Sample records for uv-a 315-400 nm

  1. 45 CFR 400.315 - General eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false General eligibility requirements. 400.315 Section 400.315 Public Welfare Regulations Relating to Public Welfare OFFICE OF REFUGEE RESETTLEMENT, ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES REFUGEE RESETTLEMENT PROGRAM...

  2. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  3. Absolute spectral response measurements of different photodiodes useful for applications in the UV spectral region

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria G.; Ceccherini, Paolo; Garoli, Denis; Masut, Pietro; Nicolosi, Piergiorgio

    2004-09-01

    Long UV radiation exposure can result in damages of biological tissues, as burns, skin aging, erythema and even melanoma cancer. In the past years an increase of melanoma cancer has been observed and associated to the atmospheric ozone deployment. Attendance of sun tanning unit centers has become a huge social phenomena, and the maximum UV radiation dose that a human being can receive is regulated by law. On the other side, UV radiation is largely used for therapeutic and germicidal purposes. In all these areas, spectroradiometer and radiomenter are needed for monitoring UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm) irradiance. We have selected some commercial photodiodes which can be used as solid state detectors in these instruments. We have characterized them by measuring their absolute spectral response in the 200 - 400 nm spectral range.

  4. Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Bolsée, D.; Damé, L.; Hauchecorne, A.; Pereira, N.; Irbah, A.; Bekki, S.; Cessateur, G.; Foujols, T.; Thiéblemont, R.

    2016-12-01

    Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth's atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth's atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.

  5. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties.

    PubMed

    Feng, Ye; Zhang, Jinming; He, Jiasong; Zhang, Jun

    2016-08-20

    The solubility of eight types of polyhedral oligomeric silsesquioxane (POSS) derivatives in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) and the dispersion of POSS in cellulose matrix were examined. Only a special POSS containing both aminophenyl and nitrophenyl groups (POSS-AN, NH2:NO2=2:6) was selected to prepare nanocomposites, because of its good solubility in AmimCl and high stability during the preparation process. POSS-AN nanoparticles were uniformly dispersed in a cellulose matrix with a size of 30-40nm, and so the resultant cellulose/POSS-AN nanocomposite films were transparent. The mechanical properties of the films achieved a maximum tensile strength of 190MPa after addition of 2wt% POSS-AN. Interestingly, all of the cellulose/POSS-AN films exhibited high UV-absorbing capability. For the 15wt% cellulose/POSS-AN film, the transmittance of UVA (315-400nm) and UVB (280-315nm) was only 9.1% and nearly 0, respectively. The UV aging and shielding experiments showed that the transparent cellulose/POSS-AN nanocomposite films possessed anti-UV aging and UV shielding properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV.

    PubMed

    Kwon, Minhwan; Yoon, Yeojoon; Kim, Seonbaek; Jung, Youmi; Hwang, Tae-Mun; Kang, Joon-Wun

    2018-10-01

    The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (ε SMX, 275 nm protonated  = 17,527 M -1  cm -1 , Φ SMX, 275 nm protonated  = 0.239, ε SMX, 275 nm deprotonated  = 8430 M -1  cm -1 , and Φ SMX, 275 nm deprotonated  = 0.026), nitrobenzene (ε NB, 275 nm  = 7176 M -1  cm -1 and Φ NB, 275 nm  = 0.057), and ibuprofen (ε NB, 275 nm  = 200 M -1  cm -1 and Φ IBF, 275 nm  = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (ε HOCl, 275 nm  = 28 M -1  cm -1 , Φ HOCl, 275 nm  = 1.97, ε OCl-, 275 nm  = 245 M -1  cm -1 , and Φ OCl-, 275 nm  = 0.8), which indicate that the decomposition rate of OCl - is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (ε HOCl, 254 nm  = 60 M -1  cm -1 , Φ HOCl, 254 nm  = 1.46, ε OCl-, 254 nm  = 58 M -1  cm -1 , and Φ OCl-, 254 nm  = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation

    PubMed Central

    Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-01-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797

  8. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.

    PubMed

    Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-12-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.

  9. Combined Effects of UVR and Temperature on the Survival of Crab Larvae (Zoea I) from Patagonia: The Role of UV-Absorbing Compounds

    PubMed Central

    Hernández Moresino, Rodrigo D.; Helbling, E. Walter

    2010-01-01

    The aim of our study was to assess the combined impact of UVR (280–400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8–10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 °C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400–700 nm) or ultraviolet-A radiation (UV-A, 315400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280–315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD50) were determined for each species. Based on the Th and LD50, C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 °C than at 15 °C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes. PMID:20559492

  10. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation

    NASA Astrophysics Data System (ADS)

    Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf

    2016-08-01

    Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.

  11. Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways.

    PubMed

    Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva

    2014-06-27

    Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    NASA Astrophysics Data System (ADS)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  13. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    PubMed Central

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-01

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974

  14. Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany

    NASA Astrophysics Data System (ADS)

    Junk, Jürgen; Feister, Uwe; Helbig, Alfred

    2007-08-01

    Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281 293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280 315 nm), UV-A (315 400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.

  15. Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi.

    PubMed

    Xu, Kai; Gao, Kunshan

    2015-01-01

    Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280-400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 μatm; with pH(NBS) 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315-400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280-315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi. © 2014 The American Society of Photobiology.

  16. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  17. 207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies.

    PubMed

    Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W; Trivedi, Sheetal; Lowy, Franklin D; Spotnitz, Henry M; Hammer, Scott M; Brenner, David J

    2013-01-01

    0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ~200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. The aim of this work was to test the biophysically-based hypothesis that ~200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug

  18. 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies

    PubMed Central

    Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W.; Trivedi, Sheetal; Lowy, Franklin D.; Spotnitz, Henry M.; Hammer, Scott M.; Brenner, David J.

    2013-01-01

    Background 0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ∼200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. Aims The aim of this work was to test the biophysically-based hypothesis that ∼200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. Methods A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. Results We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. Conclusions As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical

  19. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes.

    PubMed

    Holzinger, Andreas; Albert, Andreas; Aigner, Siegfried; Uhl, Jenny; Schmitt-Kopplin, Philippe; Trumhová, Kateřina; Pichrtová, Martina

    2018-07-01

    Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m -2  s -1 ) in combination with experimental UV-A (315-400 nm, 5.7 W m -2 , no UV-B), designated as PA, or UV-A (10.1 W m -2 ) + UV-B (280-315 nm, 1.0 W m -2 ), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p < 0.05) increase in Zygnema spp. C and S. The content of UV-absorbing phenolic compounds was significantly higher (p < 0.05) in young vegetative cells compared to pre-akinetes. In young vegetative Zygnema sp. S, these phenolic compounds significantly increased (p < 0.05) upon PA and PAB. Transmission electron microscopy showed an intact ultrastructure with massive starch accumulations at the pyrenoids under PA and PAB. A possible increase in electron-dense bodies in PAB-treated cells and the occurrence of cubic membranes in the chloroplasts are likely protection strategies. Metabolite profiling by non-targeted RP-UHPLC-qToF-MS allowed a clear separation of the strains, but could not detect changes due to the PA and PAB treatments. Six hundred seventeen distinct molecular masses were detected, of which around 200 could be annotated

  20. UV-A radiation effects on higher plants: Exploring the known unknown.

    PubMed

    Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne

    2017-02-01

    Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  2. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-06-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.

  3. A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum

    PubMed Central

    Mazza, Carlos A.; Izaguirre, Miriam M.; Curiale, Javier; Ballaré, Carlos L.

    2010-01-01

    Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; λ ≤ 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (λ ≥ 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with λ > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of λmax = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia. PMID:19846453

  4. Low-Dose, Long-Wave UV Light Does Not Affect Gene Expression of Human Mesenchymal Stem Cells

    PubMed Central

    Wong, Darice Y.; Ranganath, Thanmayi; Kasko, Andrea M.

    2015-01-01

    Light is a non-invasive tool that is widely used in a range of biomedical applications. Techniques such as photopolymerization, photodegradation, and photouncaging can be used to alter the chemical and physical properties of biomaterials in the presence of live cells. Long-wave UV light (315 nm–400 nm) is an easily accessible and commonly used energy source for triggering biomaterial changes. Although exposure to low doses of long-wave UV light is generally accepted as biocompatible, most studies employing this wavelength only establish cell viability, ignoring other possible (non-toxic) effects. Since light exposure of wavelengths longer than 315 nm may potentially induce changes in cell behavior, we examined changes in gene expression of human mesenchymal stem cells exposed to light under both 2D and 3D culture conditions, including two different hydrogel fabrication techniques, decoupling UV exposure and radical generation. While exposure to long-wave UV light did not induce significant changes in gene expression regardless of culture conditions, significant changes were observed due to scaffold fabrication chemistry and between cells plated in 2D versus encapsulated in 3D scaffolds. In order to facilitate others in searching for more specific changes between the many conditions, the full data set is available on Gene Expression Omnibus for querying. PMID:26418040

  5. High performance spectrograph for solar UV 250-400 band

    NASA Astrophysics Data System (ADS)

    Di Menno, I.; Rafanelli, C.; De Simone, S.; Di Menno, M.

    2007-09-01

    The solar electromagnetic radiation flux is one of the important factors to evaluate the energy balance of the planet. It is important in the studies on the properties of the atmosphere and its components as AOD, on the energy requirements for anthropogenic activities as agriculture, industry and so on. The ever-increasing interest about the effects on the biosphere as consequence of anthropogenic activities has contributed to develop further studies about the solar radiation and in particular the UV band, 280-320 nm. The consequence has been a growing of instrumental site and radiometric networks. Many decisions affecting on civil society are taken using the data of these nets and consequently it is very important to study the effect of the environmental factors on the instrument output. The classical electromechanical equipments have good sensibility and resolution but their handicap is the time of the measure, generally some minutes. In this time, the sun is moved and the clouds in the sky too. The new generation of spectrometer based on solid state technology avoid the long time measurements. The paper show a new radiograph (fast spectroradiometer) for solar UV band 250-400 nm. It is based on CCD array and optical fiber. The performance are compared with a Brewer spectrophotometer during a comparison campaign close to Rome, Italy.

  6. Direct-to-diffuse UV Solar Irradiance Ratio for a UV rotating Shadowband Spectroradiometer and a UV Multi-filter Rotating Shadowband Radiometer

    NASA Astrophysics Data System (ADS)

    Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.

    2008-12-01

    . Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.

  7. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light

    PubMed Central

    Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D.; Owens, David M.; Brenner, David J.

    2017-01-01

    We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200–222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200–222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure. PMID:28225654

  8. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.

    PubMed

    Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D; Owens, David M; Brenner, David J

    2017-04-01

    We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200-222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200-222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure.

  9. Standardization of Broadband UV Measurements for 365 nm LED Sources

    PubMed Central

    Eppeldauer, George P.

    2012-01-01

    Broadband UV measurements are evaluated when UV-A irradiance meters measure optical radiation from 365 nm UV sources. The CIE standardized rectangular-shape UV-A function can be realized only with large spectral mismatch errors. The spectral power-distribution of the 365 nm excitation source is not standardized. Accordingly, the readings made with different types of UV meters, even if they measure the same UV source, can be very different. Available UV detectors and UV meters were measured and evaluated for spectral responsivity. The spectral product of the source-distribution and the meter’s spectral-responsivity were calculated for different combinations to estimate broad-band signal-measurement errors. Standardization of both the UV source-distribution and the meter spectral-responsivity is recommended here to perform uniform broad-band measurements with low uncertainty. It is shown what spectral responsivity function(s) is needed for new and existing UV irradiance meters to perform low-uncertainty broadband 365 nm measurements. PMID:26900516

  10. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  11. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    PubMed

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  12. UV protection for sunglasses: revisiting the standards

    NASA Astrophysics Data System (ADS)

    Masili, Mauro; Schiabel, Homero; Ventura, Liliane

    2014-02-01

    In a continuing work of establishing safe limits for UV protection on sunglasses, we have estimated the incident UV radiation for the 280 nm - 400 nm range for 5500 locations in Brazil. Current literature establishes safe limits regarding ultraviolet radiation exposure in the spectral region 180nm-400nm for weighted and unweighted UV radiant exposure. British Standard BSEN1836(2005) and American Standard ANZI Z80.3(2009) require the UV protection in the spectral range 280nm-380nm, and The Brazilian Standard for sunglasses protection, NBR15111(20013), currently requires protection for the 280nm - 400nm range as established by literature. However, none of them take into account the total (unweighted) UVA radiant exposure.Calculations of these limits have been made for 5500 Brazilian locations which included the geographic position of the city; altitude, inclination angle of the Earth; typical atmospheric data (ozone column; water vapor and others) as well as scattering from concrete, grass, sand, water, etc.. Furthermore, regarding UV safety for the ocular media, the resistance to irradiance test required on this standard of irradiating the lenses for 25 continuous hours with a 450W sunlight simulator leads to a correspondence of 26 hours and 10 minutes of continuous exposure to the Sun. Moreover, since the sun irradiance in Brazil is quite large, integrations made for the 280-400 nm range shows an average of 45% of greater ultraviolet radiant exposure than for the 280-380 nm range. Suggestions on the parameters of these tests are made in order to establish safe limits according to the UV irradiance in Brazil.

  13. The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

    2015-01-01

    The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  14. UV dichroic coatings on metallic reflectors

    NASA Astrophysics Data System (ADS)

    Raghunath, C.; Babu, N. J.; chandran, K. M.

    2008-05-01

    The work presented here explains the design and deposition process of dichroic coating on metallic reflectors developed for UV curing systems. Special designs are adopted to achieve the spectral band and optimized to suit to the requirements. A mirror, which reflects the UV radiation (220 - 400 nm) and absorbs visible and infrared radiation (400 - 2000nm), is described in detail.

  15. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  16. Mechanism of UV-Induced Damage to Mammalian Collagen

    DTIC Science & Technology

    2014-12-12

    enough to use under physiological conditions. We carried out UV photolysis with a UVG – 11 short wavelength hand lamp that emits primarily254 nm. We have...photochemical interaction between UV and mammalian collagen as functions of excitation wavelengths, temperature, fluorescence spectral distribution, and...but has little fluorescence at 325/400 nm (dityrosine). The 325/400 band INCREASES with UV - 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13

  17. Solar UV variability

    NASA Technical Reports Server (NTRS)

    Donnelly, Richard F.

    1989-01-01

    Measurements from the Solar Backscatter Ultraviolet (SBUV) provide solar UV flux in the 160 to 400 nm wavelength range, backed up by independent measurement in the 115 to 305 nm range from the Solar Mesosphere Explorer (SME). The full disc UV flux from spatially resolved measurements of solar activity was modeled, which provides a better understanding of why the UV variations have their observed temporal and wavelength dependencies. Long term, intermediate term, and short term variations are briefly examined.

  18. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  19. An action spectrum for UV-B radiation and the rat lens.

    PubMed

    Merriam, J C; Löfgren, S; Michael, R; Söderberg, P; Dillon, J; Zheng, L; Ayala, M

    2000-08-01

    To determine an action spectrum for UV-B radiation and the rat lens and to show the effect of the atmosphere and the cornea on the action spectrum. One eye of young female rats was exposed to 5-nm bandwidths of UV-B radiation (290, 295, 300, 305, 310, and 315 nm). Light scattering of exposed and nonexposed lenses was measured 1 week after irradiation. A quadratic polynomial was fit to the dose-response curve for each wave band. The dose at each wave band that produced a level of light scattering greater than 95% of the nonexposed lenses was defined as the maximum acceptable dose (MAD). Transmittance of the rat cornea was measured with a fiberoptic spectrophotometer. The times to be exposed to the MAD in Stockholm (59.3 degrees N) and La Palma (28 degrees N) were compared. Significant light scattering was detected after UV-B at 295, 300, 305, 310, and 315 nm. The lens was most sensitive to UV-B at 300 nm. Correcting for corneal transmittance showed that the rat lens is at least as sensitive to UV radiation at 295 nm as at 300 nm. The times to be exposed to the MAD at each wave band were greater in Stockholm than in La Palma, and in both locations the theoretical time to be exposed to the MAD was least at 305 nm. After correcting for corneal transmittance, the biological sensitivity of the rat lens to UV-B is at least as great at 295 nm as at 300 nm. After correcting for transmittance by the atmosphere, UV-B at 305 nm is the most likely wave band to injure the rat lens in both Stockholm and La Palma.

  20. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  1. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.

    PubMed

    Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder

    2013-10-05

    A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315nm), UV-A+B (<400nm), transmitted all the UV (280-400nm) or without filters. All the four plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants

  2. Diverse Responses to UV-B Radiation and Repair Mechanisms of Bacteria Isolated from High-Altitude Aquatic Environments▿

    PubMed Central

    Fernández Zenoff, V.; Siñeriz, F.; Farías, M. E.

    2006-01-01

    Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m−2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment. PMID:17056692

  3. Direct femtosecond laser surface structuring of crystalline silicon at 400 nm

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore

    2018-03-01

    We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.

  4. Analysis of High Energy Laser Weapon Employment from a Navy Ship

    DTIC Science & Technology

    2012-09-01

    meters Capacity ~ 400 kg (T.B. Racing and Marine, 2011) Speed 80 knots (148 km/h = 42 m/s) Material Fiberglass / Aluminium Explosive Improvised...CIWS) and requires the ship’s electrical power of about 400 kW. This would be deemed adequate for employment on an LCS ship. A boat target with an...Inflammation of the cornea, similar to sunburn 315 - 400 nm (Ultraviolet UV-A) CORNEA and LENS Photochemical cataract; Clouding of the lens 400

  5. Cosmic Evolution Through UV Spectroscopy (CETUS): A NASA Probe-Class Mission Concept

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; CETUS Team

    2017-01-01

    CETUS is a probe-class mission concept proposed for study to NASA in November 2016. Its overarching objective is to provide access to the ultraviolet (~100-400 nm) after Hubble has died. CETUS will be a major player in the emerging global network of powerful, new telescopes such as E-ROSITA, DESI, Subaru/PFS, GMT, LSST, WFIRST, JWST, and SKA. The CETUS mission concept provisionally features a 1.5-m telescope with a suite of instruments including a near-UV multi-object spectrograph (200-400 nm) complementing Subaru/PFS observations, wide-field far-UV and near-UV cameras, and far-UV and near-UV spectrographs that can be operated in either high-resolution or low-resolution mode. We have derived the scope and specific science requirements for CETUS for understanding the evolutionary history of galaxies, stars, and dust, but other applications are possible.

  6. Superficial photoluminescence and PV conversion of nanoscale Si-layered systems at 400 nm

    NASA Astrophysics Data System (ADS)

    Kuznicki, Zbigniew T.; Meyrueis, Patrick; Sarrabayrouse, Gérard; Rousset, Bernard

    2006-04-01

    A surprising photovoltaic (PV) conversion at 400 nm has been observed in nanoscale Si-layered systems (ns-Si-ls) during spectral response measurements. In conventional solar cells the UV and blue PV conversion may be poor because of the surface recombination within a thin superficial layer. In multi-interface novel devices (MIND) containing ns-Si-ls this conversion is always negligible within an even thicker surface dead zone from which practically no free-carriers can be collected. So the measured 400 nm band PV conversion in MIND cells is totally inconsistent with usually observed effects. Another CE paradox concerns its inversely proportional variation versus incident flux intensity, lower the intensity higher the CE, which value can even exceed unity. This new effect is also localized at the superficial nanostratum and originates from postimplantation defects and nanostructures formed during the implantation process. A similar low energy free-carrier generation has been observed recently in MIND cells with buried ns-Si-ls having a relatively very thin superficial stratum because of an excellent electronic passivation. No available publication mentions such an effect despite extensive investigations on the subject of structural and optical properties of Si nanoparticles, Si nanolayers, new Si-based materials such as semiconductor silicides and the luminescence-center doped Si materials. In this work, the carrier collection properties of the superficial Si nanostratum are reported and discussed in detail in relation to incident flux intensity. An additional low energy generation was observed experimentally. The effect could have capital importance for a breakthrough in the PV conversion efficiency in Si solar cells with nanotransformations.

  7. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-01-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.

  8. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    PubMed

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  9. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  10. Tea extracts protect normal lymphocytes but not leukemia cells from UV radiation-induced ROS production: An EPR spin trap study.

    PubMed

    Tepe Çam, Semra; Polat, Mustafa; Esmekaya, Meriç Arda; Canseven, Ayşe G; Seyhan, Nesrin

    2015-08-01

    An ex vivo method for detection of free radicals and their neutralization by aqueous tea in human normal lymphocytes and MEC-1 leukemia cells under ultraviolet (UV) irradiation was investigated. This method is based on the electron paramagnetic resonance (EPR) spectroscopy spin-trapping technique. 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) was used as the spin trap. Normal human lymphocytes and leukemia cells were exposed to UVB radiation (290-315 nm) at 47.7 and 159 mJ/cm(2) and to UVA radiation (315-400 nm) at 53.7 J/cm(2). No significant radical production at 47.7 mJ/cm(2) UVB dose in both cell lines was observed. In normal cells, free radical production was observed at 159 mJ/cm(2) UVB and 53.7 J/cm(2) UVA doses. However, both UV sources did not significantly produce free radicals in leukemia cells. A radical scavenging property of tea extracts (black, green, sage, rosehip) was observed in normal lymphocytes after both UVB and UVA exposure. In leukemia cells, the intensities of EPR signals produced in BMPO with tea extracts were found to be increased substantially after UVA exposure. These results showed that UV radiation induced free radical formation in normal human lymphocytes and indicated that tea extracts may be useful as photoprotective agents for them. On the other hand, tea extracts facilitated free radical production in leukemia cells.

  11. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  12. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315400nm; UV-B, 280–315nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  13. Preliminary Study of ZnS:Mn2+ Quantum Dots Response Under UV and X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Saatsakis, G.; Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Koukou, V.; Martini, N.; Kalyvas, N.; Bakas, A.; Sianoudis, I.; Kandarakis, I.; Panayiotakis, G. S.

    2017-11-01

    Quantum Dots are semiconductor nanocrystals, with their optical properties controlled by their size, shape and material composition. The aim of the present study is to examine the scintillation properties of Manganese Doped Zinc Sulfide (ZnS:Mn 2+) Quantum Dot (QDs) nanocrystals under UV and X-ray irradiation. ZnS:Mn 2+ Quantum Dots, with typical diameter of ZnS dots of 13-20nm (also called scintillation QDs, stQDs), were developed and acquired by Mesolight Inc. The initial stQD sample was a solution of 75mg of ZnS:Mn 2+ dissolved in 100μL of Toluene, having a concentration of 75% w/v. Emission characteristics under UV and X-Ray excitation were examined. Two ultraviolet sources were incorporated (315 nm and 365 nm) as well as a medical X-ray tube with tube voltage from 50 to 130 kVp. Parameters such as Energy Quantum Efficiency under UV excitation and Luminescence Efficiency-LE (light energy flux over exposure rate) under X-ray excitation were examined. Luminescence Efficiency (LE) of ZnS:Mn 2+ was higher than that exhibited by previously examined QDs, (ZnCdSeS:ZnS and ZnCuInS:ZnS). The ability of ZnS:Mn 2+ to transform UV photons energy into optical photons energy, tends to increase while the incident UV wavelength decreases. Energy Quantum Efficiency of the sample exhibited a 6% increase when exposed to 315nm UV light compared to 365 nm. The emission spectrum of the stQDs, exhibited a narrow peak (~585nm) in the yellow range.

  14. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  16. Tryptophan-to-Tryptophan Energy Transfer in UV-B photoreceptor UVR8

    NASA Astrophysics Data System (ADS)

    Li, Xiankun; Zhong, Dongping

    UVR8 (UV RESISTANCE LOCUS 8) protein is a UV-B photoreceptor in high plants. UVR8 is a homodimer that dissociates into monomers upon UV-B irradiation (280 nm to 315 nm), which triggers various protective mechanisms against UV damages. Uniquely, UVR8 does not contain any external chromophores and utilizes the UV-absorbing natural amino acid tryptophan (Trp) to perceive UV-B. Each UVR8 monomer has 14 tryptophan residues. However, only 2 epicenter Trp (W285 W233) are critical to the light induced dimer-to-monomer transformation. Here, we revealed, using site-directed mutagenesis and spectroscopy, a striking energy flow network, in which other tryptophan chromophores serve as antenna to transfer excitation energy to epicenter Trp, greatly enhancing UVR8 light-harvesting efficiency. Furthermore, Trp-to-Trp energy transfer rates were measured and agree well with theoretical values.

  17. UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Marsh, Waverly; Barnes, James C.

    1998-01-01

    Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.

  18. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more

  19. Evaluation of erythemal UV effective irradiance from UV lamp exposure and the application in shield metal arc welding processing.

    PubMed

    Chang, Cheng-Ping; Liu, Hung-Hsin; Peng, Chiung-Yu; Fang, Hsin-Yu; Tsao, Ta-Ho; Lan, Cheng-Hang

    2008-04-01

    Ultraviolet radiation (UVR) exposure is known to cause potential effects such as erythema in skin. For UV-induced erythema (sunburn), the action spectrum from the Commission Internationale de l'Eclairage, International Commission on Illumination (CIE) was adopted. Erythemal UV effects from UVR lamp exposure were investigated with commercial spectroradiometry devices in this research. Three kinds of portable UV germicidal lamps with broadband UVA (BB UVA, 350-400 nm), broadband UVB (BB UVB, 280-350 nm), and narrowband UVC (NB UVC, 254 nm) wavelengths served as the UVR emission sources. An action spectrum expresses the effectiveness of radiation for assessing the hazard of UVR in the erythemal action spectrum from 250-400 nm. The UV Index (UVI) is an irradiance scale computed by multiplying the CIE erythemal irradiance integral in milliwatts per square meter by 0.04 m mW. A comprehensive approach to detecting erythemal UVR magnitude was developed to monitor the effective exposure from UV lamps. The erythemal UVR measurement was established and the exposure assessment was applied to monitor erythemal UVR magnitude from shield metal arc welding (SMAW) processing. From this study, the erythemal UVR exposures were assessed and evaluated with environmental solar simulation of the UVI exposure.

  20. 207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies.

    PubMed

    Buonanno, Manuela; Stanislauskas, Milda; Ponnaiya, Brian; Bigelow, Alan W; Randers-Pehrson, Gerhard; Xu, Yanping; Shuryak, Igor; Smilenov, Lubomir; Owens, David M; Brenner, David J

    2016-01-01

    UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5-20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional

  1. 207-nm UV Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies

    PubMed Central

    Buonanno, Manuela; Stanislauskas, Milda; Ponnaiya, Brian; Bigelow, Alan W.; Randers-Pehrson, Gerhard; Xu, Yanping; Shuryak, Igor; Smilenov, Lubomir; Owens, David M.; Brenner, David J.

    2016-01-01

    Background UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5–20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. Aims To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Methods Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. Results While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. Conclusions As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without

  2. Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zimin; Zhuo, Yi; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Chengxin; Wang, Gang

    2017-06-01

    Various kinds of materials have been developed as transparent conductors for applications in semiconductor optoelectronic devices. However, there is a bottleneck that transparent conductive materials lose their transparency at ultraviolet (UV) wavelengths and could not meet the demands for commercial UV device applications. In this work, textured indium tin oxide (ITO) is grown and its potential to be used at UV wavelengths is explored. It is observed that the pronounced Burstein-Moss effect could widen the optical bandgap of the textured ITO to 4.7 eV. The average transmittance in UVA (315 nm-400 nm) and UVB (280 nm-315 nm) ranges is as high as 94% and 74%, respectively. The excellent optical property of textured ITO is attributed to its unique structural property. The compatibility of textured ITO thin films to the device fabrication is demonstrated on 368-nm nitride-based light emitting diodes, and the enhancement of light output power by 14.8% is observed compared to sputtered ITO.

  3. Biophysical mechanisms of modification of skin optical properties in the UV wavelength range with nanoparticles

    NASA Astrophysics Data System (ADS)

    Popov, A. P.; Priezzhev, A. V.; Lademann, J.; Myllylä, R.

    2009-05-01

    In this paper, by means of the Mie theory and Monte Carlo simulations we investigate modification of optical properties of the superficial layer of human skin (stratum corneum) for 310- and 400-nm ultraviolet (UV) radiation by embedding of 35-200-nm-sized particles of titanium dioxide (TiO2) and silicon (Si). Problem of skin protection against UV light is of major importance due to increased frequency of skin cancer provoked by excessive doses of accepted UV radiation. For 310-nm light, the optimal sizes of the TiO2 and Si particles are found to be 62 and 55 nm, respectively, and for 400-nm radiation, 122 and 70 nm, respectively.

  4. Replication of adeno-associated virus in cells irradiated with UV light at 254 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakobson, B.; Hrynko, T.A.; Peak, M.J.

    1989-03-01

    Irradiation of simian virus 40 (ori mutant)-transformed Chinese hamster embryo cells (OD4 line) with UV light induced a cellular capacity which supported a full cycle of helper-independent adeno-associated virus replication. Monochromatic UV light at 254 nm was about 1,000-fold more effective than UV light at 313 nm, indicating that cellular nucleic acid is the primary chromophore in the UV-induced process leading to permissiveness for adeno-associated virus replication. The UV irradiation and the infection could be separated for up to 12 h without substantial loss of permissiveness. During this time interval, the induction process was partly sensitive to cycloheximide, suggesting amore » requirement for de novo protein synthesis.« less

  5. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    PubMed

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  6. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  7. Effect of UV irradiation on Echinaceae purpureae interactions with free radicals examined by an X-band (9.3 GHz) EPR spectroscopy.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    The effect of UVA (315-400 nm) irradiation on Echinaceae purpureae interactions with free radicals was examined by the use of electron paramagnetic resonance (EPR) spectroscopy. The changes of antioxidant properties of E. purpureae with time of UV irradiation from 10 to 110 min (10 min steps) were determined. DPPH as the paramagnetic reference was used in this study. Changes of EPR signals of the reference after interactions with nonirradiated and UV-irradiated E. purpureae were detected. Interactions of the tested E. purpureae samples caused decrease of the EPR signal of DPPH as the result of its antioxidant properties. The decrease of the amplitude of EPR line of DPPH was lower for interactions with UV-irradiated E. purpureae . EPR examination confirmed antioxidant properties of E. purpureae . The weaker antioxidant properties of E. purpureae after UV irradiation were pointed out. E. purpureae should be storage in the dark. The tests bring to light usefulness of electron paramagnetic resonance with microwave frequency of 9.3 GHz (an X-band) in examination of storage conditions of pharmacological herbs.

  8. UV dose measurements of photosensitive dermatosis patients by polycrystalline GaN-based portable self-data-acquisition UV monitors.

    PubMed

    Yagi, Shigeru; Iwanaga, Takeshi; Kojima, Hiroshi; Shoji, Yoshio; Suzuki, Seiji; Seno, Kunihiro; Mori, Hisayoshi; Tokura, Yoshiki; Takigawa, Masahiro; Moriwaki, Shin-Ichi

    2002-12-01

    We have developed a UV monitor with polycrystalline (poly-) gallium nitride (GaN) UV sensors and evaluated its performance from the viewpoint of its effectiveness for use with photosensitive dermatosis patients. The poly-GaN UV sensor is sensitive to UV light from 280 to 410 nm even without optical filters. The UV monitor is a portable self-data-acquisition instrument with a minimum detection level (defined as average UV intensity over 290 to 400 nm) of 2 microW/cm2 and can store UV dose data for 128 days. It allows easy measurement of four orders of magnitude of ambient UV intensity and dose from indoor light to direct solar radiation in summer. Trial use of the UV monitor by five xeroderma pigmentosum patients started in June 2000 and was carried out for 1 year. It was demonstrated that the UV monitor was useful in improving their quality of life.

  9. The efficacy of selective calculus ablation at 400 nm: comparison to conventional calculus removal methods

    NASA Astrophysics Data System (ADS)

    Schoenly, Joshua E.; Seka, Wolf; Romanos, Georgios; Rechmann, Peter

    A desired outcome of scaling and root planing is the complete removal of calculus and infected root tissue and preservation of healthy cementum for rapid healing of periodontal tissues. Conventional periodontal treatments for calculus removal, such as hand instrument scaling and ultrasonic scaling, often deeply scrape the surface of the underlying hard tissue and may leave behind a smear layer. Pulsed lasers emitting at violet wavelengths (specifically, 380 to 400 nm) are a potential alternative treatment since they can selectively ablate dental calculus without ablating pristine hard tissue (i.e., enamel, cementum, and dentin). In this study, light and scanning electron microscopy are used to compare and contrast the efficacy of in vitro calculus removal for several conventional periodontal treatments (hand instruments, ultrasonic scaler, and Er:YAG laser) to calculus removal with a frequency-doubled Ti:sapphire (λ = 400 nm). After calculus removal, enamel and cementum surfaces are investigated for calculus debris and damage to the underlying hard tissue surface. Compared to the smear layer, grooves, and unintentional hard tissue removal typically found using these conventional treatments, calculus removal using the 400-nm laser is complete and selective without any removal of pristine dental hard tissue. Based on these results, selective ablation from the 400-nm laser appears to produce a root surface that would be more suitable for successful healing of periodontal tissues.

  10. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  11. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.

    PubMed

    Gorton, Holly L; Vogelmann, Thomas C

    2003-06-01

    Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.

  12. Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.

    PubMed

    Liu, Jun; Yabushita, Atsushi; Taniguchi, Seiji; Chosrowjan, Haik; Imamoto, Yasushi; Sueda, Keiichi; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2013-05-02

    Impulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm. The dependence of the vibrational phase of the vibrational mode around 1155 cm(-1) on the probe photon energy was observed for the first time to our knowledge. The vibrational mode coupled to the electronic transition observed in the probe spectral ranges of 2.95-3.05 and 3.15-3.35 eV was attributed to the wave packets in the ground state and the excited state, respectively. The frequencies in the ground state and excited state were determined to be 1155 ± 1 and 1149 ± 1 cm(-1), respectively. The frequency difference is due to change after photoexcitation. This means a reduction of the bond strength associated with π-π* excitation, which is related to the molecular structure change associated with the primary isomerization process in the photocycle in PYP. Real-time vibrational modes at low frequency around 138, 179, 203, 260, and 317 cm(-1) were also observed and compared with the Raman spectrum for the assignment of the vibrational wave packet.

  13. Enhanced UV light detection using a p-terphenyl wavelength shifter

    NASA Astrophysics Data System (ADS)

    Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.

    2017-10-01

    UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.

  14. 240 nm UV LEDs for LISA test mass charge control

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  15. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  16. PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period.

    PubMed

    Götz, Michael; Albert, Andreas; Stich, Susanne; Heller, Werner; Scherb, Hagen; Krins, Andreas; Langebartels, Christian; Seidlitz, Harald K; Ernst, Dieter

    2010-07-01

    Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 micromol m(-2) s(-1)) and high biologically effective UV irradiation (UV-B(BE) 180 mW m(-2)) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 micromol m(-2) s(-1)) and low UV-B (UV-B(BE) 25 mW m(-2)) resulted in somewhat lower levels of quercetin products compared to the high-UV-B(BE) conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 micromol m(-2) s(-1)) and high UV-B (UV-B(BE) 180 mW m(-2)), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315-400 nm) in UV action on A. thaliana.

  17. Development of a low cost UV index datalogger and comparison between UV index sensors

    NASA Astrophysics Data System (ADS)

    Gomes, L. M.; Ventura, L.

    2018-02-01

    Ultraviolet radiation (UVR) is the part of radiation emitted by the Sun, with range between 280 nm and 400 nm, and that reaches the Earth's surface. The UV rays are essential to the human because it stimulates the production of vitamin D but this radiation may be related to several health problems, including skin cancer and ocular diseases like pterygium, photokeratitis, cataract and more. To inform people about UV radiation, it is adopted the Ultraviolet Index (UVI). This UVI consists in a measure of solar UV radiation level, which contributes to cause sunburn on skin, also known as Erythema, and is indicated as an integer number between 1 and 14, associated to categories from low to extreme respectively. The aim of this work was to develop a low cost UVI datalogger capable of measuring three different UVI sensors simultaneously, record their data with timestamp and serve the measures online through a dedicated server, so general public can access their data and see the current UV radiation conditions. We also compared three different UVI sensors (SGlux UV cosine, Skye SKU440 and SiLabs SI1145) between them and with meteorological models during a period of months to verify their compliance. With five months data, we could verify the sensors working characteristics and decide which among them are the most suitable for research purposes.

  18. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  19. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  20. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with <0.5% (k=2) uncertainty as a result of using an absolute tie point from a Si-trap detector traceable to the primary standard cryogenic radiometer. The flat pyroelectric radiometer standard can be used to perform uniform integrated irradiance measurements from all kinds of UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  1. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.

    PubMed

    Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia

    2011-05-03

    Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.

  2. Spectral transmittance of intraocular lenses under natural and artificial illumination: criteria analysis for choosing a suitable filter.

    PubMed

    Artigas, Jose M; Felipe, Adelina; Navea, Amparo; Artigas, Cristina; García-Domene, Maria C

    2011-01-01

    To compare the spectral transmission of different intraocular lenses (IOLs) with either ultraviolet (UV) or blue-light filters, and to analyze the performance of these filters with artificial light sources as well as sunlight. Experimental study. The spectral transmission curve of 10 IOLs was measured using a PerkinElmer Lambda 800 UV/VIS spectrometer (Waltham, MA). Different filtering simulations were performed using the D65 standard illuminant as daylight and standard incandescent lamp and fluorescent bulb illuminants. Spectral transmittance of the IOLs. All the IOLs studied provide good UVC (200-280 nm) and UVB (280-315 nm) protection, except for one that presented an appreciable window at 270 nm. Nevertheless, both natural and artificial sources have practically no emission under 300 nm. In the UVA (315-380 nm) range the curves of the different IOLs manifested different degrees of absorption. Not all the UV filters incorporated in different IOLs protect equally. The filters that provide greater photoprotection against UV radiation, even blue light, are yellow and orange. Then, yellow and orange IOL filters may be best suited for cases requiring special retinal protection. The filters that favor better photoreception of visible light (380-780 nm) are those that transmit this radiation close to 100%. Artificial illumination practically does not emit in the UV range, but its levels of illumination are very low when compared with solar light. A possible balance between photoprotection and photoreception could be a sharp cutoff filter with the cutoff wavelength near 400 nm and a maximum transmittance around 100%. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    PubMed

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. INTERNAL FILTERS: PROSPECTS FOR UV-ACCLIMATION IN HIGHER PLANTS

    EPA Science Inventory

    Wavelength-selective absorption of solar radiation within plant leaves allows penetration of visible radiation (400-700nm) to the chloroplasts, while removing much of the damaging ultraviolet-B (UV-B, 280-320 nm) radiation. Flavonoids are important in this wavelength-selective ab...

  5. Enhanced UV light detection using a p-terphenyl wavelength shifter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joosten, Sylvester J.; Kaczanowicz, Ed; Ungaro, Maurizio

    Here, UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths belowmore » $$300\\,\\text{nm}$$ due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below $$300\\,\\text{nm}$$. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between $$200\\,\\text{nm}$$ and $$400\\,\\text{nm}$$. The gain factor ranges up to 5.4 $$\\pm$$ 0.5 at a wavelength of $$215\\,\\text{nm}$$, with a material load of $$110\\pm10\\,\\mu\\text{g}/\\text{cm}^2$$ ($$894\\,\\text{nm}$$). The wavelength shifter was found to be fully transparent for wavelengths greater than $$300\\,\\text{nm}$$. The resulting gain in detection efficiency, when used in a typical Cherenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold Cherenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.« less

  6. Enhanced UV light detection using a p-terphenyl wavelength shifter

    DOE PAGES

    Joosten, Sylvester J.; Kaczanowicz, Ed; Ungaro, Maurizio; ...

    2017-07-25

    Here, UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths belowmore » $$300\\,\\text{nm}$$ due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below $$300\\,\\text{nm}$$. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between $$200\\,\\text{nm}$$ and $$400\\,\\text{nm}$$. The gain factor ranges up to 5.4 $$\\pm$$ 0.5 at a wavelength of $$215\\,\\text{nm}$$, with a material load of $$110\\pm10\\,\\mu\\text{g}/\\text{cm}^2$$ ($$894\\,\\text{nm}$$). The wavelength shifter was found to be fully transparent for wavelengths greater than $$300\\,\\text{nm}$$. The resulting gain in detection efficiency, when used in a typical Cherenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold Cherenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.« less

  7. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    PubMed

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  8. Development of a new water sterilization device with a 365 nm UV-LED.

    PubMed

    Mori, Mirei; Hamamoto, Akiko; Takahashi, Akira; Nakano, Masayuki; Wakikawa, Noriko; Tachibana, Satoko; Ikehara, Toshitaka; Nakaya, Yutaka; Akutagawa, Masatake; Kinouchi, Yohsuke

    2007-12-01

    Ultraviolet (UV) irradiation is an effective disinfection method. In sterilization equipment, a low-pressure mercury lamp emitting an effective germicidal UVC (254 nm) is used as the light source. However, the lamp, which contains mercury, must be disposed of at the end of its lifetime or following damage due to physical shock or vibration. We investigated the suitability of an ultraviolet light-emitting diode at an output wavelength of 365 nm (UVA-LED) as a sterilization device, comparing with the other wavelength irradiation such as 254 nm (a low-pressure mercury lam) and 405 nm (LED). We used a commercially available UVA-LED that emitted light at the shortest wavelength and at the highest output energy. The new sterilization system using the UVA-LED was able to inactivate bacteria, such as Escherichia coli DH5 alpha, Enteropathogenic E. coli, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella enterica serovar Enteritidis. The inactivations of the bacteria were dependent on the accumulation of UVA irradiation. Taking advantage of the safety and compact size of LED devices, we expect that the UVA-LED sterilization device can be developed as a new type of water sterilization device.

  9. Development of novel UV emitting single crystalline film scintillators

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Mares, J. A.; Martin, T.; Douissard, P.-A.

    2011-04-01

    The work is dedicated to development of new types of UV -emitting scintillators based on single crystalline films (SCF) of aluminimum perovskites and garnets grown by the liquid phase epitaxy (LPE) method. The development of the following three types of UV SCF scintillators is considered in this work: i) Ce-doped SCF of Y-Lu-Al-perovskites with Ce3+ emission in the 360-370 nm range with a decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets with Pr3+ emission in the 300-400 nm range with a decay time of 13-17 ns; iii) La3+ and Sc3+ doped SCF of Y-Lu-Al-garnets, emitting in the 290-400 nm range due to formation of the LaY,Lu, ScY,Lu and ScAl centers with decay time of 250-575 ns. The results of testing the several novel UV-emitting SCFs scintillators for visualization of X-ray images at ESFR are presented. It is shown that the UV emission of the LuAG:Sc, LuAG:La and LuAG:Pr SCFs is efficient enough for conversion of X-ray to the UV light and that these scintillators can be used for improvement of the resolution of imaging detectors in synchrotron radiation applications.

  10. Detrimental Effects of UV-B Radiation in a Xeroderma Pigmentosum-Variant Cell Line

    PubMed Central

    Herman, Kimberly N.; Toffton, Shannon; McCulloch, Scott D.

    2014-01-01

    DNA polymerase η (pol η), of the Y-family, is well known for its in vitro DNA lesion bypass ability. The most well-characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole-animal models for this area of research have been conducted using UV-C (λ = 100–280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6-4 photoproduct. Although UV-C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV-B (λ = 280–315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV-B has similar but less striking effects compared to UV-C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV-B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV-B that are not previously reported after UV-C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress. PMID:24549972

  11. The near-UV absorber OSSO and its isomers.

    PubMed

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  12. The UV-B Photoreceptor UVR8: From Structure to Physiology

    PubMed Central

    Jenkins, Gareth I.

    2014-01-01

    Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes. PMID:24481075

  13. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also

  14. Variable fluorescence parameters in the filamentous Patagonian rhodophytes, Callithamnion gaudichaudii and Ceramium sp. under solar radiation.

    PubMed

    Häder, Donat-P; Lebert, Michael; Helbling, E Walter

    2004-01-23

    The filamentous rhodophytes Callithamnion gaudichaudi Agardh and Ceramium sp. were utilized to study the effects of solar radiation (PAR, 400-700 nm, UV-B, 280-315 nm and UV-A, 315-400 nm) on the photosynthetic performance in situ in Patagonia waters (Argentina). A pulse amplitude modulated (PAM) fluorometer was used to determine the fluorescence parameters. The two species grew in different habitats in the eulittoral: Ceramium sp. was found only in rock pools while C. gaudichaudii grew on exposed rocks and fell dry during low tide. Both species differed in their fluorescence parameters and their sensitivity to solar radiation exposure. The photosynthetic quantum yield had its lowest values at noon, but it recovered in the afternoon/evening hours, when irradiances were lower. PAR (irradiance of about 400 W m(-2) at noon) was responsible for most of the decrease in the yield on clear days, especially in Ceramium sp., but UVR (280-400 nm) also accounted for a significant decrease. Fluence rate response curves indicated that both species were adapted to low fluence rates and showed a pronounced non-photochemical quenching at intermediate and higher irradiances. Both species showed a rapid adaptation during measurement of fast induction kinetics but differed significantly in their fluorescence components. All photosynthetic pigments were bleached after 8 h exposure to solar radiation over a full day. Strong absorption in the UV-A range, most likely due to mycosporine-like amino acids, was detected in both strains. The pronounced sensitivity to solar radiation in situ and the recovery capacity of these two filamentous Rhodophyte species, as well as the presence of protective compounds, suggests that these algae have the ability to adapt to the relatively high radiation levels and changes in irradiance found in the Patagonia waters.

  15. Two-photon absorption measurements of deep UV transmissible materials at 213 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patankar, S.; Yang, S. T.; Moody, J. D.

    We report on two photon absorption measurements at 213nm of deep UV transmissible media including LiF, MgF 2, CaF 2, BaF 2, Sapphire (Al 2O 3) and high purity grades of fused-silica (SiO 2). A high stability 24ps Nd:YAG laser operating at the 5th harmonic (213nm) was used to generate a high intensity, long Rayleigh length Gaussian focus inside the samples. The measurements of the Fluoride crystals and Sapphire indicate two photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two photon absorption, however, there are differences in linearmore » losses associated with purity. A low two photon absorption cross section is measured for MgF 2 making it an ideal material for the propagation of high intensity deep UV lasers.« less

  16. Two-photon absorption measurements of deep UV transmissible materials at 213 nm

    DOE PAGES

    Patankar, S.; Yang, S. T.; Moody, J. D.; ...

    2017-09-19

    We report on two photon absorption measurements at 213nm of deep UV transmissible media including LiF, MgF 2, CaF 2, BaF 2, Sapphire (Al 2O 3) and high purity grades of fused-silica (SiO 2). A high stability 24ps Nd:YAG laser operating at the 5th harmonic (213nm) was used to generate a high intensity, long Rayleigh length Gaussian focus inside the samples. The measurements of the Fluoride crystals and Sapphire indicate two photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two photon absorption, however, there are differences in linearmore » losses associated with purity. A low two photon absorption cross section is measured for MgF 2 making it an ideal material for the propagation of high intensity deep UV lasers.« less

  17. Cloud cover and horizontal plane eye damaging solar UV exposures.

    PubMed

    Parisi, A V; Downs, N

    2004-11-01

    The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7 degrees to approximately 80 degrees . The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBE(cat)) and photokeratitis (UVBE(pker)). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.

  18. Low-level luminescence as a method of detecting the UV influence on biological systems

    NASA Astrophysics Data System (ADS)

    Mei, Wei-Ping; Popp, Fritz A.

    1995-02-01

    It is well known that low-level luminescence is correlated to many physiological and biological parameters, e.g. cell cycle, temperature, oxidation- and UV-stress. We report some new approaches on low-level luminescence measurements and UV influence on different biological systems. One example concerns yeast cultures, which show an increasing intensity of luminescence after UV-treatment with a maximum after 1.5 h. Investigations on normal human fibroblasts and keratinocytes display different longtime kinetics: The former show no changes of the luminescence in time, the latter an increase that reaches the maximum after 9 h. The time-dependent spectral measurement on xeroderma pigmentosum after UV-treatment displays a time-shift of the action-spectra shifting the maximum from 400 nm to 420 nm in 12 h. Some results on neutrophils reveals spectral UV influence on respiratory burst and the cellular repair system. The results on human skin display spectral changes of low-level luminescence after UV-treatment. These results provide a useful tool of analyzing UV influence on human skin.

  19. UV-B Radiation Contributes to Amphibian Population Declines

    NASA Astrophysics Data System (ADS)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  20. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Mannino, G.; Renna, L.; Costa, N.; Badalà, P.

    2016-10-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320-400 nm) and UV-B (290-320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  1. Effects of elevated ultraviolet radiation on primary metabolites in selected alpine algae and cyanobacteria

    PubMed Central

    Hartmann, Anja; Albert, Andreas; Ganzera, Markus

    2015-01-01

    Extremophilic green algae and cyanobacteria are the most abundant species in high mountain habitats, where rough climate conditions such as temperature differences, limited water retention and high ultraviolet (UV) radiation are the cause for a restricted biological diversity in favor of a few specialized autotrophic microorganisms. In this study, we investigated four algal species from alpine habitat in a sun simulator for their defense strategies in response to UV-A radiation (315400 nm) up to 13.4 W/m2 and UV-B radiation (280–315 nm) up to 2.8 W/m2. Besides changes in pigment composition we discovered that primary polar metabolites like aromatic amino acids, nucleic bases and nucleosides are increasingly produced when the organisms are exposed to elevated UV radiation. Respective compounds were isolated and identified, and in order to quantify them an HPLC-DAD method was developed and validated. Our results show that especially tyrosine and guanosine were found to be generally two to three times upregulated in the UV-B exposed samples compared to the non-treated control. PMID:26065817

  2. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  3. Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography

    DTIC Science & Technology

    2004-05-07

    The basic idea is to use fiducial grids, fabricated using interference lithography (or a derivative thereof) to determine the placement of features...sensed, and corrections are fed back to the beam-control electronics to cancel errors in the beam’s position. The virtue of interference lithography ...Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography Project Period: March 1, 2001 – February 28, 2004 F i n a l R e p o r t Army Research

  4. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  5. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields longmore » lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.« less

  6. Measurements of W Erosion using UV Emission from DIII-D and CTH

    NASA Astrophysics Data System (ADS)

    Johnson, Curtis; Ennis, David; Loch, Stuart; Balance, Connor; Victor, Brian; Allen, Steve; Samuell, Cameron; Abrams, Tyler; Unterberg, Ezekial

    2017-10-01

    of Plasma Facing Components (PFCs) will play a critical role in establishing the performance of reactor-relevant fusion devices, particularly for tungsten (W) divertor targets. Erosion can be diagnosed from spectral line emission together with atomic coefficients representing the `ionizations per photon' (S/XB). Emission from W I is most intense in the UV region. Thus, UV survey spectrometers (200-400 nm) are used to diagnose W PFCs erosion in the DIII-D divertor and from a W tipped probe in the CTH experiment. Nineteen W emission lines in the UV region are identified between the two experiments, allowing for multiple S/XB erosion measurements. Initial W erosion measurements are compared to erosion using the 400.9 nm W I line. Complete UV spectra will be presented and compared to synthetic spectra for varying plasma conditions. Analysis of the metastable states impact on the S/XB will be presented as well as possible electron temperature and density diagnosis from W I line ratios. Work supported by USDOE Grants DE-SC0015877 & DE-FC02-04ER54698.

  7. Interaction of sunscreen TiO2 nanoparticles with skin and UV light: penetration, protection, phototoxicity

    NASA Astrophysics Data System (ADS)

    Popov, Alexey; Lademann, Jürgen; Priezzhev, Alexander; Myllylä, Risto

    2009-07-01

    Titanium dioxide (TiO2) nanoparticles are extensively used nowadays in sunscreens as protective compounds for human skin from UV radiation. In this paper, such particles are investigated from the viewpoint of penetration into living skin, UV protective properties (compared with silicon (Si) particles) and as sources of free radicals if UV-irradiated. We show that: a) even after multiple applications, the particles are located within the uppermost 3-μm-thick part of the skin; b) the optimal sizes are found to be 62 nm and 55 nm, respectively for TiO2 and Si particles for 310-nm light and, correspondingly, 122 and 70 nm - for 400-nm radiation; c) if applied onto glass, small particles of 25 nm in diameter produce an increased amount of free radicals compared to the larger ones of 400 nm in diameter and placebo itself; however, if applied onto porcine skin in vitro, there is no statistically distinct difference in the amount of radicals generated by the two kinds of particles on skin and by the skin itself. This proves that although particles as part of sunscreens produce free radicals, the effect is negligible in comparison to the production of radicals by skin in vitro.

  8. Comparisons Between Ground Measurements of Broadband UV Irradiance (300-380 nm) and TOMS UV Estimates at Moscow for 1979-2000

    NASA Technical Reports Server (NTRS)

    Yurova, Alla Y.; Krotkov, Nicholay A.; Herman, Jay R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We show the comparisons between ground-based measurements of spectrally integrated (300 nm to 380 nm) ultraviolet (UV) irradiance with satellite estimates from the Total Ozone Mapping Spectrometer (TOMS) total ozone and reflectivity data for the whole period of TOMS measurements (1979-2000) over the Meteorological Observatory of Moscow State University (MO MSU), Moscow, Russia. Several aspects of the comparisons are analyzed, including effects of cloudiness, aerosol, and snow cover. Special emphasis is given to the effect of different spatial and temporal averaging of ground-based data when comparing with low-resolution satellite measurements (TOMS footprint area 50-200 sq km). The comparisons in cloudless scenes with different aerosol loading have revealed TOMS irradiance overestimates from +5% to +20%. A-posteriori correction of the TOMS data accounting for boundary layer aerosol absorption (single scattering albedo of 0.92) eliminates the bias for cloud-free conditions. The single scattering albedo was independently verified using CIMEL sun and sky-radiance measurements at MO MSU in September 2001. The mean relative difference between TOMS UV estimates and ground UV measurements mainly lies within 1 10% for both snow-free and snow period with a tendency to TOMS overestimation in snow-free period especially at overcast conditions when the positive bias reaches 15-17%. The analysis of interannual UV variations shows quite similar behavior for both TOMS and ground measurements (correlation coefficient r=0.8). No long-term trend in the annual mean bias was found for both clear-sky and all-sky conditions with snow and without snow. Both TOMS and ground data show positive trend in UV irradiance between 1979 and 2000. The UV trend is attributed to decreases in both cloudiness and aerosol optical thickness during the late 1990's over Moscow region. However, if the analyzed period is extended to include pre-TOMS era (1968-2000 period), no trend in ground UV irradiance is

  9. A new solar reference spectrum from 165 to 3088 nm

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Meftah, Mustapha; Bolsée, David; Pereira, Nuno; Bekki, Slimane; Hauchecorne, Alain; Irbah, Abdenour; Cessateur, Gaël; Sluse, Dominique

    2017-04-01

    Since April 5, 2008 and until February 15, 2017 the SOLAR/SOLSPEC spectro-radiometer on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). In particular, a new reference solar spectrum is established covering most of the unusual solar cycle 24 from minimum in 2008 to maximum. Temporal variability in the UV (165 to 400 nm) is presented in several wavelengths bands. These results are possible thanks to revised engineering corrections, improved calibrations and new procedures to account for thermal and aging advanced corrections. Uncertainties on these measurements are evaluated and compare favorably with other instruments.

  10. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.

    PubMed

    Cockell, C S; Andrady, A L

    1999-01-01

    The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.

  11. LED-based UV source for monitoring spectroradiometer properties

    NASA Astrophysics Data System (ADS)

    Sildoja, Meelis-Mait; Nevas, Saulius; Kouremeti, Natalia; Gröbner, Julian; Pape, Sven; Pendsa, Stefan; Sperfeld, Peter; Kemus, Fabian

    2018-06-01

    A compact and stable UV monitoring source based on state-of-the-art commercially available ultraviolet light emitting diodes (UV-LEDs) has been developed. It is designed to trace the radiometric stability—both responsivity and wavelength scale—of array spectroradiometers measuring direct solar irradiance in the wavelength range between 300 nm and 400nm. The spectral irradiance stability of the UV-LED-based light source observed in the laboratory after seasoning (burning-in) the individual LEDs was better than 0.3% over a 12 h period of continuous operation. The integral irradiance measurements of the source over a period of several months, where the UV-LED source was not operated continuously between the measurements, showed stability within 0.3%. In-field measurements of the source with an array spectroradiometer indicated the stability of the source to be within the standard uncertainty of the spectroradiometer calibration, which was within 1% to 2%.

  12. Solar Variability from 240 to 1750 nm in Terms of Faculae Brightening and Sunspot Darkening from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  13. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variationsmore » above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.« less

  14. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  15. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin.

    PubMed

    Wang, Frank; Smith, Noah R; Tran, Bao Anh Patrick; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Solar UV irradiation causes photoaging, characterized by fragmentation and reduced production of type I collagen fibrils that provide strength to skin. Exposure to UV-B irradiation (280-320 nm) causes these changes by inducing matrix metalloproteinase 1 and suppressing type I collagen synthesis. The role of UV-A irradiation (320-400 nm) in promoting similar molecular alterations is less clear yet important to consider because it is 10 to 100 times more abundant in natural sunlight than UV-B irradiation and penetrates deeper into the dermis than UV-B irradiation. Most (approximately 75%) of solar UV-A irradiation is composed of UV-A1 irradiation (340-400 nm), which is also the primary component of tanning beds. To evaluate the effects of low levels of UV-A1 irradiation, as might be encountered in daily life, on expression of matrix metalloproteinase 1 and type I procollagen (the precursor of type I collagen). In vivo biochemical analyses were conducted after UV-A1 irradiation of normal human skin at an academic referral center. Participants included 22 healthy individuals without skin disease. Skin pigmentation was measured by a color meter (chromometer) under the L* variable (luminescence), which ranges from 0 (black) to 100 (white). Gene expression in skin samples was assessed by real-time polymerase chain reaction. Lightly pigmented human skin (L* >65) was exposed up to 4 times (1 exposure/d) to UV-A1 irradiation at a low dose (20 J/cm2), mimicking UV-A levels from strong sun exposure lasting approximately 2 hours. A single exposure to low-dose UV-A1 irradiation darkened skin slightly and did not alter matrix metalloproteinase 1 or type I procollagen gene expression. With repeated low-dose UV-A1 irradiation, skin darkened incrementally with each exposure. Despite this darkening, 2 or more exposures to low-dose UV-A1 irradiation significantly induced matrix metalloproteinase 1 gene expression, which increased progressively with successive exposures. Repeated UV-A1

  16. Pulsed UV laser-induced modifications in optical and structural characteristics of alpha-irradiated PM-355 SSNTD.

    PubMed

    Alghamdi, S S; Farooq, W A; Baig, M R; Algarawi, M S; Alrashidi, Talal Mohammed; Ali, Syed Mansoor; Alfaramawi, K

    2017-10-01

    Pre- and postalpha-exposed PM-355 detectors were irradiated using UV laser with different number of pulses (100, 150, 200, 300, and 400). UV laser beam energy of 20mJ per pulse with a pulse width of 9ns was incident on an area of 19.6mm 2 of the samples. XRD spectra indicated that for both reference and UV-irradiated samples, the structure is amorphous, but the crystallite size increases upon UV irradiation. The same results were obtained from SEM analysis. Optical properties of PM-355 polymeric solid-state nuclear track detectors were also investigated. Absorbance measurements for all PM-355 samples in the range of 200-400nm showed that the absorption edge had a blue shift up to a certain value, and then, it had an oscillating behavior. Photoluminescence spectra of PM-355 at 250nm revealed a decrease in the broadband peak intensity as a function of the number of UV pulses, while the wavelengths corresponding to the peaks had random shifts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation.

    PubMed

    Hernando, Marcelo; Minaglia, Melina Celeste Crettaz; Malanga, Gabriela; Houghton, Christian; Andrinolo, Darío; Sedan, Daniela; Rosso, Lorena; Giannuzzi, Leda

    2018-01-17

    The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m -2 . For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m -2 , oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m -2 ), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.

  18. Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter

    2009-02-01

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides <=25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.

  19. UV 380 nm Reflectivity of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2000-01-01

    The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects

  20. A UV-Vis photoacoustic spectrophotometer.

    PubMed

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  1. MicroRNAs in Skin Response to UV Radiation

    PubMed Central

    Syed, Deeba N.; Khan, Mohammad Imran; Shabbir, Maria; Mukhtar, Hasan

    2014-01-01

    Solar ultraviolet (UV) radiation, an ubiquitous environmental carcinogen, is classified depending on the wave-length, into three regions; short-wave UVC (200–280 nm), mid-wave UVB (280–320 nm), and long-wave UVA (320–400 nm). The human skin, constantly exposed to UV radiation, particularly the UVB and UVA components, is vulnerable to its various deleterious effects such as erythema, photoaging, immunosuppression and cancer. To counteract these and for the maintenance of genomic integrity, cells have developed several protective mechanisms including DNA repair, cell-cycle arrest and apoptosis. The network of damage sensors, signal transducers, mediators, and various effector proteins is regulated through changes in gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs, act as post-transcriptional regulators through binding to complementary sequences in the 3′-untranslated region of their target genes, resulting in either translational repression or target degradation. Recent studies show that miRNAs add an additional layer of complexity to the intricately controlled cellular responses to UV radiation. This review summarizes our current knowledge of the role of miRNAs in the regulation of the human skin response upon exposure to UV radiation. PMID:23834148

  2. Two-photon absorption measurements of deep UV transmissible materials at 213  nm.

    PubMed

    Patankar, S; Yang, S T; Moody, J D; Swadling, G F; Erlandson, A C; Bayramian, A J; Barker, D; Datte, P; Acree, R L; Pepmeier, B; Madden, R E; Borden, M R; Ross, J S

    2017-10-20

    We report on two-photon absorption measurements at 213 nm of deep UV transmissible media, including LiF, MgF 2 , CaF 2 , BaF 2 , sapphire (Al 2 O 3 ), and high-purity grades of fused-silica (SiO 2 ). A high-stability 24 ps Nd:YAG laser operating at the 5th harmonic (213 nm) was used to generate a high-intensity, long-Rayleigh-length Gaussian focus inside the samples. The measurements of the fluoride crystals and sapphire indicate two-photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two-photon absorption; however, there are differences in linear losses associated with purity. A low two-photon absorption cross section is measured for MgF 2 , making it an ideal material for the propagation of high-intensity deep UV lasers.

  3. UV meteor observation from a space platform

    NASA Astrophysics Data System (ADS)

    Scarsi, P.

    2004-07-01

    The paper reports on the evaluation of the meteor light curve in the 300-400 nm UV band produced by meteoroids and space debris interacting with the Earth atmosphere; the aim is to assess the visibility of the phenomenon by a near-Earth space platform and to estimate the capability for measuring the solid-body influx on the Earth from outer space. The simulations have been conceived on the basis of general processes only, without introducing a priori observational inputs: the calibration with real data can be made in orbit by validation with "characterized" meteor streams. Computations are made for different values of the entry velocity (12 to 72 km/s) and angle of impact of the meteoroid when entering the atmosphere, with initial-mass values ranging from 10-12 kg to the kg size encompassing the transition from micrometeorites ( m < 10-9-10-8kg) to the "ablation" regime typical of larger masses. The data are presented using units in UV Magnitudo to facilitate direct comparison with the common literature in the field. The results concern observations of the atmosphere up to M UV = 18 by a height of 400 km above the Earth surface (average for the International Space Station--ISS), with reference to the mission "Extreme Universe Space Observatory--EUSO" designed as an external payload for the module "Columbus" of the European Space Agency. Meteors represent for EUSO an observable as a slow UV phenomenon with seconds to minutes characteristic time duration, to be compared to the fast phenomenon typical of the Extensive Air Shower (EAS) induced by the energetic cosmic radiation, ranging from microseconds to milliseconds. Continuous wide-angle observation by EUSO with its high inclination orbit and sensitivity reaching M UV = 18 will allow the in-depth exploration of the meteor "sporadic" component and to isolate the contribution of minor "streams".

  4. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  5. Design of tunable ultraviolet (UV) absorbance by controlling the Agsbnd Al co-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Yuan; Chen, Lei; Wang, Yaxin; Zhang, Yongjun; Yang, Jinghai; Choi, Hyun Chul; Jung, Young Mee

    2018-05-01

    Changing the structure and composition of a material can alter its properties; hence, the controlled fabrication of metal nanostructures plays a key role in a wide range of applications. In this study, the structure of Agsbnd Al ordered arrays fabricated by co-sputtering deposition onto a monolayer colloidal crystal significantly increased its ultraviolet (UV) absorbance owing to a tunable localized surface plasmon resonance (LSPR) effect. By increasing the spacing between two nanospheres and the content of aluminum, absorbance in the UV region could be changed from UVA (320-400 nm) to UVC (200-275 nm), and the LSPR peak in the visible region gradually shifted to the UV region. This provides the potential for surface-enhanced Raman scattering (SERS) in both the UV and visible regions.

  6. Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects

    NASA Astrophysics Data System (ADS)

    Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.

    2011-08-01

    Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.

  7. Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenly, J.; Seka, W.; Rechmann, P.

    2009-10-19

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue ismore » not removed at fluences ≤3 J/cm^2.« less

  8. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?

    PubMed

    Siebeck, U E; Marshall, N J

    2001-01-15

    Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N. (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible.

  9. The FIREBall-2 UV sample grating efficiency at 200-208nm

    NASA Astrophysics Data System (ADS)

    Quiret, S.; Milliard, B.; Grange, R.; Lemaitre, G. R.; Caillat, A.; Belhadi, M.; Cotel, A.

    2014-07-01

    The FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon-2) is a balloon-borne ultraviolet spectro-imaging mission optimized for the study of faint diffuse emission around galaxies. A key optical component of the new spectrograph design is the high throughput cost-effective holographic 2400 ℓ =mm, 110x130mm aspherized reflective grating used in the range 200 - 208nm, near 28°deviation angle. In order to anticipate the efficiency in flight conditions, we have developed a PCGrate model for the FIREBall grating calibrated on linearly polarized measurements at 12° deviation angle in the range 240-350nm of a 50x50mm replica of the same master selected for the flight grating. This model predicts an efficiency within [64:7; 64:9]+/-0:7% (S polarization) and [38:3; 45]+/-2:2% (P-polarization) for the baseline aluminum coated grating with an Al2O3 natural oxidation layer and within [63:5; 65] +/-1% (S-polarization) and [51:3; 54:8] +/-2:8% (P-polarization) for an aluminum plus a 70nm MgF2 coating, in the range 200 - 208nm and for a 28°deviation angle. The model also shows there is room for significant improvements at shorter wavelengths, of interest for future deep UV spectroscopic missions.

  10. Microbial survival in the stratosphere and implications for global dispersal

    USGS Publications Warehouse

    Smith, David J.; Griffin, Dale W.; McPeters, Richard D.; Ward, Peter D.; Schuerger, Andrew C.

    2011-01-01

    Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphereisolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: -70 °C, 56 mb, 10-12%relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200-280 nm), UVB (280-315 nm), UVA (315-400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 x 106 spores and prepared with palagonite (particle size< 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.

  11. A new nanosecond UV laser at 355 nm: early results of corneal flap cutting in a rabbit model.

    PubMed

    Trost, Andrea; Schrödl, Falk; Strohmaier, Clemens; Bogner, Barbara; Runge, Christian; Kaser-Eichberger, Alexandra; Krefft, Karolina; Vogel, Alfred; Linz, Norbert; Freidank, Sebastian; Hilpert, Andrea; Zimmermann, Inge; Grabner, Günther; Reitsamer, Herbert A

    2013-12-03

    A new 355 nm UV laser was used for corneal flap cutting in an animal model and tested for clinical and morphologic alterations. Corneal flaps were created (Chinchilla Bastards; n = 25) with an UV nanosecond laser at 355 nm (150 kHz, pulse duration 850 ps, spot-size 1 μm, spot spacing 6 × 6 μm, side cut Δz 1 μm; cutting depth 130 μm) and pulse energies of 2.2 or 2.5 μJ, respectively. Following slit-lamp examination, animals were killed at 6, 12, and 24 hours after treatment. Corneas were prepared for histology (hematoxylin and eosin [HE], TUNEL-assay) and evaluated statistically, followed by ultrastructural investigations. Laser treatment was tolerated well, flap lift was easier at 2.5 μJ compared with 2.2 μJ. Standard HE at 24 hours revealed intact epithelium in the horizontal cut, with similar increase in corneal thickness at both energies. Irrespective of energy levels, TUNEL assay revealed comparable numbers of apoptotic cells in the horizontal and vertical cut at 6, 12, and 24 hours, becoming detectable in the horizontal cut as an acellular stromal band at 24 hours. Ultrastructural analysis revealed regular morphology in the epi- and endothelium, while in the stroma, disorganized collagen lamellae were detectable representing the horizontal cut, again irrespective of energy levels applied. This new UV laser revealed no epi- nor endothelial damage at energies feasible for corneal flap cutting. Observed corneal swelling was lower compared with existing UV laser studies, albeit total energy applied here was much higher. Observed loss of stromal keratinocytes is comparable with available laser systems. Therefore, this new laser is suitable for refractive surgery, awaiting its test in a chronic environment.

  12. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers.

    PubMed

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-10-18

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine-melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200-400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  13. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochevar, I.E.

    1985-07-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicitymore » of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion.« less

  14. New apparatus with high radiation energy between 320-460 nm: physical description and dermatological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high-radiation energy between 320 to 460 nm. The measureable energy below 320 nm was shown to be many orders of magnitude too low to produce erythema. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. At a skin-target distance of 0.2 m the size of the irradiated area is 0.35 x 0.35 m, and the measured mean uv-A intensity is about 1400 W. m-2 (140 mW . cm-2). The uv-A energy in the range of 320 to 400more » nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-a applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. The calculated IPD threshold time was 1.8 min at 0.2 m. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. The instrument was also successfully used for photo-patch testing and reproduction of skin lesions of polymorphous light eruption. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.« less

  15. Disposal of Energy by UV-B Sunscreens

    NASA Astrophysics Data System (ADS)

    Nordlund, Thomas; Krishnan, Rajagopal

    2008-03-01

    Ideal sunscreens absorb dangerous UV light and dispose of the energy safely. ``Safe disposal'' usually means conversion to heat. However, efficient absorption entails a high radiative rate, which implies high energy-transfer and other rates, unless some process intervenes to ``defuse'' the excited state. We studied the excited-state kinetics of three UV-B (290-320 nm) sunscreens by absorption, steady-state and time-resolved fluorescence. Excited-state rate analysis suggests that some sunscreens have low radiative-rate ``dark'' states, in addition to normal excited states.* We deduce dark states when sunscreens of high extinction coefficient do not show lifetimes and total emission consistent with such high radiative rates. A high radiative rate, accompanied by efficient fluorescence emission and/or transfer, may be unfavorable for a sunscreen. In spite of its dark excited state, padimate O shows significant re-emission of light in the UV-A (320-400 nm) and energy transfer to a natural component of excised skin, probably collagen. * Krishnan, R. and T.M. Nordlund (2007) J. Fluoresc. DOI 10.1007/s10895-007-0264-3.

  16. Manipulating Sensory and Phytochemical Profiles of Greenhouse Tomatoes Using Environmentally Relevant Doses of Ultraviolet Radiation.

    PubMed

    Dzakovich, Michael P; Ferruzzi, Mario G; Mitchell, Cary A

    2016-09-14

    Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.

  17. Photocarcinogenesis by methoxypsoralen, neutral red, proflavine, and long UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria, L.; Bianchi, A.; Arnaboldi, A.

    1985-01-01

    A study of the photosensitizing effects of 8-methoxypsoralen (MOP), neutral red (NR), and proflavine (PF) on the skin of female Swiss albino mice, strain 955, was carried out using fractionated exposure to long ultraviolet light (300-400 nm) and visible light (tungsten emission). The results (1) confirmed MOP photocarcinogenicity, (2) demonstrated that both NR and PF are photocarcinogens, and, further, (3) showed that the above UV light with 2.6% of fluence at 313 nm is a long-term carcinogenic agent even though the total dose of 313 nm was 100 times less than the minimal UV tumorigenic dose in mice. The tumorsmore » were mammary adenocarcinomas, carcinomas of skin appendages, carcino-mixo-sarcomas, lymphomas, and one case of thyroid adenocarcinoma. The implications of the above data regarding the controversy about oncogenic risks in photochemotherapy are discussed.« less

  18. Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep

    2017-08-01

    Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.

  19. Ultraviolet Radiation in Wound Care: Sterilization and Stimulation

    PubMed Central

    Gupta, Asheesh; Avci, Pinar; Dai, Tianhong; Huang, Ying-Ying; Hamblin, Michael R.

    2013-01-01

    Significance Wound care is an important area of medicine considering the increasing age of the population who may have diverse comorbidities. Light-based technology comprises a varied set of modalities of increasing relevance to wound care. While low-level laser (or light) therapy and photodynamic therapy both have wide applications in wound care, this review will concentrate on the use of ultraviolet (UV) radiation. Recent Advances UVC (200–280 nm) is highly antimicrobial and can be directly applied to acute wound infections to kill pathogens without unacceptable damage to host tissue. UVC is already widely applied for sterilization of inanimate objects. UVB (280–315nm) has been directly applied to the wounded tissue to stimulate wound healing, and has been widely used as extracorporeal UV radiation of blood to stimulate the immune system. UVA (315400nm) has distinct effects on cell signaling, but has not yet been widely applied to wound care. Critical Issues Penetration of UV light into tissue is limited and optical technology may be employed to extend this limit. UVC and UVB can damage DNA in host cells and this risk must be balanced against beneficial effects. Chronic exposure to UV can be carcinogenic and this must be considered in planning treatments. Future Directions New high-technology UV sources, such as light-emitting diodes, lasers, and microwave-generated UV plasma are becoming available for biomedical applications. Further study of cellular signaling that occurs after UV exposure of tissue will allow the benefits in wound healing to be better defined. PMID:24527357

  20. Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus.

    PubMed

    Das, Susanta Kumar; Dasari, Kiran; Rosenfeld, Arkadi; Grunwald, Ruediger

    2010-04-16

    An efficient way to generate nanoscale laser-induced periodic surface structures (LIPSS) in rutile-type TiO(2) with frequency-converted femtosecond laser pulses at wavelengths around 400 nm is reported. Extended-area structuring on fixed and moving substrates was obtained by exploiting the line focus of a cylindrical lens. Under defined conditions with respect to pulse number, pulse energy and scanning velocity, two types of ripple-like LIPSS with high and low spatial frequencies (HSFL, LSFL) with periods in the range of 90 nm and 340 nm, respectively, were formed. In particular, lower numbers of high energetic pulses favour the generation of LSFL whereas higher numbers of lower energetic pulses enable the preferential creation of HSFL. Theoretical calculations on the basis of the Drude model support the assumption that refractive index changes by photo-excited carriers are a major mechanism responsible for LSFL. Furthermore, the appearance of random substructures as small as 30 nm superimposing low spatial frequency ripples is demonstrated and their possible origin is discussed.

  1. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer.

    PubMed

    Grigalavicius, Mantas; Moan, Johan; Dahlback, Arne; Juzeniene, Asta

    2016-01-01

    Solar ultraviolet (UV) radiation varies with latitude, time of day, and season. Both spectral UV composition and ambient UV dose lead to different health outcomes at different latitudes. Finding the optimal time for sun exposure, whereby the positive effects of UV exposure (vitamin D) are facilitated and the negative effects (skin cancer, photoimmunosuppression) avoided are the most important consideration in modern skin cancer prevention programs. This paper focuses on the latitude dependency of UVB, UVA, vitamin D production, and skin cancer risk in Caucasians. Biologically effective UVB (280-315 nm) and UVA (315-400 nm) doses were calculated using radiative transfer models with appropriate climatologic data for selected locations. Incidences of squamous cell carcinoma (SCC) and cutaneous melanoma (CM) were retrieved from cancer registries and published articles. Annual doses of UVA radiation decrease much less with increasing latitude than annual doses of UVB. Incidences of CM also decrease less steeply with increasing latitude than incidences of SCC. As SCC is caused mainly by UVB, these observations support the assumption that UVA plays an important role in the development of CM. The variations in UVA (relevant to CM) and UVB (relevant to vitamin D production) over 1 day differ: the UVB : UVA ratio is maximal at noon. The best way to obtain a given dose of vitamin D with minimal carcinogenic risk is through a non-burning exposure in the middle of the day, rather than in the afternoon or morning. © 2015 The International Society of Dermatology.

  2. Effects of solar radiation on the Patagonian macroalga Enteromorpha linza (L.) J. Agardh-Chlorophyceae.

    PubMed

    Häder, D P; Lebert, M; Helbling, E W

    2001-09-01

    The photosynthetic performance of Enteromorpha linza (L.) J. Agardh-Chlorophyceae was determined with a portable PAM instrument in situ and under seminatural radiation conditions in Patagonia, Argentina. Solar radiation was measured in parallel with a three-channel radiometer, ELDONET (Real Time Computer, Möhrendorf, Germany), in three wavelength ranges, UV-B (280-315 nm), UV-A (315-400 nm), and PAR (400-700 nm). The effective photosynthetic quantum yield decreased after 15-min exposure to solar radiation when the thalli were kept in a fixed position but recovered in the subsequent shade conditions within several hours. A 30-min exposure of free floating thalli, however, caused less photoinhibition. The photosynthetic quantum yield of E. linza was also followed over whole days under clear sky, partly cloudy and rainy conditions in a large reservoir of water (free floating thalli) and in situ (thalli growing in rock pools). Most of the observed effect was due to visible radiation; however, the UV wavelength range, and especially UV-B, caused a significant reduction of the photosynthetic quantum yield. Fluence rate response curves indicated that the species is a typical shade plant which showed non-photochemical quenching at intermediate and higher irradiances. This is a surprising result since these algae are found in the upper eulittoral where they are exposed to high irradiances. Obviously they utilize light only during periods of low irradiances (morning, evening, high tide) while they shut down the electron transport chain during intensive exposure. Fast induction and relaxation kinetics have been measured in these algae for the first time and indicated a rapid adaptation of the photosynthetic capacity to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. There was a strong bleaching of chlorophyll due to exposure to solar radiation but less drastic bleaching of carotenoids.

  3. Photochemical Degradation of the Anticancer Drug Bortezomib by V-UV/UV (185/254 nm) Investigated by (1)H NMR Fingerprinting: A Way to Follow Aromaticity Evolution.

    PubMed

    Martignac, Marion; Balayssac, Stéphane; Gilard, Véronique; Benoit-Marquié, Florence

    2015-06-18

    We have investigated the removal of bortezomib, an anticancer drug prescribed in multiple myeloma, using the photochemical advanced oxidation process of V-UV/UV (185/254 nm). We used two complementary analytical techniques to follow the removal rate of bortezomib. Nuclear magnetic resonance (NMR) is a nonselective method requiring no prior knowledge of the structures of the byproducts and permits us to provide a spectral signature (fingerprinting approach). This untargeted method provides clues to the molecular structure changes and information on the degradation of the parent drug during the irradiation process. This holistic NMR approach could provide information for monitoring aromaticity evolution. We use liquid chromatography, coupled with high-resolution mass spectrometry (LC-MS), to correlate results obtained by (1)H NMR and for accurate identification of the byproducts, in order to understand the mechanistic degradation pathways of bortezomib. The results show that primary byproducts come from photoassisted deboronation of bortezomib at 254 nm. A secondary byproduct of pyrazinecarboxamide was also identified. We obtained a reliable correlation between these two analytical techniques.

  4. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    PubMed

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  5. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography.

    PubMed

    Stehlin, Fabrice; Bourgin, Yannick; Spangenberg, Arnaud; Jourlin, Yves; Parriaux, Olivier; Reynaud, Stéphanie; Wieder, Fernand; Soppera, Olivier

    2012-11-15

    Deep-UV lithography using high-efficiency phase mask has been developed to print 100 nm period grating on sol-gel based thin layer. High efficiency phase mask has been designed to produce a high-contrast interferogram (periodic fringes) under water immersion conditions for 244 nm laser. The demonstration has been applied to a new developed immersion-compatible sol-gel layer. A sol-gel photoresist prepared from zirconium alkoxides caped with methacrylic acids was developed to achieve 50 nm resolution in a single step exposure. The nanostructures can be thermally annealed into ZrO(2). Such route considerably simplifies the process for elaborating nanopatterned surfaces of transition metal oxides, and opens new routes for integrating materials of interest for applications in the field of photocatalysis, photovoltaic, optics, photonics or microelectronics.

  6. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  7. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  8. Design and characterization of a phantom that simultaneously simulates tissue optical properties between 400 and 650 nm

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Cheng, Shangguan; Zellweger, Matthieu; Doegnitz-Utke, Nora; Braichotte, Daniel; Ballini, Jean-Pierre; van den Bergh, Hubert

    1996-12-01

    The design and characterization of optical phantoms which have the same absorption and scattering characteristics as biological tissues in a broad spectral window (between 400 and 650 nm) are presented. These low cost phantoms use agarose dissolved in water as the transparent matrix. The latter is loaded with various amounts of silicon dioxide, intralipid, ink, bovine serum, blood, azide, penicillin and fluorochromes. The silicon dioxide and intralipid particles are responsible for the light scattering whereas the ink and blood are the absorbers. The penicillin and the azide are used to insure the conservation of such phantoms when stored at 4 degrees Celsius. The serum and fluorochromes, such as Coumarin 30, produce an autofluorescence similar to human tissues. Various fluorochromes or photosensitizers can be added to these phantoms to simulate a photodetection procedure. The absorption and fluorescence spectroscopy of the dyes tested was not different in these phantoms than in live tissues. The mechanical properties of these gelatinous phantoms are also of interest as they can easily be molded and reshaped with a conventional cutter, so that for instance layered structures, with different optical properties in each layer, can be designed. The optical properties of these phantoms were determined between 400 and 650 nm by measuring their effective attenuation coefficient ((mu) eff) and total reflectance (Rd). The microscopic absorption and reduced scattering coefficients ((mu) a, (mu) s') were deduced from (mu) eff and Rd using a Monte-Carlo simulation.

  9. Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

    PubMed

    Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi

    2013-11-01

    Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

  10. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    PubMed Central

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690

  11. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    PubMed

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  12. The Effects of Space Weathering at UV Wavelengths: S-Class Asteroids

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Vilas, Faith

    2006-01-01

    We present evidence that space weathering manifests itself at near-UV wavelengths as a bluing of the spectrum, in contrast with the spectral reddening that has been seen at visible-near-IR wavelengths. Furthermore, the effects of space weathering at UV wavelengths tend to appear with less weathering than do the longer wavelength effects, suggesting that the UV wavelength range is a more sensitive indicator of weathering, and thus age. We report results from analysis of existing near-UV (approx.220-350 nm) measurements of S-type asteroids from the International Ultraviolet Explorer and the Hubble Space Telescope and comparisons with laboratory measurements of meteorites to support this hypothesis. Composite spectra of S asteroids are produced by combining UV spacecraft data with ground-based longer wavelength data. At visible-near-IR wavelengths, S-type asteroids are generally spectrally redder (and darker) than ordinary chondrite meteorites, whereas the opposite is generally true at near-UV wavelengths. Similarly, laboratory measurements of lunar samples show that lunar soils (presumably more weathered) are spectrally redder at longer wavelengths, and spectrally bluer at near-UV wavelengths, than less weathered crushed lunar rocks. The UV spectral bluing may be a result of the addition of nanophase iron to the regolith through the weathering process. The UV bluing is most prominent in the 300-400 nm range, where the strong UV absorption edge is degraded with weathering.

  13. Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235nm.

    PubMed

    da Silveira Petruci, João Flavio; Liebetanz, Michael G; Cardoso, Arnaldo Alves; Hauser, Peter C

    2017-08-25

    In this communication, we describe a flow-through optical absorption detector for HPLC using for the first time a deep-UV light-emitting diode with an emission band at 235nm as light source. The detector is also comprised of a UV-sensitive photodiode positioned to enable measurement of radiation through a flow-through cuvette with round aperture of 1mm diameter and optical path length of 10mm, and a second one positioned as reference photodiode; a beam splitter and a power supply. The absorbance was measured and related to the analyte concentration by emulating the Lambert-Beer law with a log-ratio amplifier circuitry. This detector showed noise levels of 0.30mAU, which is comparable with our previous LED-based detectors employing LEDs at 280 and 255nm. The detector was coupled to a HPLC system and successfully evaluated for the determination of the anti-diabetic drugs pioglitazone and glimepiride in an isocratic separation and the benzodiazepines flurazepam, oxazepam and clobazam in a gradient elution. Good linearities (r>0.99), a precision better than 0.85% and limits of detection at sub-ppm levels were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultrahigh-Speed Electrically Injected 1.55 micrometer Quantum Dot Microtube and Nanowire Lasers on Si

    DTIC Science & Technology

    2015-08-30

    Ultrahigh-Speed Electrically Injected 1.55 um Quantum Dot Microtube and Nanowire Lasers on Si In this report, we describe the progress made in rolled...up InP-based tube lasers and in the growth and characterization of III-nitride nanowire structures on Si. We report on the demonstration of...injected AlGaN nanowire lasers that can operate in the UV-AII (315-340 nm), UV-B (280-315nm), and UV-C (200-280 nm). The views, opinions and/or findings

  15. Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple.

    PubMed

    Zhao, Cheng; Mao, Ke; You, Chun-Xiang; Zhao, Xian-Yan; Wang, Shu-Hui; Li, Yuan-Yuan; Hao, Yu-Jin

    2016-06-01

    UVR8 (UV Resistance Locus 8) is an ultraviolet-B (UV-B; 280-315nm) light receptor that is involved in regulating many aspects of plant growth and development. UV-B irradiation can increase the development of flower and fruit coloration in many fruit trees, such as grape, pear and apple. Previous investigations of the structure and functions of UVR8 in plants have largely focused on Arabidopsis. Here, we isolated the UVR8 gene from apple (Malus domestica) and analyzed its function in transgenic Arabidopsis. Genomic and protein sequence analysis showed that MdUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis, including the conserved seven-bladed β-propeller, the C27 region, the 3 "GWRHT" motifs and crucial amino-acid residues (14 Trps, 2 Args). A point mutation prediction and three-dimensional structural analysis of MdUVR8 indicated that it has a similar structure to AtUVR8 and that the crucial residues are also important in MdUVR8. In terms of transcript levels, MdUVR8 expression was up-regulated by UV-B light, which suggests that its expression follows a 24-h circadian rhythm. Using heterologous expression of MdUVR8 in both uvr8-1 mutant and wild-type (WT) Arabidopsis, we found that MdUVR8 regulates hypocotyl elongation and gene expression under UV-B light. These data provide functional evidence for a role of MdUVR8 in controlling photomorphogenesis under UV-B light and indicate that the function of UVR8 is conserved between Arabidopsis and apple. Furthermore, we examined the interaction between MdUVR8 and MdCOP1 (constitutive photomorphogenic1) using a yeast two-hybrid assay and a co-immunoprecipitation assay. This interaction provides a direction for investigating the regulatory mechanisms of the UV-B-light pathway in apple. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. UV absorption spectrum of the ClO dimer (Cl2O2) between 200 and 420 nm.

    PubMed

    Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Fahey, David W; Burkholder, James B

    2009-12-10

    The UV photolysis of Cl(2)O(2) (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl(2)O(2) was measured using diode array spectroscopy and absolute cross sections, sigma, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl(2)O at 248 nm or Cl(2)/Cl(2)O mixtures at 351 nm at low temperature (200-228 K) and high pressure (approximately 700 Torr, He) was used to produce ClO radicals and subsequently Cl(2)O(2) via the termolecular ClO self-reaction. The Cl(2)O(2) spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl(2)O(2) spectrum. The Cl(2)O(2) UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6(-0.5)(+0.8) x 10(-18) cm(2) molecule(-1) where the quoted error limits are 2sigma and include estimated systematic errors. The Cl(2)O(2) absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl(2)O(2) spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl(2)O(2) cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of sigma(Cl(2)O(2))(lambda) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl(2)O(2) are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  17. UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Papadimitriou, Vassileios C.; Fahey, David W.; Burkholder, James B.

    2009-11-01

    The UV photolysis of Cl2O2 (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl2O2 was measured using diode array spectroscopy and absolute cross sections, σ, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl2O at 248 nm or Cl2/Cl2O mixtures at 351 nm at low temperature (200-228 K) and high pressure (˜700 Torr, He) was used to produce ClO radicals and subsequently Cl2O2 via the termolecular ClO self-reaction. The Cl2O2 spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl2O2 spectrum. The Cl2O2 UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6-0.5+0.8 × 10-18 cm2 molecule-1 where the quoted error limits are 2σ and include estimated systematic errors. The Cl2O2 absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl2O2 spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl2O2 cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of σCl2O2(λ) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl2O2 are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  18. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  19. Concentration of hinokinin, phenolic acids and flavonols in leaves and stems of Hydrocotyle leucocephala is differently influenced by PAR and ecologically relevant UV-B level.

    PubMed

    Müller, Viola; Lankes, Christa; Albert, Andreas; Winkler, J Barbro; Zimmermann, Benno F; Noga, Georg; Hunsche, Mauricio

    2015-01-15

    We examined the effects of ambient, non-stressing ultraviolet (UV)-B (280-315nm) level combined with different intensities of photosynthetic active radiation (PAR, 400-700nm) on the accumulation of the lignan (-)-hinokinin, in leaves and stems of Hydrocotyle leucocephala. Plants were exposed in sun simulators under almost natural irradiance and climatic conditions to one of four light regimes, i.e. two PAR intensities (906 and 516μmolm(-2)s(-1)) including or excluding UV-B radiation (0 and 0.4Wm(-2)). Besides hinokinin, we identified three chlorogenic acid isomers, one other phenolic acid, 12 quercetin, and five kaempferol derivatives in the H. leucocephala extracts. Hinokinin was most abundant in the stems, and its accumulation was slightly enhanced under UV-B exposure. We therefore assume that hinokinin contributes to cell wall stabilization and consequently to a higher resistance of the plant to environmental factors. Quercetin derivatives increasingly accumulated under UV-B and high PAR exposure at the expense of kaempferols and chlorogenic acids, which was apparently related to its ability to scavenge reactive oxygen species. In general, the concentration of the constituents depended on the plant organ, the leaf age, the light regimes, and the duration of exposure. The distribution pattern of the compounds within the examined organs was not influenced by the treatments. Based on the chemical composition of the extracts a principal component analysis (PCA) enabled a clear separation of the plant organs and harvesting dates. Younger leaves mostly contained higher phenylpropanoid concentrations than older leaves. Nevertheless, more pronounced effects of the light regimes were detected in older leaves. As assessed, in many cases the individual compounds responded differently to the PAR/UV-B combinations, even within the same phenylpropanoid class. Since this is the first report on the influence of light conditions on the accumulation of lignans in herbaceous

  20. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  1. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  2. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate.

    PubMed

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-03-15

    Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Long-Term Comparisons of OMI Surface UV Irradiances to a NILU_UV Multi-Filter Radiometer in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Koukouli, Maria Elissavet; Bais, Alkiviadis; Arola, Antii; Fountoulakis, Ilias; Kouremeti, Natalia; Kazadzis, Stelios; Balis, Dimitrios

    2016-08-01

    The evaluation of the surface UV irradiances, derived from the Ozone Monitoring Instrument (OMI) onboard the AURA satellite, with those extracted from a Norwegian Institute for Air Research UV multi-filter actinometer (NILU-UV) situated in the Laboratory of Atmospheric Physics (LAP) in the Aristotle University of Thessaloniki (40.69°N, 22.96°E) is presented in this study.The NILU-UV data have been compared with the OMI/Aura overpass and local noon irradiances at 305, 310, 324 and 380 nm for a 10 year period over Thessaloniki between 2005 and 2014.The OMI irradiances were found to overestimate the NILU-UV observations in Thessaloniki between 4.5% and 13.5% for the 305nm wavelength and between 1.5% and 10.0% for the 310nm case. For the 324nm and 380nm, the satellite-deduced local-noon time comparisons showed a satellite under-estimation of 3.75% and 4.15% respectively whereas the overpass-time comparisons range between -1.55% and -1.90% for the same wavelengths.

  4. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection.

    PubMed

    Qiu, Jun; Wang, Jinhao; Xu, Zhongqi; Liu, Huiqing; Ren, Jie

    2017-01-01

    The branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE) coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val) were separated in a background electrolyte (BGE) consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD) at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS) as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections) of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations) of migration time and peak area were less than 0.91% and 3.66% (n = 6). Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins.

  5. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection

    PubMed Central

    Liu, Huiqing; Ren, Jie

    2017-01-01

    The branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE) coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val) were separated in a background electrolyte (BGE) consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD) at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS) as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections) of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations) of migration time and peak area were less than 0.91% and 3.66% (n = 6). Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins. PMID:28640882

  6. Solar UV irradiation conditions on the surface of Mars.

    PubMed

    Rontó, Györgyi; Bérces, Attila; Lammer, Helmut; Cockell, Charles S; Molina-Cuberos, Gregorio J; Patel, Manish R; Selsis, Franck

    2003-01-01

    The UV radiation environment on planetary surfaces and within atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is a driving force of chemical and organic evolution and serves also as a constraint in biological evolution. In this work we modeled the transmission of present and early solar UV radiation from 200 to 400 nm through the present-day and early (3.5 Gyr ago) Martian atmosphere for a variety of possible cases, including dust loading, observed and modeled O3 concentrations. The UV stress on microorganisms and/or molecules essential for life was estimated by using DNA damaging effects (specifically bacteriophage T7 killing and uracil dimerization) for various irradiation conditions on the present and ancient Martian surface. Our study suggests that the UV irradiance on the early Martian surface 3.5 Gyr ago may have been comparable with that of present-day Earth, and though the current Martian UV environment is still quite severe from a biological viewpoint, we show that substantial protection can still be afforded under dust and ice.

  7. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  8. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    DOE PAGES

    Choi, Sukwon; Griffin, Benjamin A.

    2016-01-06

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less

  9. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  10. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  11. [Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].

    PubMed

    Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D

    2011-01-01

    The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.

  12. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials.

    PubMed

    Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha

    2012-06-01

    Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.

  13. UV absorption cross sections between 290 and 380 nm of a series of furanaldehydes: Estimation of their photolysis lifetimes

    NASA Astrophysics Data System (ADS)

    Colmenar, Inmaculada; González, Sergio; Jiménez, Elena; Martín, Pilar; Salgado, Sagrario; Cabañas, Beatriz; Albaladejo, José

    2015-02-01

    Furanaldehydes, such as 2-furanaldehyde (also known as furfural), 3-furanaldehyde and 5-methyl-2-furanaldehyde, are aromatic aldehydes which can be present in the atmosphere as primary and secondary pollutants. The atmospheric removal initiated by sunlight for these species is not well-known in the solar actinic region (at λ > 290 nm), mainly due to the absence of data concerning the UV absorption cross sections (σλ) and photolysis frequencies (Ji(z,θ)). In this work σλ for the mentioned furanaldehydes have been determined between 290 and 380 nm at room temperature for the first time. Experiments were performed in an absorption jacketed Pyrex cell, employing a deuterium lamp as irradiation source and a CCD detector. The obtained absorption spectra exhibit absorption maxima around 320 nm with absolute absorption cross sections of 1.13, 0.75 and 1.14 × 10-19 cm2 molecule-1 for 2-furanaldehyde, 3-furanaldehyde and 5-methyl-2-furanaldehyde, respectively. The reported UV absorption cross sections were used to provide estimates of Ji(z,θ) and, therefore, estimates of the lifetime (τhν) due to this atmospheric removal process, under different solar radiation situations. Estimated τhν have been compared with the lifetimes due to the homogeneous reaction with the main diurnal tropospheric oxidants. The results obtained suggest that photolysis in the actinic region can be the main degradation pathway for these furanaldehydes when assuming a quantum yield (Φλ) of unity and the maximum solar actinic flux, while photolysis can compete with the reaction of OH radicals when assuming Φλ = 0.1. On the contrary, the removal of all three furanaldehydes by the reactions with OH radicals becomes more important than the UV photolysis under low solar actinic flux conditions independently of Φλ. If the emission source of these furanaldehydes also occurs during the nighttime NO3 radicals will dominate the elimination process of these species.

  14. Optimizing UV Index determination from broadband irradiances

    NASA Astrophysics Data System (ADS)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  15. Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff

    1995-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.

  16. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  17. Hazards To The Eye From UV

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1980-10-01

    Ocular effects of ultraviolet radiation, 200-400 nm, are reviewed. Depending upon the exposure parameter involved, UV radiation may be harmful to the cornea, lens and/or retina. Ranges of exposure parameters (wavelength, exposure duration, etc.) for which each of the tissues is susceptible are specified and the nature of the tissue is described. Present understanding of the thermal and photochemical damage mechanism operative for various conditions of exposure are discussed Ocular damage thresholds for wide ranges of exposure parameters are summarized and compared to existing safety standards.

  18. Inactivation of foodborne pathogenic and spoilage micro-organisms using ultraviolet-A light in combination with ferulic acid.

    PubMed

    Shirai, A; Watanabe, T; Matsuki, H

    2017-02-01

    The low energy of UV-A (315-400 nm) is insufficient for disinfection. To improve UV-A disinfection technology, we evaluated the effect of ferulic acid (FA) addition on disinfection by UV-A light-emitting diode (LED) (350-385 nm) against various food spoilers and pathogens (seven bacteria and four fungi species). Photoantimicrobial assays were performed at FA concentrations below the MIC. The MIC of the isomerized FA, consisting of 93% cis-form and 7% trans-form, was very similar to that of the commercially available FA (trans-form). Irradiation with UV-A (1·0 J cm -2 ) in the presence of 100 mg l -1 FA resulted in enhanced reducing of all of the tested bacterial strains. A combination of UV-A (10 J cm -2 ) and 1000 mg l -1 FA resulted in enhanced reducing of Saccharomyces cerevisiae and one of the tested filamentous fungi. These results demonstrated that the combination of a short-term application of UV-A and FA at a low concentration yielded synergistic enhancement of antimicrobial activity, especially against bacteria. Microbial contamination is one of the most serious problems for foods, fruit and sugar thick juices. UV light is suitable for the nonthermal decontamination of food products by inactivating the contaminating micro-organisms. However, UV-A exposure is insufficient for disinfection. This study demonstrates that the combination of UV-A LED light (350-385 nm), which is not hazardous to human eyes and skin, and ferulic acid (FA), a known phytochemical and food additive, provides synergistic antimicrobial activity against foodborne pathogenic and spoilage micro-organisms. Therefore, FA addition to UV-A light treatment may be useful for improvement of UV-A disinfection technology to prevent food deterioration. © 2016 The Society for Applied Microbiology.

  19. Genotoxic response of Austrian groundwater samples treated under standardized UV (254 nm)--disinfection conditions in a combination of three different bioassays.

    PubMed

    Haider, Thomas; Sommer, Regina; Knasmüller, Siefried; Eckl, Peter; Pribil, Walter; Cabaj, Alexander; Kundi, Michael

    2002-01-01

    Ground water samples from different geographic areas in Austria, with different amounts of natural and anthropogenic organic compounds were treated with a standardized low pressure UV (254 nm)-irradiation laboratory flow-through system (UV fluence: 800 J/m2). The genotoxic activities of the water samples before and after the UV disinfection were investigated using a combination of three different bioassays which complement each other with regard to their sensitivity detecting different genotoxins. The test battery comprises the Salmonella/microsome assay (Ames test with TA98. TA 100 and TA 102, with and without S9 mix) and two micronucleus tests with the plant Tradescantia (clone #4430) and with primary rat hepatocytes. Overall, the tested Austrian groundwater samples used for human consumption caused only weak genotoxic activities compared to drinking water samples reported from other countries under similar experimental conditions. With the exception of one weak positive result in the Ames test (only in strain TA98 without S9 mix) with an induction factor of 1.9) all samples after UV disinfection were devoid of additional mutagenic and clastogenic activities compared to the samples before UV disinfection.

  20. Spectral response of a UV flame sensor for a modern turbojet aircraft engine

    NASA Astrophysics Data System (ADS)

    Schneider, William E.; Minott, George L.

    1989-12-01

    A flame sensor is incorporated into the F404 turbojet's afterburner section in order to monitor operations. The sensor contains a gaseous-discharge-type UV detector tube. Attention is presently given to the results of a study of the relationship between the flame and the sensor at temperatures of up to 400 F, using a double monochromator-based spectroradiometric system optimized for spectral response measurements in the 200-300 nm wavelength range. Modifications have been instituted as a result of these tests which guarantee a sufficiently high sensor output signal level, irrespective of variability in afterburner flame irradiance associated with differences in engine operating conditions.

  1. UV red fluorescence of Eubacterium lentum.

    PubMed Central

    Mosca, A; Strong, C A; Finegold, S M

    1993-01-01

    Twenty-nine clinical isolates of Eubacterium lentum and two type species were evaluated for the ability to fluoresce under UV light. Twenty-one of the 29 isolates and both of the reference strains showed orange-to-red fluorescence. This fluorescence did not require blood or hemin in the culture media and did not fade upon air exposure. The fluorescent pigment, after extraction by 1 N NaOH, showed peak excitation at a wavelength of around 400 nm. The capacity of E. lentum to produce fluorescence may be a useful and time-sparing laboratory aid for its identification. PMID:8463378

  2. Blue light and solar UV radiation accelerate spring and autumn phenology in temperate deciduous tree species.

    NASA Astrophysics Data System (ADS)

    Brelsford, C.; Robson, T. M.

    2017-12-01

    Trees utilise multiple cues to time their bud-burst and leaf out in spring so that they can exploit favorable conditions for photosynthesis but minimize the risk of damage, and time their leaf senescence come autumn to extend the period of carbon assimilation and remobilize nutrients as efficiently as possible. Whilst the effects of temperature and photoperiod on phenology have been well studied, the effect of light quality is not often considered. The amount and proportion of blue light (BL 400-500nm), UV-A (325-400nm), and UV-B (290-320nm) reaching the ground changes with latitude, day length and the time of year, and yet little is known about how this affects the phenology of plants. We hypothesize that these compositional changes can be exploited by temperate deciduous tree species as cues for bud-burst and leaf senescence via blue and UV photoreceptors. To test this hypothesis, we measured the days until bud-burst of dormant branches from trees of Alnus glutinosa, Betula pendula, and Quercus robur when grown under a broad spectrum, either including or without BL, but of equivalent PAR. We also monitored the spring and autumn leaf phenology of Acer platanoides seedlings growing under forest canopies in southern Finland, under filter treatments attenuating UV-A radiation, UV-A + UV-B radiation or BL and UV-A and UV-B radiation, and a transparent control filter. In controlled conditions, BL advanced bud-burst by 3.3 days in branches of B.pendula, 6 days in A.glutinosa, and 6.3 days in Q.robur. In the field experiment, BL promoted bud burst of A.platanoides seedlings by 3 days. Leaf senescence was promoted by up to 16 days with BL, and by at least 3 days by UV-A and UV-B. The effect of BL in reducing the number of days until bud burst was greatest in later successional species. Furthermore, both blue light and UV advanced leaf senescence in autumn. Further research is needed to identify the photoreceptor mechanisms that underpin these physiological processes, and

  3. Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies.

    PubMed

    Tan, Jin; Li, Rong; Jiang, Zi-Tao

    2015-10-01

    We report an application of data fusion for chemometric classification of 135 canned samples of Chinese lager beers by manufacturer based on the combination of fluorescence, UV and visible spectroscopies. Right-angle synchronous fluorescence spectra (SFS) at three wavelength difference Δλ=30, 60 and 80 nm and visible spectra in the range 380-700 nm of undiluted beers were recorded. UV spectra in the range 240-400 nm of diluted beers were measured. A classification model was built using principal component analysis (PCA) and linear discriminant analysis (LDA). LDA with cross-validation showed that the data fusion could achieve 78.5-86.7% correct classification (sensitivity), while those rates using individual spectroscopies ranged from 42.2% to 70.4%. The results demonstrated that the fluorescence, UV and visible spectroscopies complemented each other, yielding higher synergic effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors.

    PubMed

    Adinolfi, Valerio; Ouellette, Olivier; Saidaminov, Makhsud I; Walters, Grant; Abdelhady, Ahmed L; Bakr, Osman M; Sargent, Edward H

    2016-09-01

    The first visible-blind UV photodetector based on MAPbCl3 integrated on a substrate exhibits excellent performance, with responsivities reaching 18 A W(-1) below 400 nm and imaging-compatible response times of 1 ms. This is achieved by using substrate-integrated single crystals, thus overcoming the severe limitations affecting thin films and offering a new application of efficient, solution-processed, visible-transparent perovskite optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of Satellite and Ground-based Data to Investigate the UV Radiative Effects of Australian Aerosols

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don

    2007-01-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340

  6. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature

    NASA Astrophysics Data System (ADS)

    Wollman, E. E.; Verma, V. B.; Beyer, A. D.; Briggs, R. M.; Korzh, B.; Allmaras, J. P.; Marsili, F.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Shaw, M. D.

    2017-10-01

    For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPDs) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${\\mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${\\mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.

  7. European light dosimeter network (ELDONET): 1998 data

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Lebert, M.; Colombetti, G.; Figueroa, F.

    2001-03-01

    The European light dosimeter network of over 40 stations has been established in Europe and other continents equipped with three-channel filter dosimeters to measure solar radiation in three channels, UV-B (280-315 nm), UV-A (315-400 nm) and photosynthetically active radiation (PAR). The recorded data have been evaluated, and the monthly doses in all three channels show a strong latitudinal dependence from northern Sweden to the Canary Islands. There are a few remarkable exceptions such as the data recorded at the high mountain station on the Zugspitze (German Alps) and unequal doses at stations at comparable latitudes which indicate the impact of local weather conditions and mean sunshine hours. While generally peak values are recorded in the months of June and July, the UV-B maxima are shifted later into the year, which is due to the antagonistic functions of decreasing solar angles and increasing transparency of the atmosphere as the total column ozone decreases in the second half of the year for the Northern Hemisphere. This is supported by comparison with modelled total column ozone and satellite-based measurements. Also the ratios of UV-B:UV-A and UV-B:PAR as well as UV-A:PAR peak during the summer months, with the exception of the northernmost station at Abisko (north Sweden) where the UV-A:PAR ratio peaks in the winter months which is due to the specific photoclimatic conditions north of the polar circle. The penetration of solar radiation into the water column was found to strongly depend on the transparency of the water column. In Gran Canaria more than 10% of the surface UV-B penetrated to 4-5 m depth. The path of the solar eclipse on 11 August 1999 could be followed in several stations with different degrees of occlusion of the sun disk.

  8. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    NASA Astrophysics Data System (ADS)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  9. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts.

    PubMed

    Cervero-Aragó, Sílvia; Sommer, Regina; Araujo, Rosa M

    2014-12-15

    Water systems are the primary reservoir for Legionella spp., where the bacteria live in association with other microorganisms, such as free-living amoebae. A wide range of disinfection treatments have been studied to control and prevent Legionella colonization but few of them were performed considering its relation with protozoa. In this study, the effectiveness of UV irradiation (253.7 nm) using low-pressure lamps was investigated as a disinfection method for Legionella and amoebae under controlled laboratory conditions. UV treatments were applied to 5 strains of Legionella spp., 4 strains of free-living amoeba of the genera Acanthamoeba and Vermamoeba, treating separately trophozoites and cysts, and to two different co-cultures of Legionella pneumophila with the Acanthamoeba strains. No significant differences in the UV inactivation behavior were observed among Legionella strains tested which were 3 logs reduced for fluences around 45 J/m(2). UV irradiation was less effective against free-living amoebae; which in some cases required up to 990 J/m(2) to obtain the same population reduction. UV treatment was more effective against trophozoites compared to cysts; moreover, inactivation patterns were clearly different between the genus Acanthamoeba and Vermamoeba. For the first time data about Vermamoeba vermiformis UV inactivation has been reported in a study. Finally, the results showed that the association of L. pneumophila with free-living amoebae decreases the effectiveness of UV irradiation against the bacteria in a range of 1.5-2 fold. That fact demonstrates that the relations established between different microorganisms in the water systems can modify the effectiveness of the UV treatments applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events

    NASA Astrophysics Data System (ADS)

    Neale, Patrick J.; Thomas, Brian C.

    2016-04-01

    Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.

  11. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2016-04-01

    Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.

  12. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    PubMed

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-12-01

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm 2 . Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, K max , was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence.

    PubMed

    Panneton, Bernard; Guillaume, Serge; Samson, Guy; Roger, Jean-Michel

    2011-01-01

    In production agriculture, savings in herbicides can be achieved if weeds can be discriminated from crop, allowing the targeting of weed control to weed-infested areas only. Previous studies demonstrated the potential of ultraviolet (UV) induced fluorescence to discriminate corn from weeds and recently, robust models have been obtained for the discrimination between monocots (including corn) and dicots. Here, we developed a new approach to achieve robust discrimination of monocot weeds from corn. To this end, four corn hybrids (Elite 60T05, Monsanto DKC 26-78, Pioneer 39Y85 (RR), and Syngenta N2555 (Bt, LL)) and four monocot weeds (Digitaria ischaemum (Schreb.) I, Echinochloa crus-galli (L.) Beauv., Panicum capillare (L.), and Setaria glauca (L.) Beauv.) were grown either in a greenhouse or in a growth cabinet and UV (327 nm) induced fluorescence spectra (400 to 755 nm) were measured under controlled or uncontrolled ambient light intensity and temperature. This resulted in three contrasting data sets suitable for testing the robustness of discrimination models. In the blue-green region (400 to 550 nm), the shape of the spectra did not contain any useful information for discrimination. Therefore, the integral of the blue-green region (415 to 455 nm) was used as a normalizing factor for the red fluorescence intensity (670 to 755 nm). The shape of the normalized red fluorescence spectra did not contribute to the discrimination and in the end, only the integral of the normalized red fluorescence intensity was left as a single discriminant variable. Applying a threshold on this variable minimizing the classification error resulted in calibration errors ranging from 14.2% to 15.8%, but this threshold varied largely between data sets. Therefore, to achieve robustness, a model calibration scheme was developed based on the collection of a calibration data set from 75 corn plants. From this set, a new threshold can be estimated as the 85% quantile on the cumulative frequency

  14. UV 380 nm reflectivity of the Earth's surface, clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2001-03-01

    The 380 nm radiance measurements of the Total Ozone Mapping Spectrometer (TOMS) have been converted into a global data set of daily (1979-1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice) and then corrected to RPC for the presence of partly clouded scenes. Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicate the presence of clouds, haze, or aerosols in the satellite field of view. A statistical analysis of 14 years of daily reflectivity data shows that most snow-/ice-free scenes observed by TOMS have a reflectivity less than 10% for the majority of days during a year. The 380 nm reflectivity data show that the true surface reflectivity is 2-3% lower than the most frequently occurring reflectivity value for each TOMS scene as seen from space. Most likely the cause is a combination of frequently occurring boundary layer water and/or aerosol haze. For most regions the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R>15%) more than half of each year. In the low to middle latitudes the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show both

  15. Effect of UV radiation on the expulsion of Symbiodinium from the coral Pocillopora damicornis.

    PubMed

    Zhou, Jie; Huang, Hui; Beardall, John; Gao, Kunshan

    2017-01-01

    The variation in density of the symbiotic dinoflagellate Symbiodinum in coral is a basic indicator of coral bleaching, i.e. loss of the symbiotic algae or their photosynthetic pigments. However, in the field corals constantly release their symbiotic algae to surrounding water. To explore the underlying mechanism, the rate of expulsion of zooxanthellae from the coral Pocillopora damicornis was studied over a three-day period under ultraviolet radiation (UVR, 280-400nm) stress. The results showed that the algal expulsion rate appeared 10-20% higher under exposure to UV-A (320-395nm) or UV-B (295-320nm), though the differences were not statistically significant. When corals were exposed to UV-A and UV-B radiation, the maximum expulsion of zooxanthellae occurred at noon (10:00-13:00), and this timing was 1h earlier than in the control without UVR. UVR stress led to obvious decreases in the concentrations of chl a and carotenoids in the coral nubbins after a three-day exposure. Therefore, our results suggested that although the UVR effect on algal expulsion rate was a chronic stress and was not significant within a time frame of only three days, the reduction in chl a and carotenoids may potentially enhance the possibility of coral bleaching over a longer period. Copyright © 2016. Published by Elsevier B.V.

  16. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  17. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    PubMed

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. UV doses and skin effects during psoriasis climate therapy

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Hernandez-Palacios, Julio; Lilleeng, Mila; Nilsen, Lill Tove; Krogstad, Anne-Lene

    2011-03-01

    Psoriasis is a common autoimmune disease with inflammatory symptoms affecting skin and joints. One way of dealing with psoriasis is by controlled solar UV exposure treatment. However, this treatment should be optimized to get the best possible treatment effect and to limit negative side effects such as erythema and an increased risk of skin cancer. In this study 24 patients at Valle Marina Treatment Center in Gran Canaria were monitored throughout a treatment period of three weeks starting at the beginning of November. The total UV dose to the location was monitored by UV-meters placed on the roof of the treatment centere, and the patients wore individual film dosimeters throughout the treatment period. Skin parameters were accessed by reflection spectroscopy (400-850nm). This paper presents preliminary findings from the skin measurements in the visible part of the spectrum, such as blood oxygenation, erythema and melanin indexes. Reflection spectroscopy was found to be a good tool for such treatment monitoring.

  19. The optimal UV exposure time for vitamin D3 synthesis and erythema estimated by UV observations in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2016-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice

  20. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection

    PubMed Central

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-01-01

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320–400 nm and UVB, 280–320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure. PMID:25546388

  1. Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection.

    PubMed

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-12-23

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320-400 nm and UVB, 280-320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  2. Clean sub-8-fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy.

    PubMed

    Liu, Jun; Okamura, Kotaro; Kida, Yuichiro; Teramoto, Takahiro; Kobayashi, Takayoshi

    2010-09-27

    Clean 7.5 fs pulses at 400 nm with less than 3% energy in tiny satellite pulses were obtained by spectral broadening in a hollow fiber and dispersive compensating using a prism pair together with a deformable mirror system. As an example, this stable and clean pulse was used to study the ultrafast pump-probe spectroscopy of photoactive yellow protein. Moreover, the self-diffraction signal shows a smoothed and broadened laser spectrum and is expected to have a further clean laser pulse, which makes it more useful in the ultrafast pump-probe spectroscopy in the future.

  3. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  4. In vitro evaluation of UV opacity potential of Aloe vera L. gel from different germplasms.

    PubMed

    Kumar, M Shyam; Datta, P K; Dutta Gupta, S

    2009-04-01

    In this study, lyophilized crude and methanolic extracts of aloe gel from different germplasms (S24, RM, TN, OR, and RJN) of Aloe vera L. were tested for their ultraviolet (UV) opacity potential. UV absorption profiles, sun protection factor (SPF), and percentage blocking of UVA and UVB were considered to test UV opacity potential. Both the extracts showed UV absorption and followed the same path in the wavelength range of 250-400 nm in all the germplasms. Methanolic extract showed a stronger absorptivity than the crude lyophilized extract. Among the tested germplasms, maximum UV opacity property with a SPF of 9.97% and 79.12% UVB blocking was obtained with RJN, whereas a poor response was evident in TN with a SPF of 1.37% and 28.5% UVB blocking at 4 mg/ml methanolic extract. To our knowledge the present work for the first time documents UV opacity properties of A. vera L. gel and opens up new vistas in Aloe gel characterization.

  5. Inclusion complexes of β-cyclodextrin-dinitrocompounds as UV absorber for ballpoint pen ink.

    PubMed

    Srinivasan, Krishnan; Radhakrishnan, S; Stalin, Thambusamy

    2014-08-14

    2,4-Dinitrophenol (2,4-DNP), 2,4-dinitroaniline (2,4-DNA), 2,6-dinitroaniline (2,6-DNA) and 2,6-dinitrobenzoic acid (2,6-DNB) has appeared for the UV absorption bands in different wavelength region below 400 nm, a combination of these dinitro aromatic compounds gave the broad absorption spectra within the UV region. The absorption intensities have been increased by preparation of the inclusion complex of dinitro compounds with β-cyclodextrin (β-CD). Prepared inclusion complexes are used to improve the UV protection properties of the ball point pen ink against photo degradation. The formation of solid inclusion complexes was characterized by FT-IR, and (1)H NMR spectroscopy. The UV protecting properties of these inclusion complexes were calculated their sun protection factor (SPF) is also discussed. The stability of the ballpoint pen ink has been confirmed by UV-Visible spectroscopic method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. AURORA on MEGSAT 1: a photon counting observatory for the Earth UV night-sky background and Aurora emission

    NASA Astrophysics Data System (ADS)

    Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.

    2001-08-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed ``Notte'' and the Aurora emission with ``Alba''. AURORA, this is the name of the experiment, will determine, with the ``Notte'' channel, the overall night-side photon background in the 300-400nm spectral range, together with a particular 2+N2 line (λc=337nm). The ``Alba'' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6nm) centered on: 367nm (continuum evaluation), 391nm (1-N+2), 535nm (continuum evaluation), 560nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 ``Satan'' rocket. The satellite orbit is nearly circular (hapogee=648km, /e=0.0022), and the inclination of the orbital plane is 64.56°. An overview of the techniques adopted is given in this paper.

  7. UV-curable ZnS/polymer nanocomposite for replication of micron and submicron features

    NASA Astrophysics Data System (ADS)

    Kalima, Valtteri; Vartiainen, Ismo; Saastamoinen, Toni; Suvanto, Mika; Kuittinen, Markku; Pakkanen, Tuula T.

    2009-08-01

    In view of the wide interest in high refractive index polymers for microreplication, study was made of UV-curable high refractive index nanocomposite material for microreplication purposes. The refractive index of the nanocomposite was tailored through the addition of surface-modified ZnS nanoparticles to commercial ORMOCOMP ® inorganic-organic hybrid polymer. The refractive index of ORMOCOMP ® was increased linearly from 1.514 (620 nm) to 1.645 (620 nm) by embedding of the nanoparticles (18.6 V%). The nanocomposite showed excellent transparency ( T = 89-92%), and increase in the nanoparticle loading shifted the absorption edge from 380 nm to 420 nm. Low scattering of transmitted light (determined by UV-VIS-NIR spectrophotometry) and high dispersion of ZnS (determined by scanning electron microscopy with energy dispersive X-ray spectrometry and transmission electron microscopy) indicated low aggregation of the ZnS nanoparticles. Finally, the nanocomposite was applied to micromolding in capillaries to replicate micrometer-size channels (8 μm × 1.5 μm) with Bragg gratings (period 520 nm and depth 400 nm) on top of the channels. Based on the AFM results the MIMIC molding method was found to be suitable for the replication of microchannels into nanocomposite material.

  8. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation.

    PubMed

    Zhang, Xiao; Ding, Xiaoli; Ji, Yaxi; Wang, Shouchuang; Chen, Yingying; Luo, Jie; Shen, Yingbai; Peng, Li

    2018-04-18

    Plants respond to UV-B irradiation (280-315nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.

  9. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  10. On the history of phyto-photo UV science (not to be left in skoto toto and silence).

    PubMed

    Björn, Lars Olof

    2015-08-01

    This review of the history of ultraviolet photobiology focuses on the effects of UV-B (280-315 nm) radiation on terrestrial plants. It describes the early history of ultraviolet photobiology, the discovery of DNA as a major ultraviolet target and the discovery of photoreactivation and photolyases, and the later identification of Photosystem II as another important target for damage to plants by UV-B radiation. Some experimental techniques are briefly outlined. The insight that the ozone layer was thinning spurred the interest in physiological and ecological effects of UV-B radiation and resulted in an exponential increase over time in the number of publications and citations until 1998, at which time it was realized by the research community that the Montreal Protocol regulating the pollution of the atmosphere with ozone depleting substances was effective. From then on, the publication and citation rate has continued to rise exponentially, but with an abrupt change to lower exponents. We have now entered a phase when more emphasis is put on the "positive" effects of UV-B radiation, and with more emphasis on regulation than on damage and inhibition. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Evaluating UV-C LED disinfection performance and ...

    EPA Pesticide Factsheets

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  12. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    PubMed

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  13. Impact of UV irradiation on multiwall carbon nanotubes in nanocomposites: formation of entangled surface layer and mechanisms of release resistance

    PubMed Central

    Nguyen, Tinh; Petersen, Elijah J.; Pellegrin, Bastien; Gorham, Justin M.; Lam, Thomas; Zhao, Minhua; Sung, Lipiin

    2017-01-01

    Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed. PMID:28603293

  14. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics.

    PubMed

    Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph

    2017-05-01

    Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.

  15. Reconstruction of solar UV irradiance since 1974

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  16. Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Dibb, J. E.; Greenslade, M. E.; Martin, R.; Scheuer, E. M.; Shook, M.; Thornhill, K. L., II; Troop, D.; Winstead, E.; Ziemba, L. D.

    2014-12-01

    An optical instrument has been developed to investigate aerosol extinction spectra in the ambient atmosphere. Based on a White-type cell design and using a differential optical approach, aerosol extinction spectra over the 300-700 nm ultraviolet and visible (UV/Vis) wavelength range are obtained. Laboratory tests conducted at NASA Langley Research Center (NASA LaRC) in March 2014 showed good agreement with Cavity Attenuated Phase Shift (CAPS PMex, Aerodyne Research) extinction measurements (at 450, 530, and 630 nm) for a variety of aerosols, e.g., scatterers such as polystyrene latex spheres and ammonium sulfate; absorbers such as dust (including pigmented minerals), smoke (generated in a miniCAST burning propane) and laboratory smoke analogs (e.g., fullerene soot and aquadag). The instrument was field tested in Colorado in July and August 2014 aboard the NASA mobile laboratory at various ground sites during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. A description of the instrument, results from the laboratory tests, and summer field data will be presented. The instrument provides a new tool for probing in situ aerosol optical properties that may help inform remote sensing approaches well into the UV range.

  17. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions.

    PubMed

    Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L

    2015-05-01

    Solar UV-B radiation (280-315nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.

  18. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  19. UV Raman detection of 2,4-DNT in contact with sand particles

    NASA Astrophysics Data System (ADS)

    Blanco, Alejandro; Pacheco-Londoño, Leonardo C.; Peña-Quevedo, Alvaro J.; Hernández-Rivera, Samuel P.

    2006-05-01

    Deep Ultra Violet Raman Spectroscopy (DUV-RS) is an emerging tool for vibrational spectroscopy analysis and can be used in Point Detection mode to detect explosive components of landmines and Improvised Explosive Devices (IED). Interactions of explosives with different substrates can be measured by using quantitative vibrational signal shift information of scattered Raman light associated with these interactions. In this research, grounds were laid for detection of explosives using UV-Raman Spectroscopy equipped with 244 nm laser excitation line from a 488 nm frequency doubled Coherent FreD laser. In other experiments, samples of 2,4-DNT were allowed to interact with Ottawa Sand and were studied using DUV-RS. Characteristic vibrational signals of energetic compounds were analyzed in the ranges: 400-1200 cm -1, 1200-1800 cm -1, and 2800-3500 cm -1. In addition these Raman spectra were compared with dispersive spectra that were acquired using Raman Microscopy equipped with 514.5 nm (VIS) 785 nm (NIR) and 1064 nm (NIR) excitation lasers.

  20. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    PubMed

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  1. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate

    EPA Science Inventory

    Abstract: With increasing worldwide incidence of toxic cyanobacterial blooms in bodies of water, cylindrospermopsin (CYN) has become a significant concern to public health and water management officials. In this study, the removal of CYN by UV-254 nm-mediated advanced oxidation ...

  2. High-performance visible/UV CCD focal plane technology for spacebased applications

    NASA Technical Reports Server (NTRS)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  3. The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection.

    PubMed

    Maganha de Almeida, Ana C; Quilty, Bríd

    2016-11-01

    UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD ® stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.

  4. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuveson, R.W.; Larson, R.A.; Kagan, J.

    1988-10-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but wasmore » seen with toluidine blue O plus visible light.« less

  5. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules.

    PubMed Central

    Tuveson, R W; Larson, R A; Kagan, J

    1988-01-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light. PMID:3049544

  6. Mini-EUSO: A Precursor Mission on the International Space Station for the Observation of Atmosphere and Earth in the UV Light

    NASA Astrophysics Data System (ADS)

    Ricci, Marco

    For any experiment aiming at the observation of Ultra High Energy Cosmic Rays (UHECRs) from space, one key measurement is related to the UV emissions produced in the Earth's atmosphere. In view of the planned missions under study (KLYPVE-EUSO, JEM-EUSO, EUSO-FF) at the International Space Station (ISS) and on board of free-flyer satellites, a small, compact UV telescope, Mini-EUSO, is being developed by the JEM-EUSO International Collaboration to be placed at the UV-transparent, nadir looking window of the Russian module of the ISS. In addition to the main purpose of mapping the Earth in the UV range (300-400nm), Mini-EUSO will also perform studies of atmospheric phenomena, observation of meteors, strange quark matter search and space debris tracking. It will as well enhance the technological readiness level of the EUSO concept and instruments. Mini-EUSO is a mission approved and selected by the Italian Space Agency (ASI) and, under the name "UV atmosphere", by the Russian Space Agency Roscosmos.

  7. Induction of lambda prophage by 213 nm laser radiation: a quantitative comparison with 193 nm excimer radiation using image analysis.

    PubMed

    Matchette, L S; Grossman, L W; Hahn, D W; Cooney, C

    1996-03-01

    We compared the DNA damage produced by radiation from two UV laser wavelengths, 213 nm and 193 nm, with that produced by noncoherent 254 nm radiation. Following irradiation of Escherichia coli BR339, a bacteriophage lambda lysogen containing the lacZ gene, pro-phage induction was measured by assaying for beta-galactosidase. Because of the limited penetration by UV laser wavelengths an agar overlay of the lysogen was used as the irradiation target. Irradiation of 254 nm was performed in buffer suspension followed by transfer of 5 microL spots onto assay plants. Computer image analysis was used to monitor the rate of product formation, observed as an increase in optical density of the irradiated zones on assay plates. We found that the rate of product formation was a more reproducible unit of comparison than the optical density present at the end of the reaction. Although the rate of product formation was not linearly related to enzyme concentration, the data could be fit to a simple logarithmic function. Using this method, we concluded that the DNA damaging ability of 213 nm radiation was 10 times more efficient than 193 nm radiation and about 100 times less efficient than 254 nm noncoherent radiation.

  8. UV holographic filters

    NASA Astrophysics Data System (ADS)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  9. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  10. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  11. Radiation damage of all-silica fibers in the UV region

    NASA Astrophysics Data System (ADS)

    Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.

    1999-04-01

    Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.

  12. Phototransformation of selected pharmaceuticals during UV treatment of drinking water.

    PubMed

    Canonica, Silvio; Meunier, Laurence; von Gunten, Urs

    2008-01-01

    The kinetics of Ultraviolet C (UV-C)-induced direct phototransformation of four representative pharmaceuticals, i.e., 17alpha-ethinylestradiol (EE2), diclofenac, sulfamethoxazole, and iopromide, was investigated in dilute solutions of pure water buffered at various pH values using a low-pressure and a medium-pressure mercury arc lamp. Except for iopromide, pH-dependent rate constants were observed, which could be related to acid-base equilibria. Quantum yields for direct phototransformation were found to be largely wavelength-independent, except for EE2. This compound, which also had a rather inefficient direct phototransformation, mainly underwent indirect phototransformation in natural water samples, while the UV-induced depletion of the other pharmaceuticals appeared to be unaffected by the presence of natural water components. At the UV-C (254 nm) drinking-water disinfection fluence (dose) of 400 Jm(-2), the degree of depletion of the select pharmaceuticals at pH=7.0 in pure water was 0.4% for EE2, 27% for diclofenac, 15% for sulfamethoxazole, and 15% for iopromide, indicating that phototransformation should be seriously taken into account when evaluating the possibility of formation of UV transformation products from pharmaceuticals present as micropollutants.

  13. Serious complications in experiments in which UV doses are effected by using different lamp heights.

    PubMed

    Flint, Stephan D; Ryel, Ronald J; Hudelson, Timothy J; Caldwell, Martyn M

    2009-10-06

    Many experiments examining plant responses to enhanced ultraviolet-B radiation (280-315nm) simply compare an enhanced UV-B treatment with ambient UV-B (or no UV-B radiation in most greenhouse and controlled-environment studies). Some more detailed experiments utilize multiple levels of UV-B radiation. A number of different techniques have been used to adjust the UV dose. One common technique is to place racks of fluorescent UV-emitting lamps at different heights above the plant canopy. However, the lamps and associated support structure cast shadows on the plant bed below. We calculated one example of the sequence of shade intervals for two common heights of lamp racks and show the patterns and duration of shade which the plants receive is distributed differently over the course of the day for different heights of the lamp racks. We also conducted a greenhouse experiment with plants (canola, sunflower and maize) grown under unenergized lamp racks suspended at the same two heights above the canopy. Growth characteristics differed in unpredictable ways between plants grown under the two heights of lamp racks. These differences could enhance or obscure potential UV-B effects. Also, differences in leaf mass per unit foliage area, which were observed in this experiment, could contribute to differences in plant UV-B sensitivity. We recommend the use of other techniques for achieving multiple doses of UV-B radiation. These range from simple and inexpensive approaches (e.g., wrapping individual fluorescent tubes in layers of a neutral-density filter such as cheese cloth) to more technical and expensive alternatives (e.g., electronically modulated lamp control systems). These choices should be determined according to the goals of the particular experiment.

  14. Tuneable powerful UV laser system with UV noise eater

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Radnatarov, Daba; Khripunov, Sergey; Zarudnev, Yurii

    2018-02-01

    The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275-310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275-310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.

  15. A high UV environment does not ensure adequate Vitamin D status

    NASA Astrophysics Data System (ADS)

    Kimlin, M. G.; Lang, C. A.; Brodie, A.; Harrison, S.; Nowak, M.; Moore, M. R.

    2006-12-01

    Queensland has the highest rates of skin cancer in the world and due to the high levels of solar UV in this region it is assumed that incidental UV exposure should provide adequate vitamin D status for the population. This research was undertaken to test this assumption among healthy free-living adults in south-east Queensland, Australia (27°S), at the end of winter. This research was approved by Queensland University of Technology Human Research Ethics Committee and conducted under the guidelines of the Declaration of Helsinki. 10.2% of the sample had serum vitamin D levels below 25nm/L (deficiency) and a further 32.3% had levels between 25nm/L and 50nm/L (insufficiency). Vitamin D deficiency and insufficiency can occur at the end of winter, even in sunny climates. The wintertime UV levels in south-east Queensland (UV index 4-6) are equivalent to summertime UV levels in northern regions of Europe and the USA. These ambient UV levels are sufficient to ensure synthesis of vitamin D requirements. We investigated individual UV exposure (through a self reported sun exposure questionnaire) and found correlations between exposure and Vitamin D status. Further research is needed to explore the interactions between the solar UV environment and vitamin D status, particularly in high UV environments, such as Queensland.

  16. Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria†

    PubMed Central

    Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.

    2000-01-01

    The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228

  17. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell.

    PubMed

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2017-09-18

    We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.

  18. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    NASA Astrophysics Data System (ADS)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.

  19. Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation▿ †

    PubMed Central

    Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri

    2008-01-01

    Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857

  20. The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm

    NASA Astrophysics Data System (ADS)

    Hao, Jing-Yu; Xu, Ying; Zhang, Yu-Pei; Chen, Shu-Fen; Li, Xing-Ao; Wang, Lian-Hui; Huang, Wei

    2015-04-01

    Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregular spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plasmon resonance peaks, respectively, at 525, 575, and 775 nm, are introduced into the hole extraction layer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic cells. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl-C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA·cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB932202 and 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), the Science Fund from the Ministry of Education of China (Grant No. IRT1148), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113223110005), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions (Grant No. YX03001), and the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and

  1. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    PubMed Central

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  2. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    PubMed

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  3. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    NASA Technical Reports Server (NTRS)

    Hicks, A. K.; Mushotzky, R.

    2006-01-01

    We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 Solar Mass/yr. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O'Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar Mass/yr for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

  4. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    PubMed

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  5. ZnO and TiO2 particles: a study on nanosafety and photoprotection

    NASA Astrophysics Data System (ADS)

    Popov, Alexey; Zhao, Xin; Zvyagin, Andrei; Lademann, Jürgen; Roberts, Michael; Sanchez, Washington; Priezzhev, Alexander; Myllylä, Risto

    2010-04-01

    Nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) are used in sunscreens as protective compounds against UV radiation. We investigate these particles from the viewpoint of nanosafety (penetration into skin in vivo, production of free radicals when UV-irradiated) as well as UV protection. We show that: a) even after multiple applications, the particles remain within stratum corneum (uppermost skin layer); b) the optimal sizes are 62 nm and 45 nm, respectively for TiO2 and ZnO particles for 310-nm light and, correspondingly, 122 and 140 nm - for 400-nm radiation; c) in general, small particles (25 nm in diameter) are more photoactive than the larger ones (400 nm in diameter); however, on the background if porcine skin in vitro this difference is not seen and is substantially surpassed by skin contribution into production of free radicals.

  6. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  7. Discussion of vicarious calibration of GOSAT/TANSO-CAI UV-band (380nm) and aerosol retrieval in wildfire region in the OCO-2 and GOSAT observation campaign at Railroad Valley in 2016

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.

    2016-12-01

    The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol

  8. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  9. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  10. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF).

    PubMed

    Couderc, François; Ong-Meang, Varravaddheay; Poinsot, Véréna

    2017-01-01

    Native laser-induced fluorescence using UV lasers associated to CE offers now a large related literature, for now 30 years. The main works have been performed using very expensive Ar-ion lasers emitting at 257 and 275 nm. They are not affordable for routine analyses, but have numerous applications such as protein, catecholamine, and indolamine analysis. Some other lasers such as HeCd 325 nm have been used but only for few applications. Diode lasers, emitting at 266 nm, cheaper, are extensively used for the same topics, even if the obtained sensitivity is lower than the one observed using the costly UV-Ar-ion lasers. This review presents various CE or microchips applications and different UV lasers used for the excitation of native fluorescence. We showed that CE/Native UV laser induced fluorescence detection is very sensitive for detection as well as small aromatic biomolecules than proteins containing Trp and Tyr amino acids. Moreover, it is a simple way to analyze biomolecules without derivatization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255 nm

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Karthik; Sun, Ke-Xun

    2012-07-01

    Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. We show that AlGaN UV LEDs operating at 255 nm are an effective substitute for Mercury vapor lamps used in previous missions because of their ability to withstand space qualification levels of vibration and thermal cycling. After 27 thermal and thermal vacuum cycles and 9 minutes of 14.07 g RMS vibration, there is less than 3% change in current draw, less than 15% change in optical power, and no change in spectral peak or FWHM (full width at half maximum). We also demonstrate UV LED stimulated photoemission from a wide variety of thin film carbide proof mass coating candidates (SiC, Mo2C, TaC, TiC, ZrC) that were applied using electron beam evaporation on an Aluminum 6061-T6 substrate. All tested carbide films have measured quantum efficiencies of 3.8-6.8*10^-7 and reflectivities of 0.11-0.15, which compare favorably with the properties of previously used gold films. We demonstrate the ability to control proof mass potential on an 89 mm diameter spherical proof mass over a 20 mm gap in a GRS-like configuration. Proof mass potential was measured via a non-contact DC probe, which would allow control without introducing dynamic forcing of the spacecraft. Finally we provide a look ahead to an upcoming technology demonstration mission of UV LEDs and future applications toward charge control of electrically isolated proof masses.

  12. Ocean Acidification Alters the Photosynthetic Responses of a Coccolithophorid to Fluctuating Ultraviolet and Visible Radiation1[OPEN

    PubMed Central

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E.; Campbell, Douglas A.; Helbling, E. Walter

    2013-01-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400–700 nm) and ultraviolet radiation (UVR; 280–400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280–315 nm)-induced inhibition. Ultraviolet A (315400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition. PMID:23749851

  13. Cathodoluminescent UV-radiation sources

    NASA Astrophysics Data System (ADS)

    Vereschagina, N. Y.; Danilkin, M. I.; Kazaryan, M. A.; Ozol, D. I.; Sheshin, E. P.; Spassky, D. A.

    2018-04-01

    Mercury-free UV-radiation sources are described. An electron beam similar to cathode-ray tubes (CRT) excites a luminescent material in a vacuum bulb. A high density of excitation requires the cathode and the luminescent material to be resistant for that and provide the extended lifetime of the UV-radiation source. Carbon fibre and nano-carbon based field-emission cathodes produce long lasting stable emission with a high current density (up to 0.3-0.5 A/cm2 ). Li2B4O7:Cu and Li2B4O7:Ag luminescent ceramics survive under high radiation doses and provide UV luminescence bands peaked at 360-370 nm and 270 nm, respectively. The luminescence band at 360-370 nm has a good overlap with the fundamental absorption edge of TiO2, which is known as a photo-catalyst in air and water cleaning systems. The luminescence band at 270 nm overlaps with DNA absorption and provides a direct disinfection effect. We suggest the structure of complex luminescence centres and energy transfer mechanisms. The electron structure of lithium tetraborate and the contribution of impurities are also discussed in paper.

  14. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-06-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  15. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-02-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  16. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett

    2017-09-01

    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.

  17. Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha x piperita L.).

    PubMed

    Behn, Helen; Albert, Andreas; Marx, Friedhelm; Noga, Georg; Ulbrich, Andreas

    2010-06-23

    Solar radiation is a key environmental signal in regulation of plant secondary metabolism. Since metabolic responses to light and ultraviolet (UV) radiation exposure are known to depend on the ratio of spectral ranges (e.g., UV-B/PAR), we examined effects of different UV-B radiation (280-315 nm) and photosynthetically active radiation (PAR, 400-700 nm) levels and ratios on yield and pattern of monoterpenoid essential oil of peppermint. Experiments were performed in exposure chambers, technically equipped for realistic simulation of natural climate and radiation. The experimental design comprised four irradiation regimes created by the combination of two PAR levels including or excluding UV-B radiation. During flowering, the highest essential oil yield was achieved at high PAR (1150 micromol m(-2) s(-1)) and approximate ambient UV-B radiation (0.6 W m(-2)). Regarding the monoterpene pattern, low PAR (550 micromol m(-2) s(-1)) and the absence of UV-B radiation led to reduced menthol and increased menthone contents and thereby to a substantial decrease in oil quality. Essential oil yield could not be correlated with density or diameter of peltate glandular trichomes, the epidermal structures specialized on biosynthesis, and the accumulation of monoterpenes. The present results lead to the conclusion that production of high quality oils (fulfilling the requirements of the Pharmacopoeia Europaea) requires high levels of natural sunlight. In protected cultivation, the use of UV-B transmitting covering materials is therefore highly recommended.

  18. Lunar mare TiO2 abundances estimated from UV/Vis reflectance

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyuki; Robinson, Mark S.; Lawrence, Samuel J.; Denevi, Brett W.; Hapke, Bruce; Jolliff, Bradley L.; Hiesinger, Harald

    2017-11-01

    The visible (400-700 nm) and near-infrared (700-2800 nm) reflectance of the lunar regolith is dominantly controlled by variations in the abundance of plagioclase, iron-bearing silicate minerals, opaque minerals (e.g., ilmenite), and maturation products (e.g., agglutinate glass, radiation-produced rims on soil grains, and Fe-metal). The same materials control reflectance into the near-UV (250-400 nm) with varying degrees of importance. A key difference is that while ilmenite is spectrally neutral in the visible to near-infrared, it exhibits a diagnostic upturn in reflectance in the near-UV, at wavelengths shorter than about 450 nm. The Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) filters were specifically designed to take advantage of this spectral feature to enable more accurate mapping of ilmenite within mare soils than previously possible. Using the reflectance measured at 321 and 415 nm during 62 months of repeated near-global WAC observations, first we found a linear correlation between the TiO2 contents of the lunar soil samples and the 321/415 nm ratio of each sample return site. We then used the coefficients from the linear regression and the near-global WAC multispectral mosaic to derive a new TiO2 map. The average TiO2 content is 3.9 wt% for the 17 major maria. The highest TiO2 values were found in Mare Tranquillitatis (∼12.6 wt%) and Oceanus Procellarum (∼11.6 wt%). Regions contaminated by highland ejecta, lunar swirls, and the low-TiO2 maria (e.g., Mare Frigoris, the northeastern units of Mare Imbrium) exhibit very low TiO2 values (<2 wt%). We find that the Clementine visible to near-infrared based TiO2 maps (Lucey et al., 2000) have systematically higher values relative to the WAC estimates. The Lunar Prospector Gamma-Ray Spectrometer (GRS) TiO2 map is consistent with the WAC TiO2 map, although there are local offsets possibly due to the different depth sensitivities and large pixel scale of the GRS relative to the WAC. We find a wide

  19. Transmission of light in the visible spectrum (400-700 nm) and blue spectrum (360-540 nm) through CAD/CAM polymers.

    PubMed

    Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Ueda, Kazuhiko; Florian, Beuer; Stimmelmayr, Michael

    2016-12-01

    CAD/CAM-fabricated long-term temporary restorations from high-density polymers can be applied for a wide range of indications. Milled from monolithic, mono-colored polymer blocks, the translucency of the material plays an important role for an esthetically acceptable result. The aim of this study was to compare the transmittance through visible light and blue light of CAD CAM polymers to a glass-ceramic material of the same color. Ambarino High-Class (AM), Telio-CAD (TC), Zenotec PMMA (ZT), Cercon base PMMA (CB), CAD Temp (CT), Artbloc Temp (AT), Polycon ae (PS), New Outline CAD (NC), QUATTRO DISK Eco PMMA (GQ), Lava Ultimate (LU), and Paradigm MZ 100 (PA) were employed in this study using the feldspathic glass-ceramic Vita Mark II (MK) as control group. Using a spectrophotometer, the overall light transmittance was measured for each material (n = 40) and was calculated as the integration (t c (λ) dλ [10 -5 ]) of all t c values for the wavelengths of blue light (360-540 nm). Results were compared to previous data of the authors for visible light (400 to 700 nm). Wilcoxon test showed significant differences between the light transmittance of visible and blue light for all materials. CAD/CAM polymers showed different translucency for blue and visible light. This means clinicians may not conclude from the visible translucency of a material to its permeability for blue light. This influences considerations regarding light curing. CAD/CAM polymers need to be luted adhesively; therefore, clinicians should be aware about the amount of blue light passing through a restoration.

  20. Improvement of optical damage in specialty fiber at 266 nm wavelength

    NASA Astrophysics Data System (ADS)

    Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.

    2014-02-01

    Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.

  1. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  2. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae).

    PubMed

    Ali, Arif; Rashid, Muhammad Adnan; Huang, Qiu Ying; Lei, Chao-Liang

    2016-09-01

    The ultraviolet light (UV-A) range of 320-400 nm is widely used as light trap for insect pests. Present investigation was aimed to determine the effect of UV light-A radiation on development, adult longevity, reproduction, and development of F1 generation of Mythimna separata. Our results revealed that the mortality of the second instar larvae was higher than the third and fourth instar larvae after UV-A radiation. As the time of UV-A irradiation for pupae prolonged, the rate of adult emergence reduced. Along with the extension of radiation time decreased the longevity of adult females and males. However, the radiation exposure of 1 and 4 h/day increased fecundity of female adults, and a significant difference was observed in a 1 h/day group. The oviposition rates of female adults in all the treatments were significantly higher than the control. In addition, UV-A radiation treatments resulted in declined cumulative survival of F1 immature stages (eggs, larvae, and pupae). After exposure time of 4 and 7 h/day, the developmental periods of F1 larvae increased significantly, but no significant effects on F1 pupal period were recorded.

  3. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Boustie, M.; Chevalier, J.-M.; Baton, S.; Brambrink, E.; Berthe, L.; Schneider, M.; Videau, L.; Boyer, S. A. E.; Scharring, S.

    2017-11-01

    At the École Polytechnique « LULI » facility, we have measured the impulse coupling coefficient Cm (target momentum per joule of incident laser light) with several target materials in vacuum, at 1057 nm and 400 fs and 80 ps pulse duration. A total of 64 laser shots were completed in a two-week experimental campaign, divided between the two pulse durations and among the materials. Our main purpose was to resolve wide discrepancies among reported values for Cm in the 100 ps region, where many applications exist. A secondary purpose was to compare Cm at 400 fs and 80 ps pulse duration. The 80 ps pulse was obtained by partial compression. Materials were Al, Ta, W, Au, and POM (polyoxymethylene, trade name Delrin). One application of these results is to pulsed laser ablation propulsion in space, including space debris re-entry, where narrow ranges in Cm and specific impulse Isp spell the difference between dramatic and uneconomical performance. We had difficulty measuring mass loss from single shots. Imparted momentum in single laser shots was determined using pendulum deflection and photonic Doppler velocimetry. Cm was smaller at the 400 fs pulse duration than at 80 ps. To our surprise, Cm for Al at 80 ps was at most 30 N/MW with 30 kJ/m2 incident fluence. On the other extreme, polyoxymethylene (POM, trade name Delrin) demonstrated 770 N/MW under these conditions. Together, these results offer the possibility of designing a Cm value suited to an application, by mixing the materials appropriately.

  4. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    PubMed Central

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2017-01-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm−1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360–500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors. PMID:29201583

  5. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.

    PubMed

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-09-19

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

  6. A novel polishing technology for epoxy resin based on 355 nm UV laser

    NASA Astrophysics Data System (ADS)

    Meng, Xinling; Tao, Luqi; Liu, Zhaolin; Yang, Yi; Ren, Tianling

    2017-06-01

    The electromagnetic shielding film has drawn much attention due to its wide applications in the integrated circuit package, which demands a high surface quality of epoxy resin. However, gaseous Cu will splash and adhere to epoxy resin surface when the Cu layer in PCB receives enough energy in the process of laser cutting, which has a negative effect on the quality of the shielding film. Laser polishing technology can solve this problem and it can effectively improve the quality of epoxy resin surface. The paper studies the mechanism of Cu powder spraying on the compound surface by 355 nm ultraviolet (UV) laser, including the parameters of laser polishing process and the remains of Cu content on compound surface. The results show that minimal Cu content can be realized with a scanning speed of 700 mm/s, a laser frequency of 50 kHz and the distance between laser focus and product top surface of -1.3 mm. This result is important to obtain an epoxy resin surface with high quality. Project supported by the National Natural Science Foundation of China (Nos. 61574083, 61434001), the National Basic Research Program (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002), the Special Fund for Agroscientic Research in the Public Interest of China (No 201303107), the support of the Independent Research Program of Tsinghua University (No. 2014Z01006), and Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen (No. ZDSYS20140509172959969).

  7. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  8. Optimum spectral resolution for computing atmospheric heating and photodissociation rates

    NASA Astrophysics Data System (ADS)

    Stamnes, K.; Tsay, S.-C.

    1990-06-01

    Rapid, reliable and accurate computations of atmospheric heating rates are needed in climate models aimed at predicting the impact of greenhouse gases on the surface temperature. Photolysis rates play a major role in photochemical models used to assess potential changes in atmospheric ozone abundance due to man's release of chlorofluorocarbons. Both rates depend directly on the amount of solar radiation available at any level in the atmosphere. We present a very efficient method of computing these rates in which integration over the solar spectrum is reduced to a minimum number of monochromatic (or pseudogray) problems by appealing to the continuum features of the ozone absorption cross-sections. To explore the resolutions needed to obtain adequate results we have divided the spectral range between 175 and 700 nm into four regions. Within each of these regions we may vary the resolution as we wish. Accurate results are obtained for very coarse spectral resolution provided all cross-sections are averaged by weighting them with the solar flux across any bin. By using this procedure we find that heating rate errors are less than 20% for all altitudes when only four spectral bands across the entire wavelength region from 175 to 700 nm are used to compute the heating rate profile. Similarly, we find that the error in the photodissociation of ozone is less than a few percent when 10 nm resolution is used in the Hartley and Huggins bands (below 330 nm), while an average over the entire wavelength region from 400 to 700 nm yields similar accuracy for the Chappuis band. For integrated u.v. dose estimates a resolution slightly better than 10 nm is required in the u.v.B region (290-315 nm) to yield an accuracy better than 10%, but we may treat the u.v.A region (315-400 nm) as a single band and yet have an accuracy better than 2%.

  9. Inscription of first order fiber Bragg gratings in sapphire fibers by 400 nm femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Elsmann, Tino; Habisreuther, Tobias; Graf, Albrecht; Rothhardt, Manfred; Bartelt, Hartmut

    2013-05-01

    We demonstrate the inscription of fiber Bragg gratings in single crystalline sapphire using the second harmonic of a Ti:Sa-amplified femtosecond laser system. With the laser wavelength of 400 nm first order gratings were fabricated. The interferometric inscription was performed out using the Talbot interferometer. This way, not only single gratings but also multiplexed sensor arrays were realized. For evaluating of the sensor signals an adapted multimodal interrogation setup was build up, because the sapphire fiber is an extreme multimodal air clad fiber. Due to the multimodal reflection spectrum, different peak functions have been tested to evaluate the thermal properties of the grating. The temperature sensors were tested for high temperature applications up to 1200°C with a thermal sensitivity in the order of 25 pm/K which is more than the doubled of that one reached with Bragg gratings in conventional silica fibers.

  10. 10 CFR 590.315 - Witnesses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Witnesses. 590.315 Section 590.315 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Procedures § 590.315 Witnesses. (a) The Assistant...

  11. 5 CFR 315.903 - Coverage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Coverage. 315.903 Section 315.903 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Probation on Initial Appointment to a Supervisory or Managerial Position § 315.903 Coverage. This...

  12. 5 CFR 315.903 - Coverage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Coverage. 315.903 Section 315.903 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Probation on Initial Appointment to a Supervisory or Managerial Position § 315.903 Coverage. This...

  13. 5 CFR 315.903 - Coverage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Coverage. 315.903 Section 315.903 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Probation on Initial Appointment to a Supervisory or Managerial Position § 315.903 Coverage. This...

  14. 5 CFR 315.903 - Coverage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Coverage. 315.903 Section 315.903 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Probation on Initial Appointment to a Supervisory or Managerial Position § 315.903 Coverage. This...

  15. 5 CFR 315.903 - Coverage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Coverage. 315.903 Section 315.903 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Probation on Initial Appointment to a Supervisory or Managerial Position § 315.903 Coverage. This...

  16. Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators.

    PubMed

    Dibowski, Gerd; Esser, Kai

    2017-09-01

    Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

  17. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress

  18. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  19. Effect of UV-A and UV-B irradiation on the metabolic profile of aqueous humor in rabbits analyzed by 1H NMR spectroscopy.

    PubMed

    Tessem, May-Britt; Bathen, Tone F; Cejková, Jitka; Midelfart, Anna

    2005-03-01

    This study was conducted to investigate metabolic changes in aqueous humor from rabbit eyes exposed to either UV-A or -B radiation, by using (1)H nuclear magnetic resonance (NMR) spectroscopy and unsupervised pattern recognition methods. Both eyes of adult albino rabbits were irradiated with UV-A (366 nm, 0.589 J/cm(2)) or UV-B (312 nm, 1.667 J/cm(2)) radiation for 8 minutes, once a day for 5 days. Three days after the last irradiation, samples of aqueous humor were aspirated, and the metabolic profiles analyzed with (1)H NMR spectroscopy. The metabolic concentrations in the exposed and control materials were statistically analyzed and compared, with multivariate methods and one-way ANOVA. UV-B radiation caused statistically significant alterations of betaine, glucose, ascorbate, valine, isoleucine, and formate in the rabbit aqueous humor. By using principal component analysis, the UV-B-irradiated samples were clearly separated from the UV-A-irradiated samples and the control group. No significant metabolic changes were detected in UV-A-irradiated samples. This study demonstrates the potential of using unsupervised pattern recognition methods to extract valuable metabolic information from complex (1)H NMR spectra. UV-B irradiation of rabbit eyes led to significant metabolic changes in the aqueous humor detected 3 days after the last exposure.

  20. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2003-04-01

    ... 20 Employees' Benefits 3 2003-04-01 2003-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT... Penalties § 726.315 Contents. Any petition or cross-petition for review shall: (a) Be dated; (b) Be...

  1. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2002-04-01

    ... 20 Employees' Benefits 3 2002-04-01 2002-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT... Penalties § 726.315 Contents. Any petition or cross-petition for review shall: (a) Be dated; (b) Be...

  2. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2001-04-01

    ... 20 Employees' Benefits 3 2001-04-01 2001-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT... Penalties § 726.315 Contents. Any petition or cross-petition for review shall: (a) Be dated; (b) Be...

  3. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY... Money Penalties § 726.315 Contents. Any petition or cross-petition for review shall: (a) Be dated; (b...

  4. Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals.

    PubMed

    Shaffer, Christopher J; Pepin, Robert; Tureček, František

    2015-12-01

    We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.

  5. 13 CFR 315.9 - Hearings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Hearings. 315.9 Section 315.9... ASSISTANCE FOR FIRMS Certification of Firms § 315.9 Hearings. EDA will hold a public hearing on an accepted... proceedings submits a request for a hearing no later than 10 days after the date of publication of the notice...

  6. 13 CFR 315.9 - Hearings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Hearings. 315.9 Section 315.9... ASSISTANCE FOR FIRMS Certification of Firms § 315.9 Hearings. EDA will hold a public hearing on an accepted... proceedings submits a request for a hearing no later than 10 days after the date of publication of the notice...

  7. 45 CFR 31.5 - Notice.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Notice. 31.5 Section 31.5 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION TAX REFUND OFFSET § 31.5 Notice. (a) Requirements. If not previously included in the initial demand letter provided under section 30.11, at least 60...

  8. 15 CFR 315.3 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Application. 315.3 Section 315.3...-VEHICLE MANUFACTURER § 315.3 Application. Any person in the United States desiring to be determined a bona... in accordance with the instructions set forth on the form and this part. Application forms may be...

  9. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    PubMed

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  10. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  11. On induced-modifications in optical properties of Makrofol® DE 1-1 SSNTD by UVB and UVA

    NASA Astrophysics Data System (ADS)

    Al-Amri, A.; El Ghazaly, M.; Abdel-Aal, M. S.

    The induced modifications in the optical properties of Makrofol® DE 1-1 solid state nuclear track detectors upon irradiation by UVB (302 nm) and UVA (365 nm) were characterized and compared. Makrofol® DE 1-1 detectors were irradiated separately for different durations with UVB (302 nm) and UVA (365 nm). The measurements revealed insignificant changes were observed at all in UVA (365 nm)-irradiated Makrofol® DE 1-1, irrespective the irradiation time (dose). All UVB (302 nm)-irradiated Makrofol® DE 1-1 detectors show a substantial red shift in UV-Vis spectra and a continuous increase in absorbance as the exposure time (Dose) to UVB increases. UVC-irradiated Makrofol® DE 1-1 exhibits absorption bands at 315 ± 5 nm in UV-visible spectra. The absorption increases exponential with the increasing the UVB irradiation time gets saturated started from 75 h to 400 h. In the visible light range no significant changes were observed in Makrofol® DE 1-1 detector irrespective the exposure time to UVB of 302 nm. It is found that the direct band gap is higher than indirect band gap and both decrease with the increase in the irradiation time of UVB of 302 nm. The obtained results of the Urbach energy and carbon atoms per cluster indicate that both increase with the increase in the irradiation time to UVB (302 nm). The induced modification in the optical properties of Makrofol® DE 1-1 can be used in UVB dosimetry, meanwhile it is not applicable for UVA of 365 nm.

  12. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    PubMed

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O 3 /H 2 O 2 and UV/H 2 O 2 ) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (k O 3 ) (<0.1-7.9 × 10 3 M -1 s -1 ) or with hydroxyl radicals (k • OH ) (0.9 × 10 9 - 6.5 × 10 9 M -1 s -1 ), photon fluence-based rate constants (k') (210-2730 m 2 einstein -1 ), and quantum yields (Φ) (0.03-0.95 mol einstein -1 ). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO 3 /gDOC to ∼100% at ≥1.0 gO 3 /gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined k O 3 and k • OH . The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H 2 O 2 . For a typical UV disinfection dose (400 J/m 2 ), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H 2 O 2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  13. Changes in photochemically significant solar UV spectral irradiance as estimated by the composite Mg II index and scale factors

    NASA Technical Reports Server (NTRS)

    Deland, Matthew T.; Cebula, Richard P.

    1994-01-01

    Quantitative assessment of the impact of solar ultraviolet irradiance variations on stratospheric ozone abundances currently requires the use of proxy indicators. The Mg II core-to-wing index has been developed as an indicator of solar UV activity between 175-400 nm that is independent of most instrument artifacts, and measures solar variability on both rotational and solar cycle time scales. Linear regression fits have been used to merge the individual Mg II index data sets from the Nimbus-7, NOAA-9, and NOAA-11 instruments onto a single reference scale. The change in 27-dayrunning average of the composite Mg II index from solar maximum to solar minimum is approximately 8 percent for solar cycle 21, and approximately 9 percent for solar cycle 22 through January 1992. Scaling factors based on the short-term variations in the Mg II index and solar irradiance data sets have been developed to estimate solar variability at mid-UV and near-UV wavelengths. Near 205 nm, where solar irradiance variations are important for stratospheric photo-chemistry and dynamics, the estimated change in irradiance during solar cycle 22 is approximately 10 percent using the composite Mg II index and scale factors.

  14. Study of acoustic fingerprinting of nitromethane and some triazole derivatives using UV 266 nm pulsed photoacoustic pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rao, K. S.; Chaudhary, A. K.; Yehya, F.; Kumar, A. Sudheer

    2015-08-01

    We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO2 bond to produce free NO, NO2 and other by product gases due to π∗ ← n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples.

  15. Study of acoustic fingerprinting of nitromethane and some triazole derivatives using UV 266 nm pulsed photoacoustic pyrolysis technique.

    PubMed

    Rao, K S; Chaudhary, A K; Yehya, F; Kumar, A Sudheer

    2015-08-05

    We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO₂ bond to produce free NO, NO₂ and other by product gases due to π(∗)←n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Asbestos as 'toxic short-circuit' optic-fibre for UV within the cell-net: — Likely roles and hazards for secret UV and IR metabolism

    NASA Astrophysics Data System (ADS)

    Traill, Robert R.

    2011-12-01

    The most toxic asbestos fibres have widths 250nm-10nm, and this toxicity is "physical", which could mean either mechanical or optical: Tangling with chromosomes is a •mechanical hazard occasionally reported, and fibres <100nm wide would probably be most knife-like. Our other concern here is •optical: Calculations for fibres <=300nm reveal such a transmission possibility, but only when the amphibole fibres (brown and blue asbestos) are >100nm wide — or chrysotile (white asbestos) is >150nm. In both cases, UVA/UVB -transmission would then predominate. (Chrysotile 150nm might be benign — escaping both mechanical and optical!). But what would generate such UV, and why would its transmission be toxic? Thar and Kühl (J.Theor.Biol.:2004) explain that the long mitochondria on microtubules may be able to act as UV-lasers, (and many observers since Gurwitsch 1923 have reported ultraweak UV emissions escaping from all types of living bio-tissue). That all suggests some universal secret role for UV, apparently related to mitosis. Insertion of fibre "short-circuits" could then cause upsets in mitosis-control, and hence DNA irregularities. Such UV-control could parallel similar lower-powered Infra-Red control-systems (as considered elsewhere for coaxial myelin; or as portrayed by G.Albrecht-Buehler's online animations etc.); and the traditional short mitochondria seem better suited for this IR task.

  17. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season

    Treesearch

    Yadong Qi; Shuju Bai; Gordon M. Heisler

    2003-01-01

    UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...

  18. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  19. High-power 266 nm ultraviolet generation in yttrium aluminum borate.

    PubMed

    Liu, Qiang; Yan, Xingpeng; Gong, Mali; Liu, Hua; Zhang, Ge; Ye, Ning

    2011-07-15

    A yttrium aluminum borate [YAl(3)(BO(3))(4)] (YAB) crystal with UV cutoff wavelength of 165 nm is used as the nonlinear optical crystal for fourth harmonic generation. The fundamental frequency laser at 1064 nm from an Nd:YVO(4) master oscillator power amplifier laser was frequency doubled to 532 nm. Using the type I phase-matching YAB crystal, a 5.05 W average power 266 nm UV laser was obtained at the pulse repetition frequency of 65 kHz, corresponding to the conversion efficiency of 12.3% from 532 to 266 nm. The experimental results show great potential for the application of using YAB as a nonlinear optical crystal to get high-power fourth harmonic generation. © 2011 Optical Society of America

  20. Demonstrating Basic Properties of Spectroscopy Using a Self-Constructed Combined Fluorimeter and UV-Photometer

    ERIC Educational Resources Information Center

    Kvittingen, Eivind V.; Kvittingen, Lise; Melø, Thor Bernt; Sjursnes, Birte Johanne; Verley, Richard

    2017-01-01

    This article describes a combined UV-photometer and fluorimeter constructed from 3 LEDs and a few wires, all held in place with Lego bricks. The instrument has a flexible design. In its simplest version, two UV-LEDs (355 nm) are used as light source and to detect absorption, and a third LED, in the visible spectrum (e.g., 525 nm), is used to…

  1. 7 CFR 1205.315 - Marketing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Marketing. 1205.315 Section 1205.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Research and Promotion Order Definitions § 1205.315 Marketing. Marketing includes the sale of cotton or the...

  2. 7 CFR 1205.315 - Marketing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Marketing. 1205.315 Section 1205.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Research and Promotion Order Definitions § 1205.315 Marketing. Marketing includes the sale of cotton or the...

  3. 7 CFR 1205.315 - Marketing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Marketing. 1205.315 Section 1205.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Research and Promotion Order Definitions § 1205.315 Marketing. Marketing includes the sale of cotton or the...

  4. 7 CFR 1205.315 - Marketing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Marketing. 1205.315 Section 1205.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Research and Promotion Order Definitions § 1205.315 Marketing. Marketing includes the sale of cotton or the...

  5. 7 CFR 1205.315 - Marketing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Marketing. 1205.315 Section 1205.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Research and Promotion Order Definitions § 1205.315 Marketing. Marketing includes the sale of cotton or the...

  6. 16 CFR 315.10 - Severability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Severability. 315.10 Section 315.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CONTACT LENS RULE § 315.10 Severability. The provisions of this part are separate and severable from one another. If any...

  7. Estimation of UV index in the clear-sky using OMI PROFOZ and AERONET data

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2016-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface-level ultraviolet (UV) radiation is important nowadays. UV index (UVI) is a simple parameter to show the strength of surface UV radiation, therefore UVI has been widely utilized for the purpose of UV monitoring. In this work, we also try to develop our own retrieval algorithm for better estimation of UVI. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UVI estimation. In this study, we estimate UV Index (UVI) at Seoul first in a clear-sky atmosphere, and then validate this estimated UVI comparing to UVI from Brewer spectrophotometer measurements located at Yonsei University in Seoul. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UVI calculation. To consider the ozone and aerosol influence in a real situation, we input ozone and temperature profiles from the Ozone Monitoring Instrument (OMI) Aura vertical profile ozone (PROFOZ) data, and aerosol properties from the AErosol RObotic NETwork (AERONET) measurements at Seoul into the model. Inter-comparison of UVI is performed for the year 2011, 2012 and 2014, and resulted in a high correlation coefficient (R=0.95) under clear-sky condition. But a slight overestimation of Brewer UVI occurred under high AOD conditions in clear-sky. Because our UVI algorithm does not account for surface absorbing aerosols, it is lead to systematic overestimation of surface UV irradiances. Therefore, we also investigate the effect of absorbing aerosol on the amount of UV irradiance in the clear-sky over East Asia.

  8. Development of nanostructured EuAl2O4 phosphors with strong long-UV excitation.

    PubMed

    Hirata, Gustavo A; Bosze, Eric J; McKittrick, Joanna

    2008-12-01

    Fueled by the need to develop novel materials for applications in solid state white-emitting lamps we have improved a new low-cost, clean and efficient technique to produce high luminescence phosphors with strong excitation in the long-UV range (350-400 nm) which makes them useful for applications in GaN-based solid state lamps. In this work, pressurized combustion synthesis has been successfully used to develop EuAl2O4 (europium aluminate), a new green photoluminescent material with monoclinic structure. The combustion synthesis reaction conditions can be adjusted to produce either the AlEuO3 orthorhombic phase at low pressures (0.1 MPa), or the new monoclinic EuAl2O4 phase, which is apparently more thermodynamically favorable at higher combustion reaction pressures (1.4 MPa). The luminescent material is a high surface area powder (approximately 50 m2/g) composed mainly of nanostructured needles and plates with 5-10 nm in diameter and 100-150 nm in length. A broad emission peak centered at 530 nm with a decay time of 1.5 approximately 2 ms is obtained at the maximum excitation wavelength lambda(exc) = 370 nm.

  9. 5 CFR 315.707 - Disabled veterans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Disabled veterans. 315.707 Section 315... Employment § 315.707 Disabled veterans. (a) Eligibility. (1) Subject to requirements concerning... disabled veteran who meets the conditions below to career or career-conditional employment from a time...

  10. 5 CFR 315.707 - Disabled veterans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Disabled veterans. 315.707 Section 315... Employment § 315.707 Disabled veterans. (a) Eligibility. (1) Subject to requirements concerning... disabled veteran who meets the conditions below to career or career-conditional employment from a time...

  11. 5 CFR 315.707 - Disabled veterans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Disabled veterans. 315.707 Section 315... Employment § 315.707 Disabled veterans. (a) Eligibility. (1) Subject to requirements concerning... disabled veteran who meets the conditions below to career or career-conditional employment from a time...

  12. 5 CFR 315.707 - Disabled veterans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Disabled veterans. 315.707 Section 315... Employment § 315.707 Disabled veterans. (a) Eligibility. (1) Subject to requirements concerning... disabled veteran who meets the conditions below to career or career-conditional employment from a time...

  13. 5 CFR 315.707 - Disabled veterans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Disabled veterans. 315.707 Section 315... Employment § 315.707 Disabled veterans. (a) Eligibility. (1) Subject to requirements concerning... disabled veteran who meets the conditions below to career or career-conditional employment from a time...

  14. Carbon dioxide photolysis from 150 to 210 nm: singlet and triplet channel dynamics, UV-spectrum, and isotope effects.

    PubMed

    Schmidt, Johan A; Johnson, Matthew S; Schinke, Reinhard

    2013-10-29

    We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ~167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ~0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues ((12)C(16)O2, (12)C(17)O(16)O, (12)C(18)O(16)O, (13)C(16)O2, and (13)C(18)O(16)O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of (17)O containing CO2 more efficient.

  15. Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects

    PubMed Central

    Schmidt, Johan A.; Johnson, Matthew S.; Schinke, Reinhard

    2013-01-01

    We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues (12C16O2, 12C17O16O, 12C18O16O, 13C16O2, and 13C18O16O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of 17O containing CO2 more efficient. PMID:23776249

  16. Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets.

    PubMed

    Dhole, Seema M; Khedekar, Pramod B; Amnerkar, Nikhil D

    2012-07-01

    Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. The developed methods illustrated excellent linearity (r(2) > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations.

  17. Development of a safe ultraviolet camera system to enhance awareness by showing effects of UV radiation and UV protection of the skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verdaasdonk, Rudolf M.; Wedzinga, Rosaline; van Montfrans, Bibi; Stok, Mirte; Klaessens, John; van der Veen, Albert

    2016-03-01

    The significant increase of skin cancer occurring in the western world is attributed to longer sun expose during leisure time. For prevention, people should become aware of the risks of UV light exposure by showing skin damage and the protective effect of sunscreen with an UV camera. An UV awareness imaging system optimized for 365 nm (UV-A) was develop using consumer components being interactive, safe and mobile. A Sony NEX5t camera was adapted to full spectral range. In addition, UV transparent lenses and filters were selected based on spectral characteristics measured (Schott S8612 and Hoya U-340 filters) to obtain the highest contrast for e.g. melanin spots and wrinkles on the skin. For uniform UV illumination, 2 facial tanner units were adapted with UV 365 nm black light fluorescent tubes. Safety of the UV illumination was determined relative to the sun and with absolute irradiance measurements at the working distance. A maximum exposure time over 15 minutes was calculate according the international safety standards. The UV camera was successfully demonstrated during the Dutch National Skin Cancer day and was well received by dermatologists and participating public. Especially, the 'black paint' effect putting sun screen on the face was dramatic and contributed to the awareness of regions on the face what are likely to be missed applying sunscreen. The UV imaging system shows to be promising for diagnostics and clinical studies in dermatology and potentially in other areas (dentistry and ophthalmology)

  18. Visualization of corona discharge induced by UV (248 nm) pulses of a KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Ohkubo, Toshikazu; Kanazawa, Seiji; Nomoto, Yukiharu; Kawasaki, Toshiyuki; Kocik, Marek

    2000-11-01

    A KrF excimer laser (248 nm) was used to induce DC corona discharge streamers in air between the electrodes of a needle-to-plane geometry. The UV laser beam pulses were transformed into the form of a laser sheet (1.5 mm thick and 20 mm-wide) that was positioned along the axis directed from the needle electrode to the plane electrode. The laser pulses were time-synchronized with the exposure of an ICCD camera that record images of the corona streamers induced by the laser sheet. The laser pulse energy flux (75 MW/cm2) crossing the gap was high enough to induce corona streamers with a reliability of 100% even at relatively low operating voltages (e.g., 15 kV) at which self-sustained streamers could not occur. Due to the full synchronization of the corona streamer onset, induced by the laser pulse and the exposure of the ICCD camera, 2-D visualization of the corona streamer evolution with a time resolution of 10 ns was possible. The recorded images made possible determining such features of the corona discharge streamer as its velocity (2.5 105 m/s) and the diameters of the leader channel (200 micrometers ) and the leader streamers (100 micrometers ).

  19. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    PubMed

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. SUPPLEMENTARY COMPARISON: APMP.PR-S1 comparison of irradiance responsivity of UVA detectors

    NASA Astrophysics Data System (ADS)

    Xu, Gan; Huang, Xuebo; Liu, Yuanjie

    2007-01-01

    APMP.PR-S1, a supplementary comparison of irradiance responsivity of UVA detectors, was carried out among seven national metrology institutes piloted by SPRING Singapore from 2003 to 2005. Two quantities, the narrow band UV (365 nm ± 5 nm) irradiance responsivity and the broad band UVA (315 nm-400 nm) irradiance responsivity of the transfer detectors, have been compared. Commercial UV source (medium pressure mercury short arc lamp) and UVA detectors were used as transfer standards in the comparison. Measurement results from participants were reported and their uncertainties associated with the comparison were analysed in this report. The method of weighted mean with cut-off was used to calculate the comparison reference values. The results from most participating labs lie within ±5% against the comparison reference values with a few exceptions. The degree of agreement of the comparison depends not only on the base scales of spectral responsivity and spectral irradiance of a laboratory, but also equally importantly on the method used for the measurement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  1. The FIREBall fiber-fed UV spectrograph

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Schiminovich, David; Milliard, Bruno; Grange, Robert; Martin, D. Christopher; Rahman, Shahinur; Deharveng, Jean-Michel; McLean, Ryan; Tajiri, Gordon; Matuszewski, M.

    2008-07-01

    FIREBall (Faint Intergalactic Redshifted Emission Balloon) had a successful first engineering flight in July of 2007 from Palestine, Texas. Here we detail the design and construction of the spectrograph. FIREBall consists of a 1m telescope coupled to a fiber-fed ultraviolet spectrograph flown on a short duration balloon. The spectrograph is designed to map hydrogen and metal line emission from the intergalactic medium at several redshifts below z=1, exploiting a small window in atmospheric oxygen absorption at balloon altitudes. The instrument is a wide-field IFU fed by almost 400 fibers. The Offner mount spectrograph is designed to be sensitive in the 195-215nm window accessible at our altitudes of 35-40km. We are able to observe Lyα, as well as OVI and CIV doublets, from 0.3 < z < 0.9. Observations of UV bright B stars and background measurements allow characterization of throughput for the entire system and will inform future flights.

  2. Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Xin, Feifei; Zhang, Guoquan; Bo, Fang; Sun, Haifeng; Kong, Yongfa; Xu, Jingjun; Volk, Tatyana; Rubinina, Natalia M.

    2010-02-01

    We studied the photorefractive effect of lithium niobate (LiNbO3) doped with Mg, Zn, In, Hf, or codoped with Mg and Fe at an ultraviolet (UV) wavelength down to 325 nm. It is found that the UV photorefraction of LiNbO3 doped with Mg, Zn, In, or Hf was enhanced significantly as compared to that of the nominally pure LiNbO3. Our results show that the property of resistance against photorefraction in highly Mg, Zn, In, or Hf doped LiNbO3 is true only in the visible and near-infrared wavelength range. By contrast, these crystals exhibit excellent photorefractive characteristics at UV wavelength of 325 nm, even better than those at 351 nm. For example, the photorefractive two-wave coupling gain coefficient Γ and the photorefractive recording sensitivity at 325 nm were measured to be ˜38 cm-1 and 37.7 cm/J, respectively, in a LiNbO3 crystal doped with 9 mol % Zn. The photorefractive response time of a Mg:LiNbO3 with a 9 mol % Mg was measured to be 73 ms with a total recording intensity of 614 mW/cm2 at 325 nm. In highly Mg, Zn, In, or Hf doped LiNbO3 crystals, diffusion dominates over photovoltaic effect and electrons are the dominant charge carriers in UV photorefraction at 325 nm. The results are also of interest to the study on the defect structure of LiNbO3 near to the absorption edge.

  3. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Civil Money Penalties § 726.315 Contents. Any...

  4. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Civil Money Penalties § 726.315 Contents. Any...

  5. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Civil Money Penalties § 726.315 Contents. Any...

  6. 20 CFR 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Contents. 726.315 Section 726.315 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Civil Money Penalties § 726.315 Contents. Any petition...

  7. Psyche's UV Reflectance Spectra: Exploring the origins of the largest exposed-core metallic asteroid

    NASA Astrophysics Data System (ADS)

    Becker, Tracy

    2016-10-01

    (16) Psyche is the largest of the M-class asteroids, and is presumed to be the exposed core of a differentiated asteroid stripped of its mantle through hit-and-run collisions. However, other origins for Psyche have been proposed, including that it formed from a highly-reduced, metal rich material in the inner solar system or that its surface is olivine that has been space weathered. If (16) Psyche is an exposed core, then studying its properties enhances our understanding of the cores of all terrestrial planets, including the Earth's. If it accreted in the inner part of the solar system and was later injected into the asteroid belt, then Psyche sheds light on the conditions and subsequent evolution of the early solar system. Lastly, if Psyche is weathered olivine, then olivine may be more abundant in the solar system than currently measured, rectifying the so-called Great Dunite Shortage. Our program to obtain high-resolution UV spectra of Psyche with the COS G140L mode and the STIS NUV MAMA G230L mode to measure spectral signatures between 90 - 315 nm is designed to distinguish between the 3 hypothesized cases. These observations will enable identification of absorption bands, especially Fe-O charge transfer bands and will be sensitive to spectral blueing that occurs at UV wavelengths for space-weathered objects. When combined, the presence of these UV features, or not, provides a novel test of Psyche formation theories.

  8. Ship-borne measurements of erythemal UV irradiance and ozone content in various climate zones.

    PubMed

    Wuttke, Sigrid; El Naggar, Saad; Bluszcz, Thaddäus; Schrems, Otto

    2007-10-01

    Ship-borne measurements of spectral as well as biologically effective UV irradiance have been performed on the German research vessel Polarstern during the Atlantic transect from Bremerhaven, Germany (53.5 degrees N, 8.5 degrees E), to Cape Town, South Africa (33.6 degrees S, 18.3 degrees E), from 13 October to 17 November 2005. Such measurements are required to study UV effects on marine organisms. They are also necessary to validate satellite-derived surface UV irradiance. Cloud free radiative transfer calculations support the investigation of this latitudinal dependence. Input parameters, such as total ozone column and aerosol optical depth have been measured on board as well. Using these measured parameters, the modelled cloudless noontime UVA irradiance (320-400 nm) shows the expected dependence on varying minimum solar zenith angles (SZA) at different latitudes. The modelled cloudless noontime UVB irradiance (290-320 nm) does not show this clear dependence on SZA due to the strong influence of ozone absorption in this spectral range. The maximum daily dose of erythemal irradiance of 5420 J m(-1) was observed on 14 November 2005, when the ship was in the tropical Atlantic south of the equator. The expected UV maximum should have been observed with the sun in the zenith during local noon (11 November). Stratiform clouds reduced the dose to 3835 J m(-1). In comparison, the daily erythemal doses in the mid-latitudinal Bay of Biscay only reached values between 410 and 980 J m(-1) depending on cloud conditions. The deviation in daily erythemal dose derived from different instruments is around 5%. The feasibility to perform ship-borne measurements of spectral UV irradiance is demonstrated.

  9. A long term study of the relations between erythemal UV-B irradiance, total ozone column, and aerosol optical depth at central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2017-09-01

    Global ultraviolet-B irradiance (UV-B, 280-315 nm) measurements made at the campus of the University of Córdoba, Argentina were analyzed to quantify the effects of ozone and aerosols on surface UV-B erythemal irradiance (UVER). The measurements have been carried out with a YES Pyranometer during the period 2000-2013. The effect of ozone and aerosols has been quantified by means of the Radiation Amplification Factor (RAF) and by an aerosol factor (AF, analogous to RAF), respectively. The overall mean RAF under cloudless conditions was (1.2 ± 0.3) %, ranging from 0.67 to 2.10% depending on solar zenith angle (SZA) and on Aerosol Optical Depth (AOD). The RAF increased with the SZA with a clear trend. Similarly, the aerosol effect under almost-constant ozone and SZA showed that, on average, a 1% increase in AOD forced a decrease of (0.15 ± 0.04) % in the UVER, with a range of 0.06 to 0.27 and no defined trend as a function of the SZA. To analyze the effect of absorbing aerosols, an effective single scattering albedo (SSA) was determined by comparing the experimental UVER with calculations carried out with the TUV radiative transfer model.

  10. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    PubMed

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  11. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309

    2012-10-28

    Oxalyl chloride, (ClCO){sub 2}, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO){sub 2} and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11more » discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, {Phi}({lambda}), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO){sub 2} has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl){sub 2}+ hv{yields} ClCO*+ Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO*{yields} Cl + CO (3a), {yields} ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M {yields} Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO){sub 2}. {Phi}(193 nm) was found to be 2.07 {+-} 0.37 independent of bath gas pressure (25.8-105.7 Torr, N{sub 2}), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO){sub 2} is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 {+-} 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 {+-} 0.26 independent of bath gas pressure (15-70 Torr, N{sub 2}). {Phi}(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N{sub 2}). The

  12. Visible-Blind UV Photodetector Based on Single-Walled Carbon Nanotube Thin Film/ZnO Vertical Heterostructures.

    PubMed

    Li, Guanghui; Suja, Mohammad; Chen, Mingguang; Bekyarova, Elena; Haddon, Robert C; Liu, Jianlin; Itkis, Mikhail E

    2017-10-25

    Ultraviolet (UV) photodetectors based on heterojunctions of conventional (Ge, Si, and GaAs) and wide bandgap semiconductors have been recently demonstrated, but achieving high UV sensitivity and visible-blind photodetection still remains a challenge. Here, we utilized a semitransparent film of p-type semiconducting single-walled carbon nanotubes (SC-SWNTs) with an energy gap of 0.68 ± 0.07 eV in combination with a molecular beam epitaxy grown n-ZnO layer to build a vertical p-SC-SWNT/n-ZnO heterojunction-based UV photodetector. The resulting device shows a current rectification ratio of 10 3 , a current photoresponsivity up to 400 A/W in the UV spectral range from 370 to 230 nm, and a low dark current. The detector is practically visible-blind with the UV-to-visible photoresponsivity ratio of 10 5 due to extremely short photocarrier lifetimes in the one-dimensional SWNTs because of strong electron-phonon interactions leading to exciton formation. In this vertical configuration, UV radiation penetrates the top semitransparent SC-SWNT layer with low losses (10-20%) and excites photocarriers within the n-ZnO layer in close proximity to the p-SC-SWNT/n-ZnO interface, where electron-hole pairs are efficiently separated by a high built-in electric field associated with the heterojunction.

  13. 20 CFR § 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2018-04-01

    ... 20 Employees' Benefits 4 2018-04-01 2018-04-01 false Contents. § 726.315 Section § 726.315 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH... INSURANCE Civil Money Penalties § 726.315 Contents. Any petition or cross-petition for review shall: (a) Be...

  14. 20 CFR § 726.315 - Contents.

    Code of Federal Regulations, 2010 CFR

    2017-04-01

    ... 20 Employees' Benefits 4 2017-04-01 2017-04-01 false Contents. § 726.315 Section § 726.315 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH... INSURANCE Civil Money Penalties § 726.315 Contents. Any petition or cross-petition for review shall: (a) Be...

  15. Determination of tramadol hydrochloride in ampoule dosage forms by using UV spectrophotometric and HPLC-DAD methods in methanol and water media.

    PubMed

    Küçük, Aysel; Kadioğlu, Yücel

    2005-02-01

    Two newly developed simple and sensitive methods for determination of tramadol hydrochloride in ampoule dosage forms were described and validated. Measurements for spectrophotometric method were performed using UV-Vis Spectrophotometer in ranges of 200-400 nm. The solutions of standard and the samples were prepared in methanol and water media and the UV absorption spectrums of tramadol were monitored with maximum absorptions at 275 and 271 nm for both mediums, respectively. The standard calibration curves of tramadol were constructed by plotting absorbance vs. concentration in the concentration range with the final dilution of 10-100 microg ml-1. Reversed phase chromatography for HPLC method was conducted using a Phenomenex Bondclone C18 column with an isocratic mobile phase consisting of 25% acetonitrile in 75% 0.01 M phosphate buffer (pH 3). The effluent was monitored on a DAD detector at 218 nm. Linear response (r>0.99) was observed over the range of 0.5-40 microg ml-1 for methanol and water and run on six different occasions. The methods were applied successfully to pharmaceutical ampoule forms, but also for comparison in two different solvent media. Besides, it was completely validated and proven to be rugged.

  16. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  17. Vibrational, UV spectra, NBO, first order hyperpolarizability and HOMO-LUMO analysis of carvedilol

    NASA Astrophysics Data System (ADS)

    Swarnalatha, N.; Gunasekaran, S.; Nagarajan, M.; Srinivasan, S.; Sankari, G.; Ramkumaar, G. R.

    2015-02-01

    In this work, we have investigated experimentally and theoretically on the molecular structure, vibrational spectra, UV spectral analysis and NBO studies of cardio-protective drug carvedilol. The FT-Raman and FT-IR spectra for carvedilol in the solid phase have been recorded in the region 4000-100 cm-1 and 4000-400 cm-1 respectively. Theoretical calculations were performed by using density functional theory (DFT) method at B3LYP/6-31G(d,p) and B3LYP/6-31++G(d,p) basis set levels. The harmonic vibrational frequencies, the optimized geometric parameters have been interpreted and compared with the reported experimental values. The complete vibrational assignments were performed on the basis of potential energy distribution (PED) of the vibrational modes. The thermodynamic properties and molecular electrostatic potential surfaces of the molecule were constructed. The electronic absorption spectrum was recorded in the region 400-200 nm and electronic properties such as HOMO and LUMO energies were calculated. The stability of the molecule arising from hyper conjugative interactions and charge delocalization have been analyzed from natural bond orbital (NBO) analysis. The first order hyperpolarizability of the title molecule was also calculated. The photo stability of carvedilol under different storage conditions were analyzed using UV-Vis spectral technique.

  18. UV lifetime demonstrator for space-based applications

    NASA Astrophysics Data System (ADS)

    Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd

    2016-05-01

    A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) systems. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100 mJ pulses of 355 nm light at 150 Hz. The laser module build was completed in the third quarter of 2015 at which time a series of life tests were initiated. The first phase of the lifetime testing is a 532 nm only test that is expected to complete in April 2016. The 532 nm lifetest will be followed by a 4 month half power UV life test and then a four month full power UV life test. The lifetime tests will be followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the laser optics module design is at TRL 6.

  19. 31 CFR 315.71 - Decedent's estate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Deceased Owner, Coowner or Beneficiary § 315.71... (e)(3) of this section, to redeem or to distribute a decedent's savings bonds. The voluntary... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Decedent's estate. 315.71 Section 315...

  20. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein

    PubMed Central

    Ando, Ryoko; Hama, Hiroshi; Yamamoto-Hino, Miki; Mizuno, Hideaki; Miyawaki, Atsushi

    2002-01-01

    We have cloned a gene encoding a fluorescent protein from a stony coral, Trachyphyllia geoffroyi, which emits green, yellow, and red light. The protein, named Kaede, includes a tripeptide, His-Tyr-Gly, that acts as a green chromophore that can be converted to red. The red fluorescence is comparable in intensity to the green and is stable under usual aerobic conditions. We found that the green-red conversion is highly sensitive to irradiation with UV or violet light (350–400 nm), which excites the protonated form of the chromophore. The excitation lights used to elicit red and green fluorescence do not induce photoconversion. Under a conventional epifluorescence microscope, Kaede protein expressed in HeLa cells turned red in a graded fashion in response to UV illumination; maximal illumination resulted in a 2,000-fold increase in the ratio of red-to-green signal. These color-changing properties provide a simple and powerful technique for regional optical marking. A focused UV pulse creates an instantaneous plane source of red Kaede within the cytosol. The red spot spreads rapidly throughout the cytosol, indicating its free diffusibility in the compartment. The extensive diffusion allows us to delineate a single neuron in a dense culture, where processes originating from many different somata are present. Illumination of a focused UV pulse onto the soma of a Kaede-expressing neuron resulted in filling of all processes with red fluorescence, allowing visualization of contact sites between the red and green neurons of interest. PMID:12271129

  1. The role of solar UV radiation in the ecology of alpine lakes.

    PubMed

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  2. UV-laser photochemistry of isoxazole isolated in a low-temperature matrix.

    PubMed

    Nunes, Cláudio M; Reva, Igor; Pinho e Melo, Teresa M V D; Fausto, Rui

    2012-10-05

    The photochemistry of matrix-isolated isoxazole, induced by narrowband tunable UV-light, was investigated by infrared spectroscopy, with the aid of MP2/6-311++G(d,p) calculations. The isoxazole photoreaction starts to occur upon irradiation at λ = 240 nm, with the dominant pathway involving decomposition to ketene and hydrogen cyanide. However, upon irradiation at λ = 221 nm, in addition to this decomposition, isoxazole was also found to isomerize into several products: 2-formyl-2H-azirine, 3-formylketenimine, 3-hydroxypropenenitrile, imidoylketene, and 3-oxopropanenitrile. The structural and spectroscopic assignment of the different photoisomerization products was achieved by additional irradiation of the λ = 221 nm photolyzed matrix, using UV-light with λ ≥ 240 nm: (i) irradiation in the 330 ≤ λ ≤ 340 nm range induced direct transformation of 2-formyl-2H-azirine into 3-formylketenimine; (ii) irradiation with 310 ≤ λ ≤ 318 nm light induced the hitherto unobserved transformation of 3-formylketenimine into 3-hydroxypropenenitrile and imidoylketene; (iii) irradiation with λ = 280 nm light permits direct identification of 3-oxopropanenitrile; (iv) under λ = 240 nm irradiation, tautomerization of 3-hydroxypropenenitrile to 3-oxopropanenitrile is observed. On the basis of these findings, a detailed mechanistic proposal for isoxazole photochemistry is presented.

  3. 48 CFR 315.404 - Proposal analysis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Proposal analysis. 315.404 Section 315.404 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 315.404 Proposal analysis. ...

  4. 48 CFR 315.404 - Proposal analysis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Proposal analysis. 315.404 Section 315.404 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 315.404 Proposal analysis. ...

  5. 150-nm DR contact holes die-to-database inspection

    NASA Astrophysics Data System (ADS)

    Kuo, Shen C.; Wu, Clare; Eran, Yair; Staud, Wolfgang; Hemar, Shirley; Lindman, Ofer

    2000-07-01

    Using a failure analysis-driven yield enhancements concept, based on an optimization of the mask manufacturing process and UV reticle inspection is studied and shown to improve the contact layer quality. This is achieved by relating various manufacturing processes to very fine tuned contact defect detection. In this way, selecting an optimized manufacturing process with fine-tuned inspection setup is achieved in a controlled manner. This paper presents a study, performed on a specially designed test reticle, which simulates production contact layers of design rule 250nm, 180nm and 150nm. This paper focuses on the use of advanced UV reticle inspection techniques as part of the process optimization cycle. Current inspection equipment uses traditional and insufficient methods of small contact-hole inspection and review.

  6. 7 CFR 1210.315 - United States.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false United States. 1210.315 Section 1210.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... PLAN Watermelon Research and Promotion Plan Definitions § 1210.315 United States. United States means...

  7. 7 CFR 1210.315 - United States.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false United States. 1210.315 Section 1210.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... PLAN Watermelon Research and Promotion Plan Definitions § 1210.315 United States. United States means...

  8. 7 CFR 1210.315 - United States.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false United States. 1210.315 Section 1210.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... PLAN Watermelon Research and Promotion Plan Definitions § 1210.315 United States. United States means...

  9. 7 CFR 1210.315 - United States.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false United States. 1210.315 Section 1210.315 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... PLAN Watermelon Research and Promotion Plan Definitions § 1210.315 United States. United States means...

  10. Comments on a Method to Measure Sucralose Using UV Photodegradation Followed by UV Spectrophotometry.

    PubMed

    Fang, Te; Andrews, Susan A; Hofmann, Ron

    2017-05-01

    A simple and quick method to measure sucralose in aqueous solution at concentrations in the order of 0.1-1.2 g·L-1 proposed by Idris et al. uses UV irradiation prior to UV spectrophotometry. The photolysis of sucralose forms a photoactive compound characterized by maximum absorbance at approximately 270 nm. The conditions required for sucralose photolysis, however, had not been completely reported. In this work, the procedure described by Idris et al. was replicated using a low-pressure UV lamp to irradiate sucralose samples with a wider range of initial concentrations (0.04-10 g·L-1) with known fluences. It was determined that care must be taken to ensure that the same fluence is applied for both calibration and measurement steps because the absorbance of the sucralose photolysis product is a function of the applied fluence. The way the samples are irradiated also has an impact on the results in that the method exhibits a greater linear range if an apparatus is used that maximizes the fluence rate (e.g., by placing samples closer to the UV source or using a higher-intensity lamp).

  11. Recent Progress Made in the Development of High-Energy UV Transmitter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.

    2007-01-01

    In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.

  12. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation.

    PubMed

    Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan

    2015-08-01

    The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second

    PubMed Central

    Potsaid, Benjamin; Baumann, Bernhard; Huang, David; Barry, Scott; Cable, Alex E.; Schuman, Joel S.; Duker, Jay S.; Fujimoto, James G.

    2011-01-01

    We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000–400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100kHz axial scan rate with 5.3um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0um axial resolution at 100kHz axial scan rate. A 200kHz axial scan rate with 5.3um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400kHz axial scan rate, almost 2X faster than previous 1050nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12×12mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050nm wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050nm wavelengths will play an important role in future ophthalmic instrumentation. PMID:20940894

  14. Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets

    PubMed Central

    Dhole, Seema M.; Khedekar, Pramod B.; Amnerkar, Nikhil D.

    2012-01-01

    Background: Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. Objective: UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. Materials and Methods: The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. Results: The developed methods illustrated excellent linearity (r2 > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. Conclusion: The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations. PMID:23781481

  15. Novel use of UV broad-band excitation and stretched exponential function in the analysis of fluorescent dissolved organic matter: study of interaction between protein and humic-like components

    NASA Astrophysics Data System (ADS)

    Panigrahi, Suraj Kumar; Mishra, Ashok Kumar

    2017-09-01

    A combination of broad-band UV radiation (UV A and UV B; 250-400 nm) and a stretched exponential function (StrEF) has been utilised in efforts towards convenient and sensitive detection of fluorescent dissolved organic matter (FDOM). This approach enables accessing the gross fluorescence spectral signature of both protein-like and humic-like components in a single measurement. Commercial FDOM components are excited with the broad-band UV excitation; the variation of spectral profile as a function of varying component ratio is analysed. The underlying fluorescence dynamics and non-linear quenching of amino acid moieties are studied with the StrEF (exp(-V[Q] β )). The complex quenching pattern reflects the inner filter effect (IFE) as well as inter-component interactions. The inter-component interactions are essentially captured through the ‘sphere of action’ and ‘dark complex’ models. The broad-band UV excitation ascertains increased excitation energy, resulting in increased population density in the excited state and thereby resulting in enhanced sensitivity.

  16. Characterization of the UV detector of Solar Orbiter/Metis

    NASA Astrophysics Data System (ADS)

    Uslenghi, Michela; Schühle, Udo H.; Teriaca, Luca; Heerlein, Klaus; Werner, Stephan

    2017-08-01

    Metis, one of the instruments of the ESA mission Solar Orbiter (to be launched in February 2019), is a coronograph able to perform broadband polarization imaging in the visible range (580-640 nm), and narrow band imaging in UV (HI Lyman-α 121.6 nm) . The detector of the UV channel is an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single stage Microchannel Plate intensifier, sealed with an entrance MgF2 window and provided with an opaque KBr photocathode. Before integration in the instrument, the UVDA (UV Detector Assembly) Flight Model has been characterized at the MPS laboratory and calibrated in the UV range using the detector calibration beamline of the Metrology Light Source synchrotron of the Physikalisch-Technische Bundesanstalt (PTB). Linearity, spectral calibration, and response uniformity at 121.6 nm have been measured. Preliminary results are reported in this paper.

  17. 42 CFR 440.315 - Exempt individuals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Exempt individuals. 440.315 Section 440.315 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.315 Exempt individuals....

  18. 42 CFR 440.315 - Exempt individuals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Exempt individuals. 440.315 Section 440.315 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.315 Exempt individuals....

  19. 42 CFR 440.315 - Exempt individuals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Exempt individuals. 440.315 Section 440.315 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.315 Exempt individuals....

  20. 42 CFR 440.315 - Exempt individuals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Exempt individuals. 440.315 Section 440.315 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.315 Exempt individuals....

  1. 42 CFR 440.315 - Exempt individuals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Exempt individuals. 440.315 Section 440.315 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.315 Exempt individuals....

  2. An ESR study of the UV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, G. A.; Hill, D. J. T.; Odonnell, J. H.; Pomery, P. J.; Rasoul, F.

    1992-01-01

    Spacecraft in low earth orbit are subjected to significant levels of high energy radiation, including ultraviolet (UV) and visible ultraviolet (VUV) wavelengths. The effects of UV radiation are enhanced over those at the surface of the earth, where the only incident wavelengths are greater than 290 nm. In low earth orbit the incident UV wavelengths extend below 290 nm into the VUV region, where the Lyman alpha-emissions of atomic hydrogen occur at 121 nm. In addition to electromagnetic radiation, in low earth orbit polymer materials may also be subjected to atomic oxygen particle radiation, which will result in direct oxidation of the polymer.

  3. Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

    NASA Astrophysics Data System (ADS)

    Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma

    2018-02-01

    Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

  4. Spectral Absorption Properties of Aerosol Particles from 350-2500nm

    NASA Technical Reports Server (NTRS)

    Martins, J. Vanderlei; Artaxo, Paulo; Kaufman, Yoram J.; Castanho, Andrea D.; Remer, Lorraine A.

    2009-01-01

    The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.

  5. Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Han, Yashuai; Wang, Junmin

    2016-04-01

    A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.

  6. 18 CFR 154.315 - Asset retirement obligations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Asset retirement obligations. 154.315 Section 154.315 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Filed With Changes § 154.315 Asset retirement obligations. (a) A natural gas company that files a tariff...

  7. 18 CFR 154.315 - Asset retirement obligations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Asset retirement obligations. 154.315 Section 154.315 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Filed With Changes § 154.315 Asset retirement obligations. (a) A natural gas company that files a tariff...

  8. 18 CFR 154.315 - Asset retirement obligations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Asset retirement obligations. 154.315 Section 154.315 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Filed With Changes § 154.315 Asset retirement obligations. (a) A natural gas company that files a tariff...

  9. 18 CFR 154.315 - Asset retirement obligations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Asset retirement obligations. 154.315 Section 154.315 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Filed With Changes § 154.315 Asset retirement obligations. (a) A natural gas company that files a tariff...

  10. 18 CFR 154.315 - Asset retirement obligations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Asset retirement obligations. 154.315 Section 154.315 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Filed With Changes § 154.315 Asset retirement obligations. (a) A natural gas company that files a tariff...

  11. 31 CFR 536.315 - United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false United States. 536.315 Section 536.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 536.315 United States. The term United States means the United States, its territories and...

  12. 31 CFR 536.315 - United States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false United States. 536.315 Section 536.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 536.315 United States. The term United States means the United States, its territories and...

  13. 31 CFR 536.315 - United States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false United States. 536.315 Section 536.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 536.315 United States. The term United States means the United States, its territories and...

  14. 31 CFR 576.315 - United States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false United States. 576.315 Section 576.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... General Definitions § 576.315 United States. The term United States means the United States, its...

  15. 31 CFR 576.315 - United States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false United States. 576.315 Section 576.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... General Definitions § 576.315 United States. The term United States means the United States, its...

  16. 31 CFR 576.315 - United States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false United States. 576.315 Section 576.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... General Definitions § 576.315 United States. The term United States means the United States, its...

  17. 31 CFR 536.315 - United States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false United States. 536.315 Section 536.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 536.315 United States. The term United States means the United States, its territories and...

  18. 31 CFR 576.315 - United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false United States. 576.315 Section 576.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... General Definitions § 576.315 United States. The term United States means the United States, its...

  19. 31 CFR 536.315 - United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false United States. 536.315 Section 536.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 536.315 United States. The term United States means the United States, its territories and...

  20. 7 CFR 1210.315 - United States.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false United States. 1210.315 Section 1210.315 Agriculture... PLAN Watermelon Research and Promotion Plan Definitions § 1210.315 United States. United States means each of the several States and the District of Columbia. [60 FR 10797, Feb. 28, 1995] National...

  1. 7 CFR 58.315 - Continuous churns.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Continuous churns. 58.315 Section 58.315 Agriculture....315 Continuous churns. All product contact surfaces of the churn and related equipment shall be of..., Rubber, and Rubber-Like Materials. All product contact surfaces of the churn and related equipment shall...

  2. Solar UV dose patterns in Italy.

    PubMed

    Meloni, D; Casale, G R; Siani, A M; Palmieri, S; Cappellani, F

    2000-06-01

    Since 1992 solar ultraviolet (UV) spectral irradiance (290-325 nm) has been measured at two Italian stations of Rome (urban site) and Ispra (semirural site) using Brewer spectrophotometry. The data collected under all sky conditions, are compared with the output of a sophisticated radiative transfer model (System for Transfer of Atmospheric Radiation--STAR model). The STAR multiple scattering scheme is able to cope with all physical processes relevant to the UV transfer through the atmosphere. The experience so far acquired indicates that, in spite of the unavoidable uncertainties in the input parameters (ozone, aerosol, surface albedo, pressure, temperature, relative humidity, cloud cover), measured and computed clear sky iradiances are in reasonable agreement. The STAR model is applied to build up the solar UV geographic patterns in Italy: the daily dose in the range 290-325 nm is computed at about 70 sites where a thorough and homogeneous climatology is available. For each month the concept of an idealized "standard day" is introduced and the surface distribution of solar UV field determined. The map of solar UV patterns for Italy, available for the first time, meets the study requirements in the field of skin and eye epidemiology, as well as in other investigations dealing with the impact of UV on the biosphere. The results are interpreted in terms of atmospheric and meteorological parameters modulating UV radiation reaching the ground.

  3. Oxidative damage in response to natural levels of UV-B radiation in larvae of the tropical sea urchin Tripneustes gratilla.

    PubMed

    Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J

    2010-01-01

    To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  4. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so that...

  5. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so that...

  6. 21 CFR 315.6 - Evaluation of safety.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Evaluation of safety. 315.6 Section 315.6 Food and... USE DIAGNOSTIC RADIOPHARMACEUTICALS § 315.6 Evaluation of safety. (a) Factors considered in the safety...)(1) To establish the safety of a diagnostic radiopharmaceutical, FDA may require, among other...

  7. 31 CFR 598.315 - Specific license.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Specific license. 598.315 Section 598.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 598.315 Specific license. The term specific license means any license not set forth in this part...

  8. 31 CFR 598.315 - Specific license.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Specific license. 598.315 Section 598.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 598.315 Specific license. The term specific license means any license not set forth in this part...

  9. 31 CFR 598.315 - Specific license.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Specific license. 598.315 Section 598.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 598.315 Specific license. The term specific license means any license not set forth in this part...

  10. 31 CFR 598.315 - Specific license.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Specific license. 598.315 Section 598.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 598.315 Specific license. The term specific license means any license not set forth in this part...

  11. 31 CFR 598.315 - Specific license.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Specific license. 598.315 Section 598.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 598.315 Specific license. The term specific license means any license not set forth in this part...

  12. Suppression of cucumber powdery mildew by UV-B is affected by background light quality

    USDA-ARS?s Scientific Manuscript database

    Brief (5-10 min) exposure to UV-B radiation (280-300 nm) suppressed powdery mildew (Podosphaera xanthii) on Cucumis sativus. The effect was enhanced by red light (600-660 nm), but offset by blue light (420-500 nm) and UV-A (300-420 nm). Compared to untreated controls, 2 h red light from specific lig...

  13. Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2015-11-01

    The adaptability of cyanobacteria in diverse habitats is an important factor to withstand harsh conditions. In the present investigation, the impacts of photosynthetically active radiation (PAR; 400-700 nm), ultraviolet-B (UV-B; 280-315 nm), and PAR + UV-B radiations on two cyanobacteria viz., Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 inhabiting diverse habitats such as hot springs and rice fields, respectively, were studied. Cell viability was about 14 % in Nostoc sp. HKAR-2 and <10 % in Nostoc sp. HKAR-11 after 48 h of UV-B exposure. PAR had negligible negative impact on the survival of both cyanobacteria. The continuous exposure of UV-B and PAR + UV-B showed rapid uncoupling, bleaching, fragmentation, and degradation in both phycocyanin (C-PC) and phycoerythrin (C-PE) subunits of phycobiliproteins (PBPs). Remarkable bleaching effect of C-PE and C-PC was not only observed with UV-B or PAR + UV-B radiation, but longer period (24-48 h) of exposure with PAR alone also showed noticeable negative impact. The C-PE and C-PC subunits of the rice field isolate Nostoc sp. HKAR-11 were severely damaged in comparison to the hot spring isolate Nostoc sp. HKAR-2 with rapid wavelength shifting toward shorter wavelengths denoting the bleaching of both the accessory light harvesting pigments. The results indicate that PBPs of the hot spring isolate Nostoc sp. HKAR-2 were more stable under various light regimes in comparison to the rice field isolate Nostoc sp. HKAR-11 that could serve as a good source of valuable pigments to be used in various biomedical and biotechnological applications.

  14. Determination of Pesticides by Gas Chromatography Combined with Mass Spectrometry Using Femtosecond Lasers Emitting at 267, 400, and 800 nm as the Ionization Source.

    PubMed

    Yang, Xixiang; Imasaka, Tomoko; Imasaka, Totaro

    2018-04-03

    A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.

  15. 21 CFR 315.4 - Indications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Indications. 315.4 Section 315.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE... assessment; and (4) Diagnostic or therapeutic patient management. (b) Where a diagnostic radiopharmaceutical...

  16. UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; DeYoung, Russell J.

    2013-01-01

    A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy

  17. THE UV/BLUE EFFECTS OF SPACE WEATHERING MANIFESTED IN S-COMPLEX ASTEROIDS. I. QUANTIFYING CHANGE WITH ASTEROID AGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilas, Faith; Hendrix, Amanda R., E-mail: fvilas@psi.edu

    Evidence for the manifestation of space weathering in S-complex asteroids as a bluing of the UV/blue reflectance spectrum is extended using high resolution CCD reflectance spectra of 21 main-belt, 1 Mars-crossing, and 3 near-Earth asteroids covering a wavelength range of 320–620 nm. Demonstration of the transition of iron-bearing materials from volume scattering to surface (Fresnel) scattering is apparent as an abrupt downturn at wavelengths just short of 400 nm in reflectance spectra of fresh asteroid surfaces. The weathering away of this downturn is demonstrated by its absence in reflectance spectra of mature S-complex asteroids, consistent with an increase in npFe{supmore » 0} on the material's surface. Modeling of the effects of the addition of small amounts of npFe{sup 0} to particles from both a hypothetical mineral and a terrestrial basalt shows that evidence of the addition of 0.0001% npFe{sup 0} affects the reflectance at UV/blue wavelengths, while the addition of 0.01% is required to see the visible/near-infrared reddening and diminution of absorption features. Thus, the UV/blue reflectance characteristics allow earlier detection of the onset of space weathering effects. Combining UV/blue spectral characteristics of asteroids and ordinary chondrite meteorites with estimated ages of the young Datura family, we establish a method of dating asteroid surface ages during the early stages of space weathering. We demonstrate by dating the surface of NEA 163249 2002 GT to be 109 (±18) to 128 (±10) Kyr.« less

  18. UV/visible albedos from airborne measurements

    NASA Astrophysics Data System (ADS)

    Webb, A.; Kylling, A.; Stromberg, I.

    2003-04-01

    During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.

  19. Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials.

    PubMed

    Watts, D C; Cash, A J

    1994-04-01

    The penetration of visible light into dental biomaterials is an essential factor in photoinitiation of setting reactions and in the optical aspects of dental aesthetics. Light of visible blue wavelengths, 400-500 nm, has been applied at normal angles to 0.2-5.0 mm sections of human dentine and representative ceramic, polymerceramic composites and hybrid glass-polyalkenoate materials. The integrated optical transmission has been determined for each material section. The data have been converted to absorbance values and analysed to check for mathematical conformity to the Beer-Lambert Law. It is found that conformity (typically, P < 0.01) to the linear Beer-Lambert Law is only attained by making a substantial correction for the intensity of light reflected from the surface of aesthetic biomaterials. This is otherwise expressed by distinguishing between true and apparent absorbance. From linear regression of apparent absorbance with section thickness, the intercept depends upon the logarithm of the surface-reflection ratio. This factor ranges from 30% to 90% in the materials investigated. It follows that there is a high degree of inefficiency in the transmission of visible light into and through aesthetic biomaterials for the purposes of photoactivation using existing technology. Means by which this limitation and inefficiency may be reduced are discussed. While the reflectivity of aesthetic biomaterials has been perceived by dental practitioners, the magnitude of this effect and its implications in connection with light-cured materials have not been analysed and emphasized hitherto.

  20. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  1. 31 CFR 315.11 - Excess purchases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Excess purchases. 315.11 Section 315..., D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Limitations on Annual Purchases § 315.11 Excess purchases. The Commissioner of the Public Debt may permit excess purchases to stand in any particular case...

  2. NIMBUS-7 SBUV (Solar Backscatter Ultraviolet) observations of solar UV spectral irradiance variations caused by solar rotation and active-region evolution for the period November 7, 1978 - November 1, 1980

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Repoff, T. P.; Donnelly, R. F.

    1984-01-01

    Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm.

  3. 31 CFR 1021.315 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR CASINOS AND CARD CLUBS Reports Required To Be Made By Casinos and Card Clubs § 1021.315 Exemptions. Refer to § 1010.315 of this chapter for exemptions...

  4. 31 CFR 1021.315 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR CASINOS AND CARD CLUBS Reports Required To Be Made By Casinos and Card Clubs § 1021.315 Exemptions. Refer to § 1010.315 of this chapter for exemptions...

  5. 31 CFR 1021.315 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR CASINOS AND CARD CLUBS Reports Required To Be Made By Casinos and Card Clubs § 1021.315 Exemptions. Refer to § 1010.315 of this chapter for exemptions...

  6. 31 CFR 1021.315 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR CASINOS AND CARD CLUBS Reports Required To Be Made By Casinos and Card Clubs § 1021.315 Exemptions. Refer to § 1010.315 of this chapter for exemptions...

  7. An experimental study on ferrous iron photo-oxidation: Effect of the solar spectrum on the surface for acidification of surface water in the early Hesperian Mars

    NASA Astrophysics Data System (ADS)

    Tabata, H.; Sekine, Y.; Kanzaki, Y.; Sugita, S.; Murakami, T.

    2017-12-01

    Geochemical evidence obatined by Mars Opportunity rover suggests that the pH of Martian surface water shifted to highly acidic, i.e., pH 2-4, in the early Hesperian (e.g., Tosca et al., 2005). Hurowitz et al. (2010) proposed that solar UV light may have promoted the acidification through photo-oxidation of ferrous iron dissolved in upwelling groundwater on early Mars. However, the trigger for the acidification in the early Hesperian remains unclear. The photo-oxidation of Fe2+ occurs under acidic conditions, i.e., pH < 3 (Jortner et al., 1962); however, the pH of upwelling groundwater would be neutral to alkaline (Zolotov et al., 2016). At neutral to alkaline pH, FeOH+ can exist together with Fe2+ in a solution. While both Fe2+ and FeOH+ are photo-oxidized only by UV light (< 300 nm), FeOH+ can also be photo-oxidized by long UV/visible light (300-400 nm). Thus, the efficiency of acidification through photo-oxidation on early Mars should have depended on the solar spectrum on the surface at that time which is determined by the atmospheric composition. To investigate the effect of UV spectrum on the acidification, we conducted two types of laboratory experiments: One used a Xe lamp as the light source for photo-oxidation of ferrous iron to irradiate light with continuous spectrum from 250 to 400 nm, and the other used the Xe lamp with an optical filter that cuts off UV light shorter than 300 nm. The pH value of the starting solution was around 7. Upon the UV irradiation covering full wavelength range (250-400 nm), the pH value of the solution decreases down to less than 4, consistent with the proposed pH of the Hesperian acidic water on Meridiani Planum (Tosca et al., 2005). This occurs because Fe2+ is stable at pH < 5, and because Fe2+ can be continuously photo-oxidized in the acidic solution by UV light in 250-300 nm. When the UV irradiation covering 300-400 nm, the pH value of the solution also decreases to pH 5 immediately after the UV irradiation. However, it

  8. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  9. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2008-01-01

    The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.

  11. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    PubMed

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  12. A high contrast 400-2500 nm hyperspectral checkerboard consisting of Acktar material cut with a femto second laser

    NASA Astrophysics Data System (ADS)

    Keresztes, Janos C.; Henrottin, Anne; Goodarzi, Mohammad; Wouters, Niels; van Roy, Jeroen; Saeys, Wouter

    2015-09-01

    Visible-near infrared (Vis-NIR) and short wave infrared (SWIR) hyperspectral imaging (HSI) are gaining interest in the food sorting industry. As for traditional machine vision (MV), spectral image registration is an important step which affects the quality of the sorting system. Unfortunately, it currently still remains challenging to accurately register the images acquired with the different imagers as this requires a reference with good contrast over the full spectral range. Therefore, the objective of this work was to develop an accurate high contrast checkerboard over the full spectral range. From the investigated white and dark materials, Teflon and Acktar were found to present very good contrast over the full spectral range from 400 to 2500 nm, with a minimal contrast ratio of 60% in the Vis-NIR and 98 % in the SWIR. The Metal Velvet self-adhesive coating from Acktar was selected as it also provides low specular reflectance. This was taped onto a near-Lambertian polished Teflon plate and one out of two squares were removed after laser cutting the dark coating with an accuracy below 0.1 mm. As standard technologies such as nano-second pulsed lasers generated unwanted damages on both materials, a pulsed femto-second laser setup from Lasea with 60µm accuracy was used to manufacture the checkerboard. This pattern was monitored with an Imec Vis-NIR and a Headwall SWIR HSI pushbroom hyperspectral camera. Good contrast was obtained over the full range of both HSI systems and the estimated effective focal length for the Vis-NIR HSI was determined with computer vision to be 0.5 mm, close to the lens model at high contrast.

  13. 21 CFR 315.6 - Evaluation of safety.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... information, the following types of data: (i) Pharmacology data, (ii) Toxicology data, (iii) Clinical adverse... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Evaluation of safety. 315.6 Section 315.6 Food and... USE DIAGNOSTIC RADIOPHARMACEUTICALS § 315.6 Evaluation of safety. (a) Factors considered in the safety...

  14. Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm

    PubMed Central

    Tan, Furui; Li, Tenghao; Wang, Ning; Lai, Sin Ki; Tsoi, Chi Chung; Yu, Weixing; Zhang, Xuming

    2016-01-01

    Recent years have witnessed an increasing interest in highly-efficient absorbers of visible light for the conversion of solar energy into electrochemical energy. This study presents a TiO2-Au bilayer that consists of a rough Au film under a TiO2 film, which aims to enhance the photocurrent of TiO2 over the whole visible region and may be the first attempt to use rough Au films to sensitize TiO2. Experiments show that the bilayer structure gives the optimal optical and photoelectrochemical performance when the TiO2 layer is 30 nm thick and the Au film is 100 nm, measuring the absorption 80–90% over 400–800 nm and the photocurrent intensity of 15 μA·cm−2, much better than those of the TiO2-AuNP hybrid (i.e., Au nanoparticle covered by the TiO2 film) and the bare TiO2 film. The superior properties of the TiO2-Au bilayer can be attributed to the rough Au film as the plasmonic visible-light sensitizer and the photoactive TiO2 film as the electron accepter. As the Au film is fully covered by the TiO2 film, the TiO2-Au bilayer avoids the photocorrosion and leakage of Au materials and is expected to be stable for long-term operation, making it an excellent photoelectrode for the conversion of solar energy into electrochemical energy in the applications of water splitting, photocatalysis and photosynthesis. PMID:27608836

  15. Use of photo-Fenton's reaction by 400-nm LED light for endodontic disinfection: A preliminary in vitro study on Enterococcus faecalis.

    PubMed

    Lagori, Giuseppe; Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta

    2017-06-01

    One of the biggest challenges in endodontics is the complete disinfection of root canals. In addition to mechanical preparation, the technique traditionally also involves channel disinfection with other agents such as sodium hypochlorite, hydrogen peroxide, chlorhexidine, or a combination of these. Some bacterial species are particularly resistant to eradication. Using Enterococcus faecalis in this preliminary study, we tested the bactericidal effectiveness of the Fenton reaction and the photo-Fenton reaction using an LED light with a 400-nm wavelength. Discs of hydroxyapatite were incubated in brain-heart broth contaminated with Enterococcus faecalis. After 4days, they were decontaminated with different bactericidal agents, including some with proven and well-known efficacy (5% sodium hypochlorite and 3% hydrogen peroxide) and other treatments using solutions of 1.5% hydrogen peroxide and 0.15% iron gluconate (Fenton reaction) plus LED light at a Fluence of 4.0J/cm 2 (photo-Fenton reaction). The photo-Fenton reaction demonstrated comparable performance to that of sodium hypochlorite in eliminating Enterococcus faecalis. Copyright © 2017. Published by Elsevier B.V.

  16. 31 CFR 1023.315 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR BROKERS OR DEALERS IN SECURITIES Reports Required To Be Made By Brokers or Dealers in Securities § 1023.315 Exemptions. Refer to § 1010.315 of this... dealers in securities. ...

  17. 31 CFR 1023.315 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR BROKERS OR DEALERS IN SECURITIES Reports Required To Be Made By Brokers or Dealers in Securities § 1023.315 Exemptions. Refer to § 1010.315 of this... dealers in securities. ...

  18. 31 CFR 1023.315 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR BROKERS OR DEALERS IN SECURITIES Reports Required To Be Made By Brokers or Dealers in Securities § 1023.315 Exemptions. Refer to § 1010.315 of this... dealers in securities. ...

  19. 31 CFR 1023.315 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR BROKERS OR DEALERS IN SECURITIES Reports Required To Be Made By Brokers or Dealers in Securities § 1023.315 Exemptions. Refer to § 1010.315 of this... dealers in securities. ...

  20. A microfabricated, low dark current a-Se detector for measurement of microplasma optical emission in the UV for possible use on-site

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili

    2013-05-01

    Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.

  1. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  2. 31 CFR 315.62 - Payment to minors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Payment to minors. 315.62 Section 315..., D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Minors, Incompetents, Aged Persons, Absentees, et al. § 315.62 Payment to minors. If the owner of a savings bond is a minor and the form of registration does...

  3. 31 CFR 315.62 - Payment to minors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment to minors. 315.62 Section 315..., D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Minors, Incompetents, Aged Persons, Absentees, et al. § 315.62 Payment to minors. If the owner of a savings bond is a minor and the form of registration does...

  4. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    PubMed

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Analysis of the UV-B Regime and Potential Effects on Alfalfa

    NASA Technical Reports Server (NTRS)

    Seitz, Jeffery C.

    1998-01-01

    Life at the surface of the Earth, over the last 400 m.y., evolved under conditions of decreased short-wave radiation (i.e., ultraviolet) relative to solar output due to absorption and scattering by constituents (e.g., ozone, water vapor, aerosols) in the upper atmosphere. However, a significant amount of ultraviolet radiation in the range from 280-320 nm, known as ultraviolet-B radiation, reaches the Earth's surface and has sufficient energy to be damaging to biologic tissue. Natural fluctuations in atmospheric constituents (seasonal variation, volcanic eruptions, etc.), changes in the orbital attitude of the Earth (precession, axial tilt, orbital eccentricity), and long-term solar variability contribute to changes in the total amount of ultraviolet radiation reaching the surface of the Earth, and thus, the biosphere. More recently, the atmospheric release of commercial propellants and refrigerants, known as chlorofluorocarbons (CFCs), has contributed to a significant depletion in naturally occurring ozone in the stratosphere. Thus, decreased stratospheric ozone has resulted in an increased UV-B flux at the Earth's surface which may have profound effects on terrestrial and marine organisms. In this study, we are investigating the effects of differing solar UV-B fluxes on alfalfa (Medicago sativa L.), an important agricultural crop. A long-term goal of this research is to develop spectral signatures to detect plant response to increased UV-B radiation from remote sensor platforms.

  6. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  7. Mercury speciation by differential photochemical vapor generation at UV-B vs. UV-C wavelength

    NASA Astrophysics Data System (ADS)

    Chen, Guoying; Lai, Bunhong; Mei, Ni; Liu, Jixin; Mao, Xuefei

    2017-11-01

    Photochemical vapor generation (PVG) is an effective sample introduction scheme for volatile mercury (Hg). Speciation of Hg++ and MeHg+ was fulfilled for the first time by differential PVG under UV-B vs. UV-C wavelength and applied to fish oil supplements. After liquid-liquid extraction, the aqueous extract was mixed with 0.4% anthranilic acid (AA)-20% formic acid (FA) in a quartz coil, and exposed sequentially to 311 nm or 254 nm UV light. The resulting Hg0 vapor was detected by atomic fluorescence spectrometry (AFS). At each wavelength, the AFS intensity was a linear function of Hg++ and MeHg+ concentrations, which were solvable from a set of two equations. This method achieved ultrahigh sensitivity with 0.50 and 0.63 ng mL- 1 limits of detection for Hg++ and MeHg+, respectively, and 73% recovery for MeHg+ at 10 ng mL- 1. Validation was performed by ICP-MS on total Hg. Obviation of chemical or chromatographic separation rendered this method rapid, green, and cost-effective.

  8. Fiber optic systems in the UV region

    NASA Astrophysics Data System (ADS)

    Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.

    2000-05-01

    Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.

  9. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1-xN Buffer Layer.

    PubMed

    Lee, Chang-Ju; Won, Chul-Ho; Lee, Jung-Hee; Hahm, Sung-Ho; Park, Hongsik

    2017-07-21

    The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded Al x Ga -x N buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded Al x Ga 1-x N buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10 - ² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

  10. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.).

    PubMed

    Topcu, Yasin; Dogan, Adem; Kasimoglu, Zehra; Sahin-Nadeem, Hilal; Polat, Ersin; Erkan, Mustafa

    2015-08-01

    In this study, the effects of supplementary UV radiation during the vegetative period on antioxidant compounds, antioxidant activity and postharvest quality of broccoli heads during long term storage was studied. The broccolis were grown under three different doses of supplementary UV radiation (2.2, 8.8 and 16.4 kJ/m(2)/day) in a soilless system in a glasshouse. Harvested broccoli heads were stored at 0 °C in modified atmosphere packaging for 60 days. The supplementary UV radiation (280-315 nm) during the vegetative period significantly decreased total carotenoid, the chlorophyll a and chlorophyll b content but increased the ascorbic acid, total phenolic and flavonoid contents of broccolis. All supplementary UV treatments slightly reduced the antioxidant activity of the broccolis, however, no remarkable change was observed between 2.2 and 8.8 kJ/m(2) radiation levels. The sinigrin and glucotropaeolin contents of the broccolis were substantially increased by UV treatments. The prolonged storage period resulted in decreased ascorbic acid, total phenolic and flavonoid contents, as well as antioxidant activity. Discoloration of the heads, due to decreased chlorophyll and carotenoid contents, was also observed with prolonged storage duration. Glucosinolates levels showed an increasing tendency till the 45th day of storage, and then their levels started to decline. The weight loss of broccoli heads during storage progressively increased with storage time in all treatments. Total soluble solids, solids content and titratable acidity decreased continuously during storage. Titratable acidity was not affected by UV radiation doses during the storage time whereas soluble solids and solids content (dry matter) were significantly affected by UV doses. Supplementary UV radiation increased the lightness (L*) and chroma (C*) values of the broccoli heads. Pre-harvest UV radiation during vegetative period seems to be a promising tool for increasing the beneficial health components

  11. 48 CFR 46.315 - Certificate of conformance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Certificate of conformance. 46.315 Section 46.315 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.315 Certificate of conformance. The contracting officer...

  12. Alteration of the aPA ELISA by UV exposure of polystyrene microtiter plates.

    PubMed

    Goldberg, J S; Wagenknecht, D R; McIntyre, J A

    1996-01-01

    Interlaboratory inconsistencies in antiphospholipid antibody (aPA) solid phase assays have prompted controversy in clinical laboratory testing for aPA. We found that the aPA ELISA can be influenced by the type of microtiter plate utilized and by the conditions in which the plates are stored. By exposing 96-well, flat-bottom polystyrene microtiter plates to short wave UV light (254 nm), the aPA ELISA signal decreased in a UV dose-dependent manner. No effect was seen with long wave UV light (366 nm). These results were independent of the antibody isotype under study or the phospholipid (PL) antigen used: anionic phosphatidylserine (PS) and cardiolipin (CL), or zwitterionic phosphatidylethanolamine (PE). Purified human beta 2-glycoprotein I (beta 2 GPI), a known cofactor for anionic PL, and rabbit anti-beta 2 GPI antisera were used to demonstrate that beta 2 GPI bound equally to UV treated and untreated microtiter plates. In contrast, recognition of beta 2 GPI on an anionic PL surface was decreased on UV treated plates, suggesting that UV exposure alters the lipid binding properties of the microliter plate. To determine whether UV exposure inhibited PL binding directly or caused a change in the way the PL was bound, the amount of PL bound to UV treated and untreated plates was measured by using fluorescent labeled PS and a fluorimeter. PS binding was decreased by 53% in UV treated wells as compared to untreated wells. These data show that short wave UV exposure reduces PL binding to polystyrene microtiter plates, thereby reducing the amount of beta 2 GPI bound to PL coated ELISA plates. Thus by using UV exposed microtiter plates, decreased or false-negative a PA ELISA results may be obtained for aPA positive plasmas.

  13. The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation.

    PubMed

    Yamada, Ikuho; Nomura, Kazuki; Iwahashi, Hitoshi; Horie, Masanori

    2016-01-01

    Today, nanoparticles are used in many products. One of the most common nanoparticles is titanium dioxide (TiO2). These particles generate reactive oxygen species (ROS) upon UV irradiation. Although nanoparticles are very useful in many products, there are concerns about their biological and ecological effects when released into the environment. Thus, it was assessed that the effect of TiO2 nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation by using Escherichia coli and Saccharomyces cerevisiae. ROS generation was evaluated by adding TiO2 nanoparticles and methylene blue to distilled water. We also assessed growth inhibition by adding TiO2 nanoparticles and microbes in minimal agar medium. Moreover, microbial inactivation was assessed by adding TiO2 nanoparticles and microbes to PBS. Upon UV irradiation, TiO2-NOAAs decomposed methylene blue and generated ROS. TiO2-NOAAs also decomposed methylene blue in minimal agar medium under UV irradiation; however, they did not inhibit microbial growth. Surprisingly, TiO2-NOAAs in the medium protect microbes from UV irradiation as colony formation was observed only near TiO2-NOAAs. In PBS, TiO2-NOAAs did not inactivate microbes but instead protected microbes from lethal UV irradiation. These results suggest that the amount of ROS generated by TiO2-NOAAs is not enough to inactivate microbes. In fact, our results suggest that TiO2-NOAAs may protect microbes from UV irradiations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Absence of a detectable lunar nanodust exosphere during a search with LRO's LAMP UV imaging spectrograph

    NASA Astrophysics Data System (ADS)

    Grava, C.; Stubbs, T. J.; Glenar, D. A.; Retherford, K. D.; Kaufmann, D. E.

    2017-05-01

    The Lyman-Alpha Mapping Project (LAMP) UV spectrograph on board the Lunar Reconnaissance Orbiter (LRO) performed a campaign to observe the Moon's nanodust exosphere, evidence for which was provided by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet and Visible Spectrometer (UVS) during the 2014 Quadrantid meteoroid stream. These LADEE/UVS observations were consistent with a nanodust exosphere modulated by meteoroid impacts. LRO performed off-nadir maneuvers around the peak of the 2016 Quadrantids, in order to reproduce, as closely as possible, the active meteoroid environment and observing geometry of LADEE/UVS. We analyzed LAMP spectra to search for sunlight backscattering from nanodust. No brightness enhancement attributable to dust, of any size, was observed. We determine an upper limit for dust column concentration of 105 cm-2 for grains of radius 25 nm, and an upper limit for dust column mass of 10-11 g cm-2, nearly independent of grain size for radii <100 nm.

  15. Fiber-Based 589 nm Laser for Sodium Guide Star

    DTIC Science & Technology

    2006-02-01

    are combined in a 980/1060 nm WDM coupler and free-space launched through an isolator designed for 1060 nm into a 23 m long Yb doped fiber. This fiber...lenses. The final-stage amplifier comprised a 23 m long YDF with a core diameter of 8 lam and a D-shaped inner cladding of 400 jtm diameter. It was...resolution). (b) High resolution spectrum of the 1178 nm output beam at 534 m W output power, linewidth (FWHM) - 0. 6 nm (0.05 nm resolution). The

  16. 31 CFR 1024.315 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MUTUAL FUNDS Reports Required To Be Made By Mutual Funds § 1024.315 Exemptions. Refer to § 1010.315 of this chapter for exemptions from the obligation to file reports of transactions in currency for mutual funds. ...

  17. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  18. 13 CFR 315.3 - Confidential Business Information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Confidential Business Information. 315.3 Section 315.3 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE TRADE ADJUSTMENT ASSISTANCE FOR FIRMS General Provisions § 315.3 Confidential Business Information...

  19. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    PubMed

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  20. Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens

    NASA Astrophysics Data System (ADS)

    Brazaitytė, A.; Viršilė, A.; Jankauskienė, J.; Sakalauskienė, S.; Samuolienė, G.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Miliauskienė, J.; Vaštakaitė, V.; Bagdonavičienė, A.; Duchovskis, P.

    2015-01-01

    In this study, we sought to find and employ positive effects of UV-A irradiation on cultivation and quality of microgreens. Therefore, the goal of our study was to investigate the influence of 366, 390, and 402 nm UV-A LED wavelengths, supplemental for the basal solid-state lighting system at two UV-A irradiation levels on the growth and phytochemical contents of different microgreen plants. Depending on the species, supplemental UV-A irradiation can improve antioxidant properties of microgreens. In many cases, a significant increase in the investigated phytochemicals was found under 366 and 390 nm UV-A wavelengths at the photon flux density (12.4 μmol m-2 s-1). The most pronounced effect of supplemental UV-A irradiation was detected in pak choi microgreens. Almost all supplemental UV-A irradiation treatments resulted in increased leaf area and fresh weight, in higher 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging activity, total phenols, anthocyanins, ascorbic acid, and α-tocopherol.

  1. 5 CFR 315.712 - Conversion based on service as a Federal Career Intern.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career Intern... employment, a career intern who: (1) Has successfully completed a Federal Career Intern Program, under § 213...

  2. 5 CFR 315.712 - Conversion based on service as a Federal Career Intern.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career Intern... employment, a career intern who: (1) Has successfully completed a Federal Career Intern Program, under § 213...

  3. 5 CFR 315.712 - Conversion based on service as a Federal Career Intern.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career Intern... employment, a career intern who: (1) Has successfully completed a Federal Career Intern Program, under § 213...

  4. 38 CFR 3.15 - Computation of service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Computation of service. 3.15 Section 3.15 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.15 Computation of service...

  5. 38 CFR 3.15 - Computation of service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Computation of service. 3.15 Section 3.15 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.15 Computation of service...

  6. 38 CFR 3.15 - Computation of service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Computation of service. 3.15 Section 3.15 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.15 Computation of service...

  7. 38 CFR 3.15 - Computation of service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Computation of service. 3.15 Section 3.15 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.15 Computation of service...

  8. 38 CFR 3.15 - Computation of service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Computation of service. 3.15 Section 3.15 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General § 3.15 Computation of service...

  9. 13 CFR 315.15 - Conflicts of interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Conflicts of interest. 315.15 Section 315.15 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE TRADE ADJUSTMENT ASSISTANCE FOR FIRMS Protective Provisions § 315.15 Conflicts of interest. EDA will...

  10. Diffuse reflectance spectroscopy from 400-1600 nm to evaluate tumor resection margins during head and neck surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brouwer de Koning, Susan G.; Baltussen, E. J. M.; Karakullukcu, M. Baris; Smit, L.; van Veen, R. L. P.; Hendriks, Benno H. W.; Sterenborg, H. J. C. M.; Ruers, Theo J. M.

    2017-02-01

    This ex vivo study evaluates the feasibility of diffuse reflectance spectroscopy (DRS) for discriminating tumor from healthy oral tissue, with the aim to develop a technique that can be used to determine a complete excision of tumor through intraoperative margin assessment. DRS spectra were acquired on fresh surgical specimens from patients with an oral squamous cell carcinoma. The spectra represent a measure of diffuse light reflectance (wavelength range of 400-1600 nm), detected after illuminating tissue with a source fiber at 1.0 and 2.0 mm distances from a detection fiber. Spectra were obtained from 23 locations of tumor tissue and 16 locations of healthy muscle tissue. Biopsies were taken from all measured locations to facilitate an optimal correlation between spectra and pathological information. The area under the spectrum was used as a parameter to classify spectra of tumor and healthy tissue. Next, a receiver operating characteristics (ROC) analysis was performed to provide the area under the receiver operating curve (AUROC) as a measure for discriminative power. The area under the spectrum between 650 and 750 nm was used in the ROC analysis and provided AUROC values of 0.99 and 0.97, for distances of 1 mm and 2 mm between source and detector fiber, respectively. DRS can discriminate tumor from healthy oral tissue in an ex vivo setting. More specimens are needed to further evaluate this technique with component analyses and classification methods, prior to in vivo patient measurements.

  11. Q factor limitation at short wavelength (around 300 nm) in III-nitride-on-silicon photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, Farsane; Roland, Iannis; Tran, Thi-Mo; Checoury, Xavier; El Kurdi, Moustafa; Sauvage, Sébastien; Brimont, Christelle; Guillet, Thierry; Rennesson, Stéphanie; Duboz, Jean-Yves; Semond, Fabrice; Gayral, Bruno; Boucaud, Philippe

    2017-09-01

    III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantum well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.

  12. 2 CFR 170.315 - Executive.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Executive. 170.315 Section 170.315 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS NATIONAL POLICY REQUIREMENTS REPORTING...

  13. 2 CFR 170.315 - Executive.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Executive. 170.315 Section 170.315 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS NATIONAL POLICY REQUIREMENTS REPORTING...

  14. 2 CFR 170.315 - Executive.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Executive. 170.315 Section 170.315 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS Reserved REPORTING SUBAWARD AND EXECUTIVE...

  15. 2 CFR 170.315 - Executive.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Executive. 170.315 Section 170.315 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS [Reserved] REPORTING SUBAWARD AND...

  16. 31 CFR 1026.315 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Exemptions. 1026.315 Section 1026.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR FUTURES COMMISSION MERCHANTS AND INTRODUCING BROKERS...

  17. 31 CFR 1026.315 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Exemptions. 1026.315 Section 1026.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR FUTURES COMMISSION MERCHANTS AND INTRODUCING BROKERS...

  18. 31 CFR 1026.315 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Exemptions. 1026.315 Section 1026.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR FUTURES COMMISSION MERCHANTS AND INTRODUCING BROKERS...

  19. 31 CFR 1022.315 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Exemptions. 1022.315 Section 1022.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MONEY SERVICES BUSINESSES Reports Required To Be...

  20. 31 CFR 1022.315 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Exemptions. 1022.315 Section 1022.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MONEY SERVICES BUSINESSES Reports Required To Be...

  1. 31 CFR 1022.315 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Exemptions. 1022.315 Section 1022.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MONEY SERVICES BUSINESSES Reports Required To Be...

  2. 31 CFR 1022.315 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Exemptions. 1022.315 Section 1022.315 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FINANCIAL CRIMES ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MONEY SERVICES BUSINESSES Reports Required To Be...

  3. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    PubMed Central

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  4. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies.

    PubMed

    Briscoe, Adriana D; Bybee, Seth M; Bernard, Gary D; Yuan, Furong; Sison-Mangus, Marilou P; Reed, Robert D; Warren, Andrew D; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-02-23

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)-a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with lambda(max) = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate.

  5. UV-fibers: two decades of improvements for new applications

    NASA Astrophysics Data System (ADS)

    Klein, Karl-Friedrich; Khalilov, Valery K.

    2015-03-01

    Multimode UV-fibers with high-OH synthetic silica core and F-doped silica cladding have been available for over 40 years. At the beginning, the spectral UV-range above 250 nm wavelength was commonly used, because the generation of UV-absorbing defect centers prevented reliable light transfer below 250 nm; even light from a low-power broadband deuterium-lamp was sufficient to damage these UV-fibers of the 1st generation. However, even then, applications in the field of spectroscopy, laser light delivery, sensors and process control were discussed and improvements of fiber quality in this very interesting UVC range required by researchers and industrial end-users. Starting in 1993 with hydrogen-loaded fibers, further modification in preform and fiber manufacturing including additional fiber treatments lead to currently available hydrogen-free UV-fiber (4th generation) with significantly improved stability in the UVC, enabling routine use of optical fibers in this field. In addition to the UV-fiber improvements, some selected UV fiber-optic applications using broadband deuterium-lamps will be discussed. Finally, there is still room for further improvements, especially in combination with newly available pulsed UV light sources, which are low-cost, small sized and highly reliable.

  6. High-power diode laser modules from 410 nm to 2200 nm

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Kissel, Heiko; Flament, Marco; Wolf, Paul; Brand, Thomas; Biesenbach, Jens

    2010-02-01

    In this work we report on high-power diode laser modules covering a wide spectral range from 410 nm to 2200 nm. Driven by improvements in the technology of diode laser bars with non-standard wavelengths, such systems are finding a growing number of applications. Fields of application that benefit from these developments are direct medical applications, printing industry, defense technology, polymer welding and pumping of solid-sate lasers. Diode laser bars with standard wavelengths from 800 - 1000 nm are based on InGaAlAs, InGaAlP, GaAsP or InGaAs semiconductor material with an optical power of more than 100 W per bar. For shorter wavelengths from 630 - 690 nm InGaAlP semiconductor material is used with an optical power of about 5 W per bar. Extending the wavelength range beyond 1100 nm is realized by using InGaAs on InP substrates or with InAs quantum dots embedded in GaAs for wavelengths up to 1320 nm and (AlGaIn)(AsSb) for wavelengths up to 2200 nm. In these wavelength ranges the output power per bar is about 6 - 20 W. In this paper we present a detailed characterization of these diode laser bars, including measurements of power, spectral data and life time data. In addition, we will show different fiber coupled modules, ranging from 638 nm with 13 W output power (400 μm fiber, NA 0.22) up to 1940 nm with more than 50 W output power (600 μm fiber NA 0.22).

  7. 40 CFR 35.315 - Maximum federal share.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.315 Section 35.315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... 28) § 35.315 Maximum federal share. The Regional Administrator may provide up to 75 percent of the...

  8. 31 CFR 1026.315 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... IN COMMODITIES Reports Required To Be Made by Futures Commission Merchants and Introducing Brokers in Commodities § 1026.315 Exemptions. Refer to § 1010.315 of this chapter for exemptions from the obligation to file reports of transactions in currency for futures commission merchants and introducing brokers in...

  9. 21 CFR 315.4 - Indications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Indications. 315.4 Section 315.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE... delineation; (2) Functional, physiological, or biochemical assessment; (3) Disease or pathology detection or...

  10. ESTIMATION OF UV-B EXPOSURE IN AMPHIBIAN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Estimation of ultraviolet radiation B (UV-B; 280 to 320 nm wavelenghts) dose is essential for determining whether UV-B contributes to amphibian population declines and malformations. UV-B dose in wetlands is effected by location, time of day and year, atmospheric levels of ozone,...

  11. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  12. 6 CFR 27.315 - Presiding officers for proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 6 Domestic Security 1 2011-01-01 2011-01-01 false Presiding officers for proceedings. 27.315 Section 27.315 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Orders and Adjudications § 27.315 Presiding officers for proceedings. (a...

  13. 6 CFR 27.315 - Presiding officers for proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 6 Domestic Security 1 2012-01-01 2012-01-01 false Presiding officers for proceedings. 27.315 Section 27.315 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Orders and Adjudications § 27.315 Presiding officers for proceedings. (a...

  14. 6 CFR 27.315 - Presiding officers for proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Presiding officers for proceedings. 27.315 Section 27.315 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Orders and Adjudications § 27.315 Presiding officers for proceedings. (a...

  15. 6 CFR 27.315 - Presiding officers for proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 6 Domestic Security 1 2014-01-01 2014-01-01 false Presiding officers for proceedings. 27.315 Section 27.315 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Orders and Adjudications § 27.315 Presiding officers for proceedings. (a...

  16. 6 CFR 27.315 - Presiding officers for proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 6 Domestic Security 1 2013-01-01 2013-01-01 false Presiding officers for proceedings. 27.315 Section 27.315 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Orders and Adjudications § 27.315 Presiding officers for proceedings. (a...

  17. 25 CFR 700.315 - Post-hearing briefs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Post-hearing briefs. 700.315 Section 700.315 Indians THE... of Eligibility, Hearing and Administrative Review (Appeals) § 700.315 Post-hearing briefs. Applicants may submit post-hearing briefs or written comments to the Presiding Officer within fourteen days after...

  18. 25 CFR 700.315 - Post-hearing briefs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Post-hearing briefs. 700.315 Section 700.315 Indians THE... of Eligibility, Hearing and Administrative Review (Appeals) § 700.315 Post-hearing briefs. Applicants may submit post-hearing briefs or written comments to the Presiding Officer within fourteen days after...

  19. 25 CFR 700.315 - Post-hearing briefs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Post-hearing briefs. 700.315 Section 700.315 Indians THE... of Eligibility, Hearing and Administrative Review (Appeals) § 700.315 Post-hearing briefs. Applicants may submit post-hearing briefs or written comments to the Presiding Officer within fourteen days after...

  20. 25 CFR 700.315 - Post-hearing briefs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Post-hearing briefs. 700.315 Section 700.315 Indians THE... of Eligibility, Hearing and Administrative Review (Appeals) § 700.315 Post-hearing briefs. Applicants may submit post-hearing briefs or written comments to the Presiding Officer within fourteen days after...

  1. 25 CFR 700.315 - Post-hearing briefs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Post-hearing briefs. 700.315 Section 700.315 Indians THE... of Eligibility, Hearing and Administrative Review (Appeals) § 700.315 Post-hearing briefs. Applicants may submit post-hearing briefs or written comments to the Presiding Officer within fourteen days after...

  2. Influence of multiple light-scattering on TiO2 nanoparticles imbedded into stratum corneum on light transmittance in UV and visible wavelength regions

    NASA Astrophysics Data System (ADS)

    Popov, Alexey P.; Priezzhev, Alexander V.; Lademann, Jürgen; Myllylä, Risto

    2007-05-01

    This paper focuses on the simulation of propagation of radiation in UV and visible wavelength regions within a superficial skin layer (stratum corneum, SC) partially filled with titanium dioxide (TiO II) nanoparticles. Volume concentrations of the particles (0.67% - 2.25%) correspond to the maximal concentrations of the considered particles in the frames of independent scattering. Transmittance of 307-, 400-, and 500-nm light through a 20-μm thick SC is calculated. The effect of the TiO II nanoparticles on the contribution of photons undergone different numbers of scattering acts into transmittance is considered. It is shown that administration of the nanoparticles results in the broadening of the distribution of transmitted photons over undergone scattering acts. It also results in the shift of the maximum location of this distribution to larger number of scattering acts for the wavelengths of 400 and 500 nm being the latter the most pronounced. The increase of undergone scattering acts leads to the elongation of photon trajectories within the medium and results in the increase of the diffuse reflected light and the transmittance decrease.

  3. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  4. The oncolytic peptide LTX-315 triggers necrotic cell death

    PubMed Central

    Forveille, Sabrina; Zhou, Heng; Sauvat, Allan; Bezu, Lucillia; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Pierron, Gérard; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    The oncolytic peptide LTX-315 has been designed for killing human cancer cells and turned out to stimulate anti-cancer immune responses when locally injected into tumors established in immunocompetent mice. Here, we investigated the question whether LTX-315 induces apoptosis or necrosis. Transmission electron microscopy or morphometric analysis of chromatin-stained tumor cells revealed that LTX-315 failed to induce apoptotic nuclear condensation and rather induced a necrotic phenotype. Accordingly, LTX-315 failed to stimulate the activation of caspase-3, and inhibition of caspases by means of Z-VAD-fmk was unable to reduce cell killing by LTX-315. In addition, 2 prominent inhibitors of regulated necrosis (necroptosis), namely, necrostatin-1 and cycosporin A, failed to reduce LTX-315-induced cell death. In conclusion, it appears that LTX-315 triggers unregulated necrosis, which may contribute to its pro-inflammatory and pro-immune effects. PMID:26566869

  5. 5 CFR 315.909 - Relationship to other actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Relationship to other actions. 315.909 Section 315.909 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER... Position § 315.909 Relationship to other actions. (a) If an employee is required to concurrently serve both...

  6. 29 CFR 780.315 - Local hand harvest laborers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Local hand harvest laborers. 780.315 Section 780.315 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL...) Statutory Provisions § 780.315 Local hand harvest laborers. (a) A requirement of the exemption is that an...

  7. Wavelength-Specific UV Inactivation, Molecular Mechanisms, and Potential Synergies

    EPA Science Inventory

    This work evaluated UV LEDs emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy in inactivating a common fecal indicator, E. coli, as well as human enteric viruses on the United States Environmental Protection Agency’s contaminant candi...

  8. Wavelength-Specific UV Inactivation, Molecular Mechanisms, and Potential Synergies

    EPA Science Inventory

    This work evaluated UV LEDs emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy in inactivating a common fecal indicator, E. coli, as well as human enteric viruses on the United States Environmental Protection Agency’s contaminant candidate l...

  9. 31 CFR 315.61 - Payment after death.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Payment after death. 315.61 Section 315.61 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL..., Absentees, et al. § 315.61 Payment after death. After the death of the ward, and at any time prior to the...

  10. 31 CFR 315.61 - Payment after death.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment after death. 315.61 Section 315.61 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL..., Absentees, et al. § 315.61 Payment after death. After the death of the ward, and at any time prior to the...

  11. 46 CFR 129.315 - Power sources for OSVs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.315 Power sources for OSVs. (a) The requirements of... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources for OSVs. 129.315 Section 129.315 Shipping... subpart 111.10 of this chapter. (b) If a generator provides electrical power for any system identified as...

  12. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Class IA brake test. 238.315 Section 238.315... Requirements for Tier I Passenger Equipment § 238.315 Class IA brake test. (a) Except as provided in paragraph (b) of this section, either a Class I or a Class IA brake test shall be performed: (1) Prior to the...

  13. Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole.

    PubMed

    Rao, Balaji; Wang, Wei; Cai, Qingsong; Anderson, Todd; Gu, Baohua

    2013-01-15

    The insensitive munitions compound 2,4-dinitroanisole (DNAN) is increasingly being used as a replacement for traditional, sensitive munitions compounds (e.g., trinitrotoluene [TNT]), but the environmental fate and photo-transformation of DNAN in natural water systems are currently unknown. In this study, we investigated the photo-transformation rates of DNAN with both ultraviolet (UV) and sunlight irradiation under different environmentally relevant conditions. Sunlight photo-transformation of DNAN in water was found to follow predominantly pseudo-first-order decay kinetics with an average half-life (t(1/2)) of approximately 0.70 d and activation energy (E(a)) of 53 kJ mol(-1). Photo-transformation rates of DNAN were dependent on the wavelength of the light source: irradiation with UV-B light (280-315 nm) resulted in a greater quantum yield of transformation (φ(UV-B)=3.7×10(-4)) than rates obtained with UV-A light (φ(UV-A)=2.9×10(-4) at 316-400 nm) and sunlight (φ(sun)=1.1×10(-4)). Photo-oxidation was the dominant mechanism for DNAN photo-transformation, based on the formation of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) as major N species and 2,4-dinitrophenol as the minor species. Environmental factors (e.g., temperature, pH, and the presence or absence of naturally dissolved organic matter) displayed modest to little effects on the rate of DNAN photo-transformation. These observations indicate that sunlight-induced photo-transformation of DNAN may represent a significant abiotic degradation pathway in surface water, which may have important implications in evaluating the potential impacts and risks of DNAN in the environment. Published by Elsevier B.V.

  14. 5 CFR 315.901 - Statutory requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Statutory requirement. 315.901 Section 315.901 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND... appointment as a supervisor or manager becomes final.” It also says that a supervisor or manager “who does not...

  15. 5 CFR 315.901 - Statutory requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Statutory requirement. 315.901 Section 315.901 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND... appointment as a supervisor or manager becomes final.” It also says that a supervisor or manager “who does not...

  16. 31 CFR 315.50 - Change of name.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Change of name. 315.50 Section 315.50..., D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Reissue and Denominational Exchange § 315.50 Change of name. An owner, coowner, or beneficiary whose name is changed by marriage, divorce, annulment...

  17. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    PubMed Central

    Mamangkey, Noldy Gustaf F.; Agatonovic, Snezana; Southgate, Paul C.

    2010-01-01

    Two groups of commercial quality (“acceptable”) pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV

  18. Assessing pearl quality using reflectance UV-Vis spectroscopy: does the same donor produce consistent pearl quality?

    PubMed

    Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C

    2010-09-20

    Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV

  19. 24 CFR 91.315 - Strategic plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Strategic plan. 91.315 Section 91... CONSOLIDATED SUBMISSIONS FOR COMMUNITY PLANNING AND DEVELOPMENT PROGRAMS State Governments; Contents of Consolidated Plan § 91.315 Strategic plan. (a) General. For the categories described in paragraphs (b), (c), (d...

  20. Study of the ultraviolet emission of the electrode coatings of arc welding.

    PubMed

    Garcia-Guinea, J; Correcher, V; Lombardero, M; Gonzalez-Martin, R

    2004-08-01

    The optical emission properties of several minerals components employed in electrode coatings of arc welding have been investigated. The X-ray diffraction analysis shows that the composition of 14 commercial electrode coatings collected from different countries (Spain, France, UK, Poland, Argentina and Germany), consists of quartz, calcite, sodium and potassium rich feldspars, muscovite and rutile. The natural thermal stimulated luminescence (TSL) of these mineral phases, measured in the range of 200-800 nm at different temperatures (from room temperature to 400 degrees C) displays UV-A (wavelengths of 320 nm to 400 nm) and UV-B (from 280 nm to 320 nm) emissions, with the exception of rutile. The UV-B radiation, commonly described as the most dangerous form of radiation to human life, is here associated with structural defects in the crystallographic lattice of the mineral components of electrode coatings.