inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model at each UV-MFRSR spectral channel. Derived AOT and SSA at common wavelength 440nm by two different techniques are generally in good agreement. We also found that SSA becomes smaller in the UV wavelengths and has strong wavelength dependence across blue and near-UV spectral range. The measured enhanced UV absorption might suggest the presence of selectively UV absorbing aerosols. High spectral resolution SSA measurements in UV-VIS wavelengths are called for.
NASA Astrophysics Data System (ADS)
Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel
2016-12-01
In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.
NASA Astrophysics Data System (ADS)
Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin
2018-05-01
A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.
Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha
2012-06-01
Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.
Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer
NASA Astrophysics Data System (ADS)
Juliasih, N.; Buchari; Noviandri, I.
2017-04-01
The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 - 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room.
Preparation and spectral properties of europium hydrogen squarate microcrystals
NASA Astrophysics Data System (ADS)
Kolev, T.; Danchova, N.; Shandurkov, D.; Gutzov, S.
2018-04-01
A simple scheme for preparation of europium hydrogen squarate octahydrate microcrystals, Eu(HSq)3·8H2O is demonstrated. The microcrystalline powders obtained have a potential application as non-centrosymmetric and UV radiation - protective hybrid optical material. The site-symmetry of the Eu - ion is C2V or lower, obtained from diffuse reflectance spectra. The formation of europium hydrogen squarate is supported by IR - spectroscopy, UV-vis spectroscopy, chemical analysis and X-ray diffraction. A detailed analysis of the UV-vis and IR spectra of the micropowders prepared is presented. The reaction between europium oxide and squaric acid leads to formation of microcrystalline plate-like crystals of europium hydrogen squarate Eu(HSq)3·8H2O, a non-centrosymmetric hybrid optical material with a potential application as UV radiation - protective coatings.
Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts
NASA Astrophysics Data System (ADS)
Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang
2016-01-01
Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.
Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo
2017-12-04
We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.
Nordvang, Emily C; Borodina, Elena; Ruiz-Martínez, Javier; Fehrmann, Rasmus; Weckhuysen, Bert M
2015-01-01
The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during catalytic testing with the single crystal in situ results. PMID:26463581
Size determination of gold nanoparticles in silicate glasses by UV-Vis spectroscopy
NASA Astrophysics Data System (ADS)
Ali, Shahid; Khan, Younas; Iqbal, Yaseen; Hayat, Khizar; Ali, Muhammad
2017-01-01
A relatively easier and more accurate method for the determination of average size of metal nanoparticles/aggregates in silicate glasses based on ultraviolet visible (UV-Vis) spectra fitted with the Mie and Mie-Gans models was reported. Gold ions were diffused into sodalime silicate and borosilicate glasses by field-assisted solid-state ion-exchange technique using the same experimental parameters for both glasses. Transmission electron microscopy was performed to directly investigate the morphology and distribution of the dopant nanoparticles. UV-Vis spectra of the doped glasses showed broad surface plasmon resonance peaks in their fingerprint regions, i.e., at 525 and 500 nm for sodalime silicate and borosilicate glass matrices, respectively. These spectra were fitted with the Mie model for spherical nanoparticles and the Mie-Gans model for spheroidal nanoparticles. Although both the models were developed for colloidal nanoparticles, the size of the nanoparticles/aggregates calculated was accurate to within ˜10% in both the glass matrices in comparison to the size measured directly from the transmission electron microscope images.
Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang
2013-02-11
An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.
NASA Astrophysics Data System (ADS)
Chen, Jie; Luo, Min; Ye, Ning
2014-10-01
A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.
NIST High Accuracy Reference Reflectometer-Spectrophotometer
Proctor, James E.; Yvonne Barnes, P.
1996-01-01
A new reflectometer-spectrophotometer has been designed and constructed using state-of-the-art technology to enhance optical properties of materials measurements over the ultraviolet, visible, and near-infrared (UV-Vis-NIR) wavelength range (200 nm to 2500 nm). The instrument, Spectral Tri-function Automated Reference Reflectometer (STARR), is capable of measuring specular and diffuse reflectance, bidirectional reflectance distribution function (BRDF) of diffuse samples, and both diffuse and non-diffuse transmittance. Samples up to 30 cm by 30 cm can be measured. The instrument and its characterization are described. PMID:27805081
XRF and UV-Vis-NIR analyses of medieval wall paintings of al-Qarawiyyin Mosque (Morocco)
NASA Astrophysics Data System (ADS)
Fikri, I.; El Amraoui, M.; Haddad, M.; Ettahiri, A. S.; Bellot-Gurlet, L.; Falguères, C.; Lebon, M.; Nespoulet, R.; Ait Lyazidi, S.; Bejjit, L.
2018-05-01
Medieval wall painting fragments, taken at the medieval Mosque of al-Qarawiyyin in Fez, have been investigated by means of X-ray fluorescence and UV-Vis-NIR diffuse reflectance spectroscopies. The analyses permitted to determine the palette of pigments used by craftsmen of the time. Hematite or red ochre were used to obtain red brown colours, calcite for white, copper-based pigments for blue and blue-grey shades while a mixture of cinnabar, lead-based pigments and hematite was adopted to make red-orange colours. Furthermore, the analysis of mortars (external layer and plaster) on these wall painting samples revealed that they are composed mainly by calcite and sometimes by additional compounds such as quartz and gypsum.
NASA Astrophysics Data System (ADS)
Saputra, I. S.; Yulizar, Y.
2017-04-01
ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.
Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng
2014-01-01
Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.
M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi
2017-06-01
In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of fusion mixture treatment on the surface of low grade natural ruby
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Pradhan, K. C.; Nayak, B. B.; Dash, Tapan; Sahu, R. K.; Mishra, B. K.
2017-05-01
Improvement in aesthetic look of low grade natural ruby (gemstone) surface was clearly evident after fusion mixture treatment. Surface impurities of the gemstone were significantly reduced to give it a face lift. The processing consists of heat treatment (1000 °C) of the raw gemstone with fusion mixture (sodium and potassium carbonates), followed by hydrochloric acid digestion (90 °C) and ultrasonic cleaning.Both the untreated and the treated gemstone were characterized by X-ray diffraction, UV-vis spectroscopy (diffuse reflectance),photoluminescence and X-ray photoelectron spectroscopy. The paper consolidates the results of these studies and presents the effect of the typical chemical treatment (stated above) on the low grade natural ruby. While X-ray diffraction study identifies the occurrence of alumina phase in both the treated and the untreated gemstones, the UV-vis spectra exhibit strong characteristic absorption of Cr3+at 400 and 550 nm wavelength for the treated gemstone in contrast to weak absorption observed for the untreated gemstone at such wavelengths, thus showing the beneficial effect of fusion mixture treatment. Peaks observed for the gemstone (for both treated and untreated samples) in the excitation spectra of photoluminescence show a good correlation with observed UV-vis (diffuse reflectance) spectra. Photoluminescence emission spectra of the untreated gemstone show characteristic emission at 695 nm for Cr3+ ion (as in alumina matrix), but its emission intensity significantly reduces after fusion mixture treatment. It is found that the surface of the fusion mixture treated ruby gemstone looks much brighter than the corresponding untreated surface.
Yao Chen; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark; Jianmin Gao
2012-01-01
To investigate the optical properties of chemithermomechanical pulp (CTMP) from Eucalyptus camaldulensis, one group of samples of CTMP was aged by heating, and another group was first subjected to bleaching with different bleaching agents, and then aging by exposure to sunlight. Chromophores were analyzed using diffuse reflectance UV-Vis spectra (...
NASA Astrophysics Data System (ADS)
Valizadeh, S.; Rasoulifard, M. H.; Dorraji, M. S. Seyed
2014-11-01
The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag3PO4 formation. Apparent reaction rate constant (Kapp) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H2O2, Co-M-HAP(II)/H2O2 and M-HAP (I)/UV systems, respectively.
NASA Astrophysics Data System (ADS)
Dong, Rui; Wang, Yuan; Wang, Ningning; Xu, Lei; He, Jie; Wu, Shanshan; Lan, Yunxiang; Hu, Jinsong
2016-09-01
Layered photocatalytic materials M1/3TiNbO5 (M = Fe, Ce) were prepared by ion-exchange of KTiNbO5 with M(NO3)3. The parent KTiNbO5 was synthesized with titanium (IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The micro-structures and spectral response features of the as-prepared samples were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), laser Raman spectroscopy (LRS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that there was a significant interaction between the interlayer cation and the terminal Nbdbnd O (Tidbnd O) bond in the NbO6 (TiO6) unit of the laminates. Photocatalytic performance was evaluated in oxidation of ethyl mercaptan under natural and UV light irradiation. It can be deduced that the photocatalytic oxidization performance can be directly affected by the characteristics of the interlayer cations.
Tropospheric Ozone Profiling Using Simulated GEO-CAPE Measurement
NASA Technical Reports Server (NTRS)
Natraj, Vijay; Li, Xiong; Kulawik, Susan; Chance, Kelly; Chatfield, Robert; Edwards, David P .; Eldering, Annmarie; Francis, Gene; Kurosu, Thomas; Pickering, Kenneth;
2011-01-01
Multi-spectral retrievals (UV+VIS, UV+TIR, UV+VIS+TIR) improve sensitivity to the variability in near-surface O3 by a factor of 2 - 2.7 over those from UV or TIR alone. Multi-spectral retrievals provide the largest benefit when there is enhanced O3 near the surface. Combining all 3 wavelengths (UV+VIS+TIR) provides the greatest sensitivity below 850 hPa, with a 36% improvement over UV+VIS and a 17% improvement over UV+TIR. The impacts of clouds and aerosols are being assessed.
Reflection measurements for luminescent powders
NASA Astrophysics Data System (ADS)
Kroon, R. E.
2018-04-01
Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.
Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity
NASA Astrophysics Data System (ADS)
You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.
2014-12-01
A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.
Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.
Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang
2017-01-01
In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.
NASA Astrophysics Data System (ADS)
Nadeem, Saad; Iqbal, Farukh; Mutalib, Mohamed Ibrahim Abdul; Abdullah, Bawadi; Shaharun, Maizatul Shima
2017-10-01
Metal composite materials-48 (MCM-48) with silica zirconia mesoporous matrix (having a Zr/Si ratio of 0.02) has been developed successfully using autogenous conditions and Copper tetra phenyl porphyrin (CuTPP) inclusion via flexible ligand approach. Thermo gravimetric analysis (TGA) was used to study the thermal stability which gives the stability up to 700°C, Fourier transform infrared spectroscopy (FTIR) for the functional group attachment also confirmed the MCM-48 structure and the Zirconia addition and X-Ray photon spectroscopy (XPS) for the binding energies and bonding also revealed the surface Zr4+ states. DRS-UV-Vis study for the photophysical behaviour, visible light activation and band gap reduction which reduced from 5.6 to 2.8 eV. All the characterizations have confirmed that nanoscale mesoporous silica with successful inclusion of zirconia in the matrix and the encapsulation of CuTPP was confirmed via diffuse reflectance (DR Uv-Vis) spectroscopy.
Analysis of laser printer and photocopier toners by spectral properties and chemometrics
NASA Astrophysics Data System (ADS)
Verma, Neha; Kumar, Raj; Sharma, Vishal
2018-05-01
The use of printers to generate falsified documents has become a common practice in today's world. The examination and identification of the printed matter in the suspected documents (civil or criminal cases) may provide important information about the authenticity of the document. In the present study, a total number of 100 black toner samples both from laser printers and photocopiers were examined using diffuse reflectance UV-Vis Spectroscopy. The present research is divided into two parts; visual discrimination and discrimination by using multivariate analysis. A comparison between qualitative and quantitative analysis showed that multivariate analysis (Principal component analysis) provides 99.59%pair-wise discriminating power for laser printer toners while 99.84% pair-wise discriminating power for photocopier toners. The overall results obtained confirm the applicability of UV-Vis spectroscopy and chemometrics, in the nondestructive analysis of toner printed documents while enhancing their evidential value for forensic applications.
Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; ...
2015-11-06
The composition of anatase TiO 2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO 2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under bothmore » UV-vis and visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO 2 was significantly enhanced relative to (N) TiO 2.« less
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Le, Thanh Son; Ling, Yong-Chien
2014-12-01
C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV-vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.
NASA Astrophysics Data System (ADS)
Hajian, Robabeh; Ehsanikhah, Amin
2018-01-01
This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.
NASA Technical Reports Server (NTRS)
Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.
2012-01-01
Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing
Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction
NASA Astrophysics Data System (ADS)
Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin
2013-02-01
N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.
NASA Astrophysics Data System (ADS)
Mahesh, K. P. O.; Kuo, Dong-Hau
2015-12-01
Highly photocatalytic active Ni magnetic nanoparticles-decorated SiO2 core/TiO2 shell (Ni-SiO2/TiO2) particles have been prepared by the simultaneous hydrolysis and condensation of titanium tetra-isopropoxide on SiO2 sphere of ∼300 nm in size followed by the reduction of nickel chloride using hydrazine hydrate as a reducing agent. The crystalline nature, surface morphology, electrochemical impedance spectra and UV-vis diffuse reflectance spectra of the Ni-SiO2/TiO2 magnetic spheres were characterized by PXRD, FE-SEM, TEM, EIS and UV-vis DRS. The Ni-SiO2/TiO2 magnetic photocatalyst was used for the degradation of Acid Black 1 (AB 1) dye under UV irradiation. The effects of different concentrations of the Ni nanoparticles deposited on the SiO2/TiO2 composite spheres for the photo-mineralization of AB 1 dye were analyzed. The results showed the Ni-SiO2/TiO2 magnetic photocatalyst to be efficient and reusable.
Kumar, Raj; Kumar, Vinay; Sharma, Vishal
2015-06-01
Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between PC1 and PC2. It is therefore concluded that maximum discrimination of writing, office, and photocopy paper could be achieved on the basis of the second approach. Hence, the present inexpensive analytical method can be appropriate for application to routine questioned document examination work in forensic laboratories because it provides nondestructive, quantitative, reliable, and repeatable results.
Cheng, Shuying; Gao, Feng; Krummel, Karl I; Garland, Marc
2008-02-15
Two different organometallic ligand substitution reactions were investigated: (1) an achiral reactive system consisting of Rh(4)(CO)(12)+PPh(3)right harpoon over left harpoonRh(4)(CO)(11)PPh(3)+CO in n-hexane under argon; and (2) a chiral reactive system consisting of Rh(4)(CO)(12)+(S)-BINAPright harpoon over left harpoonRh(4)(CO)(10)BINAP+2CO in cyclohexane under argon. These two reactions were run at ultra high dilution. In both multi-component reactive systems the concentrations of all the solutes were less than 40ppm and many solute concentrations were just 1-10ppm. In situ spectroscopic measurements were carried out using UV-vis (Ultraviolet-visible) spectroscopy and UV-vis CD spectroscopy on the reactive organometallic systems (1) and (2), respectively. The BTEM algorithm was applied to these spectroscopic data sets. The reconstructed UV-vis pure component spectra of Rh(4)(CO)(12), Rh(4)(CO)(11)PPh(3) and Rh(4)(CO)(10)BINAP as well as the reconstructed UV-vis CD pure component spectra of Rh(4)(CO)(10)BINAP were successfully obtained from BTEM analyses. All these reconstructed pure component spectra are in good agreement with the experimental reference spectra. The concentration profiles of the present species were obtained by performing a least square fit with mass balance constraints for the reactions (1) and (2). The present results indicate that UV-vis and UV-vis-CD spectroscopies can be successfully combined with an appropriate chemometric technique in order to monitor reactive organometallic systems having UV and Vis chromophores.
The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest
NASA Astrophysics Data System (ADS)
Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R.
2013-12-01
We present the MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules, which is a large collection of absorption cross sections and quantum yields in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The MPI-Mainz UV/VIS Spectral Atlas is available on the Internet at http://www.uv-vis-spectral-atlas-mainz.org. It now appears with improved browse and search options, based on new database software. In addition to the Web pages, which are continuously updated, a frozen version of the data is available under the doi:10.5281/zenodo.6951.
Photocatalytic degradation of diethyl phthalate using TiO{sub 2} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singla, Pooja, E-mail: pooja.singla@thapar.edu; Pandey, O. P., E-mail: pooja.singla@thapar.edu; Singh, K., E-mail: pooja.singla@thapar.edu
2014-04-24
TiO{sub 2} nanoparticles predominantly in rutile phase are synthesized by ultrasonication assisted sol-gel method. TiO{sub 2} powder is characterized using X-ray powder diffraction and UV-vis diffuse reflectance. TiO{sub 2} is used as catalyst in photocatalytic degradation of Diethyl Phthalate. TiO{sub 2} exhibits good photocatalytic activity for the degradation of diethyl phthalate.
Spectroscopic characterization of the quantum wires in titanosilicates ETS-4 and ETS-10
NASA Astrophysics Data System (ADS)
Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert, Jr.
2006-08-01
Titanosilicates ETS-4 and ETS-10 contain octahedrally coordinated monatomic semiconductor \\cdots \\mathrm {Ti} -O-Ti-O-\\mathrm {Ti}\\cdots (titania) chains in their frameworks. Titania chains are isolated from one another by a siliceous matrix. Thus, these chains can be regarded as one-dimensional nanostructures, i.e., 'quantum wires'. Diffuse reflectance UV-vis (DR-UV-vis) spectroscopy analysis demonstrated a significant blue-shift of the optical absorption edge (>60 nm) for both ETS-4 and ETS-10 compared to bulk titania. This blue-shift is consistent with the hypothesis that the titania chains in ETS-4 and ETS-10 are acting as quantum wires. A broad range of ETS-4 and ETS-10 samples with diverse crystallo-chemical characteristics was prepared. The DR-UV-vis and Raman spectra of various ETS-4 and ETS-10 samples exhibited different characteristics, which were hypothesized to be related to the titania chain 'quality'. Detailed investigation of the spectroscopic bands associated with the titania chains in ETS-4 was performed for the first time. The 'quality' of these titania chains/quantum wires in ETS-4 and ETS-10 was correlated with the crystal growth mechanisms of these materials. Comparison of the growth mechanisms and the spectroscopic behaviour for ETS-4 and ETS-10 suggests that the control of 'quantum wire quality' via hydrothermal synthesis is possible in ETS-4 but would be difficult in ETS-10.
A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†
Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi
2018-01-01
We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742
Effect of titanium on the structural and optical property of NiO nano powders
NASA Astrophysics Data System (ADS)
Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya
2018-05-01
Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.
Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Valipour, A.
2013-10-01
The Mobil Composition of Matter No. 41 (MCM-41) containing 1.0 and 5.0 wt.% of Cu was synthesized under solid state reaction. The calcinations of samples were done at two different temperatures, 500 and 300 °C. X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used for samples characterization. Powder X-ray diffraction showed that when Cu(CH3COO)2 content is about 1.0 wt.% in Cu/MCM-41, the guest CuO-NPs and copper ions is formed on the silica channel wall, and more exists in the crystalline state. When Cu(CH3COO)2 content exceeds this value (5.0 wt.%), CuO nanoparticles and Cu2+ ions can be observed in low crystalline state. From the diffuse reflectance spectra it was confirmed that 5 wt.% Cu/MCM-41 sample calcined at 500 °C show plasmon resonance band due to Cu nanoparticles in the range between 500 and 600 nm and small copper clusters Cun in 450 nm. It also shows that some of the Cu2+ ions are present octahedrally in extraframework position in all samples. Both fourier transform infrared and diffuse reflectance spectra indicate that some of Cu2+ ions are tetrahedrally within the framework position in 1 wt.% Cu/MCM-41 samples. TEM images indicated that nanoparticles size of CuO is in range of 30-40 nm.
NASA Astrophysics Data System (ADS)
Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.
2016-04-01
Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.
Sandmann, Henner; Stick, Carsten
2014-01-01
Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes. © 2013 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana
2009-04-01
Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).
Marković, Svetlana; Tošović, Jelena
2015-09-03
The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.
The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest
NASA Astrophysics Data System (ADS)
Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R.
2013-08-01
We present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of absorption cross sections and quantum yields in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at http://www.uv-vis-spectral-atlas-mainz.org. It now appears with improved browse and search options, based on new database software. In addition to the web pages, which are continuously updated, a frozen version of the data is available under the doi:10.5281/zenodo.6951.
Characterization of low-dose doxorubicin-loaded silica-based nanocomposites
NASA Astrophysics Data System (ADS)
Prokopowicz, Magdalena
2018-01-01
In this study, we synthesized multicomponent solid films of low-dose doxorubicin (DOX)-loaded polydimethylsiloxane (PDMS)-SiO2/CaP nanocomposites via sol-gel process combined with the method of evaporation-induced self-assembly (EISA) at low temperature. Nanomechanical properties (elasticity and adhesion) of the synthesized multicomponent films were determined by using atomic force microscopy with a PeakForce™ quantitative nanomechanical mapping imaging technique. Solid state of DOX in the synthesized films was studied by using UV-vis and fluorescence spectroscopy. The release profile of different concentrations of DOX loaded (1, 3, and 5 wt%) on the multicomponent films was assessed using USP Apparatus 4 and via UV-vis end analysis. Results indicate drug-component interactions on the overall morphology of domains (size and shape), nanomechanical properties, and release behavior of the DOX-loaded nanocomposites. We observed a progressive increase in surface roughness and mean adhesive value with increasing concentration of DOX loaded (0-5 wt%). In addition, for all the different concentrations of DOX-loaded, we observed a diffusion-controlled drug release.
Hernández, Carla Navarro; Martín-Yerga, Daniel; González-García, María Begoña; Hernández-Santos, David; Fanjul-Bolado, Pablo
2018-02-01
Naratriptan, active pharmaceutical ingredient with antimigraine activity was electrochemically detected in untreated screen-printed carbon electrodes (SPCEs). Cyclic voltammetry and differential pulse voltammetry were used to carry out quantitative analysis of this molecule (in a Britton-Robinson buffer solution at pH 3.0) through its irreversible oxidation (diffusion controlled) at a potential of +0.75V (vs. Ag pseudoreference electrode). Naratriptan oxidation product is an indole based dimer with a yellowish colour (maximum absorption at 320nm) so UV-VIS spectroelectrochemistry technique was used for the very first time as an in situ characterization and quantification technique for this molecule. A reflection configuration approach allowed its measurement over the untreated carbon based electrode. Finally, time resolved Raman Spectroelectrochemistry is used as a powerful technique to carry out qualitative and quantitative analysis of Naratriptan. Electrochemically treated silver screen-printed electrodes are shown as easy to use and cost-effective SERS substrates for the analysis of Naratriptan. Copyright © 2017 Elsevier B.V. All rights reserved.
Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin
2015-02-01
Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.
Optical and electrical studies of cerium mixed oxides
NASA Astrophysics Data System (ADS)
Sherly, T. R.; Raveendran, R.
2014-10-01
The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.
[The UV-Vis spectra and substituent effect of organoimido derivatives of polyoxometalates].
Li, Qiang; Wei, Yong-ge; Wang, Yuan; Guo, Hong-you
2005-06-01
In the presence of a carbodiimine, i.e. DCC, a series of organoimido derivatives of polyoxometalates have been synthesized via the reaction of [alpha-Mo8O26]4- with aromatic amines and its hydrochloride salt. Elemental analysis, IR, 1H-NMR and UV-Vis spectra were used to characterize those hybrids, in particular their UV-Vis spectra have been studied. The results show that typical metal-ligand charge transfer (MLCT) transitions occur in the organic-inorganic hybrid molecules. There is a good linear relationship between the shift of UV-Vis absorptions (delta lamda max) and conjugation effect of the p-substituted group (sigmaR).
UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.
Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis
2014-03-07
The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.
Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad
2018-11-02
Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.
Measurement of phenols dearomatization via electrolysis: the UV-Vis solid phase extraction method.
Vargas, Ronald; Borrás, Carlos; Mostany, Jorge; Scharifker, Benjamin R
2010-02-01
Dearomatization levels during electrochemical oxidation of p-methoxyphenol (PMP) and p-nitrophenol (PNP) have been determined through UV-Vis spectroscopy using solid phase extraction (UV-Vis/SPE). The results show that the method is satisfactory to determine the ratio between aromatic compounds and aliphatic acids and reaction kinetics parameters during treatment of wastewater, in agreement with results obtained from numerical deconvolution of UV-Vis spectra. Analysis of solutions obtained from electrolysis of substituted phenols on antimony-doped tin oxide (SnO(2)--Sb) showed that an electron acceptor substituting group favored the aromatic ring opening reaction, preventing formation of intermediate quinone during oxidation. (c) 2009 Elsevier Ltd. All rights reserved.
Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.
Patel, Manu U M; Dominko, Robert
2014-08-01
Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil
2016-01-05
Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.
Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties
2014-01-01
using both UV –vis spectroscopy for ensemble measurements and optical micro- spectrophotometry for individual superlattice electric fi elds at...lated data). The red-shift seen between the micro-spectropho- tometer measurements (Figure 3 b) and the UV –vis ensemble measurements (Figure 3 a...the measurements. Using UV –vis spectroscopy ( Figure 3 a), red- shifting of the superlattices’ bulk LSPR with decreased nano- particle spacing is
NASA Astrophysics Data System (ADS)
Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad
2015-02-01
In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.
NASA Astrophysics Data System (ADS)
Krukowska, Anna; Trykowski, Grzegorz; Winiarski, Michal Jerzy; Klimczuk, Tomasz; Lisowski, Wojciech; Mikolajczyk, Alicja; Pinto, Henry P.; Zaleska-Medynska, Adriana
2018-05-01
Novel mono- and bimetallic nanoparticles (MNPs and BNPs) decorated surface of perovskite-type KTaO3 photocatalysts were successfully synthesized by hydrothermal reaction of KTaO3 followed by photodeposition of MNPs/BNPs. The effect of noble metal type (MNPs = Au, Ag, Pt, Pd, Rh, Ru or BNPs = Au/Pt, Ag/Pd, Rh/Ru), amount of metal precursor (0.5, 1.0, 1.5 or 2.0 wt%) as well as photoreduction method (simultaneous (both) or subsequent (seq) deposition of two metals) on the physicochemical and photocatalytic properties of MNPs- and BNPs-KTaO3 have been investigated. All as-prepared photocatalysts were subsequently characterized by UV-Vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) emission spectroscopy. The crystal structure was performed using visualization for electronic and structural analysis (VESTA). The photocatalytic activity under Vis light irradiation was estimated in phenol degradation in aqueous phase and toluene removal in gas phase, while under UV-Vis light irradiation was measured amount of H2 generation from formic acid solution. The absorption properties of O2 and H2O molecules on KTaO3(1 0 0) surface supported by Au or Au/Pt NPs was also investigated using density-functional theory (DFT). The experimental results show that, both MNPs-KTaO3 and BNPs-KTaO3 exhibit greatly enhanced pollutant decomposition efficiency under Vis light irradiation and highly improved H2 production under UV-Vis light irradiation compared with pristine KTaO3. MNPs deposition on KTaO3 surface effects by disperse metal particle size ranging from 11 nm (Ru NPs) to 112 nm (Au NPs). Simultaneous addition of Au/Pt precursors results in formation of agglomerated larger metal nanoparticles (50-100 nm) on KTaO3 surface than subsequent deposition of Au/Pt with composition of concentrated smaller metal nanoparticles (>50 nm) on KTaO3 surface. The 0.5 Au/1.5 Pt-KTaO3_both and 2.0 Rh-KTaO3 reveal the highest Vis-induced activity among prepared samples in aqueous phase (14.75% of phenol decomposition after 90 min of irradiation) and gas phase (41.98% of toluene removal after 60 min of irradiation), respectively. The theoretical calculations confirmed that adsorption energy of O2 and H2O molecules was increased after loading of Au or Au/Pt NPs on KTaO3(1 0 0) surface. Control tests with scavengers show that O2rad - radical is significantly involved in phenol oxidation under Vis light irradiation, which proposed mechanism is based on direct electron transfer from MNPs/BNPs to conduction band of KTaO3. The highest amount of H2 evaluation is obtained also by 0.5 Au/1.5 Pt-KTaO3_both after 240 min of UV-Vis light irradiation (76.53 μmol/min), which is eleven times higher than for pristine KTaO3 (6.69 μmol/min). Moreover, the most photocatalytic samples for each model reaction present good repeatability and stability after subsequent three cycles. Summarized, MNPs- and BNPs-KTaO3 are promising material in advanced applications of photocatalysis.
The Classification of Ground Roasted Decaffeinated Coffee Using UV-VIS Spectroscopy and SIMCA Method
NASA Astrophysics Data System (ADS)
Yulia, M.; Asnaning, A. R.; Suhandy, D.
2018-05-01
In this work, an investigation on the classification between decaffeinated and non- decaffeinated coffee samples using UV-VIS spectroscopy and SIMCA method was investigated. Total 200 samples of ground roasted coffee were used (100 samples for decaffeinated coffee and 100 samples for non-decaffeinated coffee). After extraction and dilution, the spectra of coffee samples solution were acquired using a UV-VIS spectrometer (Genesys™ 10S UV-VIS, Thermo Scientific, USA) in the range of 190-1100 nm. The multivariate analyses of the spectra were performed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The SIMCA model showed that the classification between decaffeinated and non-decaffeinated coffee samples was detected with 100% sensitivity and specificity.
Spectral properties of Dy3+ doped ZnAl2O4 phosphor
NASA Astrophysics Data System (ADS)
Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.
2018-05-01
Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.
Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance
NASA Astrophysics Data System (ADS)
Belka, R.; Kowalski, S.; Żórawski, W.
2017-08-01
Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.
Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko
2016-11-01
An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.
Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.
Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank
2016-01-01
Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.
NASA Astrophysics Data System (ADS)
Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.
2014-01-01
A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.
NASA Astrophysics Data System (ADS)
Mahalingam, S.; Abdullah, H.; Ashaari, I.; Shaari, S.; Muchtar, A.
2016-02-01
This study focuses on the influence of an acid treatment process of single-walled carbon nanotubes (SWCNTs) in In2O3-based dye-sensitized solar cells (DSSCs). Pure In2O3, In2O3-SWCNTs with acid treatment and In2O3-SWCNTs without acid treatment were prepared using the sol-gel method via a spin coating technique annealed at 450 °C. The optical, morphology and electrical properties of the photoanodes were characterized by means of UV-Vis analysis, atomic force microscopy and field-emission scanning electron microscopy, and J-V curve measurements, respectively. The optical band gap obtained through UV-Vis analysis showed that the acid treatment process modified the band gap of the photoanode, which enhances the V oc of the DSSCs. In addition, In2O3-SWCNTs with acid treatment possess a porous structure that improves the power conversion efficiency (PCE) of the DSSCs. In addition, the diameter of acid-treated SWCNTs was reduced compared to pristine SWCNTs. In2O3-SWCNTs with acid treatment exhibited the highest PCE of 1.40% with J sc of 7.6 mA cm-2, V oc of 0.51 V, and fill factor of 0.36. The increment in V oc is due to the higher band gap obtained through the UV-Vis absorption spectrum. Moreover, In2O3-SWCNTs with acid treatment has a higher electron lifetime with a higher effective diffusion coefficient that slows down the recombination rate and speeds up the electron transport process.
Mohamed, Gehad G; El-Gamel, Nadia E A
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; El-Gamel, Nadia E. A.
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
Cui, Kuixin; He, Yuehui; Jin, Shengming
2016-04-01
(BiO)2CO3 nanowires were prepared by simple hydrothermal treatment of commercial Bi2O3 powders and characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of (BiO)2CO3 nanowires was studied through degradation of sodium isopropyl xanthate. Photocatalytic experimental results indicated that the as-prepared (BiO)2CO3 nanowires show high photocatalytic efficiency. Photocatalytic activity increased after two cycles. Time-dependent UV-vis spectra demonstrated that the final degradation products included isopropyl alcohol and carbon disulfide. UV-vis diffuse reflection spectra showed that the band gap of the as-prepared (BiO)2CO3 nanowires and recycled (BiO)2CO3 nanowires were 2.75 eV and 1.15 eV, respectively. XPS results indicated that formation of Bi2S3@(BiO)2CO3 core-shell nanowires occurred after recycled photodegradation of isopropyl xanthate owing to existence of two types of Bi configurations in the recycled (BiO)2CO3 nanowires. A probable degradation mechanism of isopropyl xanthate was also proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie
2009-05-30
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.
Ali, Imran; Wani, Waseem A; Khan, Amber; Haque, Ashanul; Ahmad, Aijaz; Saleem, Kishwar; Manzoor, Nikhat
2012-08-01
A pyrazoline based ligand; (5-(4-chlorophenyl)-3-phenyl-4, 5-dihydro-1H-pyrazole-1-carbothioamide) has been synthesized by Claisen-Schmidt condensation of acetophenone with p-chlorobenzaldehyde, followed by sodium hydroxide assisted cyclization of the resulting chalcone with thiosemicarbazide. Metal ion complexes of the synthesized ligand were prepared with Cu(II) and Ni(II) metal ions, separately and respectively. Ligand and the metal complexes were characterized by elemental analysis, FT-IR, UV-Vis, (1)HNMR, ESI-MS and (13)CNMR spectroscopic techniques. Molar conductance measurements in DMSO suggested non-electrolytic nature of the complexes. Tetragonally distorted octahedral geometry for copper and octahedral geometry for the nickel complexes was proposed on the basis of UV-Vis spectroscopic studies and magnetic moment measurements. The complexes were investigated for their ability to kill human fungal pathogen Candida by determining MICs (Minimum inhibitory concentrations), inhibition in solid media and ability to produce a possible synergism with conventional most clinically practiced antifungals by disc diffusion assay and FICI (fractional inhibitory concentration index). Copyright © 2012 Elsevier Ltd. All rights reserved.
Sboui, Mouheb; Nsib, Mohamed Faouzi; Rayes, Ali; Swaminathan, Meenakshisundaram; Houas, Ammar
2017-10-01
A novel photocatalyst based on TiO 2 -PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO 2 on cork. The TiO 2 -PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO 2 -PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng
2012-10-01
A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.
NASA Astrophysics Data System (ADS)
Gür, Mahmut; Şener, Nesrin; Muğlu, Halit; Çavuş, M. Serdar; Özkan, Osman Emre; Kandemirli, Fatma; Şener, İzzet
2017-07-01
In the study, some new 1,3,4-thiadiazole compounds were synthesized and we have reported identification of the structures by using UV-Vis, FT-IR, 1H NMR, 13C NMR and Mass spectroscopic methods. Antimicrobial activities of the compounds against three microorganisms, namely, Candida albicans ATCC 26555, Staphylococcus aureus ATCC 9144, and Escherichia coli ATCC 25922 were investigated by using disk diffusion method. These thiadiazoles exhibited an antimicrobial activity against Staphylococcus aureus and Candida albicans. The experimental data was supported by the quantum chemical calculations. Density functional theory (DFT) calculations were carried out to obtain the ground state optimized geometries of the molecules using the B3LYP, M06 and PBE1PBE methods with 3-21 g, 4-31 g, 6-311++g(2d,2p), cc-pvtz and cc-pvqz basis sets in the different combinations. Frontier molecular orbitals (FMOs) energies, band gap energies and some chemical reactivity parameters were calculated by using the aforementioned methods and basis sets, and the results were also compared with the experimental UV-Vis data.
NASA Astrophysics Data System (ADS)
Wanag, Agnieszka; Kusiak-Nejman, Ewelina; Kowalczyk, Łukasz; Kapica-Kozar, Joanna; Ohtani, Bunsho; Morawski, Antoni W.
2018-04-01
In this paper titanium dioxide carbon modification with benzene as a carbon source is presented. A TiO2/graphitic carbon nanocomposites were synthesized by thermal modification in the presence of benzene vapours at different temperature (300-700 °C). The new materials were characterized by a various techniques, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV-vis/DR), surface-enhanced Raman spectroscopy. BET specific surface area was also measured. The photocatalytic activity of obtained nanocomposites was measured by the decomposition of acetic acid and methylene blue under UV-vis irradiation. The results show that photocatalytic activity increasing with increase in carbon concentration and temperature of modification. It can be noted that adsorption degree has a very high impact on methylene blue decomposition. The highest photocatalytic activity was found for the photocatalyst modified at 600 °C contains 1.13 wt% of carbon. It should be noted that, the influence of crystallite size, crystal structure changes and specific surface area for photocatalytic activity are presented.
Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.
Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju
2008-12-30
The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).
Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance
NASA Astrophysics Data System (ADS)
Lyu, Jianchang; Li, Zhenlu; Ge, Ming
2018-06-01
Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuno, T., E-mail: t093507@edu.imc.tut.ac.jp; Kawamura, G., E-mail: gokawamura@ee.tut.ac.jp; Muto, H., E-mail: muto@ee.tut.ac.jp
Mesoporous SiO{sub 2} templates deposited TiO{sub 2} nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO{sub 2}–TiO{sub 2}). The photocatalytic characteristics of Au/SiO{sub 2}–TiO{sub 2} are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO{sub 2}–TiO{sub 2} under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO{sub 2}–TiO{sub 2} shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV andmore » Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO{sub 2}–TiO{sub 2} under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO{sub 2}–TiO{sub 2} photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO{sub 2}–TiO{sub 2} by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO{sub 2}–TiO{sub 2} was improved by simultaneous irradiation.« less
Jeong, Kwang-Eun; Cho, Chin-Soo; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong
2010-05-01
Titanium containing mesoporous molecular sieve (Ti-MMS) catalysts were studied for the oxidative desulfurization of refractory sulfur compounds. Ti-MMS catalysts were synthesized from fluorosilicon compounds and Ti with the hydrolysis reaction of H2SiF6 in an ammonia-surfactant mixed solution. The solid products were characterized by XRD, XRF, nitrogen adsorption, and diffuse reflectance UV-vis spectroscopy. Effects of Ti loading and oxidant/sulfur mole ratio, and sulfur species on ODS activity were investigated.
Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L
2017-05-01
Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.
Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng
2015-12-16
To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.
Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; ...
2017-09-08
Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Wu, Xiaoyong; Pan, Wenfeng
Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less
Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun
2018-09-01
Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.
Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw
2016-10-26
Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.
Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N
2016-10-04
Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.
Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho
2018-05-18
A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.
NASA Astrophysics Data System (ADS)
Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng
2018-03-01
A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shaohua, E-mail: linsh75@163.com; Zhang, Xiwang; Sun, Qinju
2013-11-15
Graphical abstract: - Highlights: • Fe-doped TiO{sub 2} immobilized on glass-fiber net were prepared by sol–gel method. • Fe inhibited the phase transition of TiO{sub 2} from anatase to rutile. • The optimal Fe doping dose was around 0.005 wt%. • The optimal calcination temperature was around 600 °C. - Abstract: Iron-doped anatase titanium dioxide catalysts coated on glass-fiber were successfully synthesized by a dip-coating sol–gel method. The prepared catalysts were characterized by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy to understand the synthesis mechanism, and their photocatalytic activities weremore » evaluated by photodegradation of phenol under simulated solar irradiation. EDX analysis confirmed the existence of iron in the immobilized catalysts. XRD suggested that the phase transition of the catalysts from anatase to rutile were restrained, and almost pure anatase TiO{sub 2} could retain even the calcination temperature reached 800 °C. The UV-Vis diffuse reflectance spectroscopy of the catalysts showed a red shift and increased photoabsorbance in the visible range for all the doped samples. Iron loading and calcination temperature have obvious influences on photocatalytic activity. In this study, the optimal doping dose and calcination temperature were around 0.005 wt% and 600 °C, respectively.« less
The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest
NASA Astrophysics Data System (ADS)
Sander, Rolf; Keller-Rudek, Hannelore; Moortgat, Geert; Sörensen, Rüdiger
2014-05-01
Measurements from satellites can be used to obtain global concentration maps of atmospheric trace constituents. Critical parameters needed in the analysis of the satellite data are the absorption cross sections of the observed molecules. Here, we present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of more than 5000 absorption cross section and quantum yield data files in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at http://www.uv-vis-spectral-atlas-mainz.org. It has been completely overhauled and now appears with improved browse and search options, based on PostgreSQL, Django and Python database software. The web pages are continuously updated.
Ruan, Yudi; Wu, Lie; Jiang, Xiue
2016-05-23
Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmed, Arham S.
2018-05-01
The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.
Naresh, Gollapally; Mandal, Tapas Kumar
2014-12-10
Aurivillius phase layered perovskites, Bi5-xLaxTi3FeO15 (x = 1, 2) are synthesized by solid-state reaction. The compounds are characterized by powder X-ray diffraction (PXD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis diffuse reflectance (UV-vis DRS), and photoluminescence (PL) spectroscopy. UV-vis DRS data revealed that the compounds are visible light absorbing semiconductors with band gaps ranging from ∼2.0-2.7 eV. Photocatalytic activity studies by Rhodamine B (RhB) degradation under sun-light irradiation showed that these layered oxides are very efficient photocatalysts in mild acidic medium. Scavenger test studies demonstrated that the photogenerated holes and superoxide radicals (O2(•-)) are the active species responsible for RhB degradation over the Aurivillius layered perovskites. Comparison of PL intensity, dye adsorption and ζ-potential suggested that a slow e(-)-h(+) recombination and effective dye adsorption are crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O2/O2(•-), (•)OH/H2O potential and HOMO-LUMO levels of RhB appears to be responsible for making the degradation hole-specific. Photocatalytic cycle tests indicated high stability of the catalysts in the reaction medium without any observable loss of activity. This work shows great potential in developing novel photocatalysts with layered structures for sun-light-driven oxidation and degradation processes largely driven by holes and without any intervention of hydroxyl radicals, which is one of the most common reactive oxygen species (ROS) in many advanced oxidation processes.
Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J
2014-01-03
A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.
Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.
Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage
2016-10-11
We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.
NASA Astrophysics Data System (ADS)
Georgieva, J.; Valova, E.; Armyanov, S.; Tatchev, D.; Sotiropoulos, S.; Avramova, I.; Dimitrova, N.; Hubin, A.; Steenhaut, O.
2017-08-01
Highly ordered TiO2 nanotube arrays (TNTA) have attracted much attention due to the excellent photocatalytic, optical and electrical properties. However, their absorption range is limited to ultraviolet (UV) spectrum only due to the wide band gap (3.2 eV). One of the strategies to overcome this problem is doping with boron and nitrogen. They are produced via titanium sheet anodization and subsequent electrochemical treatment of titania in an electrolyte containing boric acid. The as-prepared B-TNTA are annealed in N2 atmosphere at 500 °C for 2 h to obtain B,N-TNTA. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The B,N-TNTA consist of uniform and well aligned nanotubes with an average inner diameter of 80-100 nm and a length not exceeding 1 μm. The photocurrent response measurements of undoped TNTA, N-doped and B,N-co-doped samples are performed under UV and visible light (Vis) illumination and a comparison is made. The obtained results show that the B,N-doping leads to remarkable photocurrent enhancement and better photocatalytic activity for methyl orange (MO) degradation due to the synergistic effects of B,N-co-doping and lower electron-hole recombination rates.
NASA Astrophysics Data System (ADS)
Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan
2018-06-01
Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.
Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad
2016-01-01
Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201
NASA Astrophysics Data System (ADS)
Bacon, Christina P.; Rose, J. B.; Patten, K.; Garcia-Rubio, Luis H.
1995-05-01
Cryptosporidium and Giardia are enteric protozoa which cause waterborne diseases. To date, the detection of these organisms in water has relied upon microscopic immunofluorescent assay technology which uses antibodies directed against the cyst and oocyst forms of the protozoa. In this paper, the uv/vis extinction spectra of aqueous dispersions of Cryptosporidium and Giardia have been studied to investigate the potential use of light scattering-spectral deconvolution techniques as a rapid method for the identification and quantification of protozoa in water. Examination of purified samples of Cryptosporidium and Giardia suggests that spectral features apparent in the short wavelength region of the uv/vis spectra contain information that may be species specific for each protozoa. The spectral characteristics, as well as the particle size analysis, determined from the same spectra, allow for the quantitative classification, identification, and possibly, the assessment of the viability of the protozoa. To further increase the sensitivity of this technique, specific antibodies direction against these organisms, labelled with FITC and rhodamine are being used. It is demonstrated that uv/vis spectroscopy provides an alternative method for the characterization of Giardia and Cryptosporidium. The simplicity and reproducibility of uv/vis spectroscopy measurements makes this technique ideally suited for the development of on-line instrumentation for the rapid detection of microorganisms in water supplies.
Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.
Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen
2013-01-01
Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.
Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S
2016-01-01
This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.
Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin
2016-04-28
Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.
Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals
NASA Astrophysics Data System (ADS)
Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing
2018-01-01
Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.
Synthesis and characterization of silver/diatomite nanocomposite by electron beam irradiation
NASA Astrophysics Data System (ADS)
Hanh, Truong Thi; Thu, Nguyen Thi; Quoc, Le Anh; Hien, Nguyen Quoc
2017-10-01
Silver nanoparticles (AgNPs) with diameter about 9 nm were deposited on diatomite by irradiation under electron beam of diatomite suspension containing 10 mM AgNO3 in 1% chitosan solution, at the dose of 20.2 kGy. The AgNPs/diatomite nanocomposite was characterized by UV-Vis spectroscopy, TEM image and energy dispersive X-ray spectroscopy (EDX). The antibacterial activity of the AgNPs/diatomite against E. coli and S. aureus was evaluated by reduction of bacterial colonies on spread plates and inhibition zone diameter on diffusion disks.
Synthesis and characterization of Ag embedded graphitic carbon nitride
NASA Astrophysics Data System (ADS)
Patra, P. C.; Mohapatra, Y. N.
2018-05-01
Silver embedded graphitic carbon nitride (g-C3N4:Ag) was prepared by a simple wet chemical pathway using dimethylformamide (DMF) as a common solvent which facilitate homogenous distribution of Ag nanoparticles under ambient conditions. The phase, chemical structure and thermal stability of the as prepared g-C3N4:Ag composite was characterized by X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy and Thermo gravimetric analysis (TGA). The optical properties of g-C3N4:Ag were investigated by diffuse reflectance UV/vis spectroscopy and steady state photoluminescence (PL) spectroscopy. The bandgap of g-C3N4:Ag is determined to be 2.72 eV compared to 2.85 eV for that of pure g-C3N4 using Kubelka-Monk function. Comparing the UV/vis spectra, there is a broad spectrum in the region 2.3 to 2.6 eV in the case of g-C3N4:Ag, which is attributed to the presence of Ag nanoparticles. The emission peak of g-C3N4:Ag is slightly broadened and quenched in intensity to that of pure g-C3N4.
NASA Astrophysics Data System (ADS)
Li, Ling; Zhuang, Huisheng; Bu, Dan
2011-08-01
The novel visible-light-activated La/I/TiO 2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO 2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO 2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO 2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook
2015-01-01
In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.
NASA Astrophysics Data System (ADS)
Huo, Pengwei; Yan, Yongsheng; Li, Songtian; Li, Huaming; Huang, Weihong
2010-03-01
A series of poly-o-phenylenediamine/TiO 2/fly-ash cenospheres(POPD/TiO 2/fly-ash cenospheres) composites have been prepared from o-phenylenediamine and TiO 2/fly-ash cenospheres under various polymerization conditions. The properties of the samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), specific surface area (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (UV-vis DRS). Photocatalytic activity was studied by degradation of antibiotics waste water under visible light. The results indicate that the photo-induced method is viable for preparing modified photocatalysts, and the modified photocatalysts have good absorption in visible light range. The photocatalysts of POPD/TiO 2/fly-ash cenospheres which have good performance are prepared at pH 3 and 4, and the polymerized time around 40 min. When the photocatalysts are prepared under the conditions of pH 3 and polymerized time 40 min, the degradation rate of roxithromycin waste water could reach near 60%, and it indicates that the way of POPD modified TiO 2/fly-ash cenospheres to degrade the antibiotics waste water is viable.
NASA Astrophysics Data System (ADS)
Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.
2018-04-01
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).
Precursor effect on the property and catalytic behavior of Fe-TS-1 in butadiene epoxidation
NASA Astrophysics Data System (ADS)
Wu, Mei; Zhao, Huahua; Yang, Jian; Zhao, Jun; Song, Huanling; Chou, Lingjun
2017-11-01
The effect of iron precursor on the property and catalytic behavior of iron modified titanium silicalite molecular sieve (Fe-TS-1) catalysts in butadiene selective epoxidation has been studied. Three Fe-TS-1 catalysts were prepared, using iron nitrate, iron chloride and iron sulfate as precursors, which played an important role in adjusting the textural properties and chemical states of TS-1. Of the prepared Fe-TS-1 catalysts, those modified by iron nitrate (FN-TS-1) exhibited a significant enhanced performance in butadiene selective epoxidation compared to those derived from iron sulfate (FS-TS-1) or iron chloride (FC-TS-1) precursors. To obtain a deep understanding of their structure-performance relationship, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed desorption of NH3 (NH3-TPD), Diffuse reflectance UV-Vis spectra (DR UV-Vis), Fourier transformed infrared spectra (FT-IR) and thermal gravimetric analysis (TGA) were conducted to characterize Fe-TS-1 catalysts. Experimental results indicated that textural structures and acid sites of modified catalysts as well as the type of Fe species influenced by the precursors were all responsible for the activity and product distribution.
Kamberi, Marika; Tran, Thu-Ngoc
2012-11-01
High-throughput 96-well solid phase extraction (SPE) plate with C-18 reversed phase sorbent followed by UV-visible (UV-Vis) microplate reader was applied to the analysis of hydrophobic drugs in surfactant-containing dissolution media, which are often used to evaluate the in-vitro drug release of drug eluting stents (DES). Everolimus and dissolution medium containing Triton X-405 were selected as representatives, and the appropriate SPE conditions (adsorption, washing and elution) were investigated to obtain a practical and reliable sample clean-up. It was shown that the developed SPE procedure was capable of removing interfering components (Triton X-405 and its impurities), allowing for an accurate automated spectrophotometric analysis to be performed. The proposed UV-Vis spectrophotometric method yielded equivalent results compared to a classical LC analysis method. Linear regression analysis indicated that both methods have the ability to obtain test results that are directly proportional to the concentration of analyte in the sample within the selected range of 1.0-10 μg/ml for everolimus, with a coefficient of correlation (r(2)) value of >0.998 and standard deviation of the residuals (Syx) of <2%. The individual recoveries of everolimus ranged from 97 to 104% for the UV-Vis spectrophotometric method and from 98 to 102 for the HPLC method, respectively. The 95% CI of the mean recovery for the UV-Vis spectrophotometric method was 99-102% and for the HPLC method was 99-101%. No statistical difference was found between the mean recoveries of the methods (p=0.42). Hence the methods are free from interference due to Triton and other chemicals present in the dissolution medium. The variation in the amount of everolimus estimated by UV-Vis spectrophotometric and HPLC methods was ≤3.5%, and the drug release profiles obtained by both methods were found to be equivalent by evaluation with two-one-sided t-test (two-tailed, p=0.62; mean of differences, 0.17; 95% CI, 0.62-0.96) and similarity factor f2 (f2 value, 87). The excellent conformity of the results makes UV-Vis spectrophotometer an ideal tool for analyzing the drugs in the media containing surfactants, after SPE. The 96-well SPE plates in combination with UV-Vis microplate reader provide a high throughput method for the determination of in-vitro drug release profile of DES. Switching from HPLC to UV-Vis spectrophotometer microplate reader assay reduces the solvent consumption and labor required for the sample analyses. This directly impacts the profitability of the laboratory. Copyright © 2012 Elsevier B.V. All rights reserved.
Antosiewicz, Jan M; Shugar, David
In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.
Antosiewicz, Jan M; Shugar, David
2016-06-01
In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.
Synthesis and photocatalytic properties of TiO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X.H.; Liang, Y.; Wang, Z.
2008-08-04
TiO{sub 2} particles, rods, flowers and sheets were prepared by hydrothermal method via adjusting the temperature, the pressure and the concentration of TiCl{sub 4}. The as-prepared TiO{sub 2} powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra and N{sub 2} adsorption-desorption measurements. It was found that pressure is the most important factor influencing the morphology of TiO{sub 2}. The photocatalytic activity of the products was evaluated by the photodegradation of aqueous brilliant red X-3B solution under UV light. Among the as-prepared nanostructures, the flower-like TiO{sub 2}more » exhibited the highest photocatalytic activity.« less
NASA Astrophysics Data System (ADS)
Klein, Marek; Nadolna, Joanna; Gołąbiewska, Anna; Mazierski, Paweł; Klimczuk, Tomasz; Remita, Hynd; Zaleska-Medynska, Adriana
2016-08-01
TiO2 (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV-vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO2 co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15-30 nm) on TiO2 surface and enhances the Vis-induced activity of Ag/Pd-TiO2 up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV-vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for visible light photoactivity, whereas superoxide radicals (such as O2rad- and rad OOH) are responsible for pollutants degradation over metal-TiO2 composites.
Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy
ERIC Educational Resources Information Center
Erhardt, Walt
2007-01-01
Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.
The Determination of Caffeine in Coffee: Sense or Nonsense?
ERIC Educational Resources Information Center
Beckers, Jozef L.
2004-01-01
The presence of caffeine in coffee is determined by the use of separation devices and UV-vis spectrophotometry. The results indicate that the use of various analytical tools helps to perceive the higher concentration values obtained through UV-vis spectrophotometry than with separation methods.
NASA Astrophysics Data System (ADS)
Jevtić, Dubravka R.; Avramov Ivić, Milka L.; Reljin, Irini S.; Reljin, Branimir D.; Plavec, Goran I.; Petrović, Slobodan D.; Mijin, Dušan Ž.
2014-06-01
The automated, computer-aided method for differentiation and classification of malignant (M) from benign (B) cases, by analyzing the UV/VIS spectra of pleural effusions is described. It was shown that by two independent objective features, the maximum of Katz fractal dimension (KFDmax) and the area under normalized UV/VIS absorbance curve (Area), highly reliable M-B classification is possible. In the Area-KFDmax space M and B samples are linearly separable permitting thus the use of linear support vector machine as a classification tool. By analyzing 104 samples of UV/VIS spectra of pleural effusions (88 M and 16 B) collected from patients at the Clinic for Lung Diseases and Tuberculosis, Military Medical Academy in Belgrade, the accuracy of 95.45% for M cases and 100% for B cases are obtained by using the proposed method. It was shown that by applying some modifications, which are suggested in the paper, the accuracy of 100% for M cases can be reached.
Zhang, Wenhui; Cai, Chunxue; Wang, Jing; Mao, Zhen; Li, Yueqiu; Ding, Liang; Shen, Shigang; Dou, Haiyang
2017-08-08
Home-made asymmetrical flow field-flow fractionation (AF4) system, online coupled with ultraviolet/visible (UV/Vis) detector was employed for the separation and size characterization of low density lipoprotein (LDL) in egg yolk plasma. At close to natural condition of egg yolk, the effects of cross flow rate, sample loading, and type of membrane on the size distribution of LDL were investigated. Under the optimal operation conditions, AF4-UV/Vis provides the size distribution of LDL. Moreover, the precision of AF4-UV/Vis method proposed in this work for the analysis of LDL in egg yolk plasma was evaluated. The intra-day precisions were 1.3% and 1.9% ( n =7) and the inter-day precisions were 2.4% and 2.3% ( n =7) for the elution peak height and elution peak area of LDL, respectively. Results reveal that AF4-UV/Vis is a useful tool for the separation and size characterization of LDL in egg yolk plasma.
Effects of Regolith Properties on UV/VIS Spectra and Implications for Lunar Remote Sensing
NASA Astrophysics Data System (ADS)
Coman, Ecaterina Oana
Lunar regolith chemistry, mineralogy, various maturation factors, and grain size dominate the reflectance of the lunar surface at ultraviolet (UV) to visible (VIS) wavelengths. These regolith properties leave unique fingerprints on reflectance spectra in the form of varied spectral shapes, reflectance intensity values, and absorption bands. With the addition of returned lunar soils from the Apollo and Luna missions as ground truth, these spectral fingerprints can be used to derive maps of global lunar chemistry or mineralogy to analyze the range of basalt types on the Moon, their spatial distribution, and source regions for clues to lunar formation history and evolution. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) is the first lunar imager to detect bands at UV wavelengths (321 and 360 nm) in addition to visible bands (415, 566, 604, 643, and 689 nm). This dissertation uses a combination of laboratory and remote sensing studies to examine the relation between TiO2 concentration and WAC UV/VIS spectral ratios and to test the effects of variations in lunar chemistry, mineralogy, and soil maturity on ultraviolet and visible wavelength reflectance. Chapter 1 presents an introduction to the dissertation that includes some background in lunar mineralogy and remote sensing. Chapter 2 covers coordinated analyses of returned lunar soils using UV-VIS spectroscopy, X-ray diffraction, and micro X-ray fluorescence. Chapter 3 contains comparisons of local and global remote sensing observations of the Moon using LROC WAC and Clementine UVVIS TiO2 detection algorithms and Lunar Prospector (LP) Gamma Ray Spectrometer (GRS)-derived FeO and TiO2 concentrations. While the data shows effects from maturity and FeO on the UV/VIS detection algorithm, a UV/VIS relationship remains a simple yet accurate method for TiO2 detection on the Moon.
Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.
Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid
2014-01-01
Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.
Intercomparison of formaldehyde measurements in the tropical atmosphere
NASA Astrophysics Data System (ADS)
Trapp, Dorothea; De Serves, Claes
An intercomparison of formaldehyde measurements at low concentrations ( < 2.0 ppbv) was performed during the ASTROS '93 field campaign in Venezuela (Atmospheric Studies in the TROpical Savannah, September 1993). Formaldehyde was collected and measured by two different techniques: a porous membrane diffusion scrubber with fluorescent detection of the Hantzsch reaction product, and DNPH-traps (2,4-dinitrophenylhydrazine) followed by high performance liquid chromatography with a UV/VIS absorption detector. The time resolution for the diffusion scrubber instrument was 5 min while the DNPH-tr;ap samples were integrated over 30-60 min. The measured concentrations range from the detection limits (0.045 ppbv for the diffusion scrubber, 0.1 ppbv for the DNPH-traps) up to 2 ppbv. The correlation coefficient between the two techniques is r2 = 0.80 (n = 48) and the slope equals unity (1.02 ± 0.03). Both methods are found to be suitable for field experiments in the low ppbv range of formaldehyde.
Mechanisms of Photo Degradation for Layered Silicate-Polycarbonate Nanocomposites
2005-09-01
crystal was used as the sampling accessory. The UV/VIS spectra were recorded using a Cary 5G UV/VIS/ near - infrared (NIR) spectrometer set to scan in...transform infrared spectroscopy. The results reveal that the carbonate linkages undergo a scission reaction upon UV exposure, thereby compromising the...were wiped clean before spectroscopic analysis. 3.3 Spectroscopic Measurements Infrared measurements were recorded on a Nicolet model 560 Magna
Antosiewicz, Jan M; Shugar, David
Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.
Antosiewicz, Jan M; Shugar, David
2016-06-01
Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.
Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres
2017-02-01
This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.
NASA Astrophysics Data System (ADS)
Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun
2018-04-01
We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.
Quantification of taurine in energy drinks using ¹H NMR.
Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike
2014-05-01
The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li
2015-10-01
We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xing, Lin; Zheng, Xiaoyu; Sun, Wenyu; Yuan, Hua; Hu, Lei; Yan, Zhengquan
2018-06-05
A multi-hydroxyl Schiff-base derivative, N-2'-hydroxyl-1'-naphthyl methylene-2-amino phenol (HNMAP), was synthesized and characterized by FTIR, 1 H NMR and UV-vis spectroscopy. It was noted to find there was great effect for solvent and pH on the UV-vis spectroscopy of HNMAP. Especially, some metal ions could make its UV-vis spectra changed regularly with different time-resolved effects. For example, a real-time and multi-wavelength response to Fe 2+ at 520 nm, 466 nm and 447 nm and a quite slow one about 26 min to Fe 3+ at 447 nm and 466 nm, respectively. Under the optimized conditions, the changes in the corresponding absorption intensities at above wavelengths were in proportion to c Fe 2+ or c Fe 3+ during respectively partitioned linear ranges, which realized to quantitatively detect Fe 2+ or Fe 3+ with a large linear range more than two orders of magnitude. A 1:1 complex mode for HNMAP-Fe 2+ and 1:2 for HNMAP-Fe 3+ were proposed from UV-vis spectral titration and Job's plot. HNMAP would be a potential sensor for colorimetric detection of Fe 2+ and Fe 3+ in practice. Copyright © 2018 Elsevier B.V. All rights reserved.
Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng
2018-01-01
Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o-cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o-cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o-cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260–280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o-cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o-cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively. PMID:29657794
Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng; Ma, Jing
2018-03-01
Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o -cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o -cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o -cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o -cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o -cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.
Photo-oxidation of cork manufacturing wastewater.
Silva, Carla A; Madeira, Luis M; Boaventura, Rui A; Costa, Carlos A
2004-04-01
Several photo-activated processes have been investigated for oxidation of a cork manufacturing wastewater. A comparative activity study is made between different homogeneous (H2O2/UV-Vis and H2O2/Fe2+/UV-Vis) and heterogeneous (TiO2/UV-Vis and TiO2/H2O2/UV-Vis) systems, with degradation performances being evaluated in terms of total organic carbon (TOC) removal. Results obtained in a batch photo-reactor show that photo-catalysis with TiO2 is not suitable for this kind of wastewater while the H2O2/UV-Vis oxidation process, for which the effect of some operating conditions was investigated, allows to remove 39% of TOC after 4 h of operation (for C(H2O2)=0.59 M, pH=10 and T=35 degrees C). The combined photo-activated process, i.e., using both TiO2 and H2O2, yields an overall TOC decrease of 46% (for C(TiO2)=1.0 gl(-1)). The photo-Fenton process proved to be the most efficient, proceeds at a much higher oxidation rate and allows to achieve 66% mineralization in just 10 min of reaction time (for C(H2O2)=0.31 M, T=30 degrees C, Fe2+:H2O2=0.12 (mol) and pH=3.2).
The effect of heat treatment on superhydrophilicity of TiO2 nano thin films
NASA Astrophysics Data System (ADS)
Ashkarran, A. A.; Mohammadizadeh, M. R.
2007-11-01
TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.
Fernández, Cristina; Pilar Callao, M; Larrechi, M Soledad
2013-12-15
The photodegradation process of three azo-dyes - Acid Orange 61, Acid Red 97 and Acid Brown 425 - was monitored simultaneously by ultraviolet-visible spectroscopy with diode array detector (UV-vis-DAD) and (1)H-nuclear magnetic resonance ((1)H-NMR). Multivariate curve resolution-alternating least squares (MCR-ALS) was applied to obtain the concentration and spectral profile of the chemical compounds involved in the process. The analysis of the H-NMR data suggests there are more intermediate compounds than those obtained with the UV-vis-DAD data. The fusion of UV-vis-DAD and the (1)H-NMR signal before the multivariate analysis provides better results than when only one of the two detector signals was used. It was concluded that three degradation products were present in the medium when the three azo-dyes had practically degraded. This study is the first application of UV-vis-DAD and (1)H-NMR spectroscopy data fusion in this field and illustrates its potential as a quick method for evaluating the evolution of the azo-dye photodegradation process. © 2013 Elsevier B.V. All rights reserved.
Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.
ERIC Educational Resources Information Center
Jones, Dianna G.
1985-01-01
A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…
Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong
2018-01-08
Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fatimah, I.
2017-02-01
TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni
2014-02-01
Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety ofmore » oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.« less
Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich
2011-05-25
Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.
NASA Astrophysics Data System (ADS)
Govindhan, R.; Karthikeyan, B.
2018-03-01
Recognition of xanthine alkaloid caffeine with 3,5-bis(trifluoromethyl)benzylamine derived peptide nanotubes (BTTPNTs) through chemical interaction have been achieved through the host-guest like interaction. DFT simulation is carried out for caffeine interacted with BTTPNTs system and also experimentally characterized by ultraviolet-visible (UV-vis) absorbance, confocal Raman spectra (CRS) with microscopic imaging (CRM), FT-Raman, surface enhanced Raman scattering (SERS), UV-diffuse reflectance spectra (UV-DRS), high resolution transmission electron microscopy (HR-TEM) and cyclic voltammetry (CV) studies. The results are used to examine the morphologies, size of the nanostructure and study of its interaction with the caffeine molecule. The results show that BTTPNTs is having potential for sensing the caffeine molecules through the binding occurred from the NH2 of tyrosine moiety of the BTTPNTs. This intermolecular association through face-to-face stacking of BTTPNTs is explained by detailed DFT calculations.
NASA Astrophysics Data System (ADS)
Xie, Zhiqing; Su, Xin; Ding, Hanqin; Li, Hongyi
2018-06-01
Nonlinear optical materials have attracted worldwide attention owing to their wide range of applications, specially in the laser field. Phosphates with noncentrosymmetric structures are potential candidates for novel ultraviolet (UV)-NLO materials, because they usually display short UV cut-off edges. In this work, a polyphosphate, the LiZnP3O9 polyphosphate crystals were grown through spontaneous crystallization from high-temperature melts. It crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.330(3) Å, b = 8.520(3) Å, c = 8.635(3) Å, and Z = 4. In the structure, all the P atoms are coordinated by four oxygen atoms forming the [PO4] tetrahedra and further connected to generate a zig-zag [PO3]∞ anionic framework. Thermal analysis, IR spectroscopy, UV-vis-NIR diffuse reflectance spectrum and powder second harmonic generation measurements are performed. In addition, the first-principles calculation was employed for better understanding the structure-property relationships of LiZnP3O9.
Gao, Junshan; Cheng, Chuanwei; Zhou, Xuechao; Li, Yingying; Xu, Xiaoqi; Du, Xiguang; Zhang, Haiqian
2010-02-15
Tetra (2-isopropyl-5-methylphenoxy) substituted Cu-phthalocyanine nanofibers were obtained in large scale by a simple solvent diffusion method. The sizes of the fibers can be finely tuned under different solvent temperature. FE-SEM micrographs indicate that the length of the fibers changed from several hundreds micrometers to several hundreds nanometers and the width changed from several micrometers to several decade nanometers. XRD measurement showed a highly long-range ordered lamellar arrangement of the substituted Cu-phthalocyanine molecules in the microfiber and the UV-vis absorption spectrum of the fibers indicated an H-aggregate of the phthalocyanine molecules. The CV curves elucidate the CuPc fibers can be fabricated Faraday pseudocapacitor. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Fangcheng; Wang, Xin; Xu, Huajia; Wang, Kai
2016-01-01
Tuberculous meningitis (TBM) is a very common infectious disease in the central nervous system. The delay of diagnosing and treating TBM will lead to high disability and mortality of TBM. Hence, it is very important to promptly diagnose TBM early. In this work, we proposed a new method for diagnosing TBM with CSF samples by using UV-Vis absorption spectroscopy. CSF samples from TBM patients and non-TBM persons were compared, and the sensitivity, specificity, accuracy, positive predictive value reached 83.6%, 69.8%, 77.2%, 76.1% respectively. Our work indicated investigation of CSF using UV-Vis absorption spectroscopy might become a potentially useful method for TBM diagnosis.
UV-Vis as quantification tool for solubilized lignin following a single-shot steam process.
Lee, Roland A; Bédard, Charles; Berberi, Véronique; Beauchet, Romain; Lavoie, Jean-Michel
2013-09-01
In this short communication, UV/Vis was used as an analytical tool for the quantification of lignin concentrations in aqueous mediums. A significant correlation was determined between absorbance and concentration of lignin in solution. For this study, lignin was produced from different types of biomasses (willow, aspen, softwood, canary grass and hemp) using steam processes. Quantification was performed at 212, 225, 237, 270, 280 and 287 nm. UV-Vis quantification of lignin was found suitable for different types of biomass making this a timesaving analytical system that could lead to uses as Process Analytical Tool (PAT) in biorefineries utilizing steam processes or comparable approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen
2015-01-01
Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.
García-Rodríguez, M Valle; López-Córcoles, Horacio; Alonso, Gonzalo L; Pappas, Christos S; Polissiou, Moschos G; Tarantilis, Petros A
2017-04-15
The aim of this work was a comparison of the ISO 3632 (2011) method and an HPLC-DAD method for safranal quantity determination in saffron. Samples from different origins were analysed by UV-vis according to ISO 3632 (2011) and by HPLC-DAD. Both methods were compared, and there was no correlation between the safranal content obtained by UV-vis and HPLC-DAD. An over-estimation in the UV-vis experiment was observed, which was related to the cis-crocetin esters content, as well as other compounds. The results demonstrated that there was no relationship between ISO quality categories and safranal content using HPLC-DAD. Therefore, HPLC-DAD might be preferable to UV-vis for determining the safranal content and the classification of saffron for commercial purposes. In addition, HPLC-DAD was adequate for determining the three foremost parameters that define the quality of saffron (crocetin esters, picrocrocin and safranal); therefore, this approach could be included in the ISO 3632 method (2011). Copyright © 2016 Elsevier Ltd. All rights reserved.
Ehrenreich, Philipp; Birkhold, Susanne T; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas
2016-09-01
Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells.
Photodetachment and UV-Vis spectral properties of Cl2rad -·nHO clusters: Extrapolation to bulk
NASA Astrophysics Data System (ADS)
Pathak, A. K.; Mukherjee, T.; Maity, D. K.
2008-03-01
Vertical detachment energy (VDE) and UV-Vis spectra of Cl2rad -·nHO clusters ( n = 1-11) are reported based on first principle electronic structure calculations. VDE of the hydrated clusters are calculated following second order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311++G(d,p) set of basis function. The excess electron in these hydrated clusters is mainly localized over the solute Cl atoms. A linear relationship is obtained for VDE vs. ( n + 2.6) -1/3 and bulk VDE of Cl2rad - aqueous solution is calculated as 10.61 eV at CCSD(T) level of theory. UV-Vis spectra of these hydrated clusters are calculated applying CI with single electron (CIS) excitation procedure. Simulated UV-Vis spectra of Cl2rad -·10HO cluster is noted to be in excellent agreement with the reported spectra of Cl2rad - (aq) system, λmax for Cl2rad -·11HO system is calculated to be red shifted though.
Computational Photophysics in the Presence of an Environment
NASA Astrophysics Data System (ADS)
Nogueira, Juan J.; González, Leticia
2018-04-01
Most processes triggered by ultraviolet (UV) or visible (vis) light in nature take place in complex biological environments. The first step in these photophysical events is the excitation of the absorbing system or chromophore to an electronically excited state. Such an excitation can be monitored by the UV-vis absorption spectrum. A precise calculation of the UV-vis spectrum of a chromophore embedded in an environment is a challenging task that requires the consideration of several ingredients, besides an accurate electronic-structure method for the excited states. Two of the most important are an appropriate description of the interactions between the chromophore and the environment and accounting for the vibrational motion of the whole system. In this contribution, we review the most common theoretical methodologies to describe the environment (including quantum mechanics/continuum and quantum mechanics/molecular mechanics models) and to account for vibrational sampling (including Wigner sampling and molecular dynamics). Further, we illustrate in a series of examples how the lack of these ingredients can lead to a wrong interpretation of the electronic features behind the UV-vis absorption spectrum.
A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing
NASA Astrophysics Data System (ADS)
Park, Hong Key; Shin, Mikyung; Kim, Bongkyun; Park, Jin Woo; Lee, Haeshin
2018-04-01
Herein, a new polymeric resin for stereolithography (SLA) three-dimensional printing (SLA-3DP) is reported. An ultraviolet (UV) or visible (VIS) light source is critical for SLA printing technology. UV light can be used to manufacture 3D objects in SLA-3DP, but there are significant occupational safety and health issues (particularly for eyes). These issues prevent the widespread use of SLA-3DP at home or in the office. Through the use of VIS light, the safety and health issues can largely be solved, but only non-transparent 3D objects can be manufactured, which prevents the application of 3DP to the production of various common transparent consumer products. For these reasons, we developed a VIS light-curable yet visibly transparent resin for SLA-3DP, which also retains UV curability. The key was to identify the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (DPTBP). DPTBP was originally designed as a UV photoinitiator, but we found that VIS light irradiation is sufficient to split DPTBP and generate radicals due to its slight VIS light absorption up to 420 nm. The cured resin displays high transparency and beautiful transparent colors by incorporating various dyes; additionally, its mechanical properties are superior to those of commercial resins (Arario 410) and photoinitiators (Irgacure 2959).
Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou
2017-03-01
ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.
Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming
2017-08-01
The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uric acid detection using uv-vis spectrometer
NASA Astrophysics Data System (ADS)
Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.
2017-10-01
The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.
Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea
NASA Astrophysics Data System (ADS)
Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Li, Zhanqing; Kim, Jhoon; Koo, Ja-Ho; Go, Sujung; Irie, Hitoshi; Labow, Gordon; Eck, Thomas F.; Holben, Brent N.; Herman, Jay; Loughman, Robert P.; Spinei, Elena; Lee, Seoung Soo; Khatri, Pradeep; Campanelli, Monica
2018-04-01
Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI) and future (e.g., TROPOMI, TEMPO, GEMS, and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR, and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nm) through VIS to NIR wavelengths (870 nm).
UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.
Simone, Giuseppina; Perozziello, Gerardo
2011-03-01
Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.
Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng
2017-11-07
A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sriramulu, Mohana; Sumathi, Shanmugam
2018-06-01
In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.
Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer
NASA Astrophysics Data System (ADS)
Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.
2017-10-01
Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.
Characterization of La/Fe/TiO2 and Its Photocatalytic Performance in Ammonia Nitrogen Wastewater
Luo, Xianping; Chen, Chunfei; Yang, Jing; Wang, Junyu; Yan, Qun; Shi, Huquan; Wang, Chunying
2015-01-01
La/Fe/TiO2 composite photocatalysts were synthesized by Sol-Gel method and well characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen-physical adsorption, and UV-Vis diffuse reflectance spectra (UV-Vis DRS). It is interesting that the doped catalysts were in anatase phase while the pure TiO2 was in rutile phase. In addition, the composites possessed better physical chemical properties in photocatalytic activity than pure TiO2: stronger visible-light-response ability, larger specific surface area, and more regular shape in morphology. The photodegradation results of ammonia nitrogen indicate that: the La/Fe/TiO2 had higher catalytic activity to ammonia nitrogen waste water compared pure TiO2 and the other single metal-doped TiO2. pH 10 and 2 mmol/L H2O2 were all beneficial to the removal of ammonia nitrogen by La/Fe/TiO2. However, the common inorganic ions of Cl−, NO3−, SO42−, HCO3−/CO32−, Na+, K+, Ca2+ and Mg2+ in water all inhibited the degradation of ammonia nitrogen. By balance calculation, at least 20% of ammonia nitrogen was converted to N2 during the 64.6% removal efficiency of ammonia nitrogen. PMID:26593929
Bond Length Dependence on Quantum States as Shown by Spectroscopy
ERIC Educational Resources Information Center
Lim, Kieran F.
2005-01-01
A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…
Hao Liu; J. Y. Zhu; X. S. Chai
2011-01-01
This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...
Electrochemical and optical characterization of cobalt, copper and zinc phthalocyanine complexes.
Lee, Jaehyun; Kim, Se Hun; Lee, Woosung; Lee, Jiwon; An, Byeong-Kwan; Oh, Se Young; Kim, Jae Pil; Park, Jongwook
2013-06-01
New phthalocyanine (Pc) derivatives that include the alkyl group in ligand were synthesized based on three core metals such as zinc (Zn), copper (Cu), and cobalt (Co). Electrochemical behaviors and optical properties of the new phthalocyanine derivatives with ligand and different core metal were investigated by using cyclic voltammetry, UV-Visible (UV-Vis) spectroscopy and photoluminescence (PL) spectroscopy. In UV-Vis data, maximum values of 2H, Co, Cu, and Zn complexes were 708 nm and 677 nm, 686 nm, 684 nm, respectively.
NASA Astrophysics Data System (ADS)
Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid
2017-09-01
Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.
Yoshioka, Yoshio; Gotoh, Tetsuo; Suzuki, Takeshi
2018-05-14
Developmental errors are often induced in the embryos of many organisms by environmental stress. Ultraviolet-B radiation (UV-B) is one of the most serious environmental stressors in embryonic development. Here, we investigated susceptibility to UV-B (0.5 kJ m -2 ) in embryos of the two-spotted spider mite, Tetranychus urticae, to examine the potential use of UV-B in control of this important agricultural pest worldwide. Peak susceptibility to UV-B (0% hatchability) was found in T. urticae eggs 36-48 h after oviposition at 25 °C, which coincides with the stages of morphogenesis forming the germ band and initial limb primordia. However, hatchability recovered to ~ 80% when eggs irradiated with UV-B were subsequently exposed to visible radiation (VIS) at 10.2 kJ m -2 , driving photoreactivation (the photoenzymatic repair of DNA damage). The recovery effect decreased to 40-70% hatchability, depending on the embryonic developmental stage, when VIS irradiation was delayed for 4 h after the end of exposure to UV-B. Thus UV-B damage to T. urticae embryos is critical, particularly in the early stages of morphogenesis, and photoreactivation functions to mitigate UV-B damage, even in the susceptible stages, but immediate VIS irradiation is needed after exposure to UV-B. These findings suggest that nighttime irradiation with UV-B can effectively kill T. urticae eggs without subsequent photoreactivation and may be useful in the physical control of this species.
Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst
NASA Astrophysics Data System (ADS)
Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun
2011-07-01
In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h
Li, Haitao; Li, Na; Wang, Ming; Zhao, Beiping; Long, Fei
2018-03-01
Graphitic carbon nitride (g-C 3 N 4 ) nanosheets with a thickness of only a few nanometres were obtained by a facile deammoniation treatment of bulk g-C 3 N 4 and were further hybridized with Bi 2 WO 6 nanoparticles on the surface via a solvothermal method. The composite photocatalysts were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflection spectroscopy and X-ray photoelectron spectroscopy (XPS). The HR-TEM results show that the nano-sized Bi 2 WO 6 particles were finely distributed on g-C 3 N 4 sheet surface, which forms heterojunction structure. The UV-vis diffuse reflectance spectra (DRS) show that the absorption edge of composite photocatalysts shifts towards lower energy region in comparison with those of pure g-C 3 N 4 and Bi 2 WO 6 . The degradation of methyl orange (MO) tests reveals that the optimum activity of 8 : 2 g-C 3 N 4 -Bi 2 WO 6 photocatalyst is almost 2.7 and 8.5 times higher than those of individual g-C 3 N 4 and Bi 2 WO 6 . Moreover, the recycle experiments depict high stability of the composite photocatalysts. Through the study of the influencing factors, a possible photocatalytic mechanism is proposed. The enhancement in both photocatalytic performance and stability was caused by the synergistic effect, including the effective separation of the photogenerated electron-hole pairs at the interface of g-C 3 N 4 and Bi 2 WO 6 , the smaller the particle size and the relatively larger specific surface area of the composite photocatalyst.
NASA Astrophysics Data System (ADS)
Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi
2015-07-01
Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.
UV-VIS absorption spectroscopy: Lambert-Beer reloaded
NASA Astrophysics Data System (ADS)
Mäntele, Werner; Deniz, Erhan
2017-02-01
UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.
Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N
2005-06-14
With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.
Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry
NASA Astrophysics Data System (ADS)
Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong
2010-10-01
Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.
Newer views of the Moon: Comparing spectra from Clementine and the Moon Mineralogy Mapper
Kramer, G.Y.; Besse, S.; Nettles, J.; Combe, J.-P.; Clark, R.N.; Pieters, C.M.; Staid, M.; Malaret, E.; Boardman, J.; Green, R.O.; Head, J.W.; McCord, T.B.
2011-01-01
The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 m absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 m band depths than M 3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions. Copyright 2011 by the American Geophysical Union.
Newer views of the Moon: Comparing spectra from Clementineand the Moon Mineralogy Mapper
Georgiana Y. Kramer,; Sebastian Besse,; Nettles, Jeff; Jean-Philippe Combe,; Clark, Roger N.; Pieters, Carle M.; Matthew Staid,; Joseph Boardman,; Robert Green,; McCord, Thomas B.; Malaret, Erik; Head, James W.
2011-01-01
The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 μm absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 μm band depths than M3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions.
Zha, Jin-Ping; Zhu, Meng-Ting; Qin, Li; Wang, Xin-Hong
2018-05-05
The interactions between Orange G (OG) with three kinds of ionic liquid surfactants (C 10 mimBF 4 , C 12 mimBF 4 , C 16 mimBF 4 ) and CTAB were studied with UV-Vis spectra and conductivity measurements. The systematic changes in UV-Vis spectra with an increase of carbon-chain length may be observed in presence of OG. They correspond to CMC of every system, respectively, and the CMCs of four systems have exhibit the decrease of CMCs compared to pure surfactant. The binding constants are calculated from the results of conductivity measurements in the order of C 16 mimBF 4 >CTAB>C 12 mimBF 4 >C 10 mimBF 4 . Furthermore, system behaviors presented significant association of complex formation and micelles formation, i.e. the change in UV-Vis spectra before and after the formation of micelles in mixed systems. In addition, Fourier-transform infrared (FT-IR) spectroscopy and 1 H NMR analysis further confirmed that the complexes are formed by hydrogen bond and van der Waal force. These findings could provide scientific guidance for extraction and separation of dyes. Copyright © 2018 Elsevier B.V. All rights reserved.
Shi, Kan; Chen, Gong; Pistolozzi, Marco; Xia, Fenggeng; Wu, Zhenqiang
2016-09-01
Monascus pigments, a mixture of azaphilones mainly composed of red, orange and yellow pigments, are usually prepared in aqueous ethanol and analysed by ultraviolet-visible (UV-Vis) spectroscopy. The pH of aqueous ethanol used during sample preparation and analysis has never been considered a key parameter to control; however, this study shows that the UV-Vis spectra and colour characteristics of the six major pigments are strongly influenced by the pH of the solvent employed. In addition, the increase of solvent pH results in a remarkable increase of the amination reaction of orange pigments with amino compounds, and at higher pH (≥ 6.0) a significant amount of orange pigment derivatives rapidly form. The consequent impact of these pH-sensitive properties on pigment analysis is further discussed. Based on the presented results, we propose that the sample preparation and analysis of Monascus pigments should be uniformly performed at low pH (≤ 2.5) to avoid variations of UV-Vis spectra and the creation of artefacts due to the occurrence of amination reactions, and ensure an accurate analysis that truly reflects pigment characteristics in the samples.
NASA Astrophysics Data System (ADS)
Zha, Jin-Ping; Zhu, Meng-Ting; Qin, Li; Wang, Xin-Hong
2018-05-01
The interactions between Orange G (OG) with three kinds of ionic liquid surfactants (C10mimBF4, C12mimBF4, C16mimBF4) and CTAB were studied with UV-Vis spectra and conductivity measurements. The systematic changes in UV-Vis spectra with an increase of carbon-chain length may be observed in presence of OG. They correspond to CMC of every system, respectively, and the CMCs of four systems have exhibit the decrease of CMCs compared to pure surfactant. The binding constants are calculated from the results of conductivity measurements in the order of C16mimBF4 > CTAB > C12mimBF4 > C10mimBF4. Furthermore, system behaviors presented significant association of complex formation and micelles formation, i.e. the change in UV-Vis spectra before and after the formation of micelles in mixed systems. In addition, Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR analysis further confirmed that the complexes are formed by hydrogen bond and van der Waal force. These findings could provide scientific guidance for extraction and separation of dyes.
NASA Astrophysics Data System (ADS)
Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.
2011-12-01
Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the averaged carbon oxidation state (OSc). The heterogeneous reaction of SOA with molecular halogens released from the simulated salt-pan at different simulated environmental conditions leads to changes of several physico-chemical features of the aerosol. However, the halogen release mechanisms are also affected by the presence of organic aerosols. One order of magnitude less BrO was detected by an active Differential Optical Absorption Spectroscopy (DOAS) instrument in the presence of SOA compared to experiments without SOA. This work was supported by the German Research Foundation within the HALOPROC project. Ofner, J., Krüger, H.-U., Grothe, H., Schmitt-Kopplin, P., Whitmore, K., and Zetzsch, C. (2011), Atmos. Chem. Phys., 11, 1-15.
Fotiou, Theodora; Triantis, Theodoros M; Kaloudis, Triantafyllos; O'Shea, Kevin E; Dionysiou, Dionysios D; Hiskia, Anastasia
2016-03-01
Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yanfang; Yang, Na; Liu, Yi
2018-04-01
A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10 s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560 nm. The detection limit for phosphorylated proteins was estimated to be 100 nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection.
X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes
NASA Astrophysics Data System (ADS)
Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika
2015-06-01
Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.
Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František
2017-09-07
We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.
Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.
Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K
2017-06-15
This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O 2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.
Agatonovic-Kustrin, Snezana; Morton, David W
2012-07-01
Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas
2016-09-01
This work presents different polymer diffusing films for optical components. In optical applications it is sometimes important to have a film with an adjusted refractive index, scattering properties and a low surface roughness. These diffusing films can be used to increase the efficiency of optical components like organic light emitting diodes (OLEDs). In this study three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol a glycerolate dimethacrylate, Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved with a chemical doping by 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. To prevent sedimentation and agglomeration of these nanoparticles, a stabilization agent [2-(2-methoxyethoxy)ethoxy]acetic acid is added to the mixture. Other ingredients are a UV-starter and thermal starter for the radical polymerization. A high power stirrer (ultraturrax) is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and gets characterized. After the mixing, the monomer mixture is applied on glass substrates by blade coating or screen printing. To initiate the chain growing (polymerization) the produced films are irradiated for 10 minutes long with UV light (UV LED Spot Hönle, 405 nm). After this step a final post bake from the layers in the oven (150°C, 30 min.) is operated. Light transmission measurements (UV-Vis) of the polymer matrix and roughness measurements complement the characterization.
The effect of Low Earth Orbit exposure on some experimental fluorine and silicon-containing polymers
NASA Technical Reports Server (NTRS)
Connell, John W.; Young, Philip R.; Kalil, Carol G.; Chang, Alice C.; Siochi, Emilie J.
1994-01-01
Several experimental fluorine and silicon-containing polymers in film form were exposed to low Earth orbit (LEO) on a Space Shuttle flight experiment (STS-46, Evaluation of Oxygen Interaction with Materials, EOIM-3). The environmental parameters of primary concern were atomic oxygen (AO) and ultraviolet (UV) radiation. The materials were exposed to 2.3 plus or minus 0.1 x 10(exp 20) oxygen atoms/sq cm and 30.6 UV sun hours during the flight. In some cases, the samples were exposed at ambient, 120 C and 200 C. The effects of exposure on these materials were assessed utilizing a variety of characterization techniques including optical, scanning electron (SEM) and scanning tunneling (STM) microscopy, UV-visible (UV-VIS) transmission, diffuse reflectance infrared (DR-FTIR), x-ray photoelectron (XPS) spectroscopy, and in a few cases, gel permeation chromatography (GPC). In addition, weight losses of the films, presumably due to AO erosion, were measured. The fluorine-containing polymers exhibited significant AO erosion and exposed films were diffuse or 'frosted' in appearance and consequently displayed dramatic reductions in optical transmission. The silicon-containing films exhibited minimum AO erosion and the optical transmission of exposed films was essentially unchanged. The silicon near the exposed surface in the films was converted to silicate/silicon oxide upon AO exposure which subsequently provided protection for the underlying material. The silicon-containing epoxies are potentially useful as AO resistant coatings and matrix resins as they are readily processed into carbon fiber reinforced composites and cured via electron radiation.
ERIC Educational Resources Information Center
Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W.
2004-01-01
The protein species of apomyoglobin (apoMb) and heme are freed and segregated from the aqueous protein solution of metmyoglobin by liquid chromatography, and are distinguished by UV-Vis absorption or electrospray ionization mass spectrometry (ESI-MS). This is an ingenious and effective approach to characterize apomyoglobin and heme, while students…
Laser-Induced Breakdown Spectroscopy: Capabilities and Applications
2010-07-01
substances such as drugs, counterfeit goods, and laundered money . It may even be possible to pinpoint specific manufacturing facilities based on...point detection or standoff mode operation. LIBS used in conjunction with broadband detectors (ultraviolet [ UV ]-visible[VIS]-near-infrared[NIR] spectral...lines in the UV -VIS-NIR spectral range. Although most early LIBS applications involved metal targets, LIBS has recently been applied to a variety
Yang, Ke-Wu; Zhou, Yajun; Ge, Ying; Zhang, Yuejuan
2017-07-13
We report an UV-Vis method for monitoring the hydrolysis of the β-lactam antibiotics inside living bacterial cells. Cell-based studies demonstrated that the hydrolysis of cefazolin was inhibited by three known NDM-1 inhibitors. This approach can be applied to the monitoring of reactions in a complex biological system, for instance in medical testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S.
2015-01-14
In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Simore » photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.« less
Grante, Ilze; Actins, Andris; Orola, Liana
2014-08-14
An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Szili, Endre J.; Ogawa, Kotaro; Short, Robert D.; Ito, Masafumi; Furuta, Hiroshi; Hatta, Akimitsu
2018-01-01
Plasma-activated water (PAW) is receiving much attention in biomedical applications because of its reported potent bactericidal properties. Reactive oxygen and nitrogen species (RONS) that are generated in water upon plasma exposure are thought to be the key components in PAW that destroy bacterial and cancer cells. In addition to developing applications for PAW, it is also necessary to better understand the RONS chemistry in PAW in order to tailor PAW to achieve a specific biological response. With this in mind, we previously developed a UV-vis spectroscopy method using an automated curve fitting routine to quantify the changes in H2O2, NO2 -, NO3 - (the major long-lived RONS in PAW), and O2 concentrations. A major advantage of UV-vis is that it can take multiple measurements during plasma activation. We used the UV-vis procedure to accurately quantify the changes in the concentrations of these RONS and O2 in PAW. However, we have not yet provided an in-depth commentary of how we perform the curve fitting procedure or its implications. Therefore, in this study, we provide greater detail of how we use the curve fitting routine to derive the RONS and O2 concentrations in PAW. PAW was generated by treatment with a helium plasma jet. In addition, we employ UV-vis to study how the plasma jet exposure time and treatment distance affect the RONS chemistry and amount of O2 dissolved in PAW. We show that the plasma jet exposure time principally affects the total RONS concentration, but not the relative ratios of RONS, whereas the treatment distance affects both the total RONS concentration and the relative RONS concentrations.
Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock
2014-08-01
Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S
2012-01-27
An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Yanfang; Yang, Na; Liu, Yi
2018-04-05
A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron
2018-04-04
Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.
Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni
2016-03-21
The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).
Biophysical Characterization of an Bifunctional Iron Regulating Enzyme
2002-05-01
of the direct assay 29 Citrate, cis- aconitate and d- isocitrate all absorb light in the UV-Vis region, a fact which was confirmed...experimentally using a Hewlard-Packard 8452 Diode UV-Vis Diode Array Spectrophotometer. The maximum absorbance of cis- aconitate was determined to be 240 nm...and isocitrate was 212 nm. The preponderance of cis- aconitate concentration versus the formation of isocitrate concentration made tracking a
ERIC Educational Resources Information Center
Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne
2007-01-01
The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…
UV-VIS absorption spectroscopy: Lambert-Beer reloaded.
Mäntele, Werner; Deniz, Erhan
2017-02-15
UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saraswati, T. E.; Astuti, A. R.; Rismana, N.
2018-03-01
Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.
Lu, Huijuan; Wang, Yujiao; Xie, Xiaomei; Chen, Feifei; Li, Wei
2015-01-01
In this research, the inclusion ratios and inclusion constants of MCT-β-CD/PERM and MCT-β-CD/CYPERM inclusion complexes were measured by UV-vis and fluorescence spectroscopy. The inclusion ratios are both 1:1, and the inclusion constants are 60 and 342.5 for MCT-β-CD/PERM and MCT-β-CD/CYPERM, respectively. The stabilities of inclusion complexes were investigated by MD simulation. MD shows that VDW energy plays a vital role in the stability of inclusion complex, and the destruction of inclusion complex is due to the increasing temperature. The UV-vis absorption spectra of MCT-β-CD and its inclusion complexes were studied by time-dependent density functional theory (TDDFT) method employing BLYP-D3, B3LYP-D3 and M06-2X-D3 functionals. BLYP-D3 well reproduces the UV-vis absorption spectrum and reveals that the absorption bands of MCT-β-CD mainly arise from n→π(∗) and n→σ(∗) transition, and those of inclusion complexes mainly arise from intramolecular charge transfer (ICT). ICT results in the shift of main absorption bands of MCT-β-CD. Copyright © 2015 Elsevier B.V. All rights reserved.
Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao
2016-03-01
Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.
Conducting polymer networks synthesized by photopolymerization-induced phase separation
NASA Astrophysics Data System (ADS)
Yamashita, Yuki; Komori, Kana; Murata, Tasuku; Nakanishi, Hideyuki; Norisuye, Tomohisa; Yamao, Takeshi; Tran-Cong-Miyata, Qui
2018-03-01
Polymer mixtures composed of double networks of a polystyrene derivative (PSAF) and poly(methyl methacrylate) (PMMA) were alternatively synthesized by using ultraviolet (UV) and visible (Vis) light. The PSAF networks were generated by UV irradiation to photodimerize the anthracene (A) moieties labeled on the PSAF chains, whereas PMMA networks were produced by photopolymerization of methyl methacrylate (MMA) monomer and the cross-link reaction using ethylene glycol dimethacrylate (EGDMA) under Vis light irradiation. It was found that phase separation process of these networks can be independently induced and promptly controlled by using UV and Vis light. The characteristic length scale distribution of the resulting co-continuous morphology can be well regulated by the UV and Vis light intensity. In order to confirm and utilize the connectivity of the bicontinuous morphology observed by confocal microscopy, a very small amount, 0.1 wt%, of multi-walled carbon nanotubes (MWCNTs) was introduced into the mixture and the current-voltage (I-V) relationship was subsequently examined. Preliminary data show that MWCNTs are preferentially dispersed in the PSAF-rich continuous domains and the whole mixture became electrically conducting, confirming the connectivity of the observed bi-continuous morphology. The experimental data obtained in this study reveal a promising method to design various scaffolds for conducting soft matter taking advantages of photopolymerization-induced phase separation.
Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena
2014-09-01
Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.
Fox, Thomas; Berke, Heinz
2014-01-01
Two PhD theses (Alexander Gordienko, 1912; Johannes Angerstein, 1914) and a dissertation in partial fulfillment of a PhD thesis (H. S. French, Zurich, 1914) are reviewed that deal with hitherto unpublished UV-vis spectroscopy work of coordination compounds in the group of Alfred Werner. The method of measurement of UV-vis spectra at Alfred Werner's time is described in detail. Examples of spectra of complexes are given, which were partly interpreted in terms of structure (cis ↔ trans configuration, counting number of bands for structural relationships, and shift of general spectral features by consecutive replacement of ligands). A more complete interpretation of spectra was hampered at Alfred Werner's time by the lack of a light absorption theory and a correct theory of electron excitation, and the lack of a ligand field theory for coordination compounds. The experimentally difficult data acquisitions and the difficult spectral interpretations might have been reasons why this method did not experience a breakthrough in Alfred Werner's group to play a more prominent role as an important analytical method. Nevertheless the application of UV-vis spectroscopy on coordination compounds was unique and novel, and witnesses Alfred Werner's great aptitude and keenness to always try and go beyond conventional practice.
Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP
NASA Astrophysics Data System (ADS)
Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming
2018-03-01
Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.
Separator for lithium-sulfur battery based on polymer blend membrane
NASA Astrophysics Data System (ADS)
Freitag, Anne; Stamm, Manfred; Ionov, Leonid
2017-09-01
In this work we report a novel way of reducing the polysulfide shuttle in lithium-sulfur batteries by a new separator material. Polyvinylsulfate potassium salt (PVSK) as polymeric additive is introduced into a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix membrane to improve the battery performance. PVSK is expected to lower the polysulfide mobility due to interaction with the sulfonic group. PVdF-HFP/PVSK blend membranes are prepared and an UV/Vis polysulfide diffusion test clearly demonstrates the positive effect of PVSK. Electrochemical testing reveals a significant improvement of cycling stability up to more than 200 cycles. In addition, the effect of separator porosity to the polysulfide shuttle is investigated with PVdF-HFP membranes of different porosity. A simple polysulfide diffusion test and potentiostatic charge/discharge cycling clearly demonstrate that low separator porosity is favorable in a lithium-sulfur cell.
Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won
2015-12-11
One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.
Comparisons of Spectral Aerosol Single Scattering Albedo in Seoul, South Korea
NASA Technical Reports Server (NTRS)
Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Loughman, Robert P.; Spinei, Elena; Campanelli, Monica; Li, Zhanqing; Go, Sujung; Labow, Gordon;
2018-01-01
Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI (Ozone Monitoring Instrument)) and future (e.g., TROPOMI (TROPOspheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of POllution), GEMS (Geostationary Environment Monitoring Spectrometer) and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET (AEROsol robotic NETwork) in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET (SKY radiometer NETwork) networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR (MultiFilter Rotating Shadowband Radiometer), and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nanometers) through VIS to NIR wavelengths (870 nanometers).
UV-vis-DR study of VO x/SiO 2 catalysts prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Moussa, N.; Ghorbel, A.
2008-12-01
Vanadia-silica catalysts with different vanadium loadings were prepared by sol-gel process. UV-vis diffuse-reflectance spectroscopy was used to elucidate the effect of drying mode (i.e., xerogel vs. aerogel), vanadium loading and calcination on the molecular structure of supported vanadium species. The results indicate that for vanadium loading ranging from 2.8 to 11.2 wt.%, the band-gap energies of all catalysts varying from 2.28 to 2.68 eV which demonstrate that vanadium oxides are predominantly in octahedral structure with the presence of tetrahedral species. The discrimination of different surface VO x species has been based on their characteristic Ligand to Metal Charge Transfer (LMCT) O → V(V) and d-d transition. It was found that the LMCT band position of V dbnd O bond is not affected by calcination either in xerogels or in aerogels but the position and the shape of bands relative to bridging V sbnd O sbnd V bonds are affected by vanadium loading, calcination and drying mode. For the same V/Si ratio, band-gap energy of xerogel is lower than that of aerogel which indicate that vanadium species are more dispersed in aerogels than in xerogels. Drying and calcination led to rearrangement, dehydration, cleavage and crystallization of vanadium species which explain the presence of some amount of crystalline V 2O 5 in calcined samples.
The translucency of dental composites investigated by UV-VIS spectroscopy
NASA Astrophysics Data System (ADS)
Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.
2013-11-01
Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, RestacrilRO and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, RestacrilRO and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.
Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa Gm; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas
2017-01-01
Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag + to Ag 0 . AgNO 3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397-410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10-35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP-impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.
Lü, Xiang-fei; Sun, Wan-jun; Li, Jun; Xu, Wei-xia; Zhang, Feng-xing
2013-07-01
Three porphyrins containing different functional groups (-OH, C-O2C2H5, -COOH), 5-(4-hydroxy) phenyl-10,15,20-triphenyl porphyrin (1a), 5-(4-ethylacetatatomethoxy) phenyl-10,15,20-triphenyl porphyrin (1b), 5-(4-carboxylatomethoxy) phenyl-10,15,20-triphenyl porphyrin (1c), were synthesized and characterized spectroscopically. The CuPp(2a, 2b, 2c)-TiO2 photocatalysts were then prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS), Fourier-transform infrared spectroscopy (FT-IR). The photocatalytic activities of the photocatalysts were investigated by carrying out the photodegradation of 4-nitrophenol in aqueous solution under simulated solar irradiation. It was found that the CuPp(2a, 2b, 2c)-TiO2 enhanced the photocatalytic efficiency of bare TiO2 in photodegrading the 4-NP due to the interaction between CuPp(2a, 2b, 2c) and TiO2, resulted in the enhancement of the photogenerated electron-hole separation. The reasons of this enhanced photocatalytic activity were also discussed. Based on the present study, it could be considered as a promising photocatalyst for the further industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.
The translucency of dental composites investigated by UV-VIS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.
Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in themore » 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, Restacril{sup RO} and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, Restacril{sup RO} and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan
2015-05-15
Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizesmore » in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.« less
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen
2009-03-15
Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.
Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa GM; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas
2017-01-01
Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag+ to Ag0. AgNO3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397–410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10–35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP–impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures. PMID:28435262
Mahmoodi, Vahid; Ahmadpour, Ali; Rohani Bastami, Tahereh; Hamed Mousavian, Mohammad Taghi
2018-01-01
In this study, highly photoactive BiOI nanoparticles (NPs) under sunlight irradiation were synthesized by a facile precipitation method using polyvinylpyrrolidone (PVP) at room temperature. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) and UV-vis diffuse reflectance spectra (UV-vis DRS). The results of XRD showed that PVP did not have any significant effect on tetragonal crystalline structure of BiOI. Also, using different amounts of PVP in the synthesis led to different morphologies and sizes of BiOI particles. It was found that using 0.2 g of PVP in the synthesis method changed morphology from 1-μm platelets to NPs with size under 10 nm. In addition, the photocatalytic performance of prepared photocatalysts was evaluated in the photodegradation of reactive blue 19 (RB19) dye under sunlight irradiation. The BiOI synthesized using 0.2 g PVP (BiOI0.2) showed higher degradation efficiency compared to BiOI prepared without any additive. Excellent visible light photocatalytic properties of nano-scaled BiOI0.2 samples compared to BiOI platelets could be attributed to higher surface-to-volume ratio and narrow band-gap energy of as-prepared BiOI0.2 NPs. © 2017 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin
2015-10-01
The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.
Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Izenberg, N. R.; Denevi, B. W.
2018-05-01
We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?
NASA Astrophysics Data System (ADS)
Uríčková, Veronika; Sádecká, Jana
2015-09-01
The identification of the geographical origin of beverages is one of the most important issues in food chemistry. Spectroscopic methods provide a relative rapid and low cost alternative to traditional chemical composition or sensory analyses. This paper reviews the current state of development of ultraviolet (UV), visible (Vis), near infrared (NIR) and mid infrared (MIR) spectroscopic techniques combined with pattern recognition methods for determining geographical origin of both wines and distilled drinks. UV, Vis, and NIR spectra contain broad band(s) with weak spectral features limiting their discrimination ability. Despite this expected shortcoming, each of the three spectroscopic ranges (NIR, Vis/NIR and UV/Vis/NIR) provides average correct classification higher than 82%. Although average correct classification is similar for NIR and MIR regions, in some instances MIR data processing improves prediction. Advantage of using MIR is that MIR peaks are better defined and more easily assigned than NIR bands. In general, success in a classification depends on both spectral range and pattern recognition methods. The main problem still remains the construction of databanks needed for all of these methods.
J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero
2014-01-01
An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 âHexeneuronic acid content of chemical pulpâ) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...
The complex of xylan and iodine: the induction and detection of nanoscale order
Xiaochun Yu; Rajai H. Atalla
2005-01-01
The complex of xylan and iodine and its formation in a solution of xylan, CaCl2, and I2 + KI was investigated by UV/Vis, second-derivative UV/Vis, and Raman spectroscopy. The complex forms only at very high concentrations of CaCl2, suggesting that when the water available in the solution is not sufficient to fully hydrate the calcium cation the chelation with the...
HREELS to identify electronic structures of organic thin films.
Oeter, D; Ziegler, C; Göpel, W
1995-10-01
The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.
Li, Fu Hua; Yao, Kun; Lv, Wen Ying; Liu, Guo Guang; Chen, Ping; Huang, Hao Ping; Kang, Ya Pu
2015-04-01
The photodegradation of ibuprofen (IBP) in aqueous media was studied in this paper. The degradation mechanism, the reaction kinetics and toxicity of the photolysis products of IBP under UV-Vis irradiation were investigated by dissolved oxygen experiments, quenching experiments of reactive oxygen species (ROS), and toxicity evaluation utilizing Vibrio fischeri. The results demonstrated that the IBP degradation process could be fitted by the pseudo first-order kinetics model. The degradation of IBP by UV-Vis irradiation included direct photolysis and self-sensitization via ROS. The presence of dissolved oxygen inhibited the photodegradation of IBP, which indicated that direct photolysis was more rapid than the self-sensitization. The contribution rates of ·OH and (1)O2 were 21.8 % and 38.6 % in self-sensitization, respectively. Ibuprofen generated a number of intermediate products that were more toxic than the base compound during photodegradation.
Determination of Diethyl Phthalate and Polyhexamethylene Guanidine in Surrogate Alcohol from Russia
Monakhova, Yulia B.; Kuballa, Thomas; Leitz, Jenny; Lachenmeier, Dirk W.
2011-01-01
Analytical methods based on spectroscopic techniques were developed and validated for the determination of diethyl phthalate (DEP) and polyhexamethylene guanidine (PHMG), which may occur in unrecorded alcohol. Analysis for PHMG was based on UV-VIS spectrophotometry after derivatization with Eosin Y and 1H NMR spectroscopy of the DMSO extract. Analysis of DEP was performed with direct UV-VIS and 1H NMR methods. Multivariate curve resolution and spectra computation methods were used to confirm the presence of PHMG and DEP in the investigated beverages. Of 22 analysed alcohol samples, two contained DEP or PHMG. 1H NMR analysis also revealed the presence of signals of hawthorn extract in three medicinal alcohols used as surrogate alcohol. The simple and cheap UV-VIS methods can be used for rapid screening of surrogate alcohol samples for impurities, while 1H NMR is recommended for specific confirmatory analysis if required. PMID:21647285
Determination of diethyl phthalate and polyhexamethylene guanidine in surrogate alcohol from Russia.
Monakhova, Yulia B; Kuballa, Thomas; Leitz, Jenny; Lachenmeier, Dirk W
2011-01-01
Analytical methods based on spectroscopic techniques were developed and validated for the determination of diethyl phthalate (DEP) and polyhexamethylene guanidine (PHMG), which may occur in unrecorded alcohol. Analysis for PHMG was based on UV-VIS spectrophotometry after derivatization with Eosin Y and (1)H NMR spectroscopy of the DMSO extract. Analysis of DEP was performed with direct UV-VIS and (1)H NMR methods. Multivariate curve resolution and spectra computation methods were used to confirm the presence of PHMG and DEP in the investigated beverages. Of 22 analysed alcohol samples, two contained DEP or PHMG. (1)H NMR analysis also revealed the presence of signals of hawthorn extract in three medicinal alcohols used as surrogate alcohol. The simple and cheap UV-VIS methods can be used for rapid screening of surrogate alcohol samples for impurities, while (1)H NMR is recommended for specific confirmatory analysis if required.
Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan
2016-06-15
In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha
2016-01-05
In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.
Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.
Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M
2018-06-18
Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Kim, Dae-Young; Shinde, Surendra; Ghodake, Gajanan
2017-05-15
High reducibility of gallic acid allows synthesis of small sized monodisperse gold nanoparticles (GNPs) at ambient temperature (25°C). Mg 2+ rapidly interacts with the gallic acid ligands and suppresses the dispersion of GNPs therefore, causing a decrease in UV-vis absorbance intensity, and color change from red to blue. Thus, the colorimetric response of GNPs with Mg 2+ was investigated by observing temporal quenching of UV-vis absorbance and precise tuning of fractal growth of GNP aggregates. Moreover, Mg 2+ at concentrations as low as 200ppb can be detected using gallic acid ligand-mediated coordination chemistry which results quenching in UV-vis absorbance proportional to the exposure time. This gallic acid-based colorimetric sensor shown a great potential for the selective detection of pathologically important electrolyte Mg 2+ without any interference from other cations Ca 2+ and K + . Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammadi, Asadollah; Safarnejad, Mastaneh
Nine new bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone have been synthesized in two steps using Knoevenagel condensation and diazotization-coupling reaction. The structures of the compounds were confirmed by UV-vis, IR, 1H NMR and 13C NMR spectroscopic techniques. The spectral characterizations demonstrate that there is an equilibrium between the azo (T1) and hydrazine (T2 and T3) tautomers for all prepared dyes in solutions. In addition, the solvatochromic behavior of the prepared dyes was evaluated using polarity/polarizability parameter (π*) in various solvents. The UV-vis absorption spectra of dyes show a bathochromic shift with increasing polarity and base strength of the solvents. Finally, the effects of acid and base on the UV-vis absorption spectra of the dyes with different substituent in diazo component are reported.
Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei
2012-01-01
In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.
Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei
2015-04-01
The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity, and A226-400, SUVA254, S350-400, SUVA280 and S275-295 of DOM could serve as primary parameters when the compost maturity was assessed using UV-Vis spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peigong; Fan, Caimei, E-mail: fancm@163.com; Wang, Yawen
Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► Themore » tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.« less
NASA Astrophysics Data System (ADS)
Miffre, Alain; Francis, Mirvatte; Anselmo, Christophe; Rairoux, Patrick
2015-04-01
As underlined by the latest IPCC report [1], tropospheric aerosols are nowadays recognized as one of the main uncertainties affecting the Earth's climate and human health. This issue is not straightforward due to the complexity of these nanoparticles, which present a wide range of sizes, shapes and chemical composition, which vary as a function of altitude, especially in the troposphere, where strong temperature variations are encountered under different water vapour content (from 10 to 100 % relative humidity). During this oral presentation, I will first present the scientific context of this research. Then, the UV-VIS polarimeter instrument and the subsequent calibration procedure [2] will be presented, allowing quantitative evaluation of particles backscattering coefficients in the atmosphere. In this way, up to three-component particles external mixtures can be partitioned into their spherical and non-spherical components, by coupling UV-VIS depolarization lidar measurements with numerical simulations of backscattering properties specific to non-spherical particles, such as desert dust or sea-salt particles [3], by applying the T-matrix numerical code [4]. This combined methodology is new, as opposed to the traditional approach using the lidar and T-matrix methodologies separately. In complement, recent laboratory findings [5] and field applications [6] will be presented, enhancing the sensitivity of the UV-VIS polarimeter. References [1] IPCC report, Intergovernmental Panel on Climate Change, IPCC, (2013). [2] G. David, A. Miffre, B. Thomas, and P. Rairoux: "Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols," Appl. Phys. B 108, 197-216 (2012). [3] G. David, B. Thomas, T. Nousiainen, A. Miffre and P. Rairoux: "Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix," Atmos. Chem Phys. 13, 6757-6776 (2013). [4] M.I. Mishchenko, L.D. Travis and A.A. Lacis: "Scattering, absorption and emission of Light by small particles," 3rd edition, Cambridge University Press UK, (2002). [5] G. David, B. Thomas, E. Coillet, A. Miffre, and P. Rairoux, Polarization-resolved exact light backscattering by an ensemble of particles in air, Opt. Exp., 21, No. 16, 18624-18639, (2013). [6] G. David, B. Thomas, Y. Dupart, B. D'Anna, C. George, A. Miffre and P. Rairoux, UV polarization lidar for remote sensing new particles formation in the atmosphere, Opt. Exp., 22, A1009-A1022, (2014).
NASA Astrophysics Data System (ADS)
Gupta, Kamini; Pandey, Ashutosh; Singh, R. P.
2017-12-01
Nanodimensional un-doped, Nb doped, N doped and N,Nb co-doped TiO2 particles have been prepared by the sol-gel procedure. Phase identification of the anatase particles was done by X-ray powder diffraction and Deby-Scherrer calculations revealed their particle sizes to range from 20 to 30 nm. The band gap energies of the samples were measured by UV-Vis-diffuse reflectance (UV-DRS) spectra. While un-doped TiO2 showed wide optical absorption in the UV region. The co-doped TiO2 particles exhibited narrow band gaps of ~2.7 eV, which showed absorption in the visible region. A decline in charge carrier recombination rates in the prepared samples was confirmed through photoluminescence (PL). The morphological appearances of the particles have been examined by scanning electron microscopy. X-ray photoelectron spectroscopy (XPS) of the samples confirmed the incorporations of N and Nb into the TiO2 matrices. The photocatalytic efficiencies of the prepared particles have been determined by the degradation of the non-biodegradable dye methylene blue (MB) under electromagnetic radiation. The co-doped sample showed superior photocatalytic activity under the visible light (λ > 400) over the other samples. Photochemical quenching of aqueous MB was further analysed by UV/LC-MS which confirmed the attenuation of methylene blue.
Urquiza, Nora M; Manca, Silvia G; Moyano, María A; Dellmans, Raquel Arrieta; Lezama, Luis; Rojo, Teófilo; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G
2010-04-01
Methimazole (MeimzH) is an anti-thyroid drug and the first choice for patients with Grave's disease. Two new copper(II) complexes of this drug: [Cu(MeimzH)(2)(NO(3))(2)]*0.5H(2)O and [Cu(MeimzH)(2)(H(2)O)(2)](NO(3))(2)*H(2)O were synthesized and characterized by elemental analysis, dissolution behavior, thermogravimetric analysis and UV-vis, diffuse reflectance, FTIR and EPR spectroscopies. As it is known that copper(II) cation can act as an inhibitor of alkaline phosphatase (ALP), the inhibitory effect of methimazole and its copper(II) complexes on ALP activity has also been investigated.
Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun
2015-02-01
Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.
ZnO:Gd nanocrystals for fluorescent applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, N. K., E-mail: divyank90@gmail.com; Pradyumnan, P. P.
2016-05-23
Gadolinium doped ZnO crystals within the solubility limit of gadolinium in ZnO matrix were prepared by solid state reaction technique. The method is relatively less expense and enables the production in large scale. The samples were characterised by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), UV/Vis diffuse reflectance spectroscopy and photoluminescence techniques. Fluorescent property studies of gadolinium doped ZnO at room temperature show enhanced visible light emission due to the defects and oxygen vacancies produced via doping. This work reports the impact of gadolinium doping in the structural, optical and luminescent properties of ZnO inmore » detail.« less
NASA Astrophysics Data System (ADS)
Padeletti, G.; Fermo, P.; Gilardoni, S.; Galli, A.
In order to recover the ancient tradition concerning the materials used for the decoration, majolica shards produced during the Renaissance period in Casteldurante, a famous centre for ceramic production in Italy (Marche), have been examined. In the present study, pigments used for the decorations have been investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) and diffuse-reflectance UV-Vis spectroscopy. Ochre, lead antimonate yellow, copper-based pigment and smalt have been used as colourants to obtain respectively yellow-orange, yellow, green and blue decorations in accordance with what is reported by the ancient recipes.
Growth, structural, spectroscopic and optical characterization of barium doped calcium tartrate
NASA Astrophysics Data System (ADS)
Verma, Seema; Raina, Bindu; Gupta, Vandana; Bamzai, K. K.
2018-05-01
Barium doped calcium tartrates synthesized by controlled diffusion using silica gel technique at ambient temperature was characterized by single crystal X-ray diffraction which establishes monoclinic crystal system with volume of the unit cell 923.97(10) Ǻ3 and the space group being P21. UV - Vis characterization gives various linear optical constants like absorption, transmittance, reflectance, band gap, extinction coefficient, urbach energy, complex dielectric constant, optical and electrical conductivity. These constants are considered to be essential in characterizing materials that are used in various applications like fabrication of optoelectronic devices. FTIR spectrum establishes the presence of various bands of functional groups expected from metal tartrate with water of crystallization.
Application of fuzzy logic in multicomponent analysis by optodes.
Wollenweber, M; Polster, J; Becker, T; Schmidt, H L
1997-01-01
Fuzzy logic can be a useful tool for the determination of substrate concentrations applying optode arrays in combination with flow injection analysis, UV-VIS spectroscopy and kinetics. The transient diffuse reflectance spectra in the visible wavelength region from four optodes were evaluated to carry out the simultaneous determination of artificial mixtures of ampicillin and penicillin. The discrimination of the samples was achieved by changing the composition of the receptor gel and working pH. Different algorithms of pre-processing were applied on the data to reduce the spectral information to a few analytic-specific variables. These variables were used to develop the fuzzy model. After calibration the model was validated by an independent test data set.
NASA Astrophysics Data System (ADS)
Mesbah, Mounira; Douadi, Tahar; Sahli, Farida; Issaadi, Saifi; Boukazoula, Soraya; Chafaa, Salah
2018-01-01
Three new Schiff-bases compounds (I-III) were synthesized by a condensation reaction in 1:2 M ratios of 4,4‧-diaminodiphenyl sulfide and pyrrol/thiophene/furan-2-carboxaldehyde in ethanol. The structural determinations of the Schiff-bases were identified with the help of elemental analysis then confirmed by UV-Vis, FT-IR and 1H NMR. The products were obtained in excellent yields. On the other hand, the in vitro antibacterial and antifungal activities of the synthesized compounds were investigated using disc diffusion method. Schiff bases synthesized individually exhibited varying degrees of inhibitory effects on the growth of the tested microbial species.
The Use of UV-Visible Reflectance Spectroscopy as an Objective Tool to Evaluate Pearl Quality
Agatonovic-Kustrin, Snezana; Morton, David W.
2012-01-01
Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl’s quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry. PMID:22851919
Ahmed, Moussa Mahdi; Brienza, Monica; Goetz, Vincent; Chiron, Serge
2014-12-01
This work aims at decontaminating biologically treated domestic wastewater effluents from organic micropollutants by sulfate radical based (SO4(-)) homogeneous photo-Fenton involving peroxymonosulfate as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This oxidative system was evaluated by using several probe compounds belonging to pesticides (bifenthrin, mesotrione and clothianidin) and pharmaceuticals (diclofenac, sulfamethoxazole and carbamazepine) classes and its kinetic efficiency was compared to that to the well known UV-Vis/TiO2 heterogeneous photocatalysis. Except for carbamazepine, apparent kinetic rate constants were always 10 times higher in PMS/Fe(II)/UV-Vis than in TiO2/UV-Vis system and more than 70% of total organic carbon abatement was reached in less than one hour treatment. Hydroxyl radical (OH) and SO4(-) reactivity was investigated using mesotrione as a probe compound through by-products identification by liquid chromatography-high resolution-mass spectrometry and transformation pathways elucidation. In addition to two OH based transformation pathways, a specific SO4(-) transformation pathway which first involved degradation through one electron transfer oxidation processes followed by decarboxylation were probably responsible for mesotrione degradation kinetic improvement upon UV-Vis/PMS/Fe(II) system in comparison to UVVis/TiO2 system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand
NASA Astrophysics Data System (ADS)
Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.
2017-09-01
Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.
Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P
2007-01-01
Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.
Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso
2015-06-01
Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.
NASA Astrophysics Data System (ADS)
Kanchanadevi, S.; Parveen, S.; Mahalingam, V.
2018-04-01
Three new complexes containing salicylaldazine (HL) ligand were synthesised by reacting suitable precursor complex [MCl2(PPh3)2] with the ligand (where M = Cu(II) or Ni(II) or Co(II)). The new complexes were characterised by various spectral studies such as IR, UV-Vis,1H NMR,EPR,fluorescence and elemental analyses. The binding modes of the complexes with HS-DNA have been studied by UV-Vis absorption titration. Binding of the complexes with bovine serum albumin (BSA) protein has been investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods. Redox behaviour of the complexes has been investigated by cyclic voltammetry.
NASA Astrophysics Data System (ADS)
Gordon, Devin A.; DeNoyer, Lin; Meyer, Corey W.; Sweet, Noah W.; Burns, David M.; Bruckman, Laura S.; French, Roger H.
2017-08-01
Poly(ethylene-terephthalate) (PET) film is widely used in photovoltaic module backsheets for its dielectric break- down strength, and in applications requiring high optical clarity for its high transmission in the visible region. However, PET degrades and loses optical clarity under exposure to ultraviolet (UV) irradiance, heat, and moisture. Stabilizers are often included in PET formulation to increase its longevity; however, even these are subject to degradation and further reduce optical clarity. To study the weathering induced changes in the optical properties in PET films, samples of a UV-stabilized grade of PET were exposed to heat, moisture, and UV irradiance as prescribed by ASTM-G154 Cycle 4 for 168 hour time intervals. UV-Vis reflection and transmission spectra were collected via Multi-Angle, Polarization-Dependent, Reflection, Transmission, and Scattering (MaPd:RTS) spectroscopy after each exposure interval. The resulting spectra were used to calculate the complex index of refraction throughout the UV-Vis spectral region via an iterative optimization process based upon the Fresnel equations. The index of refraction and extinction coefficient were found to vary throughout the UV-Vis region with time under exposure. The spectra were also used to investigate changes in light scattering behavior with increasing exposure time. The intensity of scattered light was found to increase at higher angles with time under exposure.
Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji
2018-05-09
Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.
Ultra-accelerated natural sunlight exposure testing facilities
Lewandowski, Allan A.; Jorgensen, Gary J.
2003-08-12
A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.
Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu
2016-12-01
The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maity, Anupam; Panda, Sovan Kumar
2018-04-01
Reddish-yellow color colloid consisting of silver nanoparticles (Ag NPs) has been synthesized by reducing aqueous AgNO3 solution by photo-induced citrate reduction technique under UV light. As prepared colloid exhibits single and intense plasmonic absorption peak in the violet region of the visible spectra with the peak centered at 405 nm. The NPs are fine and spherical with diameter ranging from 5 to 10 nm. These colloidal NPs have been used for the quantitative detection of uric acid by UV-VIS spectroscopy. A linear red shifting of the characteristics Plasmonic absorption peak of Ag NPs is observed with uric acid concentration. Uric acid can be detected by UV-VIS spectroscopy down to 5 nM limit using the prepared colloid.
Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.
Chaudhary, Anshu; Singh, Anoop; Verma, Prabhakar Kumar
2014-12-01
A rapid and sensitive ultraviolet-visible (UV-VIS) spectroscopic method was developed for the estimation of pyrimidine derivative 6-Bromo-3-(6-(2,6-dichlorophenyl)-2-(morpolinomethylamino) pyrimidine4-yl) -2H-chromen-2-one (BT10M) in bulk form. Pyrimidine derivative was monitored at 275 nm with UV detection, and there is no interference of diluents at 275 nm. The method was found to be linear in the range of 50 to 150 μg/ml. The accuracy and precision were determined and validated statistically. The method was validated as a guideline. The results showed that the proposed method is suitable for the accurate, precise, and rapid determination of pyrimidine derivative. Graphical Abstract Method development and validation of potent pyrimidine derivative by UV spectroscopy.
Synthesis, characterization, and spectroscopic investigation of benzoxazole conjugated Schiff bases.
Santos, Fabiano S; Costa, Tania M H; Stefani, Valter; Gonçalves, Paulo F B; Descalzo, Rodrigo R; Benvenutti, Edilson V; Rodembusch, Fabiano S
2011-11-24
Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.
Solar Spectral Irradiance Variations in 240 - 1600 nm During the Recent Solar Cycles 21 - 23
NASA Astrophysics Data System (ADS)
Pagaran, J.; Weber, M.; Deland, M. T.; Floyd, L. E.; Burrows, J. P.
2011-08-01
Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 - 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data challenges the validity of proxy-based linear extrapolation commonly used in reconstructing past irradiances.
Synthesis of CeO2 nanoparticles: Photocatalytic and antibacterial activities
NASA Astrophysics Data System (ADS)
Reddy Yadav, L. S.; Lingaraju, K.; Daruka Prasad, B.; Kavitha, C.; Banuprakash, G.; Nagaraju, G.
2017-05-01
We have successfully synthesized CeO2 nanoparticles (Nps) via the solution combustion method using sugarcane juice as a novel combustible fuel. The structural features, optical properties and morphology of the nanoparticles were characterized using XRD, FTIR, and Raman spectroscopy, UV-Vis, SEM and TEM. Structural characterization of the product shows cubic phase CeO2 . FTIR and Raman spectrum show characteristic peaks due to the presence of Ce-O vibration. SEM images show a porous structure and, from TEM images, the size of the nanoparticles were found to be ˜ 50 nm. The photocatalytic degradation of the methylene blue (MB) dye was examined using CeO2 Nps under solar irradiation as well as UV light irradiation and we studied the effect of p H, catalytic load and concentration on the degradation of the MB dye. Furthermore, the antibacterial properties of CeO2 Nps were investigated against Gram+ve and Gram- ve pathogenic bacterial strains using the agar well diffusion method.
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sakthivadivel, R.
2012-03-01
Hesperidin a flavanoid, modified TiO2 nanoparticles (Hes-TiO2) was synthesized to improve the visible light driven photocatalytic performance of TiO2. The synthesized nanoparticles were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), FT-IR, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of Hes-TiO2 was investigated based on the decolorization of eosin-Y under visible light irradiation. Hes-TiO2 showed high efficiency for the decolorization of eosin-Y. The influences of various reaction parameters like effect of pH, catalyst dosage and initial dye concentration on the photocatalytic efficiency were investigated. The adsorption of eosin-Y on Hes-TiO2 was found favorable by the Langmuir approach. The removal percentage of chemical oxygen demand (COD) was determined to evaluate the mineralization of eosin-Y during photodecolorization. Based on the intermediates obtained in the GC-MS spectroscopic technique, a probable degradation mechanism has been proposed.
Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries
NASA Astrophysics Data System (ADS)
Zhang, Shaoyan; Sun, Yan; Li, Chunsheng; Ci, Lijie
2013-11-01
In this paper, Cu3V2O8 hollow spheres have been successfully synthesized via a liquid precipitation method with colloidal carbon spheres as template followed by a subsequent heat treatment process. On the basis of XRD analysis, SEM observation, and TG-DSC analysis of the precursor and products, the formation mechanism of Cu3V2O8 hollow spheres was proposed. UV-vis diffuse reflectance spectra showed that the Cu3V2O8 hollow spheres exhibit strong absorption in a wide wavelength range from UV to visible light. The photocatalytic activity experiment indicated that the as-prepared Cu3V2O8 hollow spheres exhibited good photocatalytic activity in degradation of methyl orange (MO) under 150-W xenon arc lamp light irradiation. Furthermore, electrochemical measurements showed that the Cu3V2O8 hollow spheres exhibited high discharge capacity and excellent high-rate capability, indicating potential cathode candidates for primary lithium batteries used in long-term implantable cardiac defibrillators (ICDs).
NASA Astrophysics Data System (ADS)
Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin
2017-08-01
The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.
Novel cholinesterase modulators and their ability to interact with DNA
NASA Astrophysics Data System (ADS)
Janockova, Jana; Gulasova, Zuzana; Musilek, Kamil; Kuca, Kamil; Kozurkova, Maria
2013-11-01
In the present work, an interaction of four cholinesterase modulators (1-4) with calf thymus DNA was studied via spectroscopic techniques (UV-Vis, fluorescent spectroscopy and circular dichroism). From UV-Vis spectroscopic analysis, the binding constants for DNA-pyridinium oximes complexes were calculated (K = 3.5 × 104 to 1.4 × 105 M-1). All these measurements indicated that the compounds behave as effective DNA-interacting agents. Electrophoretic techniques proved that ligand 2 inhibited topoisomerase I at a concentration 5 μM.
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri
2018-02-01
Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.
NASA Astrophysics Data System (ADS)
Zhang, Yunlong; Zhang, Yuzhi
2017-12-01
A kind of hexagonal ZnO (HZO) was synthesized in N-methyl-2-pyrrolidone (NMP)/H2O mixed solvent for a high exposure of polar ±(0001) facets to get a high-efficiency photocatalyst. The amine-functionalized HZO particles were coated with graphene oxide (GO) by electrostatic force-induced self-assemby and thermal reduction to form HZO@Gr core/shell structure. The as-prepared HZO and HZO@Gr were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-visible diffuse reflectance spectroscopy (UV-vis/DRS). The results indicate that the graphene on HZO@Gr remains high quality and the optical properties of the composite change a lot with sunlight absorption improving, bandgap and photoluminescence (PL) intensity decreasing. The obtained HZO photocatalyst shows good photocatalytic activity for methylene blue (MB) under UV-visible irradiation. Furthermore, the HZO@Gr photocatalyst exhibits the best photodegradation rate of MB reaching up to 98.2% within 50 minutes. The graphene-coated HZO structure could offer new directions which would further extend the scope for synthesis of various ZnO/graphene composites with improved properties useful for various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu
Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less
Peng, Xiaoying; Wang, Zhongming; Huang, Pan; Chen, Xun; Fu, Xianzhi; Dai, Wenxin
2016-01-01
An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature. PMID:27509502
A proposal for in vitro/GFR molecular erythema action spectrum
NASA Astrophysics Data System (ADS)
de Souza, João A. V.; Lorenzini, Fabiane; Rizzatti, Mara R.
2008-08-01
We propose an erythema action spectrum based on experimental molecular measurements named molecular erythema action spectrum or in vitro/GFR, where the acronym GFR represents our research group name, Grupo de Física das Radiaçöes. The in vitro methodology was developed by using a derma tissue simulator (TSD), as a radiation protection shield, and monochromatic ultraviolet (UV) sources of 254, 310, 365, 380, and 400 nm. The irradiance from each source was monitored through spectroradiometry in order to obtain the exposure dose over a period of time. Changes in the chemical structure were monitored by Fourier transform infrared spectroscopy (FTIR) and UV and visible spectroscopy (UV-vis). The samples were analyzed by UV-vis at each 200 up to 1000 J/m2 and at each 400 up to 2000 J/m2. FTIR was performed only for samples exposed to a maximum dose of 2000 J/m2. The in vitro action parameters were obtained by considering the redshift revealed through UV-vis analysis, as being the molecular quantification of minimal erythema, and the chemical bond rupture of TSD molecules associated with erythema, revealed through FTIR. The in vitro/GFR action spectrum shows that UV-A and UV-B radiation are equally responsible for the damage observed in TSD. When this proposal was compared to the CIE erythema action spectrum from ISO [ISO17166 CIE S 007/E, Erythema Reference Action Spectrum and Standard Erythema Dose (CIE Central Bureau, Austria, 1998)], similarities could be observed in wavelengths less than 280 nm in UV-B region. However, for wavelengths higher than 300 nm, the efficiency of this radiation to induce damage, mainly in the UV-A part, was much higher than predicted in CIE model. The increasing concern on UV-A radiation, assumed to be as responsible as UV-B for inducing most of the already observed skin injuries, may be better understood when observing the experimental model presented in in vitro/GFR action spectrum.
NASA Astrophysics Data System (ADS)
Oktariza, Lingga Ghufira; Yuliarto, Brian; Suyatman
2018-05-01
The extraction of chlorophyll pigment of Syngonium podophyllum Schott leaves which is used as natural dyes in this DSSC devices. The use of dye from nature with its simple production process is very effective to reduce DSSC production cost. Besides being used as a natural dye, chlorophyll can also be used as an alternative counter electrode. Chlorophyll that is used as a counter electrode has been through chemical activation and carbonization processes. The characterization were done using Uv-Vis, Cyclic Voltametry and DSSC device under solar simulator. Characterization of chlorophyll absorbance using UV-Vis has resulted in typical absorbance peak at visible light wavelength of 447 nm and 666 nm. The Tauc equation analysis of the Uv-Vis characterization showed 1.91 eV energy gap of chlorophyll. Chlorophyll carbonized dye is used as an alternative to Pt counter electrode. Carbonized chlorophyll dye resulted in lower conversion efficiency of 0.308% with HSE electrolyte.
Martelo-Vidal, M J; Vázquez, M
2014-09-01
Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.
2011-05-01
4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.
Mechanochromic behavior of a luminescent silicone rubber under tensile deformation
NASA Astrophysics Data System (ADS)
Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon
2016-09-01
A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.
Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy
Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto
2017-01-01
Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985
Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.
2013-01-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041
Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K
2016-01-01
The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.
Buzzini, Patrick; Massonnet, Genevieve
2015-05-01
In the second part of this survey, the ability of micro-Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV-vis microspectrophotometry and thin-layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV-vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV-vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting. © 2015 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal
2018-05-01
The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.
Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.
Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano
2017-01-01
Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.
Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R
2013-09-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.
Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation
NASA Astrophysics Data System (ADS)
Taylor, Andrew; Batishchev, Oleg
2012-10-01
Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. academic librarians and technical information specialists as information intermediaries.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.
Ultra-Accelerated Natural Sunlight Exposure Testing Facilities
Lewandowski, Allan A.; Jorgensen, Gary J.
2004-11-23
A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.
NASA Astrophysics Data System (ADS)
Özbek, Neslihan; Alyar, Saliha; Memmi, Burcu Koçak; Gündüzalp, Ayla Balaban; Bahçeci, Zafer; Alyar, Hamit
2017-01-01
2-Hydroxyacetophenone-N-methyl p-toluenesulfonylhydrazone (afptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Co(II), Pd(II), Pt(II) complexes were synthesized for the first time. Synthesized compounds were characterized by spectroscopic methods (FT-IR, 1Hsbnd 13C NMR, LC-MS, UV-vis), magnetic susceptibility and conductivity measurements. 1H and 13C shielding tensors for crystal structure of ligand were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The antibacterial activities of synthesized compounds were studied against some Gram positive and Gram negative bacteria by using microdilution and disc diffusion methods. In vitro enzyme inhibitory effects of the compounds were measured by UV-vis spectrophotometer. The enzyme activities against human carbonic anhydrase II (hCA II) were evaluated as IC50 (the half maximal inhibitory concentration) values. It was found that afptsmh and its metal complexes have inhibitory effects on hCA II isoenzyme. General esterase activities were determined using alpha and beta naphtyl acetate substrates (α- and β-NAs) of Drosophila melanogaster (D. melanogaster). Activity results show that afptsmh does not strongly affect the bacteria strains and also shows poor inhibitory activity against hCAII isoenzyme whereas all complexes posses higher biological activities.
Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation.
Ouyang, Kai; Dai, Ke; Chen, Hao; Huang, Qiaoyun; Gao, Chunhui; Cai, Peng
2017-02-01
Interest has grown in developing safe and high-performance photocatalysts based on metal-free materials for disinfection of bacterial pathogens under visible light irradiation. In this paper, the C 60 /C 3 N 4 and C 70 /C 3 N 4 hybrids were synthesized by a hydrothermal method, and characterized by X-ray diffraction (XRD), UV-vis diffuse reflection spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high revolution transmission electron microscope (HRTEM). The performance of photocatalytic disinfection was investigated by the inactivation of Escherichia coli O157:H7. Both C 60 /C 3 N 4 and C 70 /C 3 N 4 hybrids showed similar crystalline structure and morphology with C 3 N 4 ; however, the two composites exhibited stronger bacterial inactivation than C 3 N 4 . In particular, C 70 /C 3 N 4 showed the highest bactericidal efficiency and was detrimental to all E. coli O157:H7 in 4h irradiation. Compared to C 3 N 4 , the enhancement of photocatalytic activity of composites could be attributed to the effective transfer of the photoinduced electrons under visible light irradiation. Owing to the excellent performance of fullerenes (C 60 , C 70 )/C 3 N 4 composites, a visible light response and environmental friendly photocatalysts for disinfection were achieved. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Li, Qiuye; Lu, Gongxuan
Different-shaped one-dimensional (1D) titanic acid nanomaterials (TANs) were prepared by hydrothermal synthesis. By changing the reaction temperature (120, 170 and 200 °C), three kinds of 1D TAN, short-nanotubes (SNT), long-nanotubes (LNT), and nanorods (NR), were obtained. The obtained TANs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and solid-stated diffuse reflectance UV-vis spectra (UV-vis DRS) techniques. Based on these 1D TAN, Eosin Y-sensitized Pt-loaded TAN were prepared by the in situ impregnation and photo-reduction method. Their photocatalytic activity for hydrogen generation was evaluated in triethanolamine (TEOA) aqueous solution under visible light irradiation (λ ≥ 420 nm). The results indicated that the morphology difference led to a significant variation of photocatalytic performance for hydrogen generation, with the activity order as follows: Eosin Y-sensitized Pt-loaded LNT > Eosin Y-sensitized Pt-loaded NR > Eosin Y-sensitized Pt-loaded SNT. The experimental conditions for photocatalytic hydrogen generation such as Pt loading content, the mass ratio of Eosin Y to TAN, and so on, were optimized. As a result, the highest apparent quantum yields of hydrogen generation for Eosin Y-sensitized Pt-loaded SNT, LNT, and NR were 6.65, 17.36, and 15.04%, respectively. The stability of these photocatalysts and the reaction mechanism of the photocatalytic hydrogen generation are also discussed in detail.
Photocatalytic Activity of Vanadium-Substituted ETS-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash,M.; Rykov, S.; Lobo, R.
2007-01-01
Various amounts of vanadium have been isomorphously substituted for titanium in ETS-10, creating samples with V/(V+Ti) ratios of 0.13, 0.33, 0.43, and 1.00 and characterized experimentally using Raman, near-edge X-ray absorption fine structure (NEXAFS), X-ray powder diffraction, N{sub 2} adsorption, scanning electron microscopy (SEM), UV/vis spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Raman spectra reveal a disordered chain structure that contains different V-O bonds along with the presence of a V-O-Ti peak. The UV/vis spectra of the vanadium samples have three new absorption features in the visible region at 450, 594, and 850 nm, suggesting both V{sup 4+}more » and V{sup 5+} are present in the samples. NEXAFS results confirm the presence of both V{sup 5+} and V{sup 4+} in the vanadium samples, with a fraction of V{sup 4+} within the range of 0.2-0.4. The addition of vanadium lowers the band gap energy of ETS-10 from 4.32 eV to a minimum of 3.58 eV for the 0.43ETVS-10 sample. Studies of the photocatalytic polymerization of ethylene show that the 594 nm transition has no photocatalytic activity. The visible transition around 450 nm in the vanadium-incorporated samples is photocatalytically active, and the lower-concentration vanadium samples have higher photocatalytic activity than that of ETS-10 and AM-6, the all-vanadium analogue of ETS-10.« less
Dissolution assessment of allopurinol immediate release tablets by near infrared spectroscopy.
Smetiško, Jelena; Miljanić, Snežana
2017-10-25
The purpose of this study was to develop a NIR spectroscopic method for assessment of drug dissolution from allopurinol immediate release tablets. Thirty three different batches of allopurinol immediate release tablets containing constant amount of the active ingredient, but varying in excipients content and physical properties were introduced in a PLS calibration model. Correlating allopurinol dissolution reference values measured by the routinely used UV/Vis method, with the data extracted from the NIR spectra, values of correlation coefficient, bias, slope, residual prediction determination and root mean square error of prediction (0.9632, 0.328%, 1.001, 3.58, 3.75%) were evaluated. The obtained values implied that the NIR diffuse reflectance spectroscopy could serve as a faster and simpler alternative to the conventional dissolution procedure, even for the tablets with a very fast dissolution rate (>85% in 15minutes). Apart from the possibility of prediction of the allopurinol dissolution rate, the other multivariate technique, PCA, provided additional data on the non-chemical characteristics of the product, which could not be obtained from the reference dissolution values. Analysis on an independent set of samples confirmed that a difference between the UV/Vis reference method and the proposed NIR method was not significant. According to the presented results, the proposed NIR method may be suitable for practical application in routine analysis and for continuously monitoring the product's chemical and physical properties responsible for expected quality. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xuejiang; Song, Jingke; Huang, Jiayu; Zhang, Jing; Wang, Xin; Ma, RongRong; Wang, Jiayi; Zhao, Jianfu
2016-12-01
Magnetic photocatalyst - iodine and nitrogen codoped TiO2 based on chitosan decorated magnetic activated carbon (I-N-T/CMAC) was prepared via simple coprecipitation and sol-gel method. The characteristics of photocatalysts were investigated by X-ray diffraction (XRD), N2 adsorption-desorption isotherm, field emission scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). It turned out that the prepared material had large surface area, enhanced absorption of visible light, and magnetically separable properties when mole ratio of I/Ti was 0.1. Iodine-nitrogen codoped magnetic photocatalyst was used for the removal of salicylic acid (SA), and the rate of adsorption reaction for SA by I0.1-N-T/CMAC followed the pseudo second-order kinetic. Under visible light irradiation, 89.71% SA with initial concentration = 30 mg/L could be removed by I0.1-N-T/CMAC, and photodegradation rate of SA on I0.1-N-T/CMAC composites was 0.0084 min-1 which is about 4 times higher than that of magnetic photocatalyst with nitrogen doped only. The effects of SA initial concentration, pH, coexisting anions and humic acid to the degradation of SA with the prepared material were also investigated. Main oxidative species in the photodegradation process are rad OH and h+.
Zhou, Panpan; Xie, Yu; Fang, Jing; Ling, Yun; Yu, Changling; Liu, Xiaoming; Dai, Yuhua; Qin, Yuancheng; Zhou, Dan
2017-07-01
In this paper, the mesoporous TiO 2 with different concentration of CdS quantum dots (i.e., x% CdS/TiO 2 ) was successfully fabricated by the sol-gel method. The composition, structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (UV-Vis/DRS) and nitrogen physical adsorption test and so on. The proportion of CdS and TiO 2 is very important for the photocatalytic performance. As a result, the photocatalytic degradation performance from the most to the least is in the order of 2% CdS/TiO 2 , 4% CdS/TiO 2 , 8% CdS/TiO 2 , pure TiO 2 and 1% CdS/TiO 2 . The photocatalytic (PC) activity of the 2% CdSTiO 2 is characterized by photocatalytic degradation of methyl orange, which can be completely degraded within 45 min better than 60 min TiO 2 takes. It is also much better than CdS. Moreover, other four organic pollutants, such as methylthionine chloride, bisphenol A, rhodamine B, malachite green can also be degraded quickly on the condition of 2% CdS/TiO 2 . What's more, the chemical stability and cycling capability of 2% CdS/TiO 2 are reflected by five cyclic degradation of methyl orange. Copyright © 2017 Elsevier Ltd. All rights reserved.
NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan
2015-05-01
Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.
Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2013-01-01
To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.
Vadivel, S; Maruthamani, D; Habibi-Yangjeh, A; Paul, Bappi; Dhar, Siddhartha Sankar; Selvam, Kaliyamoorthy
2016-10-15
Hybrid organic/inorganic nanocomposites comprised of calcium ferrite (CaFe2O4) and graphitic carbon nitride (g-C3N4) were prepared via a simple two-step process. The hybridized CaFe2O4/g-C3N4 heterostructure was characterized by a variety of techniques, including X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, electrochemical impedance spectroscopy (EIS), and photoelectrochemical studies. Photocatalytic activity of the prepared samples was evaluated against degradation of methylene blue (MB) under visible-light irradiation. The photocatalytic activity of CaFe2O4 30%/g-C3N4 nanocomposite, as optimum photocatalyst, for degradation of MB was superior to the pure CaFe2O4 and g-C3N4 samples. It was demonstrated that the photogenerated holes and superoxide ion radicals were the two main reactive species towards the photocatalytic degradation of MB over the nanocomposite. Based on the experimental results, a possible photocatalytic mechanism for the MB degradation over the nanocomposite was proposed. This work may provide some inspiration for the fabrication of spinel ferrites with efficient photocatalytic performance. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Darr, Dietrich; Pretzsch, Jurgen
2008-01-01
Purpose: The objective of this paper is to assess the effectiveness of innovation diffusion under group-oriented and individual-oriented extension. Current theoretical notions of innovation diffusion in social networks shall be briefly reviewed, and the concepts of "search" and "innovation" vis-a-vis "transfer" and…
Theoretical and Experimental Spectroscopic Analysis of Cyano-Substituted Styrylpyridine Compounds
Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M.; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J.
2013-01-01
A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)] pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl-substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds. PMID:23429190
NASA Astrophysics Data System (ADS)
Thuong Huyen Tran, Thi; Kosslick, Hendrik; Schulz, Axel; Liem Nguyen, Quang
2017-03-01
In the present work, nano-sized TiO2 polymorphs (anatase, brookite, and rutile) were synthesized via hydrothermal treatment of an amorphous titania. Three polymorphs were characterized by XRD, Raman spectroscopy, SEM, UV-Vis DRS, and N2-sorption measurements. The photocatalytic degradation experiments were performed with low catalyst concentration, high organic loading under a 60 W UV-Vis solarium lamp irradiation. The photocatalytic degradation was monitored by UV-Vis spectroscopy and TOC measurements. Cinnamic acid, ibuprofen, phenol, diatrizoic acid and the dyes rhodamine B and rose bengal were used as model pollutants. The formation of intermediates was studied by ESI-TOF-MS measurements. The presence of active species was checked by quenching the activity by addition of scavengers. The photocatalytic activity decreased in the order: anatase ⩾ brookite > rutile, with growing recalcitrance of organic compounds. The differences in the activity are more pronounced in the degree of mineralization. The valence band holes and superoxide radicals were the major active species in the photocatalytic treatment with anatase and brookite, whereas hydroxyl radicals and superoxide radicals contributed mainly in the treatment with rutile explaining the lower activity of rutile. The complementary use of UV-Vis spectroscopy and TOC measurements was required to obtain a comprehensive realistic assessment on the photocatalytic performance of catalyst. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.
The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.
2005-01-01
Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.
Stability studies of As4S4 nanosuspension prepared by wet milling in Poloxamer 407.
Bujňáková, Zdenka; Dutková, Erika; Baláž, Matej; Turianicová, Erika; Baláž, Peter
2015-01-15
In this paper the stability of the arsenic sulfide (As4S4) nanosuspension prepared by wet milling in a circulation mill in the environment of copolymer Poloxamer 407 was studied. The obtained As4S4 particles in nanosuspension were of ∼ 100 nm in size. The influence of temperature and UV irradiation on the changes in physical and/or chemical properties was followed. Long-term stability was observed via particle size distribution and zeta potential measurements. Influence of UV irradiation was studied via UV-vis spectroscopy (UV-vis), photoluminicsence (PL) technique and Fourier transform infrared spectroscopy (FTIR) measurements. The best stability of the nanosuspension (24 weeks) was achieved when stored at 4°C and in the dark. Copyright © 2014 Elsevier B.V. All rights reserved.
Dankowska, A; Domagała, A; Kowalewski, W
2017-09-01
The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yifeng; Huang Jianfeng, E-mail: hjfnpu@163.com; Cao Liyun
2012-02-15
La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites were prepared via a simple sol-gel process. The as-prepared La{sub 2}CuO{sub 4} and La{sub 2} {sub -x}Ca{sub x}CuO{sub 4} crystallites were characterized by X-ray diffraction, transmission electron microscope and UV-vis-NIR spectra. Results show that the grain size of La{sub 2}CuO{sub 4} crystallites increases with the increase of heat treatment temperature from 600 Degree-Sign C to 800 Degree-Sign C. Optical properties show that La{sub 2}CuO{sub 4} crystallites have broad absorption both in the UV-vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV tomore » 1.284 eV with the increase of calcination temperature from 600 Degree-Sign C to 800 Degree-Sign C. In the series of La{sub 2-x}Ca{sub x}CuO{sub 4} compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca{sup 2+} in La{sub 2}CuO{sub 4} is within the range of x = 0.12-0.15. In the whole UV-vis-NIR region, La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca{sup 2+} content. - Highlights: Black-Right-Pointing-Pointer The optical band gap can be tuned by adjusting the grain size and Ca{sup 2+} content. Black-Right-Pointing-Pointer La{sub 2}CuO{sub 4} crystallites exhibit a broad absorption band both in the UV-vis region and in the NIR region. Black-Right-Pointing-Pointer The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. Black-Right-Pointing-Pointer In the whole UV-vis-NIR region, the La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites displayed a broad absorption. Black-Right-Pointing-Pointer The band gap of La{sub 2-x}Ca{sub x}CuO{sub 4} increases linearly with doping level when 0 {<=} x {<=} 0.12.« less
Diffusion of water-soluble sorptive drugs in HEMA/MAA hydrogels.
Liu, D E; Dursch, T J; Taylor, N O; Chan, S Y; Bregante, D T; Radke, C J
2016-10-10
We measure and, for the first time, theoretically predict four prototypical aqueous-drug diffusion coefficients in five soft-contact-lens material hydrogels where solute-specific adsorption is pronounced. Two-photon fluorescence confocal microscopy and UV/Vis-absorption spectrophotometry assess transient solute concentration profiles and concentration histories, respectively. Diffusion coefficients are obtained for acetazolamide, riboflavin, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA) copolymer hydrogels as functions of composition, equilibrium water content (30-90%), and aqueous pH (2 and 7.4). At pH2, MAA chains are nonionic, whereas at pH7.4, MAA chains are anionic (pKa≈5.2). All studied prototypical drugs specifically interact with HEMA and nonionic MAA (at pH2) moieties. Conversely, none of the prototypical drugs adsorb specifically to anionic MAA (at pH7.4) chains. As expected, diffusivities of adsorbing solutes are significantly diminished by specific interactions with hydrogel strands. Despite similar solute size, relative diffusion coefficients in the hydrogels span several orders of magnitude because of varying degrees of solute interactions with hydrogel-polymer chains. To provide a theoretical framework for the new diffusion data, we apply an effective-medium model extended for solute-specific interactions with hydrogel copolymer strands. Sorptive-diffusion kinetics is successfully described by local equilibrium and Henry's law. All necessary parameters are determined independently. Predicted diffusivities are in good agreement with experiment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo
2018-05-01
A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.
Doménech-Carbó, Antonio; Doménech-Carbó, María Teresa; Valle-Algarra, Francisco Manuel; Gimeno-Adelantado, José Vicente; Osete-Cortina, Laura; Bosch-Reig, Francisco
2016-07-13
A web-based database of voltammograms is presented for characterizing artists' pigments and corrosion products of ceramic, stone and metal objects by means of the voltammetry of immobilized particles methodology. Description of the website and the database is provided. Voltammograms are, in most cases, accompanied by scanning electron microphotographs, X-ray spectra, infrared spectra acquired in attenuated total reflectance Fourier transform infrared spectroscopy mode (ATR-FTIR) and diffuse reflectance spectra in the UV-Vis-region. For illustrating the usefulness of the database two case studies involving identification of pigments and a case study describing deterioration of an archaeological metallic object are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang
2016-01-01
TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.
Enhancement of the thermal transport in a culture medium with Au nanoparticles
NASA Astrophysics Data System (ADS)
Jiménez-Pérez, J. L.; Fuentes, R. Gutierrez; Alvarado, E. Maldonado; Ramón-Gallegos, E.; Cruz-Orea, A.; Tánori-Cordova, J.; Mendoza-Alvarez, J. G.
2008-11-01
In this work, it is reported the gold nanoparticles synthesis, their characterization, and their application to the enhancement of the thermal transport in a cellular culture medium. The Au nanoparticles (NPs), with average size of 10 nm, contained into a culture medium (DMEM (1)/F12(1)) (CM) increased considerably the heat transfer in the medium. Thermal lens spectrometry (TLS) was used to measure the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression, for transient thermal lens, to the experimental data. Our results show that the thermal diffusivity of the culture medium is highly sensitive to the Au nanoparticle concentration and size. The ability to modify the thermal properties to nanometer scale becomes very important in medical applications as in the case of cancer treatment by using photodynamic therapy (PDT). A complementary study with UV-vis and TEM techniques was performed to characterize the Au nanoparticles.
NASA Astrophysics Data System (ADS)
Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.
2018-04-01
Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.
Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur
2016-07-01
Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M
2017-09-04
Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian
2017-01-01
Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro‐(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X‐ray diffraction, and show Al3+ framework incorporation and illustrate the differences between misoriented and b‐oriented films. The methanol‐to‐hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro‐spectroscopy with on‐line mass spectrometry, showing that the b‐oriented zeolite ZSM‐5 films are active and stable under realistic process conditions. PMID:28675590
Liu, Jin; Gan, Huihui; Wu, Hongzhang; Zhang, Xinlei; Zhang, Jun; Li, Lili; Wang, Zhenling
2018-01-01
Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3 nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system, were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron acceptor. In addition, the type and concentration of organic substrates have an important role in the photocatalytic reduction of Cr(VI). PMID:29690548
Harada, Takunori; Hayakawa, Hiroshi; Kuroda, Reiko
2008-07-01
We have designed and built a novel universal chiroptical spectrophotometer (UCS-2: J-800KCMF), which can carry out in situ chirality measurement of solid samples without any pretreatment, in the UV-vis region and with high relative efficiency. The instrument was designed to carry out transmittance and diffuse reflectance (DR) circular dichroism (CD) measurements simultaneously, thus housing two photomultipliers. It has a unique feature that light impinges on samples vertically so that loose powders can be measured by placing them on a flat sample holder in an integrating sphere. As is our first universal chiroptical spectrophotometer, UCS-1, two lock-in amplifiers are installed to remove artifact signals arising from macroscopic anisotropies which are unique to solid samples. High performance was achieved by theoretically analyzing and experimentally proven the effect of the photoelastic modulator position on the CD base line shifts, and by selecting high-quality optical and electric components. Measurement of microcrystallines of both enantiomers of ammonium camphorsulfonate by the DRCD mode gave reasonable results.
Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process
NASA Astrophysics Data System (ADS)
Kannan, Selvaraj; Vinitha, Perumal; Mohanraj, Kannusamy; Sivakumar, Ganesan
2018-02-01
This is the first report for the synthesis of L-cysteine mediated Cu2WS4 nanoparticles for different temperatures by an inexpensive and less pollutive hydrothermal method. The as-synthesized particles were characterized by XRD, FTIR, FESEM, UV-vis diffuse reflectance and PL spectra technique respectively. The phase purity and structural confirmation were studied by X-ray powder diffraction technique. It is observed that the synthesis temperature affecting the crystalline size. The optical analysis of the Cu2WS4 nanoparticles showed direct band gap in the range of 2.1-2.3 eV. The intensity of the PL emission spectra decreases with increase of reaction temperature. The antibacterial performance of Cu2WS4 nanoparticles were investigated by agar well diffusion method and the results confirm that the antibacterial activity of Cu2WS4 against Gram-positive (B. subtilis, M. luteus) and Gram-negative (E. coli, P. aeruginosa and K. pneumoniae) bacteria.
Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan
2018-05-01
To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aadila, A., E-mail: aadilaazizali@gmail.com; Afaah, A. N.; Asib, N. A. M.
Poly(methyl methacrylate) (PMMA) films were deposited on glass substrate by sol-gel spin-coating method. The films were annealed for 10 minutes in furnace at different annealing temperature of room temperature, 50, 100, 150 and 200 °C. The effect of annealing temperatures to the surface and optical properties of PMMA films spin-coated on the substrate were investigated by Atomic Force Microscope (AFM) and Ultraviolet-Visible (UV-Vis) Spectroscopy. It was observed in AFM analysis all the annealed films show excellent smooth surface with zero roughness. All the samples demonstrate a high transmittance of 80% in UV region as shown in UV-Vis measurement. Highly transparentmore » films indicate the films are good optical properties and could be applied in various optical applications and also in non-linear optics.« less
NASA Astrophysics Data System (ADS)
Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.
2008-12-01
. Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.
Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.
Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia
2011-05-03
Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.
Impact of vanadium ions in barium borate glass
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.; Hammad, Ahmed H.
2015-02-01
Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.
Ferreira, Magda R. A.; Fernandes, Mônica T. M.; da Silva, Wliana A. V.; Bezerra, Isabelle C. F.; de Souza, Tatiane P.; Pimentel, Maria F.; Soares, Luiz A. L.
2016-01-01
Background: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as “Jucá,” where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid [EA]). Objective: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). Materials and Methods: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. Results: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. Conclusion: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea. SUMMARY The polyphenols of fruits of Libidibia ferrea can be quantified by UV/VIS and HPLCThe HPLC method was able to detect the gallic and ellagic acids in several samples of fruits of Libidibia ferreaThe phenolic profiles of fruits from Libidibia ferrea by HPTLC and HPLC were reproductible. Abbreviations used: HPTLC: high performance thin layer chromatography, HPLC: high performance liquid chromatography, UV-Vis: spectrophotometry PMID:27279721
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace industry librarians and technical information specialists as information intermediaries.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1996-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-06-01
In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.
Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N; Stansbury, Jeffery; Sikes, Hadley D
In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O 2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O 2 . Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O 2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O 2 in eosin-mediated initiation aids the design of O 2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing.
Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique
2013-12-02
The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N.; Stansbury, Jeffery; Sikes, Hadley D.
2016-01-01
In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing. PMID:26755925
Effects of iron on optical properties of dissolved organic matter.
Poulin, Brett A; Ryan, Joseph N; Aiken, George R
2014-09-02
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
Zakavi, Saeed; Rahiminezhad, Hajar; Alizadeh, Robabeh
2010-12-01
Interaction of meso-tetra(4-sulfonatophenyl)porphyrin (H2tppS4) with weak and strong protic acid have been studied by UV-vis spectroscopy in water, dichloromethane and methanol. Different shifts of the Soret and Q(0,0) bands in the three solvents, the aggregation of diprotonated species and the stability of porphyrin-acid adducts in the solution, may be explained by the inter- and intramolecular hydrogen bonds. Whilst, the addition of excess amounts of tetra-n-butylammonium chloride to H2tppS4(Cl)2 in dichloromethane has little to no effect on the UV-vis spectrum of the dication, gradual addition of tetra-n-butylammonium hydrogen sulfate to the dichloromethane solution of H2tppS4(H2SO4)2 leads to the degradation of adducts and the release of porphryin. The results of this study clearly show the crucial role played by hydrogen bonds between the porphyrin diprotonated species and the counter ion in the stability of porphyrin diacids in solution. Copyright © 2010 Elsevier B.V. All rights reserved.
Ruzik, L; Obarski, N; Papierz, A; Mojski, M
2015-06-01
High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel
2017-08-03
Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.
Caballo, Carmen; Costi, Esther María; Sicilia, María Dolores; Rubio, Soledad
2012-09-15
Development of simple and rapid analytical methods for predicting supplemental feeding requirements in aquaculture is a need to reduce production costs. In this article, a supramolecular solvent (SUPRAS) made up of decanoic acid (DeA) assemblies was proposed to simplify sample treatment in the total and individual determination of carotenoids (red-pink pigments) in farmed salmonids. The analytes were quantitatively extracted in a single step that spends a few minutes using a small volume of SUPRAS (i.e. 800 μL) and directly determined in extracts without the interference from fats or other matrix components. The methods based on the combination of microextraction with SUPRAS and photometry or HPLC-UV/VIS spectroscopy were developed for the determination of total and individual carotenoids, respectively. The applicability of the methods was demonstrated by analysing non-fortified and fortified samples of farmed Atlantic salmons and rainbow trouts. Recoveries obtained by photometry and HPLC-UV/VIS spectroscopy were within the intervals 98-104% and 94-106%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Synthesis and characterization of Y2O3 nano-material: An experimental and theoretical study
NASA Astrophysics Data System (ADS)
Ahmad, Sheeraz; Faizan, Mohd; Ahmad, Shabbir; Ikram, Mohd
2018-04-01
We made an attempt to synthesize pure Y2O3 nanomaterial by using the sol-gel method followed by annealing at 600°C and 900°C. The synthesized Y2O3 nanoparticle was characterized by using XRD, FTIR, and UV-Vis spectroscopy. The structural refinement was performed using FULLPROF software by the Rietveld method. The refinement parameters such as lattice constant, atomic position, occupancy, R-factor and goodness of fit (χ2) were calculated. The nanoparticle has a single phase cubic structure with Ia -3 space group. The main absorption band in FTIR spectra centered at 560 cm-1 is attributed to Y-O vibration while the broadband at 3450 cm-1 arises due to O-H vibration. The band gap was obtained from the reflectance spectra using the K-M function F(R∞). The optimized structural parameters and UV-Vis spectrum were calculated using DFT and TD-DFT/B3LYP methods in bulk phase of Y2O3 and compared with experimental UV-Vis spectra in nanophase.
Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.
Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L
2015-01-05
Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong
2016-08-01
At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Kyllinga brevifolia mediated greener silver nanoparticles
NASA Astrophysics Data System (ADS)
Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia
2017-12-01
Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.
Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim
2006-11-15
Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.
Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.
Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K
2008-10-24
Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.
NASA Astrophysics Data System (ADS)
Lourenço Neto, M.; Agra, K. L.; Suassuna Filho, J.; Jorge, F. E.
2018-03-01
Time-dependent density functional theory (TDDFT) calculations of electronic transitions have been widely used to determine molecular structures. The excitation wavelengths and oscillator strengths obtained with the hybrid exchange-correlation functional B3LYP in conjunction with the ADZP basis set are employed to simulate the UV-Vis spectra of eight phenolic acids. Experimental and theoretical UV-Vis spectra reported previously in the literature are compared with our results. The fast, sensitive and non-destructive technique of photoacoustic spectroscopy (PAS) is used to determine the UV-Vis spectra of four Brazilian tropical fresh fruits in natura. Then, the PAS along with the TDDFT results are for the first time used to investigate and identify the presence of phenolic acids in the fruits studied in this work. This theoretical method with this experimental technique show to be a powerful and cheap tool to detect the existence of phenolic acids in fruits, vegetables, cereals, and grains. Comparison with high performance liquid chromatography results, when available, is also carried out.
Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F
2012-08-15
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.
Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.
Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi
2013-10-01
The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction. Copyright © 2013 Elsevier B.V. All rights reserved.
Torrecilla, José S; Rojo, Ester; Domínguez, Juan C; Rodríguez, Francisco
2010-02-10
A simple and novel method to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO) and refined olive-pomace oil (ROPO) is described here. This method consists of calculating chaotic parameters (Lyapunov exponent, autocorrelation coefficients, and two fractal dimensions, CPs) from UV-vis scans of adulterated EVOO samples. These parameters have been successfully linearly correlated with the ROO or ROPO concentrations in 396 EVOO adulterated samples. By an external validation process, when the adulterating agent concentration is less than 10%, the integrated CPs/UV-vis model estimates the adulterant agent concentration with a mean correlation coefficient (estimated versus real concentration of low grade olive oil) greater than 0.97 and a mean square error of less than 1%. In light of these results, this detector is suitable not only to detect adulterations but also to measure impurities when, for instance, a higher grade olive oil is transferred to another storage tank in which lower grade olive oil was stored that had not been adequately cleaned.
Babu, Sundaram Ganesh; Ramalingam Vinoth; Neppolian, Bernaurdshaw; Dionysiou, Dionysios D; Ashokkumar, Muthupandian
2015-06-30
Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO-TiO2 photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV-vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO-TiO2 more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO2 and CuO facilitates the separation of photogenerated electron-hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC-MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO2 based photocatalysts for the complete mineralization of organic contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation
NASA Astrophysics Data System (ADS)
Shao, X.; Cao, C.
2014-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.
Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri
2015-11-01
Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse scatterers in the radiative transfer domain.[1] Kohout T. et al. (2014), Icarus 237(15), 75-83.[2] Kohout T. et al. (2015), Workshop on Space Weathering of Airless Bodies, Abstract.[3] Muinonen K. et al. (2009), JQSRT 110, 1628-1639.
High temperature thermochromic polydiacetylenes: Design and colorimetric properties
NASA Astrophysics Data System (ADS)
Huo, Jingpei; Hu, Zhudong; He, Guozhang; Hong, Xiaxiao; Yang, Zhihao; Luo, Shihe; Ye, Xiufang; Li, Yanli; Zhang, Yubo; Zhang, Min; Chen, Hong; Fan, Ting; Zhang, Yuyuan; Xiong, Bangyun; Wang, Zhaoyang; Zhu, Zhibo; Chen, Dongchu
2017-11-01
Three novel polydiacetylenes (PDAs) are synthesized through the self-assembly followed by the topochemical polymerization via controllable electrophoretic deposition. All the samples could undergo a multi-step thermochromic process, turning purple and red successively over a wide range from room temperature to above 250 °C. Resulting PDAs are studied by UV-vis, IR, Raman spectroscopies, and chromoisomerism by naked eye visualization; their stabilities by thermogravimetric method, and emission behavior by fluorescence spectroscopy. To study the mechanism of the thermochromic response, temperature-dependent UV-vis spectra, the results of which successfully highlighted the close relationship between chromatic transitions and the conformational changes.
Yu, Lei
2017-06-26
A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.
Synthesis and Properties of Iron Oxide Particles Prepared by Hidrothermal Method
NASA Astrophysics Data System (ADS)
Saragi, T.; Santika, A. S.; Permana, B.; Syakir, N.; Kartawidjaja, M.; Risdiana
2017-05-01
Iron oxide of hematite (α-Fe2O3) has been successfully synthesized by hydrothermal method. The starting materials were Fe(NO3)3.9H2O, 2-methoxyethanol, diethanolamine and n-hexane. The optical, morphology and crystal structure were measured by UV-VIS, TEM and XRD, respectively. From UV-VIS measurement, it was found that the band-gap of sample was 4.17 eV. The morphology of particle was plate-like form. The sample which sintered at 1100°C has high quality crystal with hexagonal structure of α-Fe2O3 phase.
[Preparation of a kind of SERS-active substrates for spot fast analysis].
Ji, Nan; Li, Zhi-Shi; Zhao, Bing; Zou, Bo
2013-02-01
A kind of SERS-active substrates was prepared using chemical self-assembly method, aiming at spot fast analysis using portable Raman spectrometer. PDDA was first absorbed on the inner wall of vials, and then Ag colloids were assembled on the inner wall. UV-Vis spectra and Raman spectra of two kinds of blank vials were investigated and the transparent vials were thought to be better for SERS-vials. UV-Vis spectra were used to monitor the assembly process of Ag colloids. SERS activity of our substrates was characterized using p-ATP as probing molecules.
Effects of gamma radiation on commercial food packaging films—study of changes in UV/VIS spectra
NASA Astrophysics Data System (ADS)
Moura, E. A. B.; Ortiz, A. V.; Wiebeck, H.; Paula, A. B. A.; Silva, A. L. A.; Silva, L. G. A.
2004-09-01
The effects of gamma irradiation doses up to 100 kGy on the optical properties of different commercial packaging films were studied in this paper. The packaging films analyzed were: polyethylene "LDPE", amide 6-amide 6.6 copolymer "PA6-PA6.6" and poly(ethylene terephthalate) "PET". An investigation on film samples before and after irradiation was performed by UV/VIS spectroscopy. The results showed that, in the absorption spectra of irradiated LDPE and PA6-PA6.6 films, a red-shift in the wavelength of the UV cutoff and a marked reduction in % transmittance (at low wavelengths) occur with increasing radiation dose. With respect to PET samples, no significant changes were observed in either light absorption or transmittance.
Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sarıoğlu, Cevat
2018-03-05
In this work, iodine (I) doped hollow and mesoporous Fe 2 O 3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe 2 O 3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe 2 O 3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe 2 O 3 particles were formed. The optical band gap values of the Fe 2 O 3 photocatalysts changed between 2.104 and 1.93eV. Photocatalytic efficiency of Fe 2 O 3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe 2 O 3 photocatalyst had 97.723% photodegradation rate and 8.638×10 -2 min -1 kinetic constant which showed the highest photocatalytic activity within 45min. Moreover, stability and reusability experiments of Fe 2 O 3 photocatalysts were carried out. The Fe 2 O 3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe 2 O 3 is a good candidate for photocatalysts. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Ziling; Wu, Dan; Wang, Wei; Tan, Fatang; Ng, Tsz Wai; Chen, Jianguo; Qiao, Xueliang; Wong, Po Keung
2017-02-01
Bacterial inactivation by magnetic photocatalysts has now received growing interests due to the easy separation for recycle and reuse of photocatalysts. In this study, magnetic Fe@ZnO0.6S0.4 photocatalyst was prepared by a facile two-step precipitation method. Multiple techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffused reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM) were employed to characterize the structure, morphology and physicochemical properties of the photocatalyst. The as-obtained Fe@ZnO0.6S0.4 possessing magnetic property was easily collected from the reaction system by a magnet. Under white light-emitting-diode (LED) lamp irradiation, Fe@ZnO0.6S0.4 nanocomposite could completely inactivate 7-log of Escherichia coli K-12 within 5 h. More importantly, almost no decrease of photocatalytic efficiency in bacterial inactivation was observed even after five consecutive cycles, demonstrating Fe@ZnO0.6S0.4 exhibited good stability for reuse. The low released rate of Fe2+/Fe3+ and Zn2+ from Fe@ZnO0.6S0.4 composite further indicated the photocatalyst showed low cytotoxicity to bacterium and high stability under LED lamp irradiation. Facile preparation, high photocatalytic efficiency, good stability and reusability, and magnetic recovery property endow Fe@ZnO0.6S0.4 nanocomposite to be a promising photocatalytic material for bacterial inactivation.
Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar
2013-01-01
Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018
Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation
Markoulaki, Vassiliki Ι.; Papadas, Ioannis T.; Kornarakis, Ioannis; Armatas, Gerasimos S.
2015-01-01
Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1) and pure mesoporous CeO2 (~1 µmol·h−1). PMID:28347106
NASA Astrophysics Data System (ADS)
Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying
2018-06-01
AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.
Thornton, Jason M; Raftery, Daniel
2012-05-01
Undoped and carbon doped cadmium indate (CdIn(2)O(4)) powders were synthesized using a sol-gel pyrolysis method and evaluated for hydrogen generation activity under UV-visible irradiation without the use of a sacrificial reagent. Each catalyst powder was loaded with a platinum cocatalyst in order to increase electron-hole pair separation and promote surface reactions. Carbon-doped indium oxide and cadmium oxide were also prepared and analyzed for comparison. UV-vis diffuse reflectance spectra indicate the band gap for C-CdIn(2)O(4) to be 2.3 eV. C-doped In(2)O(4) showed a hydrogen generation rate approximately double that of the undoped material. When compared to platinized TiO(2) in methanol, which was used as a control material, C-CdIn(2)O(4) showed a 4-fold increase in hydrogen production. The quantum efficiency of the material was calculated at different wavelength intervals and found to be 8.7% at 420-440 nm. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm.
NASA Astrophysics Data System (ADS)
Effendi, N. A. S.; Samsi, N. S.; Zawawi, S. A.; Hassan, O. H.; Zakaria, R.; Yahya, M. Z. A.; Ali, A. M. M.
2017-09-01
A dye-sensitized solar cells (DSSCs) using a nanocomposite (NC) semiconductor film, consisting of graphene layer and ZnO nanosheets (Gr-ZnO) is fabricated by electrodeposition process. The DSSCs based on Gr-ZnO NC were determined via electrochemical impedance spectra (EIS), UV-Visible diffused reflectance spectroscopy (UV-Vis), and photovoltaic performances J-V curves to substantiate the explanations. Impedance spectra shows that a smaller charge transport time constant occurs in DSSCs based on Gr-ZnO NC comparing to ZnO. This improved the electron collecting efficiency significantly, resulting in high open circuit voltage. Moreover, Gr-ZnO NC shows an efficient photoinduced charge separation and transportation can be achieved at the interface thus exhibit excellent potential for photocurrent generation compared with sole ZnO. Gr-ZnO NC obtained a maximum photocurrent response for an open-circuit voltage and a power conversion efficiency of 0.96 V and 7.01% respectively, which is doubled from sole ZnO. The fabricated Gr-ZnO NC cells show better performances compared to conventional ZnO structure reference cell.
Shifu, Chen; Xiaoling, Yu; Huaye, Zhang; Wei, Liu
2010-08-15
In this paper, the heterostructure In(2)O(3)/In(OH)(3) photocatalyst was prepared by programmed thermal treatment of In(OH)(3) using In(NO(3))(3).9H(2)O as the precursor. Various characterization methods such as X-ray power diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectrometry (FT-IR) and transmission electron microscopy (TEM) were employed to investigate the structure, morphologies, and optical properties. Terephthalic acid was used as a probe molecule to detect the generation of hydroxyl radicals (OH) on the surface of UV-illuminated photocatalyst by a photoluminescence (PL) technique. The results showed that the photocatalytic activity of the heterostructure In(2)O(3)/In(OH)(3) was higher than that of single In(2)O(3) or In(OH)(3). The increased photocatalytic activity may be attributed to the formation of the heterojunction between In(2)O(3) and In(OH)(3), which suppresses the recombination of photoexcited electrons-hole pairs. Copyright 2010 Elsevier B.V. All rights reserved.
Jayanthi Kalaivani, G; Suja, S K
2016-06-05
Inulin, a water soluble carbohydrate polymer, was extracted from Allium sativum L. by hot water diffusion method. A novel bio-nanocomposite was prepared by embedding TiO2 (rutile) onto the inulin matrix. The extracted inulin and the prepared bio-nanocomposite were characterized using UV-vis, FT-IR, XRD, SEM, TEM and TGA techniques. The photocatalytic activity of the bio-nanocomposite for the degradation of methylene blue was studied under UV illumination in batch mode experiment and was found to be twice as high as that of pristine TiO2. The kapp for inulin-TiO2 (0.0449 min(-1)) was higher than that for TiO2 (0.0325 min(-1)) which may be due to the synergistic action of inulin and TiO2. The stabilization of photo excited electron suppressed the electron-hole pair recombination thereby inducing the electrons and the holes to participate in the photo reduction and oxidation processes, respectively and enhancing the photocatalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dai, Peng; Yan, Tao-Tao; Yu, Xin-Xin; Bai, Zhi-Man; Wu, Ming-Zai
2016-12-01
Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.
Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej
2018-01-01
Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370
Study of Proton Transfer in E. Coli Photolyase
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liu, Zheyun; Li, Jiang; Wang, Lijuan; Zhong, Dongping
2013-06-01
Photolyase is a flavoprotein which utilizes blue-light energy to repair UV-light damaged DNA. The catalytic cofactor of photolyase, flavin adenine dinucleotide (FAD), has five redox states. Conversions between these redox states involve intraprotein electron transfer and proton transfer, which play important role in protein function. Here we systematically studied proton transfer in E. coli photolyase in vitro by site-directed mutagenesis and steady-state UV-vis spectroscopy, and proposed the proton channel in photolyase. We found that in the mutant N378C/E363L, proton channel was completely eliminated when DNA substrate was bound to the protein. Proton is suggested to be transported from protein surface to FAD by two pathways: the proton relay pathway through E363 and surface water to N378 and then to FAD; and the proton diffusion pathway through the substrate binding pocket. In addition, reaction kinetics of conversions between the redox states was then solved and redox potentials of the redox states were determined. These results described a complete picture of FAD redox changes, which are fundamental to the functions of all flavoenzymes.
The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials
NASA Astrophysics Data System (ADS)
Yu, H.; Liu, C. M.; Huang, X. Y.; Lei, M. Y.
2017-01-01
In this paper, ZnO-MoS2-FT (FT is the fabrication temperature of MoS2) core shell nano-material samples (with ZnO as a core and MoS2 as a shell material) were fabricated on ITO substrate using hydrothermal method. The crystal structure, morphology, optical absorption and photoluminescence (PL) of samples were investigated. Compared with that of pure ZnO nanorods, ZnO-MoS2-FT samples show an enhanced light absorption. In addition, ultraviolet (UV) and visible (Vis) PL intensity of ZnO-MoS2-FT samples excited by 325 nm laser are greatly weakened. The UV PL peak position is not changed obviously. However, the Vis PL peak position is changed visibly. The Vis PL of ZnO-MoS2-FT samples under UV excitation indicates that the ratio of oxygen interstitial to oxygen vacancy is decreased. The suppression of UV PL of ZnO-MoS2-FT samples may be related to the weakening of crystal quality of ZnO, easier separation of electron-hole pairs, enhancement of light absorption, and newly introduced defects in the interface between ZnO and MoS2. Under 514 nm laser excitation, the PL peak position of ZnO-MoS2-FT samples has a red shift with FT being increased from 80 to 160 °C. The influence of excitation power (EP) on the PL of ZnO-MoS2-FT samples was also investigated. The PL of ZnO-MoS2-FT samples have a red shift with EP being increased. This may be due to the sample temperature is increased with EP, resulting an enhancement of electron-phonon interaction. A schematic diagram of charge generation and transfer is presented to understand the mechanism of PL of ZnO-MoS2 under UV and Vis excitation.
Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel
2014-02-01
Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-Vis
Hu, Changying; Xu, Jie; Zhu, Yaqi; Chen, Acong; Bian, Zhaoyong; Wang, Hui
2016-09-01
Morphological effect of bismuth vanadate (BiVO4) on visible light-driven catalytic degradation of aqueous paracetamol was carefully investigated using four monoclinic BiVO4 catalysts. The catalysts with different morphologies were controllably prepared by a hydrothermal method without any additions. The prepared catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). Under the visible light irradiation, these catalysts with different morphology were investigated to degrade aqueous paracetamol contaminant. The degradation effects were evaluated based on the catalyst morphology, solution pH, initial paracetamol concentration, and catalyst dosage. Cube-like BiVO4 powders exhibited excellent photocatalytic performance. The optimal photocatalytic performance of the cube-like BiVO4 in degrading paracetamol was achieved.
A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.
Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard
2017-07-25
A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).
Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities
NASA Astrophysics Data System (ADS)
Wang, Yongbin; Zhang, Lixin; Jiu, Hongfang; Li, Na; Sun, Yixin
2014-06-01
A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.
Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres
NASA Astrophysics Data System (ADS)
Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun
2015-07-01
A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.
Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission
NASA Astrophysics Data System (ADS)
Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.
2017-10-01
Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.
Localized Plasmon resonance in metal nanoparticles using Mie theory
NASA Astrophysics Data System (ADS)
Duque, J. S.; Blandón, J. S.; Riascos, H.
2017-06-01
In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.
NASA Astrophysics Data System (ADS)
Selvi, Canan; Nartop, Dilek
2012-09-01
New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).
GOME-2A retrievals of tropospheric NO2 in different spectral ranges - influence of penetration depth
NASA Astrophysics Data System (ADS)
Behrens, Lisa K.; Hilboll, Andreas; Richter, Andreas; Peters, Enno; Eskes, Henk; Burrows, John P.
2018-05-01
In this study, we present a novel nitrogen dioxide (NO2) differential optical absorption spectroscopy (DOAS) retrieval in the ultraviolet (UV) spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere. As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution. We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of ˜ 60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only ˜ 36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV. While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analysed together with simulated NO2 fields, can help to better interpret the model output.
Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S
2015-10-15
The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.
NASA Astrophysics Data System (ADS)
Kose, Etem; Atac, Ahmet; Bardak, Fehmi
2018-07-01
This study comprises the structural and spectroscopic evaluation of a quinoline derivative, 2-chloro-3-methylquinoline (2Cl3MQ), via UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman techniques experimentally, theoretically with DFT and TD-DFT quantum chemical calculations at B3LYP/6-311++G (d, p) level of theory, and investigation of the in silico pharmaceutical potent of 2Cl3MQ in comparison to 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines. The experimental measurements were recorded as follows; UV-vis spectra were obtained in the range of 200-400 nm in the water and ethanol solvents. 1H and 13C NMR spectra were recorded in CDCl3. Vibrational spectra were obtained in the region of 4000-400 cm-1 and 3500-10 cm-1 for FT-IR and FT-Raman spectra, respectively. Structural and spectroscopic features obtained through theoretical evaluations include: electrostatic features, atomic charges and molecular electrostatic potential surface, the frontier molecular orbital characteristics, the density of states and their overlapping nature, the electronic transition properties, thermodynamical and nonlinear optical characteristics, and predicted UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman spectra. Ligand-enzyme interactions of 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines with Malate Synthase from Mycobacterium Tuberculosis (MtbMS) were investigated via molecular docking. The role of position of methyl substitution on the inhibitor character of the ligands was discussed on the basis of noncovalent interaction profiles.
Bağda, Efkan; Bağda, Esra; Durmuş, Mahmut
2017-10-01
The interactions of small molecules with G-quadruplex and double stranded DNA are important due to their potential biological and medical usages. In the present paper, the interactions of indium (III) phthalocyanines (quaternized 2,3,9,10,16,17,23,24-octakis-[(3-pyridyloxy) phthalocyaninato] chloroindium(III): OInPc and quaternized 2(3),9(10),16(17),23(24)-tetrakis-[(3-pyridyloxy) phthalocyaninato] chloroindium(III): TInPc) with hybrid G-quadruplex (Tel 21) and parallel G-quadruplexes (nucleolin, KRAS, c-MYC, vegf) were studied. The interactions of these phthalocyanines with ctDNA were also investigated. These interactions were measured by different spectroscopic techniques such as UV-Vis, fluorescence and circular dichroism. The UV-Vis spectroscopic data treated with Benesi-Hildebrand equation and Benesi-Hildebrand constants (K BH ) were calculated. These constants were found higher for octa peripheral pyridyloxy substituted phthalocyanine, OInPc. Besides, UV-Vis analysis showed that the interaction of G-quadruplexes with tetra peripheral pyridyloxy substituted phthalocyanine derivative (TInPc) resulted in removal of central indium (III) atom from the cavity of phthalocyanine macrocycle. The UV-Vis melting studies as well as fluorescence replacement techniques were also employed for clarification of mechanism. The binding mode of molecules with ct DNA was also supported with viscosity measurements. From the results, the stabilization and destabilization of G-quadruplex depending on the concentration of the OInPc and TInPc showed that these two indium (III) phthalocyanines have the potential of both the elucidation role of G-quadruplexes in gene expression and the usage in cancer therapy. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf
2017-09-01
FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.
Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz
2016-01-01
The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R2 of 0.99 in calibration and R2 of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R2 of 0.96 in calibration and R2 of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content—the most important parameters to be measured in this type of liqueurs. PMID:27735832
Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz
2016-10-09
The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.
Wang, Yong; Ni, Yongnian
2014-02-01
Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.
Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition
NASA Astrophysics Data System (ADS)
Al-Jawad, Selma M. H.
2017-10-01
Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.
A Raman and UV-Vis study of catecholamines oxidized with Mn(III)
NASA Astrophysics Data System (ADS)
Barreto, W. J.; Ponzoni, S.; Sassi, P.
1998-12-01
A UV-Vis and Raman spectroscopy study of three aminochromes generated through Mn 3+ oxidation of the dopamine, L-dopa and adrenaline molecules at physiological pH was performed. The UV-Vis spectra of the catecholamines oxidized using Mn 3+ in buffer solution at pH 7.2 show a band at ca. 300 nm, formed by two transitions at 280 nm and 300 nm assigned to an La and Lb transition respectively, and other at ca. 470 nm assigned to an n- π* transition localized in the carbonyl group. This assignment is suggested by the UV-Vis and Raman spectra of ortho-aminoquinone generated by MnO 2 oxidation of a dopamine aqueous acidic solution. The resonance Raman spectra of the three chromes at buffer pH 7.2 show a very similar feature and the most intense bands are observed in the spectral range 1100-1800 cm -1. The band around 1680 cm -1 for the three compounds is assigned to a ν(CO) stretching vibration, 1630 cm -1 to the ν(CC) ring mode, two bands at 1423, 1439 cm -1; 1427, 1438 cm -1 and 1456, 1475 cm -1 are assigned to a ν(CN +) vibration, for aminochrome, dopachrome and adrenochrome, respectively. The excitation profiles for the most intense bands for aminochrome and adrenochrome were obtained. The band assigned to the ν(CN +) present a red shift with respect to the visible band peak, however the band in adrenochrome at 1475 cm -1 shows a profile similar to ν(CO) and ν(CC) modes that reflects the methyl group effect on mixing this mode more effectively with the ν(CC) ring mode.
Keawwangchai, Somchai; Morakot, Nongnit; Keawwangchai, Tasawan
2018-09-05
A water soluble chemosensor for Ge 4+ ion based on fluorone derivative containing 3,4-bis(2-(diethylamino)-2-oxoethoxy)phenyl (R8) has been synthesized. The binding abilities between R8 and 10 equiv. of Na + , K + , Ca 2+ , Fe 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Al 3+ , Cr 3+ , Fe 3+ and Ge 4+ ions in 1% v/v EtOH-water (tris-buffer pH 7.0) were studied using UV-vis and fluorescence spectrophotometry. When observed by naked-eyes, the color of R8 changed from yellow-orange to pink and the fluorescent color changed from green to non-fluorescence when complexed with Ge 4+ ion. The spectral analysis showed that UV-vis absorption and fluorescence emission intensity of R8 decreased dramatically when Ge 4+ ion was added comparing with other ions. To explain this behavior, the quantum calculation was performed using the hybrid density functional at B3LYP /LanL2DZ level of theory. The calculated orbital energies indicated that the decreasing of UV-vis absorption and the quenching of fluorescence were due to the complexation induced metal to ligand charge transfer. The association constants (K a ) of R8-Ge 4+ complexes calculated from Benesi-Hildebrand equation was 6.21 × 10 5 M -1 . The UV-vis detection limit for Ge 4+ was 4.40 × 10 -7 M which was three orders of magnitude lower than those of Al 3+ , Cd 2+ , Cu 2+ and Na + ion. Copyright © 2018 Elsevier B.V. All rights reserved.
Sales, A; Alvarez, A; Areal, M Rodriguez; Maldonado, L; Marchisio, P; Rodríguez, M; Bedascarrasbure, E
2006-10-11
Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.
Dolcet, Marta M; Torres, Mercè; Canela, Ramon
2016-06-25
The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.
Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D
2014-10-01
Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.
Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts
NASA Astrophysics Data System (ADS)
Yan, C. Y.; Yi, W. T.; Xiong, J.; Ma, J.
2018-03-01
The Bi2O3 nanorods, flower-like Bi2WO6 and Bi2O3/Bi2WO6 heterojunction composites with the molar ratio of nBi:nW from 2:1, 2.5:1, to 3:1 have been synthesized via one-step hydrothermal method and two-step hydrothermal method, respectively. The products are characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), and scanning electron microscopy (SEM). Photocatalytic experiments indicate that such Bi2O3/Bi2WO6 composite possesses higher photocatalytic activity for RhB degradation under visible-light irradiation in comparison with pure Bi2O3 and Bi2WO6. The enhancement of the photocatalytic activity of the Bi2O3/Bi2WO6 heterojunction catalysts can be ascribed to the reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction. The effect of the molar ratio of nBi:nW on the catalytic performance of the heterojunction catalysts was also investigated. And the optimal molar ratio of nBi:nW is 2.5:1 which was synthesized by one-step hydrothermal method.
NASA Astrophysics Data System (ADS)
Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra
A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.
Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications
USDA-ARS?s Scientific Manuscript database
Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...
Impact of vanadium ions in barium borate glass.
Abdelghany, A M; Hammad, Ahmed H
2015-02-25
Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data. Copyright © 2014 Elsevier B.V. All rights reserved.
The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com
2015-08-28
The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less
NASA Astrophysics Data System (ADS)
Razuc, Mariela; Garrido, Mariano; Caro, Yamile S.; Teglia, Carla M.; Goicoechea, Héctor C.; Fernández Band, Beatriz S.
2013-04-01
A simple and fast on line spectrophotometric method combined with a hybrid hard-soft modeling multivariate curve resolution (HS-MCR) was proposed for the monitoring of photodegradation reaction of ciprofloxacin under UV radiation. The studied conditions attempt to emulate the effect of sunlight on these antibiotics that could be eventually present in the environment. The continuous flow system made it possible to study the ciprofloxacin degradation at different pH values almost at real time, avoiding errors that could arise from typical batch monitoring of the reaction. On the base of a concentration profiles obtained by previous pure soft-modeling approach, reaction pathways have been proposed for the parent compound and its photoproducts at different pH values. These kinetic models were used as a constraint in the HS-MCR analysis. The kinetic profiles and the corresponding pure response profile (UV-Vis spectra) of ciprofloxacin and its main degradation products were recovered after the application of HS-MCR analysis to the spectra recorded throughout the reaction. The observed behavior showed a good agreement with the photodegradation studies reported in the bibliography. Accordingly, the photodegradation reaction was studied by high performance liquid chromatography coupled with UV-Vis diode array detector (HPLC-DAD). The spectra recorded during the chromatographic analysis present a good correlation with the ones recovered by UV-Vis/HS-MCR method.
Noise analysis for CCD-based ultraviolet and visible spectrophotometry.
Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P
2015-09-20
We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4) AU for the AvaSpec-3648 and 5.6×10(-4) AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.
NASA Astrophysics Data System (ADS)
Yunianto, M.; Eka, D.; Permata, A. N.; Ariningrum, D.; Wahyuningsih, S.; Marzuki, A.
2017-02-01
The objective of this study is to detect glucose content in human blood serum using optical fiber grating with LED wavelength corresponding to the absorption of glucose content in blood serum. The testing used a UV-Vis spectrometer and Rays spectrometers, in which in the ray spectrometer it was used optical fiber biosensor using optical fiber grating. The result obtained is the typical peak of glucose absorption in UV-Vis at 581 nm wavelength and rays spectrometer on green LED at 514.2 nm wavelength with linear regression result by 0.97 and 0.94, respectively.
Armendáriz-Vidales, G; Frontana, C
2015-11-21
In this work, electrogenerated anion and dianion species from shikonin and its ester derivative isovalerylshikonin were characterized by means of ESR/UV-Vis spectroelectrochemistry. Analysis of the spectra supported the proposal that stepwise dissociative electron transfer (DET) takes place during the second reduction process of the esterified compound. Quantum chemical calculations were performed for validating the occurrence of this mechanistic pathway and for obtaining thermodynamic information on the electron transfer process; ΔG(cleavage)(0) was estimated to be -0.45 eV, considering that the two possible products of the overall reaction scheme are both a quinone and carboxylate anions.
Computational Design of Tunable UV-Vis-IR Filters Based on Silver Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Waters, Michael; Shi, Guangsha; Kioupakis, Emmanouil
We propose design strategies to develop selective optical filters in the UV-Vis-IR spectrum using the surface plasmon response of silver nanoparticle arrays. Our finite-difference time-domain simulations allow us to rapidly evaluate many nanostructures comprising simple geometries while varying their shape, height, width, and spacing. Our results allow us to identify trends in the filtering spectra as well as the relative amount of absorption and reflection. Optical filtering with nanoparticles is applicable to any transparent substrate and can be easily adapted to existing manufacturing processes while keeping the total cost of materials low. This work was supported by Guardian Industries Corp.
NASA Astrophysics Data System (ADS)
Orellana, Sandra; Soto, César; Toral, M. Inés
2010-01-01
The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J.
Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.
In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.
Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana
2018-06-12
Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Ouyang, Shunli; Sun, Chenglin; Zhou, Mi; Li, Dongfei; Wang, Weiwei; Qu, Guannan; Li, Zuowei; Gao, Shuqin; Yang, Jiange
2010-09-01
We have measured the Raman spectra and UV-Vis absorption spectra of linear polyene biomolecules (β-carotene and lycopene) in CS2 at low concentrations (10-6-10-10 mol/L). With decreasing concentration, all the carbon-carbon vibrations form a coherent mode in ordered β-carotene and lycopene due to extended π-conjugation that gives strong electron-phonon coupling, which leads to an anomalous experimental phenomenon. We observed an extremely high Raman scattering cross section( RSCS) and the Raman activities in β-carotene and lycopene are characterized by intensive overtones and combinations. Further, the UV-Vis absorption bands become narrower.
Estimation of water quality by UV/Vis spectrometry in the framework of treated wastewater reuse.
Carré, Erwan; Pérot, Jean; Jauzein, Vincent; Lin, Liming; Lopez-Ferber, Miguel
2017-07-01
The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (R pred 2 = 0.80), TSS (R pred 2 = 0.86) and turbidity (R pred 2 = 0.96), and with a simple linear regression from absorbance at 208 nm (R pred 2 = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.
A Study of Photoluminiscence and UV-Vis in Enhanced GaN Nanofibers
NASA Astrophysics Data System (ADS)
Robles-Garcia, Joshua; Melendez-Zambrana, Anamaris; Ramos, Idalia
2014-03-01
The photoluminiscence (PL) and UV-Vis properties of Gallium Nitride (GaN) nanofibers were investigated for samples fabricated with a precursor solution containing Gallium Nitrate Hydrate, Cellulose Acetate, and Urea in the solvents Dimethylacetamide (DMA) and Acetone. GaN is a wide bandgap (3.4 eV) semiconductor that can be used in a variety of applications including solid-state lighting, high power, and high frequency devices. In previous work, we produced polycrystalline GaN nanofibers with wurtzite structure, using the electrospinning method and a thermal treatment in nitrogen and ammonia at 1000C. In this research we study the addition of urea to the precursor solution to enhance the crystallinity of the fibers at lower sintering temperatures. The molar ratios of urea added to the precursor range from 0 to 1.7 M. After electrospinning the fibers were sintered in Nitrogen at 450C for 3 hours and then, under ammonia gas flow at 900C for 5 hours. X-Ray Diffraction (XRD), UV-Vis spectroscopy, and PL measurements at room temperature were used to study the structural and optical properties of the fibers during the sintering process. This work was sponsored by UPRH PREM (NSF-DMR-0934195).
Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae
2016-03-01
The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.
Optical band gaps of organic semiconductor materials
NASA Astrophysics Data System (ADS)
Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.
2016-08-01
UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.
Quality of Rapeseed Bio-Fuel Waste: Optical Properties
NASA Astrophysics Data System (ADS)
Sujak, Agnieszka; Muszyñski, Siemowit; Kachel-Jakubowska, Magdalena
2014-04-01
The objective of the presented work was to examine the optical properties of selected bio-fuel waste. Three independent optical methods: UV-Vis spectroscopy, infrared spectroscopy and chromametric measurements were applied to establish the possible quality control test for the obtained substances. The following by-products were tested: distilled glycerine, technical glycerine and matter organic non glycerine fraction from rapeseed oil bio-fuel production. The results show that analysis of UV-Vis spectra can give rapid information about the purity of distilled glycerine, while no direct information can be obtained concerning the concentration and kind of impurities. Transmission mode is more useful as compared to absorption, concerning the detection abilities of average UV-Vis spectrometers. Infrared spectroscopy can be used as a complementary method for determining impurities/admixtures in samples. Measurements of chroma give the quickest data to compare the colour of biofuel by-products obtained by different producers. The condition is, however, that the products are received through the same or similar chemical processes. The other important factor is application of well defined measuring background. All the discussed analyses are quick, cheap and non-destructive, and can help to compare the quality of products.
Liu, Tong; Abrahams, Isaac; Dennis, T John S
2018-04-26
The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.
Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques
NASA Astrophysics Data System (ADS)
Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos
2013-02-01
Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.
Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong
2013-11-07
Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.
NASA Astrophysics Data System (ADS)
Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar
2017-03-01
UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
Spectral analysis of lunar analogue samples
NASA Astrophysics Data System (ADS)
Offringa, Marloes; Foing, Bernard
2016-04-01
Analyses of samples derived from terrestrial analogue sites are used to study lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during field campaigns (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. Equipment used in the laboratory consists of a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer, a Raman laser spectrometer, as well as UV-VIS and NIR reflectance spectrometers. The Raman, UV-VIS and NIR are also used in combination with the EXoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011). Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Calibration of the devices by creating a new dark and reference spectra has to take place after every sample measurement. In this way we take into account changes that occur in the signal due to the eating of the devices during the measurements. Moreover, the integration time is adjusted to obtain a clear signal without leading to oversaturation in the reflectance spectrum. The typical integration times for the UV-VIS reflectance spectrometer vary between 1 - 18 s, depending on the amount of daylight during experiments. For the NIR reflectance spectrometer the integration time resulting in the best signals is approximately 150 ms in combination with a broad spectrum light source. Together with taking an average over ±600 measurements per sample this leads to the best spectral signals that can be acquired with this set-up. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. Future campaigns involving the employment of the spectrometers on the ExoGeoLab lander would prove the applicability of the equipment in the field.
Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H
2018-05-01
This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.
NASA Astrophysics Data System (ADS)
Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.
2018-05-01
This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.
NASA Astrophysics Data System (ADS)
Steiner, Rachel
The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.
Effect of surface topographic features on the optical properties of skin: a phantom study
NASA Astrophysics Data System (ADS)
Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.
2016-10-01
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
Ellis, Laura-Jayne A; Valsami-Jones, Eugenia; Lead, Jamie R; Baalousha, Mohammed
2016-10-15
The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water - MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV-visible spectrometry (UV-vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96h (4days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD
NASA Technical Reports Server (NTRS)
Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.
2011-01-01
Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors
NASA Astrophysics Data System (ADS)
Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.
2012-09-01
We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.
ZnO nanorods decorated with ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in
In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less
NASA Astrophysics Data System (ADS)
Jacob, Anju Anna; Balakrishnan, L.; Meher, S. R.; Shambavi, K.; Alex, Z. C.
Zinc oxide (ZnO) is a wide bandgap semiconductor with excellent photoresponse in ultra-violet (UV) regime. Tuning the bandgap of ZnO by alloying with cadmium can shift its absorption cutoff wavelength from UV to visible (Vis) region. Our work aims at synthesis of Zn1-xCdxO nanoparticles by co-precipitation method for the fabrication of photodetector. The properties of nanoparticles were analyzed using X-ray diffractometer, UV-Vis spectrometer, scanning electron microscope and energy dispersive spectrometer. The incorporation of cadmium without altering the wurtzite structure resulted in the red shift in the absorption edge of ZnO. Further, the photoresponse characteristics of Zn1-xCdxO nanopowders were investigated by fabricating photodetectors. It has been found that with Cd alloying the photosensitivity was increased in the UVA-violet as well in the blue region.
Mass Scale Biosensor Threat Diagnostic for In-Theater Defense Utilization
2012-10-01
antibody tagged gold nanoparticles can be delivered into yeast cells followed by measurement of the yeast response to stress such as UV , H2O2 and... UV ‐Vis spectrophotometer to test the toxicity effect of AgNPs, AgSDS and Agcit on growth of yeast cells was done. After synthesis of the two types of...uniformly distributed as individual NPs. From the UV ‐Vis study we observed that AgSDS uptake in yeast 42 was roughly twice that of Agcit
NASA Astrophysics Data System (ADS)
Gavilan, Lisseth; Broch, Laurent; Carrasco, Nathalie; Fleury, Benjamin; Vettier, Ludovic
2017-10-01
In this experimental study we investigate the role of atmospheric CO2 on the optical properties of organic photochemical aerosols. To this end, we add CO2 to a N2:CH4 gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO2/CH4 ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc-Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV-visible (270-600 nm). All samples present a significant absorption band in the UV. According to the Tauc-Lorentz model, as the CO2/CH4 ratio is quadrupled, the position of the UV band is shifted from ˜177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV-vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.
Cai, Yunyu; Ye, Yixing; Tian, Zhenfei; Liu, Jun; Liu, Yishu; Liang, Changhao
2013-12-14
We report a self-sacrificed in situ growth design toward preparation of ZnTiO3-TiO2 heterojunction structure. Highly reactive zinc oxide colloidal particles derived by laser ablation in liquids can react with TiO2 nanotubes to form a lamellar ZnTiO3 nanosheet structure in a hydrothermal-treatment process. Such hybrid structural product was characterized by X-ray diffraction, scanning and transmission electron microscopy, UV-vis diffuse reflection spectroscopy and X-ray photoelectron spectroscopy. The enhanced photocatalytic activity of the hybrid structure toward degradation of methyl orange (MO) and pentachlorophenol (PCP) molecules was demonstrated and compared with single phase TiO2, as a result of the efficient separation of light excited electrons and holes at the hetero-interfaces in the two semiconductors.
Yang, Bin; Mao, Xuhui; Pi, Liu; Wu, Yixiao; Ding, Huijun; Zhang, Weihao
2017-03-01
In this study, g-C 3 N 4 was synthesized by thermal polycondensation of melamine and was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV-visible diffuse reflection spectroscopy, and scanning electron microscopy. Results showed that g-C 3 N 4 degraded sulfadimidine (SMD) under visible light, in which the adsorption and photocatalytic degradation was influenced by pH. The maximum adsorption capacity was achieved at approximately pH 5. The highest degradation rate constant was obtained at strong acid and alkali. In addition, the degradation mechanism of g-C 3 N 4 was evaluated with the help of quencher agents. The intermediates, degradation pathways, and mineralization of SMD were also determined to evaluate the degradation and oxidation ability of g-C 3 N 4 .
NASA Technical Reports Server (NTRS)
Allamandola, L. J.
1992-01-01
Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.
Wang, Xuejiang; Wu, Zhen; Wang, Yin; Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu
2013-11-15
ZnO coupled TiO2/bamboo charcoal (ZnO-TiO2/BC) was prepared using the sol-gel method combined with microwave irradiation. The ZnO-TiO2/BC and TiO2/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption (BET), and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). The ZnO dopant promoted the transformation of anatase TiO2 to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO2 particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO2/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO2/BC was higher than that of TiO2/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO2/BC and TiO2/BC fitted well with the Langmuir-Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO2/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Li; Jiang, Hui; Wang, Luxi
2017-10-01
Ag3PO4 photocatalysts modified with BiPO4 and polypyrrole (PPy) were successfully synthesized via a combination of co-precipitation hydrothermal technique and oxidative polymerization method. Their morphologies, structures and optical and electronic properties were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), X-ray photo-electron spectroscopy (XPS), UV-vis diffuse reflection spectra (UV-vis DRS), photocurrent technique and electrochemical impedance spectra (EIS). The typical triphenylmethane dye (malachite green) was chosen as a target organic contaminants to estimate the photocatalytic activities and photo-stabilities of Ag3PO4-BiPO4-PPy heterostructures under visible light irradiation. The results indicated that the existence of BiPO4 and PPy not only showed great influences on the photocatalytic activity, but also significantly enhanced photo-stability of Ag3PO4 in repeated and long-term applications. The degradation conversion of Ag3PO4-BiPO4-PPy heterostructures (ABP-3) was 1.58 times of that of pure Ag3PO4. The photo-corrosion phenomenon of Ag3PO4 was effectively avoided. The photocatalytic activity of up to 87% in the Ag3PO4-BiPO4-PPy heterostructures (ABP-3) can be remained after five repeated cycles, while only about 33% of the degradation efficiency can be reserved in pure Ag3PO4. The possible mechanism of enhanced photo-stability and photocatalytic activity of Ag3PO4-BiPO4-PPy heterostructures was also discussed in this work.
NASA Astrophysics Data System (ADS)
Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.
2017-02-01
Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.
NASA Astrophysics Data System (ADS)
Hou, Yanping; Gan, Yuanyuan; Yu, Zebin; Chen, Xixi; Qian, Lun; Zhang, Boge; Huang, Lirong; Huang, Jun
2017-12-01
In this study, a single-chamber bio-photoelectrochemical system (BPES), integrating advantages of bioelectrochemical system and photocatalysis process, is developed using a g-C3N4/BiOBr heterojunction photocathode for methyl orange (MO) degradation and simultaneous energy recovery. Photocatalytic activities of g-C3N4/BiOBr, g-C3N4 and BiOBr are characterized by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra; and electrochemical activities of photocathodes are examined by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Results show that with an applied voltage of 0.8 V and under simulated solar irradiation, MO decolorization with g-C3N4/BiOBr photocathode reaches 97.8% within 4 h, higher than those with g-C3N4 (85.3%) and BiOBr (87.3%) photocathodes. Likewise, higher hydrogen production rate (143.8 L m-3d-1) is observed using g-C3N4/BiOBr photocathode; while values for g-C3N4 and BiOBr photocathodes are 124.3 L m-3d-1 and 117.1 L m-3d-1, respectively. PL and EIS reveal that superior performance of g-C3N4/BiOBr photocathode can be attributed to more efficient separation of photogenerated electron-hole pairs, lower resistance and better charge transfer. Synergistic effect occurs among biological, electrochemical and photocatalytic processes in illuminated BPES for MO removal. Photocathode optimization and system stability evaluation are conducted. This study demonstrates that the BPES holds great potential for efficient refractory organics degradation and energy production.
Qian, Qingyun; Ruiz-Martínez, Javier; Mokhtar, Mohamed; Asiri, Abdullah M; Al-Thabaiti, Shaeel A; Basahel, Suliman N; van der Bij, Hendrik E; Kornatowski, Jan; Weckhuysen, Bert M
2013-08-19
The formation of hydrocarbon pool (HCP) species during methanol-to-olefin (MTO) and ethanol-to-olefin (ETO) processes have been studied on individual micron-sized SAPO-34 crystals with a combination of in situ UV/Vis, confocal fluorescence, and synchrotron-based IR microspectroscopic techniques. With in situ UV/Vis microspectroscopy, the intensity changes of the λ=400 nm absorption band, ascribed to polyalkylated benzene (PAB) carbocations, have been monitored and fitted with a first-order kinetics at low reaction temperatures. The calculated activation energy (Ea ) for MTO, approximately 98 kJ mol(-1) , shows a strong correlation with the theoretical values for the methylation of aromatics. This provides evidence that methylation reactions are the rate-determining steps for the formation of PAB. In contrast for ETO, the Ea value is approximately 60 kJ mol(-1) , which is comparable to the Ea values for the condensation of light olefins into aromatics. Confocal fluorescence microscopy demonstrates that during MTO the formation of the initial HCP species are concentrated in the outer rim of the SAPO-34 crystal when the reaction temperature is at 600 K or lower, whereas larger HCP species are gradually formed inwards the crystal at higher temperatures. In the case of ETO, the observed egg-white distribution of HCP at 509 K suggests that the ETO process is kinetically controlled, whereas the square-shaped HCP distribution at 650 K is indicative of a diffusion-controlled process. Finally, synchrotron-based IR microspectroscopy revealed a higher degree of alkylation for aromatics for MTO as compared to ETO, whereas high reaction temperatures favor dealkylation processes for both the MTO and ETO processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Morales-Torres, Sergio; Pastrana-Martínez, Luisa M.; Figueiredo, José L.; Faria, Joaquim L.; Silva, Adrián M. T.
2013-06-01
Graphene oxide (GO) and the benchmark TiO2 photocatalyst (P25) were used to prepare different composites (GOP), by a simple method of mixing and sonication, varying the GO content and the heat-treatment temperature under nitrogen. The composites were characterized by thermogravimetric (TG) and differential thermogravimetric (DTG) analyses, scanning electron microscopy (SEM), physical adsorption of nitrogen, UV-Vis and IR diffuse reflectance spectroscopies (DRUV and DRIFT), and point of zero charge (pHPZC) measurements. The morphology, microporosity and SBET of the composites did not vary significantly in comparison to P25, while an increase of their mesoporosity and mesopore diameter were observed due to the formation of GO aggregates coated with P25 nanoparticles. The aggregates were stabilized by the formation of Tisbnd Osbnd C bonds, which in turn produced a narrowing of the band gap relative to P25. The surface chemistry of GOP composites varied with the GO content, being more acidic when higher GO content was used. The photocatalytic performance was evaluated for the degradation of diphenhydramine (DP) pharmaceutical and methyl orange (MO) dye under near-UV/Vis irradiation. The first order rate constant of MO photodegradation increased four times for some GOP composites with relation to P25 (i.e., from k = 52 × 10-3 to 207 × 10-3 min-1). Comparable efficiencies were observed when DP was used as model pollutant (i.e., around k = 54 × 10-3 min-1). The best performing photocatalyst was that containing 1.4 wt.% GO and treated at 200-300 °C. The improved performance was attributed to the reduction of GO during the thermal treatment and to the good contact between the TiO2 and the carbon phases.
NASA Astrophysics Data System (ADS)
Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem
2017-01-01
(E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.
Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery
NASA Astrophysics Data System (ADS)
grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther
2016-02-01
In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.
NASA Astrophysics Data System (ADS)
Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish
2016-01-01
The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.
NASA Astrophysics Data System (ADS)
Yuliati, L.; Salleh, A. M.; Hatta, M. H. M.; Lintang, H. O.
2018-04-01
In this study, titanium dioxide-carbon nitride (TiO2-CN) composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing. Each series of the photocatalysts was prepared with different ratios of titanium to carbon (Ti/C), i.e., 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopies. The characterization results confirmed the successful preparation of TiO2, CN, and the TiO2-CN composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature for 6 h under UV and visible light irradiations. It was confirmed that all the prepared TiO2-CN composites showed better photocatalytic activities than the bare TiO2 and the bare CN. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio. On the other hand, the highest degradation under visible light irradiation was 94.3%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10 mol%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method.
Degradation of blue and red inks by Ag/AgCl photocatalyst under UV light irradiation
NASA Astrophysics Data System (ADS)
Daupor, Hasan; Chenea, Asmat
2017-08-01
Objective of this research, cubic Ag/AgCl photocatalysts with an average particle size of 500 nm has been successfully synthesized via a modified precipitation reaction between ZrCl4 and AgNO3. Method for analysis, the crystal structure of the product was characterized by X-ray powder diffraction (XRD). The morphology and composition were studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse-reflection spectra (DRS) and so on. The result showed that the optical absorption spectrum exhibited strong absorption in the visible region around 500-600 nm due to surface plasmon resonance (SPR) of metallic silver nanoparticles. SEM micrographs showed that the obtained Ag/AgCl had cubic morphology and appeared on the porous surface as the cubic cage morphology. As a result, this porous surface also positively affected the photocatalytic reaction. The photocatalytic activity of the obtained product was evaluated by the photodegradation of blue and red ink solutions under UV light irradiation, and it was interestingly, discovered that AgCl could degrade 0.25% and 0.10% in 7 hours for blue and red inks solution respectively, Which were higher than of commercial AgCl. The result suggested that the morphology of Ag/AgCl strongly affected their photocatalytic activities. O2-, OH- reaction. radicals and Cl° atom are main species during photocatalytic reaction.
Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach.
Hardy, Matthias; Struch, Niklas; Topić, Filip; Schnakenburg, Gregor; Rissanen, Kari; Lützen, Arne
2018-04-02
Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C 3 -symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C 2 -symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction. The cubic structure was characterized by NMR and UV-vis spectroscopy and ESI-MS.
Troncoso, N; Sierra, H; Carvajal, L; Delpiano, P; Günther, G
2005-12-23
An improved HPLC method is reported for the determination of rosemary's principal phenolic antioxidants, rosmarinic and carnosic acids, providing a fast and simultaneous determination for both of them by using a solid phase column. The analysis was performed with fresh methanolic extractions of Rosmarinus officinalis. To quantify the amount of antioxidants in a fast and reproducible way by means of UV-vis absorption measurements, a spectrophotometric multi-wavelength calibration curve was constructed based on the antioxidant contents obtained with the recently developed HPLC method. This UV-vis methodology can be extended to the determination of other compounds and herbs if the restrictions mentioned in the text are respected.
NASA Astrophysics Data System (ADS)
Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos
2017-08-01
The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.
Fluorimetric study on the interaction between Norfloxacin and Proflavine hemisulphate.
More, Vishalkumar R; Anbhule, Prashant V; Lee, Sang H; Patil, Shivajirao R; Kolekar, Govind B
2011-07-01
The interaction between Norfloxacin (NF) and Proflavine hemisulphate (PF) was investigated by spectroscopic tools like UV-VIS absorption and Fluorescence spectroscopy. It was proved that fluorescence quenching of NF by PF is due to the formation of NF-PF complex which was supported by UV-VIS absorption study. The study of thermodynamic parameters suggested that the key interacting forces are hydrogen bond and van der Waal's interactions and the binding interaction was spontaneous. The distance r between NF and PF was obtained according to the Förster's theory of non-radiative energy transfer. The fluorescence quenching mechanism was applied to estimate PF directly from pharmaceutical samples. © Springer Science+Business Media, LLC 2011
[Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].
Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling
2011-04-01
The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.
NASA Astrophysics Data System (ADS)
Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew
2016-11-01
Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lili, E-mail: zll@hytc.edu.cn; Zhang, Jiahui; Zhang, Weiguang
2015-06-15
Highlights: • Excellent photocatalyst was obtained by introducing BiOCl–TiO{sub 2} onto attapulgite. • 100 mg L{sup −1} methyl orange (MO) was totally decomposed under UV light within 70 min. • 92.6% of 10 mg L{sup −1} MO was decomposed within 120 min under visible light. • ATT–BiOCl–TiO{sub 2} show better activity than P{sub 25} especially under visible light. • Mechanism of photocatalytic activity enhancement was identified. - Abstract: An environmental friendly composite photocatalyst with efficient UV and visible light activity has been synthesized by introducing BiOCl–TiO{sub 2} hybrid oxide onto the surface of attapulgite (ATT) (denoted as ATT–BiOCl–TiO{sub 2}), usingmore » a simple in situ depositing technique. The obtained products were characterized by XRD, TEM, BET and UV–vis diffuse reflectance spectra measurements. Results showed that BiOCl–TiO{sub 2} composite particles were successfully loaded onto attapulgite fibers' surface without obvious aggregation. The photocatalytic activity of ATT–BiOCl–TiO{sub 2} was investigated by degradation of methyl orange under UV and visible light irradiation. It was found that 100 mg L{sup −1} methyl orange was totally decomposed under UV light within 70 min and 92.57% of 10 mg L{sup −1} methyl orange was decomposed under visible light within 120 min using ATT–BiOCl–TiO{sub 2} as photocatalyst. These results were quite better than that of P{sub 25}, especially under visible light irradiation. Possible mechanism for the enhancement was proposed.« less
Murray, John; Potts, Aaron
2014-01-01
A fixed-dose combination of clindamycin phosphate 1.2% and tretinoin 0.025% gel (VELTIN® (clindamycin phosphate and tretinoin) 1.2%/0.025% Gel [VELTIN]) (clindamycin/tretinoin gel) is currently available for the once-daily topical treatment of acne. Two-phase I studies were conducted to evaluate the phototoxic and photoallergic potential of clindamycin/tretinoin gel. Study 1 (phototoxic) (n=37) and Study 2 (photoallergic) (n=58) were single-center, evaluator-blinded, randomized, vehicle-controlled, phase 1 studies conducted in healthy volunteers. In Study 1, clindamycin/tretinoin gel patches, vehicle gel patches and blank patches (no gel) were applied concurrently for 24 hours to naïve sites. After patch removal, sites were irradiated with 16 joules/cm2 of ultraviolet A light (UVA) then 0.75 minimal erythema dose (MED) of UVA/ultraviolet B light (UVB), the same irradiation protocol followed by 15 joules/cm2 of visible light (VIS), or served as non-irradiated controls. Study 2 examined the effect of repeated drug exposure and involved an induction period (6 repeat phases at the same body sites during which clindamycin/tretinoin gel and vehicle gel patches were applied for 24 hours, removed and sites irradiated with UVB +/- VIS), followed by a rest period (10 to 17 days), then a challenge period that used the protocol described for Study 1. In both studies, inflammatory responses and other cutaneous effects were evaluated at 1, 24, 48, and 72 hours after patch removal. No subject experienced any adverse events in Study 1 (phototoxic). One subject in Study 2 (photoallergic) experienced AEs (diffuse erythema; mild application site irritation at one each of UV/VIS-irradiated clindamycin/tretinoin gel and vehicle gel patch sites) considered definitely related to study product that resulted in discontinuation from the study. Data from Study 1 and the challenge phase from Study 2 showed most subjects had no visible inflammatory reaction to clindamycin/tretinoin gel after irradiation. Clindamycin/tretinoin gel has a favorable safety profile following UV/visible irradiation and a low potential for phototoxicity and photoallergenicity.
NASA Astrophysics Data System (ADS)
Yulia, M.; Suhandy, D.
2017-05-01
Indonesian palm civet coffee or kopi luwak (Indonesian words for coffee and palm civet) is well known as the world’s priciest and rarest coffee. To protect the authenticity of luwak coffee and protect consumer from luwak coffee adulteration, it is very important to develop a simple and inexpensive method to discriminate between civet and non-civet coffee. The discrimination between civet and non-civet coffee in ground roasted (powder) samples is very challenging since it is very difficult to distinguish between the two by using conventional method. In this research, the use of UV-Visible spectra combined with two chemometric methods, SIMCA and PLS-DA, was evaluated to discriminate civet and non-civet ground coffee samples. The spectral data of civet and non-civet coffee were acquired using UV-Vis spectrometer (Genesys™ 10S UV-Vis, Thermo Scientific, USA). The result shows that using both supervised discrimination methods: SIMCA and PLS-DA, all samples were correctly classified into their corresponding classes with 100% rate for accuracy, sensitivity and specificity, respectively.
Seddigi, Zaki S.; Baig, Umair; Ahmed, Saleh A.; Abdulaziz, M. A.; Danish, Ekram Y.; Khaled, Mazen M.; Lais, Abul
2017-01-01
In the present work, bismuth oxychloride nanoparticles–a light harvesting semiconductor photocatalyst–were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions. PMID:28245225
NASA Astrophysics Data System (ADS)
Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C.; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E.
2015-10-01
2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.
NASA Astrophysics Data System (ADS)
Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.
2018-05-01
Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.
Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy
NASA Astrophysics Data System (ADS)
Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.
2018-05-01
This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.
Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul
2017-01-01
In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.
Rodríguez-Cabo, Borja; Rodríguez-Palmeiro, Iago; Corchero, Raquel; Rodil, Rosario; Rodil, Eva; Arce, Alberto; Soto, Ana
2017-01-01
The photocatalytic degradation of wastewater containing three industrial dyes belonging to different families, methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB), was studied under UV-Vis irradiation using synthesised silver chloride nanoparticles. The nanocatalyst was prepared by a dissolution/reprecipitation method starting from the bulk powder and the ionic liquid trihexyl(tetradecyl)phosphonium chloride, [P 6 6 6 14 ]Cl, without addition of other solvents. The obtained catalyst was characterised by UV-Vis absorbance, X-ray powder diffraction, transmission electron microscopy and scanning electron microscopy. The decolourisation of the samples was studied by UV-Vis absorbance at the corresponding wavelength. Starting from 10 ppm dye solutions and 1 g L -1 of the synthesised AgCl nanoparticles, degradation efficiencies of 98.4% for MO, 98.6% for MB and 99.9% for RhB, were achieved in 1 h. The degradation mechanisms for the different dyes were studied. Comparison with other frequently used nanocatalysts, namely P-25 Degussa, TiO 2 anatase, Ag and ZnO, highlights the strong catalytic activity of AgCl nanoparticles. Under the same experimental conditions, these nanoparticles led to higher (more than 10%) and faster degradations.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara
2015-10-22
The Annellation Theory was applied to establish the locations of maximum absorbance for the p and β bands in the UV-vis spectra of eight benzenoid cata-condensed polycyclic aromatic hydrocarbons (PAHs) with molecular formula C26H16 and no available syntheses procedures. In this group of eight isomers, there are seven compounds with potential carcinogenic properties due to geometrical constraints. In addition, crude oil and asphaltene absorption spectra exhibit similar properties, and the PAHs in heavier crude oils and asphaltenes are known to be the source of the color of heavy oils. Therefore, understanding the electronic bands of PAHs is becoming increasingly important. The methodology was validated using information for the remaining 29 isomers with available UV-vis spectra. The results satisfactorily agree with the results from semiempirical calculations made using the ZINDO/S approach. The locations of maximum absorbance for the p and β bands in the UV-vis spectra of the eight C26H16 cata-condensed isomers dibenzo[c,m]tetraphene, naphtho[1,2-c]chrysene, dibenzo[c,f]tetraphene, benzo[f]picene, naphtho[2,1-a]tetraphene, naphtho[2,1-c]tetraphene, dibenzo[c,l]chrysene, and naphtho[1,2-a]tetraphene were established for the first time.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara
2017-06-01
The annellation theory method has been used to predict the locations of maximum absorbance (LMA) of the ultraviolet-visible (UV-Vis) spectral bands in the group of polycyclic aromatic hydrocarbons (PAHs) C 24 H 14 (dibenzo and naphtho) derivatives of fluoranthene (DBNFl). In this group of 21 PAHs, ten PAHs present a sextet migration pattern with four or more benzenoid rings that is potentially related to a high molecular reactivity and high mutagenic conduct. This is the first time that the locations of maximum absorbance in the UV-Vis spectra of naphth[1,2- a]aceanthrylene, dibenz[ a,l]aceanthrylene, indeno[1,2,3- de]naphthacene, naphtho[1,2- j]fluoranthene, naphth[2,1- e]acephenanthrylene, naphth[2,1- a]aceanthrylene, dibenz[ a,j]aceanthrylene, naphth[1,2- e]acephenanthrylene, and naphtho[2,1- j]fluoranthene have been predicted. Also, this represents the first report about the application of the annellation theory for the calculation of the locations of maximum absorbance in the UV-Vis spectra of PAHs with five-membered rings. Furthermore, this study constitutes the premier investigation beyond the pure benzenoid classical approach toward the establishment of a generalized annellation theory that will encompass not only homocyclic benzenoid and non-benzenoid PAHs, but also heterocyclic compounds.
Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J
2016-03-21
We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.
Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip
NASA Astrophysics Data System (ADS)
Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk
2017-07-01
Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.
NASA Astrophysics Data System (ADS)
Gautam, C. R.; Das, Sangeeta; Gautam, S. S.; Madheshiya, Abhishek; Singh, Anod Kumar
2018-04-01
In this study, various compositions of lead calcium titanate borosilicate glass doped with a fixed amount of germanium were synthesized using the rapid melt quench technique. The amorphous nature of the synthesized glass was confirmed by X-ray diffraction and scanning electron microscopy analyses. The structural and optical properties were deduced using Raman, Fourier transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. FTIR spectroscopy confirmed the presence of borate groups in triangular and tetrahedral coordination. Infrared and Raman analyses detected the vibrational bonds of Gesbnd Osbnd Ge, Bsbnd Osbnd Ge, Sisbnd Osbnd Ge, Sisbnd Osbnd Si, and Pbsbnd Osbnd Ge. The energy band gaps were evaluated for the prepared glass samples based on Tauc plots of the UV-Vis spectra. The calculated values of the optical band gap decreased from 2.91 to 2.85 eV as the PbO content increased from x = 0.0 to x = 0.7. Furthermore, the Urbach energy was studied based on the UV-Vis results to confirm the disordered structure of the glass. The calculated densities of the glass samples (1.5835 g/cm3 to 3.9184 g/cm3) increased as the concentration of PbO increased, whereas they decreased with the molar volume.
Bauer, Daniel; Averett, Lacey A; De Smedt, Ann; Kleinman, Mark H; Muster, Wolfgang; Pettersen, Betty A; Robles, Catherine
2014-02-01
Phototoxicity is a relatively common phenomenon and is an adverse effect of some systemic drugs. The fundamental initial step of photochemical reactivity is absorption of a photon; however, little guidance has been provided thus far regarding how ultraviolet-visible (UV-vis) light absorption spectra may be used to inform testing strategies for investigational drugs. Here we report the results of an inter-laboratory study comparing the data from harmonized UV-vis light absorption spectra obtained in methanol with data from the in vitro 3T3 Neutral Red Uptake Phototoxicity Test. Six pharmaceutical companies submitted data according to predefined quality criteria for 76 compounds covering a wide range of chemical classes showing a diverse but "positive"-enhanced distribution of photo irritation factors (22%: PIF<2, 12%: PIF 2-5, 66%: PIF>5). For compounds being formally positive (PIF value above 5) the lowest reported molar extinction coefficient (MEC) was 1700 L mol⁻¹ cm⁻¹ in methanol. However, the majority of these formally positive compounds showed MEC values being significantly higher (up to almost 40,000 L mol⁻¹ cm⁻¹). In conclusion, an MEC value of 1000 L mol⁻¹ cm⁻¹ may represent a reasonable and pragmatic threshold warranting further experimental photosafety evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan
2012-01-01
In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113
NASA Astrophysics Data System (ADS)
Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.
2018-05-01
Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.
NASA Astrophysics Data System (ADS)
Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida
2016-12-01
This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.
Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs).
Ioannou, Aristos; Varotsis, Constantinos
2017-01-01
High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.
Conner, Amber J.
2013-01-01
Abstract Lake Magic is one of the most extreme of hundreds of ephemeral acid-saline lakes in southern Western Australia. It has pH as low as 1.7, salinity as high as 32% total dissolved solids, temperatures ranging from 0°C to 50°C, and an unusually complex aqueous composition. Optical petrography, UV-vis petrography, and laser Raman spectrometry were used to detect microorganisms and organic compounds within primary fluid inclusions in modern bedded halite from Lake Magic. Rare prokaryotes appear as 1–3 μm, bright cocci that fluoresce green with UV-vis illumination. Dimpled, 5–7 μm yellow spherules that fluoresce blue with UV-vis illumination are interpreted as Dunaliella algae. Yellow-orange beta-carotene crystals, globules, and coatings are characterized by orange-red fluorescence and three distinct Raman peaks. Because acid saline lakes are good Mars analogues, the documentation of prokaryotes, eukaryotes, and organic compounds preserved in the halite here has implications for the search for life on Mars. Missions to Mars should incorporate such in situ optical and chemical examination of martian evaporites for possible microorganisms and/or organic compounds in fluid inclusions. Key Words: Acid—Extremophiles—Western Australia—Fluid inclusions—Lake Magic—Dunaliella. Astrobiology 13, 850–860. PMID:23971647
Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun
2014-02-01
The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.
NASA Astrophysics Data System (ADS)
Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund
2011-07-01
Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.
NASA Astrophysics Data System (ADS)
Rajendran, Ranjith; Varadharajan, Krishnakumar; Jayaraman, Venkatesan; Singaram, Boobas; Jeyaram, Jayaprakash
2018-02-01
The enhanced photocatalytic performance of nanocomposite is synthesized via the hydrothermal method and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). Under visible light irradiation, PVA assisted Bi2WO6-CdS nanocomposite film displayed enhanced photocatalytic efficiency and inhibition of photocorrosion as compared with pure CdS, pure Bi2WO6 and Bi2WO6-CdS composite. The PVA assisted Bi2WO6-CdS composite film catalyst showed stable catalytic performance until seven successive runs with 92% of methylene blue(MB) degradation, and easy to recover after degradation of organic pollutant. PVA assisted Bi2WO6-CdS nanocomposite film has optimal band edge position for superior photocatalytic degradation. Furthermore, the trapping experiment was carried out using different scavenger for active species. Among the active species, OH· are the most responsive species which play a vital role in the degradation of metronidazole and MB.
As-synthesis of nanostructure AgCl/Ag/MCM-41 composite
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Pourahmad, A.
2012-02-01
In this work, we present the simple synthetic route for silver chloride/silver nanoparticles (AgCl/Ag-NPs) using as-synthesis method. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed that when AgNO 3 content is below 0.1 wt.% in synthetic gel, the guest AgCl/Ag-NPs is formed on the silica channel wall, and lower exists in the crystalline state. When AgNO 3 content exceeds this value, AgCl/Ag nanoparticles can be observed in high crystalline state. The absorption at 327 nm ascribed to the characteristic absorption of the AgCl semiconductor. Ag nanoparticles have been shown to exist in the nanocomposite at 375 nm. When AgNO 3 content is above 0.1 wt.% in synthetic gel, spectra exhibited stronger absorption at 450-700 nm that was attributed to the surface plasmonic resonance of silver nanoparticles. The obtained AgCl/Ag/MCM-41 sample exhibit enhanced photocatalytic activity for the degradation of methylene blue under visible-light irradiation.
Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution.
Tang, Jianting; Liu, Jian; Yang, Jie; Feng, Zhaochi; Fan, Fengtao; Yang, Qihua
2009-07-15
Mesoporous titanosilicates with high titanium content were synthesized under mild acidic conditions (pH=4.4, HAc-NaAc buffer solution) by co-condensation of acetylacetone-modified titanium isopropoxide (Ti(OBu(n))(3) (acac)) and mixture of sodium silicate with tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) or tetrakis(2-hydroxyethyl)orthosilicate (EGMS), using block copolymer Pluronic P123 as template. The combined results of XRD, N(2) sorption and TEM show that the highly regular structure of the mesoporous titanosilicates can still be obtained when Ti/Si molar ratio in the final product is as high as 0.059. The results of UV-vis diffuse reflectance spectra and UV resonance Raman spectra show that the framework titanium species are predominant in the mesoporous titanosilicates when Ti/Si molar ratio in the final product is less than 0.042. The mixture of sodium silicate and EGMS was proved to be the best silicon source for the synthesis of titanosilicates with ordered mesostructure and high titanium content. The efficiency of this synthetic method may be attributed to the mild acidic medium as well as the modified hydrolysis-condensation rate and hydrophility of the precursors.
Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Xing, Jun; Qiu, Jingping
2016-06-01
A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.
NASA Astrophysics Data System (ADS)
Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu
CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.
NASA Astrophysics Data System (ADS)
Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui
2018-03-01
CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.
TiO2-graphene oxide nanocomposite as advanced photocatalytic materials.
Stengl, Václav; Bakardjieva, Snejana; Grygar, Tomáš Matys; Bludská, Jana; Kormunda, Martin
2013-02-27
Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties. TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer-Emmett-Teller surface area and Barrett-Joiner-Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase. The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light.
TiO2-graphene oxide nanocomposite as advanced photocatalytic materials
2013-01-01
Background Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties. Results TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer–Emmett–Teller surface area and Barrett–Joiner–Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase. Conclusions The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light. PMID:23445868
NASA Astrophysics Data System (ADS)
Hassen, S.; Chebbi, H.; Zid, M. F.; Arfaoui, Y.
2018-09-01
Two organic salts compounds C8H13Cl2N5O(1) and C8H13Br2N5O(2) were prepared by slow evaporation at room temperature and characterized through single-crystal X-ray diffraction, photoluminescence, IR and UV-Vis diffuse reflectance spectroscopy (UV/DRS) from which the optical properties were determined. The asymmetric unit of (1) and (2) consists of a discrete guanidinobenzimidazolium, two halide anions X- (X = Cl, Br) and one crystallization water molecule. The crystal structures of the two title salts are stabilized by Nsbnd H … X, Osbnd H … X, Nsbnd H⋯O and Csbnd H … X hydrogen bonds. Moreover, the protonated 2-guanidobenzimidazole shows a π-π interaction adding extra stability to the three-dimensional architecture. The ground state geometries of the two compounds were optimized using density functional theory (DFT) at the 6-311+G(2d, 2p) level of theory. In order to study the excited states, time-depending density functional theory calculations were performed on the optimized structures at the same level of theory. The calculated electronic absorption and infrared spectra were in good agreement with the experimental ones.
New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.
Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E
2010-05-15
A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gokul Raj, K.; Manikandan, R.; Arulvasu, C.; Pandi, M.
2015-03-01
Cladosporium oxysporum a new taxol producing endophytic fungus was identified and production of taxol were characterized using UV-visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), infrared (IR) nuclear magnetic resonance spectroscopy (NMR (13C and 1H)) and liquid chromatography-mass spectrometry (LC-MS). The taxol biosynthetic gene (dbat) was evaluated for new taxol producing fungus. Antibacterial activity against six different human pathogenic bacteria was done by agar well diffusion method. The anticancer efficacy of isolated fungal taxol were also evaluated in human colon cancer cell HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cytotoxicity and nuclear morphology analysis. The isolated fungal taxol showed positive towards biosynthetic gene (dbat) and effective against both Gram positive as well as Gram negative. The fungal taxol suppress growth of cancer cell line HCT 15 with an IC50 value of 3.5 μM concentration by 24 h treatment. Thus, the result reveals that C. oxysporum could be a potential alternative source for production of taxol and have antibacterial as well as anticancer properties with possible clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, K. B.; Kathad, C. R.; Raval, P. Y.
2016-05-06
Nanoparticles of semiconductor TiO{sub 2}, zinc ferrite (ZnFe{sub 2}O{sub 4}) and ZnFe{sub 2}O{sub 4}-TiO{sub 2} composite, were synthesized by auto combustion route. Subsequent characterization of synthesized photocatalysts was carried out by X-ray powder diffractometry, transmission electron microscopy, UV-Vis-Diffuse Reflectance Spectroscopy to study the structural and textural properties. The specific surface area, pore diameter and pore volume of synthesized materials were investigated by N{sub 2} adsorption analysis while the presence of TiO{sub 2} in the composite material was verified by infrared spectral analysis. The photocatalytic activity of synthesized photocatalysts was evaluated by degradation of nitrobenzene (NB) in aqueous medium under irradiationmore » of ultraviolet light. The result revealed that 77, 73 and 70% of NB was degraded using TiO{sub 2}, ZnFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4}-TiO{sub 2} photocatalysts after 4h in the presence of UV irradiation. The composite photocatalyst was found easy to separate from the treated solution.« less
NASA Astrophysics Data System (ADS)
Pagaran, J.; Weber, M.; Burrows, J.
2009-08-01
The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagaran, J.; Weber, M.; Burrows, J.
2009-08-01
The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variationsmore » above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.« less
Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma
2014-05-01
Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.
NASA Astrophysics Data System (ADS)
Almeida, Michell O.; Barros, Daiane A. S.; Araujo, Sheila C.; Faria, Sergio H. D. M.; Maltarollo, Vinicius G.; Honorio, Kathia M.
2017-09-01
Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89 nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89 eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O15 (donor NBO) and BD* (π) N1-H10 (acceptor NBO), being that the value of this interaction is 7.72 kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment.
Makselon, Joanna; Siebers, Nina; Meier, Florian; Vereecken, Harry; Klumpp, Erwin
2018-07-01
Undisturbed outdoor lysimeters containing arable loamy sand soil were used to examine the influence of either heavy rain events (high frequency of high rain intensity), steady rain (continuous rainfall of low rain intensity), and natural rainfall on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP). In addition, the AgNP-soil associations within the A p horizon were analyzed by means of particle-size fractionation, asymmetrical flow field-flow fractionation coupled with UV/Vis-detection and inductively coupled plasma mass spectrometer (AF4-UV/Vis-ICP-MS), and transmission electron microscopy coupled to an energy-dispersive X-ray (TEM-EDX) analyzer. The results showed that AgNP breakthrough for all rain events was less than 0.1% of the total AgNP mass applied, highlighting that nearly all AgNP were retained in the soil. Heavy rain treatment and natural rainfall revealed enhanced AgNP transport within the A p horizon, which was attributed to the high pore water flow velocities and to the mobilization of AgNP-soil colloid associations. Particle-size fractionation of the soil revealed that AgNP were present in each size fraction and therefore indicated strong associations between AgNP and soil. In particular, water-dispersible colloids (WDC) in the size range of 0.45-0.1 μm were found to exhibit high potential for AgNP attachment. The AF4-UV/Vis-ICP-MS and TEM-EDX analyses of the WDC fraction confirmed that AgNP were persistent in soil and associated to soil colloids (mainly composed of Al, Fe, Si, and organic matter). These results confirm the particularly important role of soil colloids in the retention and remobilization of AgNP in soil. Furthermore, AF4-UV/Vis-ICP-MS results indicated the presence of single, homo-aggregated, and small AgNP probably due to dissolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laboratory and Field Spectroscopy of Moon analogue material
NASA Astrophysics Data System (ADS)
Offringa, Marloes; Foing, Bernard H.
2016-07-01
Samples derived from terrestrial analogue sites are studied to gain insight into lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during our latest field campaigns in November 2015 and February 2016 (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. We also use a documented set of Moon-Mars relevant minerals curated at VU Amsterdam. We are using systematically for all samples UV-VIS and NIR reflectance spectrometers, and sporadically a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer and a Raman laser spectrometer on control samples. Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. The Raman, UV-VIS and NIR are also used in combination with the ExoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011) also brought again to Eifel in February 2016, to prove the applicability of the equipment in the field. Acknowledgements: we thank Dominic Doyle for ESTEC optical lab support, Euan Monaghan (Leiden U) for FTIR measurement support, Wim van Westrenen for access to VU samples, Oscar Kamps (Utrecht U./ESTEC), Aidan Cowley (EAC) and Matthias Sperl (DLR) for support discussions
Karthika, Viswanathan; Arumugam, Ayyakannu; Gopinath, Kasi; Kaleeswarran, Periyannan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni
2017-02-01
In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×10 4 , 1.83×10 4 and 2.91×10 4 M -1 , respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents. Copyright © 2017. Published by Elsevier B.V.
Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco
2017-05-01
Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L * a * b * and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool more accessible to plant physiologists and ecologists. Copyright © 2017 Elsevier GmbH. All rights reserved.
Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.
Bhattarai, Ajaya; Wilczura-Wachnik, H
2014-01-30
The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.
Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed
2018-03-15
Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λ max ) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λ max ) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL -1 ) and in natural seawater at particle concentration of 100μgL -1 . These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP concentration toward environmentally relevant concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W
2016-09-13
DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.
Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen
2015-01-01
Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at R Ni-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410
NASA Astrophysics Data System (ADS)
Kumar, Varun; Goel, Anubha; Rajput, Prashant
2017-09-01
This study (first attempt) characterizes HULIS (Humic Like Substances) in wintertime aerosols (n = 12 during day and nighttime each) from Indo-Gangetic Plain (IGP, at Kanpur) by using various state-of-the art techniques such as UV-VIS, FTIR, 1H NMR and XPS. Based on UV-Vis analysis the absorption coefficient at 365 nm (babs-365) of HULIS was found to average at 13.6 and 28.8 Mm-1 during day and nighttime, respectively. Relatively high babs-365 of HULIS during the nighttime is attributed to influence of fog-processing. However, the power fit of UV-Vis spectrum provided near similar AAE (absorption Angstrom exponent) value of HULIS centering at 4.9 ± 1.4 and 5.1 ± 1.3 during daytime and nighttime, respectively. FTIR spectra and its double derivative revealed the presence of various functional groups viz. alcohols, ketones aldehydes, carboxylic acids as well as unsaturated and saturated carbon bonds. 1H NMR spectroscopy was applied to quantify relative percentage of various types of hydrogen atoms contained in HULIS, whereas XPS technique provided information on surface composition and oxidation states of various elements present. A significantly high abundance of H‒C‒O group has been observed in HULIS (based on 1H NMR); 41.4± 2.7% and 30.9± 2.4% in day and nighttime, respectively. However, aromatic protons (Ar-H) were higher in nighttime samples (19.3± 1.8%) as compared to that in daytime samples (7.5 ± 1.9). XPS studies revealed presence of various species on the surface of HULIS samples. Carbon existed in 7 different chemical states while total nitrogen and sulfur exhibited 3 and 2 different oxidation states (respectively) on the surface of HULIS. This study reports structural information and absorption properties of HULIS which has implications to their role as cloud condensation nuclei and atmospheric direct radiative forcing.
NASA Astrophysics Data System (ADS)
Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad
2018-04-01
Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.
Akbari-Adergani, B; Saghi, M H; Eslami, A; Mohseni-Bandpei, A; Rabbani, M
2018-06-01
An (Fe, Ag) co-doped ZnO nanostructure was synthesized by a simple chemical co-precipitation method and used for the degradation of dibutyl phthalate (DBP) in aqueous solution under visible light-emitting diode (LED) irradiation. (Fe, Ag) co-doped ZnO nanorods were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV-VIS diffuse reflectance spectroscopy, elemental mapping, Field emission scanning electron microscopy, transmission electron microscope and Brunauer-Emmett-Teller surface area analysis. A Central Composite Design was used to optimize the reaction parameters for the removal of DBP by the (Fe, Ag) co-doped ZnO nanorods. The four main reaction parameters optimized in this study were the following: pH, time of radiation, concentration of the nanorods and initial DBP concentration. The interaction between the four parameters was studied and modeled using the Design Expert 10 software. A maximum reduction of 95% of DBP was achieved at a pH of 3, a photocatalyst concentration of 150 mg L -1 and a DBP initial DBP concentration of 15 mg L -1 . The results showed that the (Fe, Ag) co-doped ZnO nanorods under low power LED irradiation can be used as an effective photocatalyst for the removal of DBP from aqueous solutions.
Doná, Giovanna; Dagostin, João Luiz Andreoti; Takashina, Thiago Atsushi; de Castilhos, Fernanda; Igarashi-Mafra, Luciana
2018-05-01
Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO 2 . In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L -1 at pH 9 and 500 mg L -1 TiO 2 . The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (k app ) equal to 0.0505 min -1 and an initial reaction rate of 1.5641 mg (L min) -1 . Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.
ERIC Educational Resources Information Center
Dean, Michelle L.; Miller, Tyson A.; Bruckner, Christian
2011-01-01
A simple and cost-effective laboratory experiment is described that extracts protoporphyrin IX from brown eggshells. The porphyrin is characterized by UV-vis and fluorescence spectroscopy. A chemiluminescence reaction (peroxyoxalate ester fragmentation) is performed that emits light in the UV region. When the porphyrin extract is added as a fluor…