Sample records for v-2 reactor dukovany

  1. DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-05-01

    Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)

  2. The 14 MeV Neutron Irradiation Facility in MARIA Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopowicz, R.; Pytel, K.; Dorosz, M.

    2015-07-01

    The MARIA reactor with thermal neutron flux density up to 3x10{sup 14} cm{sup -2} s{sup -1} and a number of vertical channels is well suited to material testing by thermal neutron treatment. Beside of that some fast neutron irradiation facilities are operated in MARIA reactor as well. One of them is thermal to 14 MeV neutron converter launched in 2014. It is especially devoted to fusion devices material testing irradiation. The ITER and DEMO research thermonuclear facilities are to be run using the deuterium - tritium fusion reaction. Fast neutrons (of energy approximately 14 MeV) resulting from the reaction aremore » essential to carry away the released thermonuclear energy and to breed tritium. However, constructional materials of which thermonuclear reactors are to be built must be specially selected to survive intense fluxes of fast neutrons. Strong sources of 14 MeV neutrons are needed if research on resistance of candidate materials to such fluxes is to be carried out effectively. Nuclear reactor-based converter capable to convert thermal neutrons into 14 MeV fast neutrons may be used to that purpose. The converter based on two stage nuclear reaction on lithium-6 and deuterium compounds leading to 14 MeV neutron production. The reaction chain is begun by thermal neutron capture by lithium-6 nucleus resulted in triton release. The neutron and triton transport calculations have been therefore carried-out to estimate the thermal to 14 MeV neutron conversion efficiency and optimize converter construction. The usable irradiation space of ca. 60 cm{sup 3} has been obtained. The released energy have been calculated. Heat transport has been asses to ensure proper device cooling. A set of thermocouples has been installed in converter to monitor its temperature distribution on-line. Influence of converter on reactor operation has been studied. Safety analyses of steady states and transients have been done. Performed calculations and analyses allow designing the

  3. Solidification of spent ion exchange resins into the SIAL matrix at the Dukovany NPP, Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatransky, Peter; Prazska, Milena; Harvan, David

    2013-07-01

    Based on the decision of the State Office for Nuclear Safety, the Dukovany NPP has been obliged to secure the efficient capacities for the disposal of spent ion exchange resins. Therefore, in September 2010, based on the contract with supplier company AMEC Nuclear Slovakia s.r.o. has begun with pumping and treatment of ion exchange resins from the storage tank 0TW30B02, situated in the auxiliary building. The SIAL{sup R} technology, developed in AMEC Nuclear Slovakia, has been used for the solidification purposes. This technology allows an on-site treatment of various special radioactive waste streams (resins, sludge, sludge/resins and borates) at themore » room temperature. The SIAL{sup R} matrix and technology were licensed by the Czech State Office for Nuclear Safety in 2007. On-site treatment and solidification of spent ion exchange resins at Dukovany NPP involves process of resin removal from tank using remotely operated manipulator, resin transportation, resin separation from free water, resin filling into 200 dm{sup 3} drums and solidification into SIAL{sup R} matrix in 200 dm{sup 3} drums using the FIZA S 200 facility. The final product is observed for compressive strength, leachability, radionuclide composition, dose rate, solids and total weight. After meeting the requirements for final disposal and consolidation, the drums are being transported for the final disposal to the Repository at Dukovany site. During the 3 month's trial operation in 2010, and the normal operation in 2011 and 2012, 189 tons of dewatered resins have been treated into 1960 drums, with total activity higher than 920 GBq. At the end of trial run (2010), 22 tons of dewatered resins were treated into 235 drums. During standard operation approximately 91 tons in 960 drums (2011) and 76 tons in 765 drums (2012) were treated. The weights of resins in the drum ware in the range from 89 - 106 kg and compressive strength limit (10 MPa) has already been achieved 24 hours after fixation. The

  4. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  5. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  6. Radiation damage induced in Al2O3 single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2016-06-01

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.

  7. Search for eV sterile neutrinos at a nuclear reactor — the Stereo project

    NASA Astrophysics Data System (ADS)

    Haser, J.; Stereo Collaboration

    2016-05-01

    The re-analyses of the reference spectra of reactor antineutrinos together with a revised neutrino interaction cross section enlarged the absolute normalization of the predicted neutrino flux. The tension between previous reactor measurements and the new prediction is significant at 2.7 σ and is known as “reactor antineutrino anomaly”. In combination with other anomalies encountered in neutrino oscillation measurements, this observation revived speculations about the existence of a sterile neutrino in the eV mass range. Mixing of this light sterile neutrino with the active flavours would lead to a modification of the detected antineutrino flux. An oscillation pattern in energy and space could be resolved by a detector at a distance of few meters from a reactor core: the neutrino detector of the Stereo project will be located at about 10 m distance from the ILL research reactor in Grenoble, France. Lengthwise separated in six target cells filled with 2 m3 Gd-loaded liquid scintillator in total, the experiment will search for a position-dependent distortion in the energy spectrum.

  8. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H 2O 2

    DOE PAGES

    Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...

    2017-03-01

    The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less

  9. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  10. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    PubMed

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  11. VAPOR PHASE OXIDATION OF DIMETHYL SULFIDE WITH OZONE OVER V2O5/TIO2 CATALYST

    EPA Science Inventory

    Removal of volatile and odorous compounds emissions from the pulp and paper industry usually creates secondary pollution for scrubbing and adsorption processes or sulfur poising for catalytic incineration. Product studies performed in a flow reactor packed with 10 % V2O5/TiO2 cat...

  12. The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.

    2009-09-15

    The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

  13. Non-equilibrium plasma reactors for organic solvent destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.L.; Beltran, M.R.; Kravets, Z.

    1997-12-31

    Two non-equilibrium plasma reactors were evaluated for their ability to destroy three widely used organic solvents, i.e., 2-butanone, toluene and ethyl acetate. The catalyzed plasma reactor (CPR) with 6 mm glass beads destroys 98% of 50 ppm toluene in air at 24 kV/cm and space velocities of 1,400 v/v/hr. Eighty-five percent of ethyl acetate and 2-butanone are destroyed under the same conditions. The tubular plasma reactor (TPR) has an efficiency of 10% to 20% lower than that of a CPR under the same conditions. The 1,400 v/v/hr in a CPR is equal to a residence time of 2.6 seconds inmore » a TPR. The operating temperatures, corona characteristics, as well as the kinetics of VOC destruction in both TPR and CPR were studied.« less

  14. Determination of chemical forms of 14C in liquid discharges from nuclear power plants.

    PubMed

    Svetlik, I; Fejgl, M; Povinec, P P; Kořínková, T; Tomášková, L; Pospíchal, J; Kurfiřt, M; Striegler, R; Kaufmanová, M

    2017-10-01

    Developments of radioanalytical methods for determination of radiocarbon in wastewaters from nuclear power plants (NPP) with pressurized light water reactors, which would distinguish between the dissolved organic and inorganic forms have been carried out. After preliminary tests, the method was used to process pilot samples from wastewater outlets from the Temelín and Dukovany NPPs (Czech Republic). The results of analysis of pilot water samples collected in 2015 indicate that the instantaneous 14 C releases into the water streams would be about 7.10 -5 (Temelín) and 4.10 -6 (Dukovany) of the total quantity of the 14 C liberated into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Determination of neutron spectra within the energy of 1 keV to 1 MeV by means of reactor dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergeyeva, Victoria; Destouches, Christophe; Lyoussi, Abdallah

    2015-07-01

    The standard procedure for neutron reactor dosimetry is based on neutron irradiation of a target and its post-irradiation analysis by Gamma and/or X-ray spectrometry. Nowadays, the neutron spectra can be easily characterized for thermal and fast energies (respectively 0.025 eV and >1 MeV). In this work we propose a new target and an innovating post-irradiation technique of analysis in order to detect the neutron spectra within the energy of 1 keV to 1 MeV. This article will present the calculations performed for the selection of a suitable nuclear reaction and isotope, the results predicted by simulations, the irradiation campaign thatmore » is proposed and the post-irradiation technique of analysis. (authors)« less

  16. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies. Supplement 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, R.Q.; Renier, J.P.; Bucholz, J.A.

    1995-08-01

    The original ANSL-V cross-section libraries (ORNL-6618) were developed over a period of several years for the physics analysis of the ANS reactor, with little thought toward including the materials commonly needed for shielding applications. Materials commonly used for shielding applications include calcium barium, sulfur, phosphorous, and bismuth. These materials, as well as {sup 6}Li, {sup 7}Li, and the naturally occurring isotopes of hafnium, have been added to the ANSL-V libraries. The gamma-ray production and gamma-ray interaction cross sections were completely regenerated for the ANSL-V 99n/44g library which did not exist previously. The MALOCS module was used to collapse the 99n/44gmore » coupled library to the 39n/44g broad- group library. COMET was used to renormalize the two-dimensional (2- D) neutron matrix sums to agree with the one-dimensional (1-D) averaged values. The FRESH module was used to adjust the thermal scattering matrices on the 99n/44g and 39n/44g ANSL-V libraries. PERFUME was used to correct the original XLACS Legendre polynomial fits to produce acceptable distributions. The final ANSL-V 99n/44g and 39n/44g cross-section libraries were both checked by running RADE. The AIM module was used to convert the master cross-section libraries from binary coded decimal to binary format (or vice versa).« less

  17. Sensing Traffic Density Combining V2V and V2I Wireless Communications.

    PubMed

    Sanguesa, Julio A; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J; Cano, Juan-Carlos; Calafate, Carlos T; Manzoni, Pietro

    2015-12-16

    Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles.

  18. Sensing Traffic Density Combining V2V and V2I Wireless Communications

    PubMed Central

    Sanguesa, Julio A.; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J.; Cano, Juan-Carlos; Calafate, Carlos T.; Manzoni, Pietro

    2015-01-01

    Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles. PMID:26694405

  19. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    PubMed

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Measurement of neutrino mixing angle θ13 and mass difference Δ mee2 from reactor antineutrino disappearance in the RENO experiment

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    2016-07-01

    RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 ⁡ (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat.)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.

  1. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  2. A search for muon neutrino to electron neutrino oscillations at Δm 2 > 0.1 eV 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Ryan Benton

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8σ-significantmore » $$\\bar{v}$$ e excess reported by the LSND collaboration is consistent with $$\\bar{v}$$ μ →$$\\bar{v}$$ e oscillations with a mass-squared splitting of Δm 2 ~ 1 eV 2. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.« less

  3. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies inmore » the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical

  4. A 735 kV shunt reactors automatic switching system for Hydro-Quebec network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, S.; Trudel, G.; Scott, G.

    1996-11-01

    In recent years, Hydro-Quebec has undertaken a major program to upgrade the reliability of its transmission system. Much efforts have been directed toward increasing the system`s capacity to withstand extreme contingencies, usually caused by multiple incidents or the successive tripping of transmission lines. In order to counter such events, Hydro-Quebec has adopted a defensive scheme. Based entirely on automatic action, this scheme will mainly rely on: a 735 kV shunt reactor switching system (called MAIS); a generation rejection and/or remote load-shedding system (called RPTC); an underfrequency load-shedding system. The MAIS system, which is the subject of this paper, will bemore » implemented in 22 substations and is required to control voltage on the system after a severe event. Each MAIS system, acting locally, is entirely independent and will close or trip shunt reactors in response to local conditions.« less

  5. Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes

    NASA Astrophysics Data System (ADS)

    Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.

    2017-02-01

    International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.

  6. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    PubMed

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5–WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...

  8. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling.

    PubMed

    Cui, Hang; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-10-15

    Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m(2)/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ~255,000 BVs and ~271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. V2 Vasopressin Receptor (V2R) Mutations in Partial Nephrogenic Diabetes Insipidus Highlight Protean Agonism of V2R Antagonists*

    PubMed Central

    Takahashi, Kazuhiro; Makita, Noriko; Manaka, Katsunori; Hisano, Masataka; Akioka, Yuko; Miura, Kenichiro; Takubo, Noriyuki; Iida, Atsuko; Ueda, Norishi; Hashimoto, Makiko; Fujita, Toshiro; Igarashi, Takashi; Sekine, Takashi; Iiri, Taroh

    2012-01-01

    Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI. PMID:22144672

  10. ``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerde, E.A.; Glasgow, D.C.

    1998-09-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate countingmore » leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.« less

  11. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    NASA Astrophysics Data System (ADS)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  12. When Swedes Begin to Learn German: From V2 to V2

    ERIC Educational Resources Information Center

    Bohnacker, Ute

    2006-01-01

    This article investigates verb placement, especially Verb second (V2), in post-puberty second language (L2) learners of two closely related Germanic V2 languages: Swedish and German. Hakansson, "et al." (2002) have adduced data from first language (L1) Swedish-speaking learners of German in support of the claim that the syntactic property of V2

  13. X-ray digital industrial radiography (DIR) for local liquid velocity (V(LL)) measurement in trickle bed reactors (TBRs): validation of the technique.

    PubMed

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.

  14. Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    NASA Astrophysics Data System (ADS)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-01

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.

  15. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  16. ECO2N V2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Spycher, Nicolas; Doughty, Christine

    2015-02-01

    ECO2N V2.0 is a fluid property module for the TOUGH2 simulator (Version 2.1) that was designed for applications to geologic sequestration of CO2 in saline aquifers and enhanced geothermal reservoirs. ECO2N V2.0 is an enhanced version of the previous ECO2N V1.0 module (Pruess, 2005). It expands the temperature range up to about 300oC whereas V1.0 can only be used for temperatures below about 110oC. V2.0 includes a comprehensive description of the thermodynamic and thermophysical properties of H2O - NaCl - CO2 mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions 10 °C 2O, NaCl and CO2 among the different phases. In particular, V2.0 accounts for the effects of water on the thermophysical properties of the CO2-rich phase, which was ignored in V1.0, using a model consistent with the solubility models developed by Spycher and Pruess (2005, 2010). In terms of solubility models, V2.0 uses the same model for partitioning of mass components among the different phases (Spycher and Pruess, 2005) as V1.0 for the low temperature range (<99oC) but uses a new model (Spycher and Pruess, 2010) for the high temperature range (>109oC). In the transition range (99-109oC), a smooth interpolation is applied to estimate the partitioning as a function of the temperature. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO2-rich) phase, as well as two-phase (brine-CO2) mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. Note that the model cannot be applied to subcritical conditions that involves both liquid and gaseous CO2

  17. Current and future possibilities of V2V and I2V technologies: an analysis directed toward Augmented Reality systems

    NASA Astrophysics Data System (ADS)

    Betancur, J. A.; Osorio-Gómez, Gilberto; Arnedo, Aida; Yarce Botero, Andrés.

    2014-06-01

    Nowadays, it is very important to explore the qualitative characteristics of autonomous mobility systems in automobiles, especially disruptive technology like Vehicle to Vehicle (V2V) and Infrastructure to Vehicle (I2V), in order to comprehend how the next generation of automobiles will be developed. In this sense, this research covers a general review about active safety in automobiles where V2V and I2V systems have been implemented; identifying the more realistic possibilities related to V2V and I2V technology and analyzing the current applications, some systems in development process and some future conceptual proposals. Mainly, it is notorious the potential development of mixing V2V and I2V systems pointing to increase the driver's attention; therefore, a configuration between these two technologies and some augmented reality system for automobiles (Head-Up Display and Head-Down Display) is proposed. There is a huge potential of implementation for this kind of configuration once the normative and the roadmap for its development can be widely established.

  18. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor.

    PubMed

    Kim, J H; Cho, C H; Shin, D H; Hong, Y C; Shin, Y W

    2015-08-30

    Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF6, NF3 by varying plasma power and N2 flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF3 and SF6 in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF3 was achieved without an additive gas at the N2 flow rate of 150 liter per minute (L/min) by applying a microwave power of 6kW with RVR. Also, a DRE of SF6 was 99.99% at the N2 flow rate of 60 L/min using an applied microwave power of 6kW. The performance of reverse vortex reactor increased about 43% of NF3 and 29% of SF6 abatements results definition by decomposition energy per liter more than conventional vortex reactor. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Latest progress from the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Collaboration

    2016-05-01

    Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.

  20. Where does the removal of H₂S from biogas occur in microaerobic reactors?

    PubMed

    Ramos, I; Peña, M; Fdz-Polanco, M

    2014-08-01

    In order to maximise the efficiency of biogas desulphurisation and reduce the oxygen cost during microaerobic digestion, it is essential to know how the process occurs. For this purpose, a reactor with a total volume of 266 L, treating 10 L/d of sewage sludge, was operated with 25.0 L and without headspace. Under anaerobic conditions, the H2S concentration in the biogas varied between 0.21 and 0.38%v/v. Next, O2 was supplied from the bottom of the reactor. At 0.25-0.30 NLO₂/Lfed, the biogas was entirely desulphurised, and its O₂ content remained below 1.03%v/v, when the digester had 25.0 L of gas space. However, with almost no headspace, the H2S content in the biogas fluctuated from 0.08 to 0.21%v/v, while the average O2 concentration was 1.66%v/v. The removed H2S accumulated in the outlet pipe of the biogas in the form of S(0) due to the insufficient headspace. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Measurements of e p → e ' π + π - p ' cross sections with CLAS at 1.40 GeV < W < 2.0 GeV and 2.0 GeV 2 < Q 2 < 5.0 GeV 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isupov, E. L.; Burkert, V. D.; Carman, D. S.

    This paper reports new exclusive cross sections formore » $$e p \\to e' \\pi^+ \\pi^- p'$$ using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0 GeV 2 < Q 2 < 5.0 GeV 2 in the center-of-mass energy range 1.4 GeV < W < 2.0 GeV, which covers a large part of the nucleon resonance region. Using a model developed for the phenomenological analysis of electroproduction data, we see strong indications that the relative contributions from the resonant cross sections at W < 1.74 GeV increase with $Q^2$. These data considerably extend the kinematic reach of previous measurements. Exclusive $$e p \\to e' \\pi^+ \\pi^- p'$$ cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV.« less

  2. Increasing the reliability of the shutdown of 500 - 750-kV overhead lines equipped with shunt reactors in an unsuccessful three-phase automatic repeated closure cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'micheva, K. I.; Merzlyakov, A. S.; Fokin, G. G.

    2013-05-15

    The reasons for circuit-breaker failures during repeated disconnection of 500 - 750 kV overhead lines with shunt reactors in a cycle of unsuccessful three-phase automatic reconnection (TARC) are analyzed. Recommendations are made for increasing the operating reliability of power transmission lines with shunt reactors when there is unsuccessful reconnection.

  3. Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia

    PubMed Central

    Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.

    2011-01-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036

  4. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.

    PubMed

    Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M

    2011-09-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.

  5. Detecting Dark Photons with Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ <1.3 ×10-5 and ɛ <2.1 ×10-5, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.

  6. 3-flavor oscillations with current and future reactor experiments

    NASA Astrophysics Data System (ADS)

    Dwyer, Dan

    2017-01-01

    Nuclear reactors have been a crucial tool for our understanding of neutrinos. The disappearance of electron antineutrinos emitted by nuclear reactors has firmly established that neutrino flavor oscillates, and that neutrinos consequently have mass. The current generation of precision measurements rely on some of the world's most intense reactor facilities to demonstrate that the electron antineutrino mixes with the third antineutrino mass eigenstate (v3-). Accurate measurements of antineutrino energies robustly determine the tiny difference between the masses-squared of the v3- state and the two more closely-spaced v1- and v2- states. These results have given us a much clearer picture of neutrino mass and mixing, yet at the same time open major questions about how to account for these small but non-zero masses in or beyond the Standard Model. These observations have also opened the door for a new generation of experiments which aim to measure the ordering of neutrino masses and search for potential violation of CP symmetry by neutrinos. I will provide a brief overview of this exciting field. Work supported under DOE OHEP DE-AC02-05CH11231.

  7. [Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].

    PubMed

    Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu

    2009-12-01

    The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.

  8. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  9. Benchmark tests of JENDL-3.2 for thermal and fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, Hideki; Akie, Hiroshi; Kikuchi, Yasuyuki

    1994-12-31

    Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k{sub eff} and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k{sub eff} reactivity worths of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments.

  10. Detecting Dark Photons with Reactor Neutrino Experiments.

    PubMed

    Park, H K

    2017-08-25

    We propose to search for light U(1) dark photons, A^{'}, produced via kinetically mixing with ordinary photons via the Compton-like process, γe^{-}→A^{'}e^{-}, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ε, the A^{'}-γ mixing parameter, ε, for dark-photon masses below 1 MeV of ε<1.3×10^{-5} and ε<2.1×10^{-5}, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.

  11. Crowdsourcing-Assisted Radio Environment Database for V2V Communication.

    PubMed

    Katagiri, Keita; Sato, Koya; Fujii, Takeo

    2018-04-12

    In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation.

  12. 10 CFR 2.809 - Participation by the Advisory Committee on Reactor Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Participation by the Advisory Committee on Reactor Safeguards. 2.809 Section 2.809 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS Rulemaking § 2.809 Participation by the Advisory Committee on Reactor...

  13. Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, L. B.; Kolb, J. O.

    1970-01-01

    Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.

  14. Recent Results from the Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Huang, En-Chuan

    2016-11-01

    The Daya Bay Reactor Neutrino Experiment is designed to precisely measure the mixing parameter sin2 2θ13 via relative measurements with eight functionally identical antineutrino detectors (ADs). In 2012, Daya Bay has first measured a non-zero sin2 2θ13 value with a significance larger than 5σ with the first six ADs. With the installation of two new ADs to complete the full configuration, Daya Bay has continued to increase statistics and lower systematic uncertainties for better precision of sin2 2θ13 and for the exploration of other physics topics. In this proceeding, the latest analysis results of sin2 2θ13 and |Δm 2 ee|, including a measurement made with neutron capture on Gadolinium and an independent measurement made with neutron capture on hydrogen are presented. The latest results of the search for sterile neutrino in the mass splitting range of 10-3 eV2 < |Δm 2 41| < 0.3 eV2 and the absolute measurement of the rate and energy spectrum of reactor antineutrinos will also be presented.

  15. Congestion based mechanism for route discovery in a V2I-V2V system applying smart devices and IoT.

    PubMed

    Parrado, Natalia; Donoso, Yezid

    2015-03-31

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra's approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle's trip with the efficiency in the use of the capacity of the vehicular network.

  16. Congestion Based Mechanism for Route Discovery in a V2I-V2V System Applying Smart Devices and IoT

    PubMed Central

    Parrado, Natalia; Donoso, Yezid

    2015-01-01

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra’s approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle’s trip with the efficiency in the use of the capacity of the vehicular network. PMID:25835185

  17. Direct Encapsulation of Spent Ion-exchange Resins at the Dukovany Nuclear Power Plant, Czech Republic - 12367

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Paul; Rima, Steve

    2012-07-01

    At the Dukovany Nuclear Power Plant there are large amounts of spent ion exchange resins contained within storage tanks. These resins are a product of the operation of an Active Water Purification System within the Power Plant. Activity levels of the resins are in the range of 105 to 10{sup 6} Bq/l and the main isotopes present are Co-60, Cs-137, Mn-54 and Ag-110m. In order to maintain storage tank availability throughout the planned lifetime of the Power Plant these resins must be removed and disposed of safely. The storage tanks do not have an effective retrieval route for the resinsmore » and the installed agitation system is inoperable. A proven system for retrieving and directly encapsulating these resins to a standard required for the Czech repository is described, together with an overview of operational performance. Experience gained from this and other projects has highlighted some common challenges relating to the treatment of ion-exchange resins and sludges. There are common approaches that can assist in overcoming these challenges. 1. Transport resin / sludge type waste over as short a distance as possible to avoid issues with line plugging. 2. Transport these wastes once and once only wherever possible. 3. Try to keep the treatment process as simple as possible. With sludge or resin handling equipment consider the physical properties foremost - radiological issues can be addressed within any subsequent design. 4. Consider the use of dry-mix technologies. This avoids the requirement for expensive and complicated grouting plant. 5. Avoid the use of make up water for transport purposes if at all possible - it introduces secondary waste that needs to be treated at additional cost. 6. Consider alternative disposal techniques. SIAL{sup R} is AMEC's preferred technology as we developed it and understand it well - additionally the waste loading factors are much higher than for cement. 7. Consider final waste volumes when selecting the disposal technique

  18. Preliminary Options Assessment of Versatile Irradiation Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ramazan Sonat

    The objective of this report is to summarize the work undertaken at INL from April 2016 to January 2017 and aimed at analyzing some options for designing and building a versatile test reactor; the scope of work was agreed upon with DOE-NE. Section 2 presents some results related to KNK II and PRISM Mod A. Section 3 presents some alternatives to the VCTR presented in [ ] as well as a neutronic parametric study to assess the minimum power requirement needed for a 235U metal fueled fast test reactor capable to generate a fast (>100 keV) flux of 4.0 xmore » 1015 n /cm2-s at the test location. Section 4 presents some results regarding a fundamental characteristic of test reactors, namely displacement per atom (dpa) in test samples. Section 5 presents the INL assessment of the ANL fast test reactor design FASTER. Section 6 presents a summary.« less

  19. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    PubMed

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Facile synthesis of layered V2O5/ZnV2O6 heterostructures with enhanced sensing performance

    NASA Astrophysics Data System (ADS)

    Xiao, Bingxin; Huang, Hao; Yu, Xiantong; Song, Jun; Qu, Junle

    2018-07-01

    A low-cost and environment-friendly hydrothermal approach was used for the synthesis of layered V2O5/ZnV2O6 hybrid nanobelts. Characterization results indicate that the V2O5/ZnV2O6 nanobelts are composed of several thin layers. Additionally, it is illustrated that the chemical formation process of V2O5/ZnV2O6 occurred in the solution. The synthesized V2O5/ZnV2O6 heterostructures were subjected to detailed ethanol sensing tests. Results demonstrate that V2O5/ZnV2O6 based sensor shows about 4.3 of response to 100 ppm of ethanol gases, reveals relatively high sensitivity at relatively low optimal operating temperature of 240 °C, as well as relatively good selectivity and stability. The performance of the sensor is better than most of reported vanadium based sensing devices. Thus this work offers a new insight into the rational regulation of vanadium based sensing devices.

  1. Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.

    First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set

  2. Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2

    DOE PAGES

    Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.; ...

    2018-04-20

    First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set

  3. The V1V2 EOS for Detonation Products

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2010-10-01

    Many equations of state (EOS) for detonation products have been proposed and used. Some of them are in analytical form and some in tabular form. The most popular is the Jones-Wilkins-Lee (JWL) EOS. One of the main parameters of a product's EOS is the so-called adiabatic gamma along its main isentrope (γs). For JWL EOSs γs(V) varies in a nonmonotonic way. Going down from the CJ point along the main isentrope, it first increases to create a hump, and then, as V goes to infinity, gamma decreases to perfect gas-like behavior with gamma around 1.3. But according to Davis [1], γs(V) should decrease monotonically with V. Accordingly, in this article we investigate the following: (1) Is the hump in γs(V) necessary? and (2) Is it possible to construct a product's EOS with a monotonic γs(V) that is consistent with experimental data? We find that (1) it is possible to construct a product's EOS without a hump in γs(V); and (2) without a hump in γs(V) there are not enough degrees of freedom to reproduce cylinder test data.

  4. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  5. Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment.

    PubMed

    Choi, J H; Choi, W Q; Choi, Y; Jang, H I; Jang, J S; Jeon, E J; Joo, K K; Kim, B R; Kim, H S; Kim, J Y; Kim, S B; Kim, S Y; Kim, W; Kim, Y D; Ko, Y; Lee, D H; Lim, I T; Pac, M Y; Park, I G; Park, J S; Park, R G; Seo, H; Seo, S H; Seon, Y G; Shin, C D; Siyeon, K; Yang, J H; Yeo, I S; Yu, I

    2016-05-27

    The RENO experiment has analyzed about 500 live days of data to observe an energy dependent disappearance of reactor ν[over ¯]_{e} by comparing their prompt signal spectra measured in two identical near and far detectors. In the period between August of 2011 and January of 2013, the far (near) detector observed 31 541 (290 775) electron antineutrino candidate events with a background fraction of 4.9% (2.8%). The measured prompt spectra show an excess of reactor ν[over ¯]_{e} around 5 MeV relative to the prediction from a most commonly used model. A clear energy and baseline dependent disappearance of reactor ν[over ¯]_{e} is observed in the deficit of the observed number of ν[over ¯]_{e}. Based on the measured far-to-near ratio of prompt spectra, we obtain sin^{2}2θ_{13}=0.082±0.009(stat)±0.006(syst) and |Δm_{ee}^{2}|=[2.62_{-0.23}^{+0.21}(stat)_{-0.13}^{+0.12}(syst)]×10^{-3}  eV^{2}.

  6. Crowdsourcing-Assisted Radio Environment Database for V2V Communication †

    PubMed Central

    Katagiri, Keita; Fujii, Takeo

    2018-01-01

    In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation. PMID:29649174

  7. Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex

    PubMed Central

    Roe, Anna W.; Ts'o, Daniel Y.

    2015-01-01

    The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798

  8. Cultivation of E. coli in single- and ten-stage tower-loop reactors.

    PubMed

    Adler, I; Schügerl, K

    1983-02-01

    E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.

  9. Reactor on-off antineutrino measurement with KamLAND

    NASA Astrophysics Data System (ADS)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Piepke, A.; Banks, T. I.; Fujikawa, B. K.; Han, K.; O'Donnell, T.; Berger, B. E.; Learned, J. G.; Matsuno, S.; Sakai, M.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2013-08-01

    The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor ν¯e flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor ν¯e oscillation analysis. The data set also has improved sensitivity for other ν¯e signals, in particular ν¯e’s produced in β-decays from U238 and Th232 within the Earth’s interior, whose energy spectrum overlaps with that of reactor ν¯e’s. Including constraints on θ13 from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of tan⁡2θ12=0.436-0.025+0.029, Δm212=7.53-0.18+0.18×10-5eV2, and sin⁡2θ13=0.023-0.002+0.002. Assuming a chondritic Th/U mass ratio, we obtain 116-27+28 ν¯e events from U238 and Th232, corresponding to a geo ν¯e flux of 3.4-0.8+0.8×106cm-2s-1 at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo ν¯e rate.

  10. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist*

    PubMed Central

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-01-01

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. PMID:27601473

  11. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  12. The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk; Aliev, V. Sh.

    2014-02-17

    The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies showsmore » a peak at 5.3 eV. Thus, it could be concluded that the blue luminescence band at 2.7 eV and HfO{sub x} excitation peak at 5.2 eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.« less

  13. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.

    PubMed

    O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2018-02-01

    A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actualmore » ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.« less

  15. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    PubMed

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist.

    PubMed

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-10-21

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    PubMed

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  18. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys.

    PubMed

    Baldwin, Mary K L; Kaskan, Peter M; Zhang, Bin; Chino, Yuzo M; Kaas, Jon H

    2012-02-15

    Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age. Copyright © 2011 Wiley-Liss, Inc.

  19. Thermochromic VO2 Films Deposited by RF Magnetron Sputtering Using V2O3 or V2O5 Targets

    NASA Astrophysics Data System (ADS)

    Shigesato, Yuzo; Enomoto, Mikiko; Odaka, Hidehumi

    2000-10-01

    Thermochromic monoclinic-tetragonal VO2 films were successfully deposited on glass substrates with high reproducibility by rf magnetron sputtering using V2O3 or V2O5 targets. In the case of reactive sputtering using a V-metal target, the VO2 films could be obtained only under the very narrow deposition conditions of the “transition region” where the deposition rate decreases drastically with increasing oxygen gas flow rate. In the case of a V2O3 target, polycrystalline VO2 films with a thickness of 400 to 500 nm were obtained by the introduction of oxygen gas [O2/(Ar+O2)=1--1.5%], whereas hydrogen gas [H2/(Ar+H2)=2.5--10%] was introduced in the case of a V2O5 target. Furthermore, the VO2 films were successfully grown heteroepitaxially on a single-crystal sapphire [α-Al2O3(001)] substrate, where the epitaxial relationship was confirmed to be VO2(010)[100]\\parallelAl2O3(001)[100], [010], [\\bar{1}\\bar{1}0] by an X-ray diffraction pole figure measurement. The resistivity ratio between semiconductor and metal phases for the heteroepitaxial VO2 films was much larger than the ratio of the polycrystalline films on glass substrates under the same deposition conditions.

  20. Studying fission neutrons with 2E-2v and 2E

    NASA Astrophysics Data System (ADS)

    Al-Adili, Ali; Jansson, Kaj; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Oberstedt, Stephan; Olivier Frégeau, Marc; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Prokofiev, Alexander V.; Rakopoulos, Vasileios; Solders, Andreas; Vidali, Marzio; Österlund, Michael; Pomp, Stephan

    2018-03-01

    This work aims at measuring prompt-fission neutrons at different excitation energies of the nucleus. Two independent techniques, the 2E-2v and the 2E techniques, are used to map the characteristics of the mass-dependent prompt fission neutron multiplicity, v(A), when the excitation energy is increased. The VERDI 2E-2v spectrometer is being developed at JRC-GEEL. The Fission Fragment (FF) energies are measured using two arrays of 16 silicon (Si) detectors each. The FFs velocities are obtained by time-of-flight, measured between micro-channel plates (MCP) and Si detectors. With MCPs placed on both sides of the fission source, VERDI allows for independent timing measurements for both fragments. 252Cf(sf) was measured and the present results revealed particular features of the 2E-2v technique. Dedicated simulations were also performed using the GEF code to study important aspects of the 2E-2v technique. Our simulations show that prompt neutron emission has a non-negligible impact on the deduced fragment data and affects also the shape of v(A). Geometrical constraints lead to a total-kinetic energy-dependent detection efficiency. The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of 252Cf(sf) and another one of thermal-neutron induced fission in 235U(n,f). Results from 252Cf(sf) are reported here.

  1. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  2. Design and Application of a High-Temperature Linear Ion Trap Reactor

    NASA Astrophysics Data System (ADS)

    Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2018-01-01

    A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.

  3. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons

    PubMed Central

    López Soto, Eduardo Javier; Agosti, Francina; Cabral, Agustina; Mustafa, Emilio Roman; Damonte, Valentina Martínez; Gandini, Maria Alejandra; Rodríguez, Silvia; Castrogiovanni, Daniel; Felix, Ricardo; Perelló, Mario

    2015-01-01

    The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest known constitutive activity of any G protein–coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin, and its activation increases transcriptional and electrical activity in hypothalamic neurons. Although GHSR1a is present at GABAergic presynaptic terminals, its effect on neurotransmitter release remains unclear. The activities of the voltage-gated calcium channels, CaV2.1 and CaV2.2, which mediate neurotransmitter release at presynaptic terminals, are modulated by many GPCRs. Here, we show that both constitutive and agonist-dependent GHSR1a activity elicit a strong impairment of CaV2.1 and CaV2.2 currents in rat and mouse hypothalamic neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at the plasma membrane, whereas ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 gating via a Gq-dependent pathway. Thus, GHSR1a differentially inhibits CaV2 channels by Gi/o or Gq protein pathways depending on its mode of activation. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 attenuates GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation through the disinhibition of postsynaptic neurons. PMID:26283199

  4. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    PubMed

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Development of a Novel Catalytic Membrane Reactor for Heterogeneous Catalysis in Supercritical CO2

    PubMed Central

    Islam, Nazrul M.; Chatterjee, Maya; Ikushima, Yutaka; Yokoyama, Toshiro; Kawanami, Hajime

    2010-01-01

    A novel type of high-pressure membrane reactor has been developed for hydrogenation in supercritical carbon dioxide (scCO2). The main objectives of the design of the reactor are the separate feeding of hydrogen and substrate in scCO2 for safe reactions in a continuous flow process, and to reduce the reaction time. By using this new reactor, hydrogenation of cinnamaldehyde into hydrocinnamaldehyde has been successfully carried out with 100% selectivity at 50 °C in 10 MPa (H2: 1 MPa, CO2: 9 MPa) with a flow rate of substrate ranging from 0.05 to 1.0 mL/min. PMID:20162008

  6. Full core analysis of IRIS reactor by using MCNPX.

    PubMed

    Amin, E A; Bashter, I I; Hassan, Nabil M; Mustafa, S S

    2016-07-01

    This paper describes neutronic analysis for fresh fuelled IRIS (International Reactor Innovative and Secure) reactor by MCNPX code. The analysis included criticality calculations, radial power and axial power distribution, nuclear peaking factor and axial offset percent at the beginning of fuel cycle. The effective multiplication factor obtained by MCNPX code is compared with previous calculations by HELIOS/NESTLE, CASMO/SIMULATE, modified CORD-2 nodal calculations and SAS2H/KENO-V code systems. It is found that k-eff value obtained by MCNPX is closer to CORD-2 value. The radial and axial powers are compared with other published results carried out using SAS2H/KENO-V code. Moreover, the WIMS-D5 code is used for studying the effect of enriched boron in form of ZrB2 on the effective multiplication factor (K-eff) of the fuel pin. In this part of calculation, K-eff is calculated at different concentrations of Boron-10 in mg/cm at different stages of burnup of unit cell. The results of this part are compared with published results performed by HELIOS code. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Measurements of {ital ep} {rightarrow} {ital e}'{pi}{sup +}{pi}{sup -}{ital p}' Cross Sections with CLAS at 1.40 GeV < {ital W} < 2.0 GeV and 2.0 GeV{sup 2} < {ital Q}{sup 2} < 5.0 GeV{sup 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isupov, E. L.; Burkert, V.; Carman, D. S.

    This paper reports new exclusive cross sections for ep -> e' pi(+) pi(-) p' using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0 GeV2 < Q(2) < 5.0 GeV2 in the center-of-mass energy range 1.4 GeV < W < 2.0 GeV, which covers a large part of the nucleon resonance region. Using a model developed for the phenomenological analysis of electroproduction data, we see strong indications that the relative contributions from the resonant cross sections at W < 1.74 GeV increase with Q(2). These data considerably extend the kinematic reachmore » of previous measurements. Exclusive ep -> e' pi(+) pi(-) p' cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV« less

  8. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    PubMed

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Centaurus A /NGC 5128/ at 2 keV-2.3 MeV - HEAO 1 observations and implications

    NASA Technical Reports Server (NTRS)

    Baity, W. A.; Rothschild, R. E.; Lingenfelter, R. E.; Stein, W. A.; Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Mushotzky, R. F.

    1981-01-01

    The active-nucleus galaxy Centaurus A has been studied at 2 keV-2.3 MeV using data from the UCSD/MIT hard X-ray and low-energy gamma-ray instrument and the GSFC/CIT cosmic X-ray experiment on HEAO-1. It is found that an E exp -1.60 + or - 0.03 power law spectrum breaking to E exp -2.0 + or - 0.2 at 140 keV best describes the January and July 1978 data. The average intensity was 50% higher during the January observations. Upper limits to unresolved lines at 511 keV and 1.6 MeV were found to be 6.5 x 10 to the -4th photons/sq cm-s and 2.2 x 10 to the -4th photons/sq cm-s, respectively, at the 90% confidence level. The present data are consistent with the detailed calculations of the synchrotron self-Compton mechanism; they may also agree, marginally, with the predictions of emission from spherical accretion onto black holes.

  10. Silica-Immobilized Enzyme Reactors; Application to Cholinesterase-Inhibition Studies

    DTIC Science & Technology

    2006-03-01

    a i a i e v b c a m p l 1 d Journal of Chromatography B, 843 (2006) 310–316 Silica-immobilized enzyme reactors; application to...however, have specific omat d t t i w i h c u C p R n t o t fl p f o l p d v t o s fl t t c t a b f c i h a t s m i b 2 2 ≈ c s 0 c A R I H l 2 b p a y ε c...b r T p d ( m 2 w

  11. CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor.

    PubMed

    Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka

    2017-02-01

    In this study, we demonstrated the conversion of CO 2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV 2+ ), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO 2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO 2 to fuel.

  12. OPTIGRAMI V2 user's guide

    Treesearch

    Penny S. Lawson; R. Edward Thomas; Elizabeth S Walker

    1996-01-01

    OPTIGRAMI V2 is a computer program available for IBM persaonl computer with 80286 and higher processors. OPTIGRAMI V2 determines the least-cost lumber grade mix required to produce a given cutting order for clear parts from rough lumber of known grades in a crosscut-first rough mill operation. It is a user-friendly integrated application that includes optimization...

  13. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. Themore » result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.« less

  14. Dual baseline search for muon neutrino disappearance at 0.5 eV 2 < Delta m 2 < 40 eV 2

    DOE PAGES

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a ν μ disappearance search in the &Delta'm 2 region of 0.5-40 eV 2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on ν μ disappearance in the 0.5-40 eV 2 Δm 2 region, with an improvement over previous experimental constraints between 10 and 30 eV 2

  15. Dual baseline search for muon neutrino disappearance at 0.5eV2<Δm2<40eV2

    NASA Astrophysics Data System (ADS)

    Mahn, K. B. M.; Nakajima, Y.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Catala-Perez, J.; Cheng, G.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Dore, U.; Finley, D. A.; Fleming, B. T.; Ford, R.; Franke, A. J.; Garcia, F. G.; Garvey, G. T.; Giganti, C.; Gomez-Cadenas, J. J.; Grange, J.; Green, C.; Green, J. A.; Guzowski, P.; Hanson, A.; Hart, T. L.; Hawker, E.; Hayato, Y.; Hiraide, K.; Huelsnitz, W.; Imlay, R.; Johnson, R. A.; Jones, B. J. P.; Jover-Manas, G.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Kubo, H.; Kurimoto, Y.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mariani, C.; Marsh, W.; Masuike, S.; Matsuoka, K.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nakaya, T.; Napora, R.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Orme, D.; Osmanov, B.; Otani, M.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sanchez, F.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shibata, T.-A.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Takei, H.; Tanaka, H. A.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Tzanov, M.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, D. H.; White, H. B.; Wilking, M. J.; Yokoyama, M.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2012-02-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δm2 region of 0.5-40eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30eV2.

  16. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Iwano, Keisuke; Yamanoi, Kohei; Iwasa, Yuki; Mori, Kazuyuki; Minami, Yuki; Arita, Ren; Yamanaka, Takuma; Fukuda, Kazuhito; Empizo, Melvin John F.; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio

    2016-10-01

    We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ˜ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  17. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    NASA Astrophysics Data System (ADS)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  18. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    NASA Astrophysics Data System (ADS)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  19. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less

  20. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    PubMed

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  1. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the

  2. Next generation fuel irradiation capability in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo

    2009-07-01

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  3. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  4. Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat

    2013-08-01

    Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.

  5. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less

  6. A systematic reactor design approach for the synthesis of active pharmaceutical ingredients.

    PubMed

    Emenike, Victor N; Schenkendorf, René; Krewer, Ulrike

    2018-05-01

    Today's highly competitive pharmaceutical industry is in dire need of an accelerated transition from the drug development phase to the drug production phase. At the heart of this transition are chemical reactors that facilitate the synthesis of active pharmaceutical ingredients (APIs) and whose design can affect subsequent processing steps. Inspired by this challenge, we present a model-based approach for systematic reactor design. The proposed concept is based on the elementary process functions (EPF) methodology to select an optimal reactor configuration from existing state-of-the-art reactor types or can possibly lead to the design of novel reactors. As a conceptual study, this work summarizes the essential steps in adapting the EPF approach to optimal reactor design problems in the field of API syntheses. Practically, the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene was analyzed as a case study of pharmaceutical relevance. Here, a small-scale tubular coil reactor with controlled heating was identified as the optimal set-up reducing the residence time by 33% in comparison to literature values. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rotationally specific rates of vibration-vibration energy exchange in collisions of NO(X 2Π1/2,v=3) with NO(X 2Π,v=0)

    NASA Astrophysics Data System (ADS)

    Islam, Meezanul; Smith, Ian W. M.

    1999-11-01

    Infrared ultraviolet double resonance (IRUVDR) experiments have been performed to investigate the rotational specificity of the vibrational-vibrational (V-V) exchange process, NO(X 2Π1/2,v=3,Ji)+NO(v=0)→NO(X2Π1/2,v=2,Jf)+NO(v=1), for which the vibrational energy discrepancy corresponds to 55.9 cm-1. Radiation from an optical parametric oscillator was used to excite NO molecules into a specific rotational level (Ji) in the X 2Π, Ω=1/2, v=3 state. Laser-induced fluorescence (LIF) spectra of the (0,2) band of the A 2Σ+-X 2Π1/2 system were then recorded at delays corresponding to a fraction of a collision. From the relative line intensities, rate coefficients were determined for transfer of the excited NO molecule from the level X 2Π1/2, v=3, Ji to different final rotational levels (Jf) in the X 2Π1/2, v=2 state. Results are reported for Ji=3.5, 4.5, 7.5, 10.5, and 15.5. The data show a significant, though not strong, propensity for J to decrease by one; i.e., for ΔJ=Jf-Ji=-1, especially for the higher Ji levels. This result is interpreted as arising from a combination of (a) the tendency to minimize the energy that has to be accommodated in the relative translation of the collision partners, and (b) the favoring of ΔJ=±1 changes when V-V intermolecular exchange occurs under the influence of dipole-dipole interactions.

  8. Integral Inherently Safe Light Water Reactor (I 2S-LWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I 2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to addressmore » the preference of some utilities in the US power market for unit power level on the order of 1 GWe.« less

  9. Redox reactions of V(III) and Cr(III)picolinate complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Vinayakumar, C. K.; Dey, G. R.; Kishore, K.; Moorthy, P. N.

    1996-12-01

    Reactions of e aq-, H-atoms, OH, (CH 3) 2COH, and CO 2- radicals with V(III)picolinate and Cr(III)picolinate have been studied by the pulse radiolysis technique. The spectra of V(II)picolinate, V(IV)picolinate, Cr(II)picolinate, OH adduct of Cr(III)picolinate and Cr(IV)picolinate have been obtained and the rate constants of the reactions of various radicals with V(III) and Cr(III)picolinate have been determined. The implications of these results to the chemical decontamination of nuclear reactor systems are discussed.

  10. Adjacent Vehicle Number-Triggered Adaptive Transmission for V2V Communications.

    PubMed

    Wei, Yiqiao; Chen, Jingjun; Hwang, Seung-Hoon

    2018-03-02

    For vehicle-to-vehicle (V2V) communication, such issues as continuity and reliability still have to be solved. Specifically, it is necessary to consider a more scalable physical layer due to the high-speed mobility of vehicles and the complex channel environment. Adaptive transmission has been adapted in channel-dependent scheduling. However, it has been neglected with regards to the physical topology changes in the vehicle network. In this paper, we propose a physical topology-triggered adaptive transmission scheme which adjusts the data rate between vehicles according to the number of connectable vehicles nearby. Also, we investigate the performance of the proposed method using computer simulations and compare it with the conventional methods. The numerical results show that the proposed method can provide more continuous and reliable data transmission for V2V communications.

  11. Experimental studies of irradiated and hydrogen implantation damaged reactor steels

    NASA Astrophysics Data System (ADS)

    Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav

    2016-01-01

    Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).

  12. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  13. CRITICAL EXPERIMENT WITH BORAX-V. Internal Superheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plumlee, K.E.; Baird, Q.L.; Stanford, G.S.

    1963-11-01

    A critical experiment was performed with 12 BORAX-V superheater subassemblies in a central voidable region plus 1228 to 1525 UO/sub 2/ fuel pins (3 wt% enriched) in a peripheral region. Removing water (28% of superheater volume) at room temperature decreased reactivity by 2.2%. The midplane (two- dimensional) peak-to-average power distribution in the voided superheater was approximately 1.24, mostly attributable to flux depressions within insulated fuel boxes. Cadmium ratios are also reported. The experiment was initiated to supplement computational information which might have affected plans for loading the superheater zone into the BORAX-V reactor. No changes were indicated by the experiment.more » (auth)« less

  14. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2017-01-01

    We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the so-called 5 MeV bump. This analysis method has general applicability and, in particular, with higher statistics data sets, will be able to shed significant light on the issue of the bump. With some caveats, this should also allow us to improve the sensitivity for sterile neutrino searches in NEOS.

  15. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.

    PubMed

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-11-15

    Carbon dioxide (CO(2)) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO(2) pressure, and initial pH on CO(2) sequestration were evaluated. Two different CO(2) pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12h) and temperature (40-160°C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO(2)/kg BHC, in 12h at 700 psig and 160°C. In addition, the carbonation products were confirmed to be mainly in CaCO(3), which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Identified particle v2 and v4 in Au+Au collisions at √s_NN =62, 130 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Bai, Yuting

    2004-10-01

    The measured large elliptic flow v2 is interpreted as an indication of early local equilibrium[1,2] and is relevant to interpretations involving a strongly interacting quark-gluon plasma phase. v4 is argued to be more sensitive than v2 to initial conditions in hydrodynamic calculations[3]. We will present identified particle v2 and v4 measurements at √s_NN = 62, 130 and 200 GeV. The comparisons to hydro calculations will be shown, and the energy dependence of v2 as a function of transverse momentum will be addressed and discussed. [1] H.Sorge, Phys. Rev. Lett. 78, 2309 (1997). [2] P.F.Kolb and U.Heinz, nucl-th/0305084. [3] P.F.Kolb, Phys. Rev. C 68,031902(2003).

  17. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  18. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  19. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  20. 26 CFR 31.3121(v)(2)-2 - Effective dates and transition rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Effective dates and transition rules. 31.3121(v)(2)-2 Section 31.3121(v)(2)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Provisions § 31.3121(v)(2)-2 Effective dates and transition rules. (a) General statutory effective date...

  1. Adjacent Vehicle Number-Triggered Adaptive Transmission for V2V Communications

    PubMed Central

    Wei, Yiqiao; Chen, Jingjun

    2018-01-01

    For vehicle-to-vehicle (V2V) communication, such issues as continuity and reliability still have to be solved. Specifically, it is necessary to consider a more scalable physical layer due to the high-speed mobility of vehicles and the complex channel environment. Adaptive transmission has been adapted in channel-dependent scheduling. However, it has been neglected with regards to the physical topology changes in the vehicle network. In this paper, we propose a physical topology-triggered adaptive transmission scheme which adjusts the data rate between vehicles according to the number of connectable vehicles nearby. Also, we investigate the performance of the proposed method using computer simulations and compare it with the conventional methods. The numerical results show that the proposed method can provide more continuous and reliable data transmission for V2V communications. PMID:29498646

  2. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    PubMed

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Search for eV Sterile Neutrinos - The Stereo Experiment

    NASA Astrophysics Data System (ADS)

    Haser, J.; Stereo Collaboration

    2017-07-01

    In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $\\theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented resolution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The flux anomaly is known as the Reactor Antineutrino Anomaly and could be caused by the existence of a light sterile neutrino participating in the neutrino oscillation phenomenon. Introducing a sterile state implies the presence of a fourth mass eigenstate, global fits favour oscillation parameters around $\\sin^2({2\\theta}) \\approx 0.09$ and $\\Delta m^2 \\approx 1\\,\\mathrm{eV}^2$. The Stereo experiment was built to finally solve this puzzle. It is one of the first running experiments built to search for eV sterile neutrinos and takes data since end of 2016 at ILL Grenoble (France). At a short baseline of 10 metres, it measures the antineutrino flux and spectrum emitted by a compact research reactor. The segmentation of the detector in six target cells allows for measurements of the neutrino spectrum at multiple baselines. An active-sterile flavour oscillation could be unambiguously detected, as it distorts the spectral shape of each cell's measurement differently. This contribution gives an overview on the Stereo experiment, along with details on the detector design, detection principle and the current status of data analysis.

  4. Thermal annealing induced multiple phase in V/V2O5 alternating multilayer structure

    NASA Astrophysics Data System (ADS)

    Ilahi, B.; Abdel-Rahman, M.; Zaaboub, Z.; Zia, M. F.; Alduraibi, M.; Maaref, H.

    2016-09-01

    In this paper, we report on microstructural, optical and electrical properties of alternating multilayer of vanadium pentoxide (V2O5), 25 nm, and vanadium (V), 5 nm, thin films deposited at room temperature by radio frequency (RF) and DC magnetron sputtering, respectively. Raman and photoluminescence (PL) spectroscopy have been employed to investigate the effects of thermal annealing for 20, 30 and 40 min at 400∘C in Nitrogen (N2) atmosphere on the multiple phase formation and its impact on the film resistance and temperature coefficient of resistance (TCR). We demonstrate that the oxygen free annealing environment allows the formation of multiple phases including V2O5, V6O13 and VO2 through oxygen diffusion and consequent deficiency in V2O5 layer.

  5. Connection from cortical area V2 to V3 A in macaque monkey.

    PubMed

    Anderson, John C; Martin, Kevan A C

    2005-08-01

    The V2 projection to V3 A was labeled by pressure microinjecting biotinylated dextran amine (BDA) and Phaseolus vulgaris lectin (PHA-L) into V2 just posterior to the lunate sulcus. Dense terminal labeling in clusters was found in layer 4, with a weaker terminal projection in layer 3. About 3.5--4.1% of the synapses in the densest bouton clusters in layer 4 were made by labeled boutons. All were asymmetric (Gray's type 1) synapses, made by spiny, excitatory neurons. The most frequently encountered synaptic targets were spines (76% in layer 4, 98% in layer 2/3). The remainder of the synaptic targets were dendritic shafts, of which just less than half (44%) had the characteristic ultrastructure of smooth (inhibitory) cells. Multisynaptic boutons were rare (mean synapses per bouton for layer 4 1.2, for layer 2/3 1.1). The mean size of the postsynaptic densities found on spines (0.11 microm(2)) was not significantly different from that for dendrites (0.09 microm(2)). In terms of their type, laminar location, number, and targets, the synapses that formed the V2 projection to V3 A are typical of a major, excitatory, feedforward projection of macaque visual cortex. (c) 2005 Wiley-Liss, Inc.

  6. Vehicle-to-infrastructure (V2I) : message lexicon.

    DOT National Transportation Integrated Search

    2016-12-01

    To help with Vehicle-to-Infrastructure (V2I) deployments, a V2I Message Lexicon was developed that explains the relationships and concepts for V2I messages and identifies the ITS standards where they may be found. This lexicon document provides a bri...

  7. Acidosis Differentially Modulates Inactivation in NaV1.2, NaV1.4, and NaV1.5 Channels

    PubMed Central

    Vilin, Yury Y.; Peters, Colin H.; Ruben, Peter C.

    2012-01-01

    NaV channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of NaV1.2, NaV1.4, and NaV1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas NaV1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in NaV1.2 and NaV1.5 were profound. In NaV1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in NaV1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability. PMID:22701426

  8. DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2016-11-01

    The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m3. High segmentation of the plastic scintillator will allow to suppress a background down to a ~1% level. Numerous tests performed with a simplified pilot prototype DANSSino under a 3 GWth reactor of the Kalinin NPP have demonstrated operability of the chosen design. The DANSS detector surrounded with a composite shield is movable by means of a special lifting gear, varying the distance to the reactor core in a range from 10 m to 12 m. Due to this feature, it could be used not only for the reactor monitoring, but also for fundamental research including short-range neutrino oscillations to the sterile state. Supposing one-year measurement, the sensitivity to the oscillation parameters is expected to reach a level of sin2(2θnew) ~ 5 × 10-3 with Δ m2 ⊂ (0.02-5.0) eV2.

  9. Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer.

    PubMed

    Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan

    2018-02-22

    An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.

  10. MC 2 -3: Multigroup Cross Section Generation Code for Fast Reactor Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changho; Yang, Won Sik

    This paper presents the methods and performance of the MC2 -3 code, which is a multigroup cross-section generation code for fast reactor analysis, developed to improve the resonance self-shielding and spectrum calculation methods of MC2 -2 and to simplify the current multistep schemes generating region-dependent broad-group cross sections. Using the basic neutron data from ENDF/B data files, MC2 -3 solves the consistent P1 multigroup transport equation to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (2082) or hyperfine (~400more » 000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified temperatures. The pointwise cross sections are directly used in the hyperfine group calculation, whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for a two-dimensional whole-core problem to generate region-dependent broad-group cross sections. Verification tests have been performed using the benchmark problems for various fast critical experiments including Los Alamos National Laboratory critical assemblies; Zero-Power Reactor, Zero-Power Physics Reactor, and Bundesamt für Strahlenschutz experiments; Monju start-up core; and Advanced Burner Test Reactor. Verification and validation results with ENDF/B-VII.0 data indicated that eigenvalues from MC2 -3/DIF3D agreed well with Monte Carlo N-Particle5 MCNP5 or VIM Monte Carlo solutions within 200 pcm and regionwise one-group fluxes were in good agreement with Monte Carlo

  11. Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krass, A.W.

    2005-12-19

    This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. Themore » material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.« less

  12. Responses to Orientation Discontinuities in V1 and V2: Physiological Dissociations and Functional Implications

    PubMed Central

    Purpura, Keith P.; Victor, Jonathan D.

    2014-01-01

    Segmenting the visual image into objects is a crucial stage of visual processing. Object boundaries are typically associated with differences in luminance, but discontinuities in texture also play an important role. We showed previously that a subpopulation of neurons in V2 in anesthetized macaques responds to orientation discontinuities parallel to their receptive field orientation. Such single-cell responses could be a neurophysiological correlate of texture boundary detection. Neurons in V1, on the other hand, are known to have contextual response modulations such as iso-orientation surround suppression, which also produce responses to orientation discontinuities. Here, we use pseudorandom multiregion grating stimuli of two frame durations (20 and 40 ms) to probe and compare texture boundary responses in V1 and V2 in anesthetized macaque monkeys. In V1, responses to texture boundaries were observed for only the 40 ms frame duration and were independent of the orientation of the texture boundary. However, in transient V2 neurons, responses to such texture boundaries were robust for both frame durations and were stronger for boundaries parallel to the neuron's preferred orientation. The dependence of these processes on stimulus duration and orientation indicates that responses to texture boundaries in V2 arise independently of contextual modulations in V1. In addition, because the responses in transient V2 neurons are sensitive to the orientation of the texture boundary but those of V1 neurons are not, we suggest that V2 responses are the correlate of texture boundary detection, whereas contextual modulation in V1 serves other purposes, possibly related to orientation “pop-out.” PMID:24599456

  13. Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties.

    PubMed

    Mjejri, Issam; Rougier, Aline; Gaudon, Manuel

    2017-02-06

    In this study, vanadium sesquioxide (V 2 O 3 ), dioxide (VO 2 ), and pentoxide (V 2 O 5 ) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V 2 O 5 , VO 2 , and V 2 O 3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V 2 O 5 , VO 2 , and V 2 O 3 are illustrated by the characterization of the electrochromic properties of V 2 O 5 films, a discussion about the metal to insulator transition of VO 2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V 2 O 3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.

  14. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  15. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  16. An approach to communications security for a communications data delivery system for V2V/V2I safety : technical description and identification of policy and institutional issues.

    DOT National Transportation Integrated Search

    2011-11-01

    This report identifies the security approach associated with a communications data delivery system that supports vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. The report describes the risks associated with communication...

  17. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    DOE PAGES

    An, F. P.; Balantekin, A. B.; Band, H. R.; ...

    2017-01-01

    Here, a new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW th nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 ± 0.020 (0.992more » ± 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4$-$6 MeV was found in the measured spectrum, with a local significance of 4.4σ. Finally, a reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.« less

  18. Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities.

    PubMed

    Ambrožič, K; Žerovnik, G; Snoj, L

    2017-12-01

    The JSI TRIGA Mark II, IJS research reactor is equipped with numerous irradiation positions, where samples can be irradiated by neutrons and γ-rays. Irradiation position selection is based on its properties, such as physical size and accessibility, as well as neutron and γ-ray spectra, flux and dose intensities. This paper presents an overview on the neutron and γ-ray fluxes, spectra and dose intensities calculations using Monte Carlo MCNP software and ENDF/B-VII.0 nuclear data libraries. The dose-rates are presented in terms of ambient dose equivalents, air kerma, and silicon dose equivalent. At full reactor power the neutron ambient dose equivalent ranges from 5.5×10 3 Svh -1 to 6×10 6 Svh -1 , silicon dose equivalent from 6×10 2 Gy/h si to 3×10 5 Gy/h si , and neutron air kerma from 4.3×10 3 Gyh -1 to 2×10 5 Gyh -1 . Ratio of fast (1MeVV) ranges from 1.5 to 8.4×10 -2 ,γ ray ambient dose equivalent at full reactor power from 3.4×10 3 Svh -1 to 3.6×10 5 Svh -1 and γ air kerma range 3.1×10 3 Gyh -1 to 2.9×10 5 Gyh -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhanced photodegradation of phenolic compounds by adding TiO2 to soil in a rotary reactor.

    PubMed

    Wang, Jing-xian; Chen, Shuo; Quan, Xie; Zhao, Hui-min; Zhao, Ya-zhi

    2006-01-01

    Photodegradation of pentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.

  20. Critical Elements of Vehicle-to-Grid (V2G) Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steward, Darlene M.

    This report explores the critical elements of V2G economics. Section 2 summarizes the elements and costs of a V2G system. Section 3 describes V2G revenue-generating services and the business cases for providing these services. Section 4 notes real-world V2G applications. Section 5 lists concerns related to V2G. Section 6 concludes and summarizes V2G cost and revenue elements.

  1. The Rotational Spectra of IO X(sub 1) (sup 2)pi(sub 3/2), v <= 13 and X(sub 2) (sup 2)pi(sub 1/2), v <= 9

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Cohen, Edward A.

    2000-01-01

    The rotational spectra of IO in vibrational states up to v = 13 in the X(sub 1) (sup 2)pi(sub 3/2) state and up to v = 9 in the X2 (sup 2)pi(sub 1/2) state have been observed in an O2 discharge over molecular I2. In addition, I(18)O has been observed for both the X(sub 1) and X(sub 2) states up to v = 5. All data have been analyzed simultaneously with fixed isotopic ratios among the constants. This extends the data set for the X(sub 1) state described last year at this meeting and provides the first high resolution data for the X(sub 2) state and for I(18)O. An extensive set of parameters has been derived. These will be interpreted in terms of the electronic structure and the interatomic potential.

  2. Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst.

    PubMed

    Liu, Ruihui; Xu, Wenqing; Tong, Li; Zhu, Tingyu

    2015-10-01

    Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg(0) oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg(0) oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg(0) were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg(0) over the commercial catalyst followed the Langmuir-Hinshelwood mechanism. Several characterization techniques, including Hg(0) temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. Copyright © 2015. Published by Elsevier B.V.

  3. Vehicle-to-vehicle communications : readiness of V2V technology for application.

    DOT National Transportation Integrated Search

    2014-08-01

    The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) : communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to : drivers concerning impend...

  4. Validation of CESAR Thermal-hydraulic Module of ASTEC V1.2 Code on BETHSY Experiments

    NASA Astrophysics Data System (ADS)

    Tregoures, Nicolas; Bandini, Giacomino; Foucher, Laurent; Fleurot, Joëlle; Meloni, Paride

    The ASTEC V1 system code is being jointly developed by the French Institut de Radioprotection et Sûreté Nucléaire (IRSN) and the German Gesellschaft für Anlagen und ReaktorSicherheit (GRS) to address severe accident sequences in a nuclear power plant. Thermal-hydraulics in primary and secondary system is addressed by the CESAR module. The aim of this paper is to present the validation of the CESAR module, from the ASTEC V1.2 version, on the basis of well instrumented and qualified integral experiments carried out in the BETHSY facility (CEA, France), which simulates a French 900 MWe PWR reactor. Three tests have been thoroughly investigated with CESAR: the loss of coolant 9.1b test (OECD ISP N° 27), the loss of feedwater 5.2e test, and the multiple steam generator tube rupture 4.3b test. In the present paper, the results of the code for the three analyzed tests are presented in comparison with the experimental data. The thermal-hydraulic behavior of the BETHSY facility during the transient phase is well reproduced by CESAR: the occurrence of major events and the time evolution of main thermal-hydraulic parameters of both primary and secondary circuits are well predicted.

  5. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less

  6. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

    PubMed Central

    Doria-Rose, Nicole A.; Schramm, Chaim A.; Gorman, Jason; Moore, Penny L.; Bhiman, Jinal N.; DeKosky, Brandon J.; Ernandes, Michael J.; Georgiev, Ivelin S.; Kim, Helen J.; Pancera, Marie; Staupe, Ryan P.; Altae-Tran, Han R.; Bailer, Robert T.; Crooks, Ema T.; Cupo, Albert; Druz, Aliaksandr; Garrett, Nigel J.; Hoi, Kam H.; Kong, Rui; Louder, Mark K.; Longo, Nancy S.; McKee, Krisha; Nonyane, Molati; O’Dell, Sijy; Roark, Ryan S.; Rudicell, Rebecca S.; Schmidt, Stephen D.; Sheward, Daniel J.; Soto, Cinque; Wibmer, Constantinos Kurt; Yang, Yongping; Zhang, Zhenhai; Mullikin, James C.; Binley, James M.; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Ward, Andrew B.; Georgiou, George; Williamson, Carolyn; Abdool Karim, Salim S.; Morris, Lynn; Kwong, Peter D.; Shapiro, Lawrence; Mascola, John R.

    2015-01-01

    Summary Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from CAPRISA-donor CAP256; each antibody contained the protruding tyrosine-sulfated, anionic antigen-binding loop (CDR H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation, an important vaccine insight. PMID:24590074

  7. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 2 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbrook, Mark Raymond

    This report provides an end-of-year summary reflecting the progress and status of proposed regulatory design criteria for advanced non-LWR designs in accordance with the Level 3 milestone in M3AT-15IN2001017 in work package AT-15IN200101. These criteria have been designated as ARDC, and they provide guidance to future applicants for addressing the GDC that are currently applied specifically to LWR designs. The report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of example adaptations of ARDC for Sodium Fast Reactor (SFR) and modular High Temperature Gas-cooled Reactor (HTGR) designs.

  8. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope

    PubMed Central

    Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan

    2014-01-01

    ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking

  9. Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community.

    PubMed

    Liu, Hui; Zhang, Baogang; Yuan, Heyang; Cheng, Yutong; Wang, Song; He, Zhen

    2017-12-01

    Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO 3 - , Fe 3+ , SO 4 2- and CO 2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO 3 - slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO 3 - . The addition of Fe 3+ , SO 4 2- , or CO 2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe 3+ , SO 4 2- and CO 2 decreased microbial diversity and evenness, whereas the reactor supplied with NO 3 - showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Syntheses and Structure of the First Vanadium(IV) and Vanadium(V) Binary Azides, V(N3)4, [V(N3)6]2- and [V(N3)6]- (Preprint)

    DTIC Science & Technology

    2009-11-17

    V(N3)3(N3S2)] 2- , [22] have been reported, and no binary vanadium(V) compounds had been known except for VF5, VF6 - and V2O5 . By analogy with...valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line. [31] All reaction vessels were passivated with ClF3...successful synthesis of the [V(N3)6] - anion, the only binary vanadium(V) compound known besides VF5, VF6 - and V2O5 . N1’ N8 N9 N1 N2 N3 V N4 N5 N6 N2

  11. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less

  12. State selected ion--molecule reactions by a TESICO technique. V. N/sub 2//sup +/(v)+Ar. -->. N/sub 2/+Ar/sup +/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, T.; Tanaka, K.; Koyano, I.

    1982-07-15

    Charge transfer reactions N/sub 2//sup +/(v)+Ar..-->..Ar/sup +/+N/sub 2/ (1) have been studied by selecting the vibrational states of N/sub 2//sup +/ using the threshold electron--secondary ion coincidence (TESICO) technique. Relative cross sections sigma(v) for the individual vibrational states v = 0--3 have been determined at three collision energies, 0.3, 1.5, and 11.8 eV. Results show that Reaction (1), which is endoergic for v = 0, is considerably enhanced by the vibrational excitation of N/sub 2//sup +/ at all collision energies. While excitation of one vibrational quantum enhances the cross section substantially, excitation of additional quanta further increases the cross sectionmore » up to v = 3. The ratios sigma(2)/sigma(1) and sigma(3)/sigma(2) are, however, much smaller than sigma(1)/sigma(0) and are significantly larger at the highest collision energy than at the other two collision energies. These results are discussed in conjunction with the calculated results based on the simple two-state theory of Rapp and Francis and the Franck--Condon factors.« less

  13. 51V solid-state NMR and density functional theory studies of vanadium environments in V(V)O2 dipicolinic acid complexes

    NASA Astrophysics Data System (ADS)

    Bolte, Stephanie E.; Ooms, Kristopher J.; Polenova, Tatyana; Baruah, Bharat; Crans, Debbie C.; Smee, Jason J.

    2008-02-01

    V51 solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V )O2-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V )O2-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8to8.3MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V )O2- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the V51 NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5Å of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V )O2 series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.

  14. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through themore » RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net

  15. 155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  16. SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    NASA Astrophysics Data System (ADS)

    Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.

    2016-04-01

    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.

  17. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  18. Polar materials with isolated V 4+ S = 1/2 Triangles: NaSr 2V 3O 3(Ge 4O 13)Cl and KSr 2V 3O 3(Ge 4O 13)Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; McGuire, Michael A.; McMillen, Colin D.

    Here, crystals of ASr 2V 3O 3(Ge 4O 13)Cl, A = Na, K, were synthesized from high-temperature hydrothermal brines, and their structure and magnetic properties were investigated. These materials present a unique combination of a salt inclusion lattice, a polar crystal structure, and isolated V 4+ ( S = 1/2) trimer magnetic clusters. The structures consist of a trimeric V 3O 13 unit based on V 4+ ( S = 1/2), having rigorous 3-fold symmetry with a short V–V separation of 3.325(3) Å. The trinuclear V 4+ units are formed by three edge shared VO 6 octahedra sharing a centralmore » μ3-oxygen atom, which also imparts a polar sense on the structure. The V 3O 13 units are isolated from one another by tetranuclear Ge 4O 13 units, which are similarly arranged in a polar fashion, providing a unique opportunity to study the magnetic behavior of this triangular d 1 system as a discrete unit. Magnetization measurements indicate spin-1/2 per V atom at high temperature, and spin-1/2 per V 3 trimer at low temperature, where two V moments in each triangle are antiferromagnetically aligned and the third remains paramagnetic. The crossover between these two behaviors occurs between 20 and 100 K and is well-described by a model incorporating strong antiferromagnetic intra-trimer interactions and weak but nonzero inter-trimer interactions. More broadly, the study highlights the ability to obtain new materials with interesting structure–property relationships via chemistry involving unconventional solvents and reaction conditions.« less

  19. Polar materials with isolated V 4+ S = 1/2 Triangles: NaSr 2V 3O 3(Ge 4O 13)Cl and KSr 2V 3O 3(Ge 4O 13)Cl

    DOE PAGES

    Sanjeewa, Liurukara D.; McGuire, Michael A.; McMillen, Colin D.; ...

    2017-01-03

    Here, crystals of ASr 2V 3O 3(Ge 4O 13)Cl, A = Na, K, were synthesized from high-temperature hydrothermal brines, and their structure and magnetic properties were investigated. These materials present a unique combination of a salt inclusion lattice, a polar crystal structure, and isolated V 4+ ( S = 1/2) trimer magnetic clusters. The structures consist of a trimeric V 3O 13 unit based on V 4+ ( S = 1/2), having rigorous 3-fold symmetry with a short V–V separation of 3.325(3) Å. The trinuclear V 4+ units are formed by three edge shared VO 6 octahedra sharing a centralmore » μ3-oxygen atom, which also imparts a polar sense on the structure. The V 3O 13 units are isolated from one another by tetranuclear Ge 4O 13 units, which are similarly arranged in a polar fashion, providing a unique opportunity to study the magnetic behavior of this triangular d 1 system as a discrete unit. Magnetization measurements indicate spin-1/2 per V atom at high temperature, and spin-1/2 per V 3 trimer at low temperature, where two V moments in each triangle are antiferromagnetically aligned and the third remains paramagnetic. The crossover between these two behaviors occurs between 20 and 100 K and is well-described by a model incorporating strong antiferromagnetic intra-trimer interactions and weak but nonzero inter-trimer interactions. More broadly, the study highlights the ability to obtain new materials with interesting structure–property relationships via chemistry involving unconventional solvents and reaction conditions.« less

  20. Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Wen, Zhuqing; Petera, Jerzy

    2016-06-01

    A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk's spinning speed, gap size and flow rates at inlets are evaluated.

  1. A rationally designed self-standing V2O5 electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors.

    PubMed

    Ghosh, Meena; Vijayakumar, Vidyanand; Soni, Roby; Kurungot, Sreekumar

    2018-05-10

    The maximum capacitive potential window of certain pseudocapacitive materials cannot be accessed in aqueous electrolytes owing to the low dissociation potential of 1.2 V possessed by water molecules. However, the inferior pseudocapacitance exhibited by the commonly used electrode materials when integrated with non-aqueous electrolytes still remains a challenge in the development of supercapacitors (SC). Proper selection of materials for the electrode and a rational design process are indeed important to overcome these practical intricacies so that such systems can perform well with non-aqueous electrolytes. We address this challenge by fabricating a prototype all-solid-state device designed with high-capacitive V2O5 as the electrode material along with a Li-ion conducting organic electrolyte. V2O5 is synthesized on a pre-treated carbon-fibre paper by adopting an electrochemical deposition technique that effects an improved contact resistance. A judicious electrode preparation strategy makes it possible to overcome the constraints of the low ionic and electrical conductivities imposed by the electrolyte and electrode material, respectively. The device, assembled in a symmetrical fashion, achieves a high specific capacitance of 406 F g-1 (at 1 A g-1). The profitable aspect of using an organic electrolyte is also demonstrated with an asymmetric configuration by using activated carbon as the positive and V2O5 as the negative electrode materials, respectively. The asymmetric device displays a wide working-voltage window of 2.8 V and delivers a high energy density of 102.68 W h kg-1 at a power density of 1.49 kW kg-1. Moreover, the low equivalent series resistance of 9.9 Ω and negligible charge transfer resistance are observed in the impedance spectra, which is a key factor that accounts for such an exemplary performance.

  2. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dove, J.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-02-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWt h nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ±0.04 ) ×10-18 cm2 GW-1 day-1 or (5.92 ±0.14 ) ×10-43 cm2 fission-1 . This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ±0.022 (0.991 ±0.023 ) relative to the flux predicted with the Huber -Mueller (ILL -Vogel ) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2 σ over the full energy range with a local significance of up to ˜4 σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  3. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  4. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90%more » confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.« less

  5. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels.

    PubMed

    Pellegrini, Chiara; Lecci, Sandro; Lüthi, Anita; Astori, Simone

    2016-04-01

    Low-threshold voltage-gated T-type Ca(2+) channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice). We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings. CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca(2+) currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10-15 Hz), which was accompanied by an increase in the δ band (1-4 Hz). Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms. © 2016 Associated Professional Sleep Societies, LLC.

  6. Down-regulation of CaV1.2 channels during hypertension: how fewer CaV1.2 channels allow more Ca2+ into hypertensive arterial smooth muscle

    PubMed Central

    Tajada, Sendoa; Cidad, Pilar; Colinas, Olaia; Santana, L Fernando; López-López, José R; Pérez-García, M Teresa

    2013-01-01

    Hypertension is a clinical syndrome characterized by increased arterial tone. Although the mechanisms are varied, the generally accepted view is that increased CaV1.2 channel function is a common feature of this pathological condition. Here, we investigated the mechanisms underlying vascular dysfunction in a mouse model of genetic hypertension. Contrary to expectation, we found that whole-cell CaV1.2 currents (ICa) were lower in hypertensive (BPH line) than normotensive (BPN line) myocytes. However, local CaV1.2 sparklet activity was higher in BPH cells, suggesting that the relatively low ICa in these cells was produced by a few hyperactive CaV1.2 channels. Furthermore, our data suggest that while the lower expression of the pore-forming α1c subunit of CaV1.2 currents underlies the lower ICa in BPH myocytes, the increased sparklet activity was due to a different composition in the auxiliary subunits of the CaV1.2 complexes. ICa currents in BPN cells were produced by channels composed of α1c/α2δ/β3 subunits, while in BPH myocytes currents were probably generated by the opening of channels formed by α1c/α2δ/β2 subunits. In addition, Ca2+ sparks evoked large conductance, Ca2+-activated K+ (BK) currents of lower magnitude in BPH than in BPN myocytes, because BK channels were less sensitive to Ca2+. Our data are consistent with a model in which a decrease in the global number of CaV1.2 currents coexist with the existence of a subpopulation of highly active channels that dominate the resting Ca2+ influx. The decrease in BK channel activity makes the hyperpolarizing brake ineffective and leads BPH myocytes to a more contracted resting state. PMID:24167226

  7. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca2+ Channels

    PubMed Central

    Pellegrini, Chiara; Lecci, Sandro; Lüthi, Anita; Astori, Simone

    2016-01-01

    Study Objectives: Low-threshold voltage-gated T-type Ca2+ channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice). Methods: We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings. Results: CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca2+ currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10–15 Hz), which was accompanied by an increase in the δ band (1–4 Hz). Conclusions: Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms. Citation: Pellegrini C, Lecci S, Lüthi A, Astori S. Suppression of sleep spindle rhythmogenesis in mice with deletion of Cav3.2 and Cav3.3 T-type Ca2+ channels. SLEEP 2016;39(4):875

  8. Analysis of the v2, v4 Infrared Hot Bands and v1 CARS Spectrum of 34S16O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Jeffrey B.; Chrysostom, Engelene; Masiello, Tony

    2003-04-01

    High-resolution (0.0015 cm-1) infrared spectroscopy has been used to study the 34S16O3 IR-active hot bands originating from the v2 and v4 bending mode levels and terminating in the states 2v2 (l=0), v2+v4 (l=+1), and 2v4 (1=0,+2). The upper states are strongly coupled via Fermi resonance and indirect Coriolis interactions to the v1 symmetric stretching mode levels that are only directly accessible from the ground state via a Raman-active transition. A Coherent anti-Stokes Raman (CARS) spectrum of v1 for 34S16O3 is presented which is dramatically different from the corresponding one for 32S16O3. From the infrared transitions, accurate rovibrational constants are deducedmore » for all the mixed states, leading to deperturbed values for v1, a1B, and a1C of 1064.920(84), 0.000 834 5 (54), and 0.000 410(11) cm-1 respectively. The uncertainties in the last digits are shown in parentheses and represent two standard deviations. These parameters reproduce the unresolved Q-branch contour of the C ARS spectrum very well. Various other rotational and vibrational parameters have been determined, leading to values of Be= 0.349 760 6(33) cm-1 and re= 141.734 70(68) pm, values that are identical (within experimental error) to those found for 32S16O3.« less

  9. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3

    PubMed Central

    Polimeni, Jonathan R.; Tootell, Roger B.H.

    2016-01-01

    In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural

  10. Binocular Stereoscopy in Visual Areas V-2, V-3, and V-3A of the Macaque Monkey

    PubMed Central

    Hubel, David H.; Wiesel, Torsten N.; Yeagle, Erin M.; Lafer-Sousa, Rosa; Conway, Bevil R.

    2015-01-01

    Over 40 years ago, Hubel and Wiesel gave a preliminary report of the first account of cells in monkey cerebral cortex selective for binocular disparity. The cells were located outside of V-1 within a region referred to then as “area 18.” A full-length manuscript never followed, because the demarcation of the visual areas within this region had not been fully worked out. Here, we provide a full description of the physiological experiments and identify the locations of the recorded neurons using a contemporary atlas generated by functional magnetic resonance imaging; we also perform an independent analysis of the location of the neurons relative to an anatomical landmark (the base of the lunate sulcus) that is often coincident with the border between V-2 and V-3. Disparity-tuned cells resided not only in V-2, the area now synonymous with area 18, but also in V-3 and probably within V-3A. The recordings showed that the disparity-tuned cells were biased for near disparities, tended to prefer vertical orientations, clustered by disparity preference, and often required stimulation of both eyes to elicit responses, features strongly suggesting a role in stereoscopic depth perception. PMID:24122139

  11. Recent results of Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Leitner, R.; Daya Bay Collaboration

    2017-04-01

    The Daya Bay reactor neutrino experiment has been designed to precisely measure the least known neutrino mixing angle θ13. In March 2012, Daya Bay collaboration announced [Daya Bay Collaboration (F. P. An et al.), Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803] the observation of non-zero value of sin22θ13. Because of large statistics of detected antineutrinos and excellent performance of the experiment, Daya Bay continuously improves the precision of world best measurement of sin22θ13. In addition it provides results on neutrino mass splitting Δ mee2 competitive with measurements of other experiments, results on precise measurement of reactor fluxes and on limits of the existence of hypothetical fourth neutrino. In this paper, we report the results available by the time of the 6th Capri workshop: the measurement of oscillation parameters sin2 ⁡ (2θ13) = 0.084 ± 0.005 and | Δmee2 | = (2.42 ± 0.11) ×10-3eV2 [Daya Bay Collaboration (F. P. An et al.), New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) no. 11, 111802], searches for sterile neutrinos [Daya Bay Collaboration (F. P. An et al.) Search for a Light Sterile Neutrino at Daya Bay, Phys. Rev. Lett. 113 (2014) 141802] and precise measurement of reactor neutrino flux [Daya Bay Collaboration (F. P. An et al.), Measurement of the Reactor Anti-neutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett. 116 (2016) no. 6, 061801]. These are based on 621 days of measurement, most of the data has been taken in full detector configuration. More precise results [Daya Bay Collaboration (F. P. An et al.), Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, arxiv:arXiv:1610.04802] with 1230 days of operation have been presented few weeks later at the Neutrino 2016 conference.

  12. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  13. Double-push skating versus V2 and V1 skating on uphill terrain in cross-country skiing.

    PubMed

    Stöggl, Thomas; Kampel, Wolfgang; Müller, Erich; Lindinger, Stefan

    2010-01-01

    The aims of the study were a) to compare the double-push skating technique with the V2 and the V1 skating techniques on an uphill terrain by a kinematic and kinetic analysis, b) to provide kinetic and kinematic data of the V1 technique at maximal skiing speeds, and c) to test the hypotheses that the double-push skating technique is faster compared with the V2 and the V1 skating techniques. Six elite skiers performed maximum speed sprints over a 60-m uphill section (7 degrees -10 degrees) using the double-push, the V2, and the V1 techniques. Pole and plantar forces and cycle characteristics were analyzed. The double-push skating technique was approximately 4.3% faster (P < 0.05) compared with the V2 skating technique and equally fast compared with the V1 skating technique. The double-push and the V2 techniques demonstrated longer cycle lengths, lower cycle rates (both P < 0.05), and equal poling frequencies and pole forces compared with the V1 technique. Cycle length, peak foot force, and knee extension ranges of motion and velocities were higher in the double-push technique compared with the V2 technique (all P values <0.05). Center of pressure was located more laterally in the double-push technique compared with the other two techniques (P < 0.05). All measured skiing speeds were drastically higher compared with former studies. The higher skiing speeds of the V1 and the double-push techniques compared with the V2 technique stress the mechanical advantage of those techniques on uphill terrain. Because of larger cycle lengths, lower cycle rate, longer recovery times, and equal poling frequency, the double-push technique might be seen as more economic on steep uphills compared with the V1 technique. From a tactical point of view compared with the V1 technique, the double-push technique needs less space due to less lateral displacement, and no technique transitions are necessary when entering and leaving an uphill section.

  14. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors.

    PubMed

    Terán Hilares, Ruly; Kamoei, Douglas Viana; Ahmed, Muhammad Ajaz; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2018-05-01

    Hydrodynamic cavitation (HC) was adopted to assist alkaline-hydrogen peroxide pretreatment of sugarcane bagasse (SCB). In the following condition: 0.29 M of NaOH, 0.78% (v/v) of H 2 O 2 , 9.95 min of process time and 3 bar of inlet pressure, 95.4% of digestibility of cellulosic fraction was achieved. To take the best use of the pretreated biomass, the overall process was intensified by way of employing a packed bed flow-through column reactor and thus enabling to handle a high solid loading of 20%, thereby leading to cellulose and hemicellulose conversions to 74.7% and 75%, respectively. In the fermentation step, a bubble column reactor was introduced to maximize ethanol production from the pretreated SCB by Scheffersomyces stipitis NRRL-Y7124, resulting in 31.50 g/L of ethanol, 0.49 g/g of ethanol yield and 0.68 g/L.h of productivity. All this showed that our HC-assisted NaOH-H 2 O 2 pretreatment strategy along with the process intensification approach might offer an option for SCB-based biorefineries. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and

  16. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  17. On the electronic properties of GaSb irradiated with reactor neutrons and its charge neutrality level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiko, V. M.; Brudnii, V. N., E-mail: brudnyi@mail.tsu.ru; Ermakov, V. S.

    2015-06-15

    The electronic properties and the limiting position of the Fermi level in p-GaSb crystals irradiated with full-spectrum reactor neutrons at up to a fluence of 8.6 × 10{sup 18} cm{sup −2} are studied. It is shown that the irradiation of GaSb with reactor neutrons results in an increase in the concentration of free holes to p{sub lim} = (5−6) × 10{sup 18} cm{sup −3} and in pinning of the Fermi level at the limiting position F{sub lim} close to E{sub V} + 0.02 eV at 300 K. The effect of the annealing of radiation defects in the temperature range 100–550°Cmore » is explored.« less

  18. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    PubMed

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day

  19. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  20. Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhuqing; Petera, Jerzy

    A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reactionmore » species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk’s spinning speed, gap size and flow rates at inlets are evaluated.« less

  1. Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film

    NASA Astrophysics Data System (ADS)

    Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching

    2017-10-01

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.

  2. Spectral structure of electron antineutrinos from nuclear reactors.

    PubMed

    Dwyer, D A; Langford, T J

    2015-01-09

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  3. Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater.

    PubMed

    Malakahmad, Amirhossein; Hasani, Amirhesam; Eisakhani, Mahdieh; Isa, Mohamed Hasnain

    2011-07-15

    Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03±0.02 mg/L Hg and 15.52±0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg(2+) and 96-98% of Cd(2+). The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg(2+) and Cd(2+) implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. PI-RADS v2: Current standing and future outlook.

    PubMed

    Smith, Clayton P; Türkbey, Barış

    2018-05-01

    The Prostate Imaging-Reporting and Data System (PI-RADS) was created in 2012 to establish standardization in prostate multiparametric magnetic resonance imaging (mpMRI) acquisition, interpretation, and reporting. In hopes of improving upon some of the PI-RADS v1 shortcomings, the PI-RADS Steering Committee released PI-RADS v2 in 2015. This paper reviews the accuracy, interobserver agreement, and clinical outcomes of PI-RADS v2 and comments on the limitations of the current literature. Overall, PI-RADS v2 shows improved sensitivity and similar specificity compared to PI-RADS v1. However, concerns exist regarding interobserver agreement and the heterogeneity of the study methodology.

  5. PI-RADS v2: Current standing and future outlook

    PubMed Central

    Smith, Clayton P.

    2018-01-01

    The Prostate Imaging-Reporting and Data System (PI-RADS) was created in 2012 to establish standardization in prostate multiparametric magnetic resonance imaging (mpMRI) acquisition, interpretation, and reporting. In hopes of improving upon some of the PI-RADS v1 shortcomings, the PI-RADS Steering Committee released PI-RADS v2 in 2015. This paper reviews the accuracy, interobserver agreement, and clinical outcomes of PI-RADS v2 and comments on the limitations of the current literature. Overall, PI-RADS v2 shows improved sensitivity and similar specificity compared to PI-RADS v1. However, concerns exist regarding interobserver agreement and the heterogeneity of the study methodology. PMID:29733790

  6. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    PubMed

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.

  7. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Mahadevan, Vijay

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing.more » RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.« less

  8. The prototype fast reactor at Dounreay, Scotland. Process and engineering development for sodium removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, A.; Herrick, R.; Gunn, J.

    2007-07-01

    Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal ofmore » the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)« less

  9. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less

  10. Status of French reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballagny, A.

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (exceptmore » if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.« less

  11. Measurement of the reactor antineutrino flux and spectrum at Daya Bay

    DOE PAGES

    D. E. Jaffe; Bishai, M; Diwan, M.; ...

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW th nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ± 0.04) × 10 –18 cm 2/GW/day or (5.92 ± 0.14) × 10 –43 cm 2/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experimentsmore » and is 0.946 ± 0.022 (0.991 ± 0.023) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ~4σ between 4-6 MeV. Furthermore, a reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.« less

  12. Attrition reactor system

    DOEpatents

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  13. IgG Antibody Responses to Recombinant gp120 Proteins, gp70V1/V2 Scaffolds, and a CyclicV2 Peptide in Thai Phase I/II Vaccine Trials Using Different Vaccine Regimens.

    PubMed

    Karasavvas, Nicos; Karnasuta, Chitraporn; Savadsuk, Hathairat; Madnote, Sirinan; Inthawong, Dutsadee; Chantakulkij, Somsak; Rittiroongrad, Surawach; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Thongcharoen, Prasert; Siriyanon, Vinai; Andrews, Charla A; Barnett, Susan W; Tartaglia, James; Sinangil, Faruk; Francis, Donald P; Robb, Merlin L; Michael, Nelson L; Ngauy, Viseth; de Souza, Mark S; Paris, Robert M; Excler, Jean-Louis; Kim, Jerome H; O'Connell, Robert J

    2015-11-01

    RV144 correlates of risk analysis showed that IgG antibodies to gp70V1V2 scaffolds inversely correlated with risk of HIV acquisition. We investigated IgG antibody responses in RV135 and RV132, two ALVAC-HIV prime-boost vaccine trials conducted in Thailand prior to RV144. Both trials used ALVAC-HIV (vCP1521) at 0, 1, 3, and 6 months and HIV-1 gp120MNgD and gp120A244gD in alum (RV135) or gp120SF2 and gp120CM235 in MF59 (RV132) at 3 and 6 months. We assessed ELISA binding antibodies to the envelope proteins (Env) 92TH023, A244gD and MNgD, cyclicV2, and gp70V1V2 CaseA2 (subtype B) and 92TH023 (subtype CRF01_AE), and Env-specific IgG1 and IgG3. Antibody responses to gp120 A244gD, MNgD, and gp70V1V2 92TH023 scaffold were significantly higher in RV135 than in RV132. Antibodies to gp70V1V2 CaseA2 were detected only in RV135 vaccine recipients and IgG1 and IgG3 antibody responses to A244gD were significantly higher in RV135. IgG binding to gp70V1V2 CaseA2 and CRF01_AE scaffolds was higher with the AIDSVAX(®)B/E boost but both trials showed similar rates of antibody decline post-vaccination. MF59 did not result in higher IgG antibody responses compared to alum with the antigens tested. However, notable differences in the structure of the recombinant proteins and dosage used for immunizations may have contributed to the magnitude and specificity of IgG induced by the two trials.

  14. The Proposed 2 MeV Electron Cooler for COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Juergen; Parkhomchuk, Vasily V.; Reva, Vladimir B.

    2006-03-20

    The design, construction and installation of a 2 MeV electron cooling system for COSY is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first generalmore » scheme of the 2 MeV electron cooler are described.« less

  15. Design options for a bunsen reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project.more » Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.« less

  16. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH.

    PubMed

    Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo

    2018-02-01

    Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Human parainfluenza virus type 2 V protein inhibits caspase-1.

    PubMed

    Ohta, Keisuke; Matsumoto, Yusuke; Nishio, Machiko

    2018-04-01

    The multifunctional V protein of human parainfluenza virus type 2 (hPIV2) plays important roles in controlling viral genome replication, inhibiting the host interferon response and promoting virus growth. We screened a yeast two-hybrid library using V protein as bait to identify host factors that are important for other functions of V. One of several positive clones isolated from HeLa cell-derived cDNA library encodes caspase-1. We found that the C-terminal region of V interacts with the C-terminal region of caspase-1 in mammalian cells. Moreover, the V protein repressed caspase-1 activity and the formation of interleukin-1β (IL-1β) in a dose-dependent manner. IL-1β secretion induced by wild-type hPIV2 infection in human monocytic THP-1 cells was significantly lower than that induced by recombinant hPIV2 lacking V protein or having a mutant V. These data suggest that hPIV2 V protein inhibits caspase-1-mediated maturation of IL-1β via its interaction with caspase-1.

  18. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.

    PubMed

    Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M

    2008-06-10

    It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

  19. The HLMA project: determination of high Δm2 LMA mixing parameters and constraint on |Ue3| with a new reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Schönert, Stefan; Lasserre, Thierry; Oberauer, Lothar

    2003-03-01

    In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ν¯e's from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol>~2×10-4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the ν¯e interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal `free of background'.

  20. Periaqueductal gray knockdown of V2, not V1a and V1b receptor influences nociception in the rat. yj6676@yahoo.com.

    PubMed

    Yang, Jun; Yang, Yu; Chen, Jian-Min; Wang, Gen; Xu, Hong-Tao; Liu, Wen-Yan; Lin, Bao-Cheng

    2007-01-01

    Our pervious study has proved that arginine vasopressin (AVP) in periaqueductal gray (PAG) plays a role in antinociception. After establishing a model of local special gene knockdown, the nociceptive effect of vasopressin receptor subunit in PAG was investigated in the rat. Microinjection of short-interfering RNA (siRNA) into PAG, which targeted vasopressin receptor subtypes (V(1a), V(1b) and V(2)), locally weakened the associated mRNA expression and depressed the related receptor synthesis in a dose-dependent manner, in which the significant inhibitive effect occurred on from 7th day to 14th day following 1microg or 2microg siRNA administration. PAG knockdown of V(2) receptor gene markedly decreased pain threshold in from 6th day to 13th day after siRNA administration, whereas local knockdown of either V(1a) or V(1b) receptor gene could not influence pain threshold. The data suggest that V(2) rather than V(1a) and V(1b) receptor in PAG involves in nociception.

  1. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization

    PubMed Central

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.

    2016-01-01

    ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with

  2. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization.

    PubMed

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L; Pinter, Abraham; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Hu, Shiu-Lok

    2016-10-01

    Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting

  3. A search for neutrino oscillations using the CHOOZ 1 km baseline reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    George, Jean

    1999-10-01

    Neutrino oscillation searches are an active field of research due to the implications their discovery may have for the solar neutrino anomaly as well as for the atmospheric neutrino anomaly. Their discovery may also have broad ramifications for the Standard Model of Particle Physics as a whole. Results from an oscillation search using the CHOOZ long baseline reactor neutrino experiment are presented in this thesis. These results are based on the data taken from June 1997 through April 1998 when the two reactors ran at combined thermal power levels ranging from zero power to their full power level of 8.5 GW. Electron flavored antineutrinos emanating from the reactors were detected through the inverse beta decay channel using a liquid scintillating calorimeter located at a distance of approximately 1 km from the reactor sources. The underground experimental site (300 MWE) provided natural shielding from the background of cosmic ray muons-leading to a background rate more than an order of magnitude lower than the full power signal rate. From the agreement between the detected and expected neutrino event rates no evidence for neutrino oscillations was found (at the 90% C.L.) for the oscillation parameter space governed by Δm 2 > 0.8 × 10-3 eV2 for maximal mixing and by sin2 2Θ > 0.18 for large values of Δm2.

  4. Method and Pd/V2 O5 device for H2 detection

    DOEpatents

    Liu, Ping [San Diego, CA; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Smith, II, R. Davis; Lee, Se-Hee [Lakewood, CO

    2011-12-27

    Methods and Pd/V.sub.2O.sub.5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V.sub.20.sub.5 layer that functions as a H.sub.2 insertion host in a Pd/V.sub.20.sub.5 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V.sub.20.sub.5 layer; said Pd layer functioning as an optical modulator.

  5. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    PubMed

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  6. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia.

    PubMed

    Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P

    2005-11-07

    Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.

  7. Driver acceptance of collision warning applications based on heavy-truck V2V technology

    DOT National Transportation Integrated Search

    2016-10-01

    Battelle conducted a series of driver acceptance clinics (DACs) with heavy-truck drivers to gauge their acceptance of collision-warning applications using vehicle-to-vehicle (V2V) communication technology. This report describes the results from Volpe...

  8. The Development of Neutron Radiography and Tomography on a SLOWPOKE-2 Reactor

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Lewis, W. J.; Hungler, P. C.

    Development of neutron radiography at the Royal Military College of Canada (RMC) started by trying to interest the Royal Canadian Air Force (RCAF) in this new non-destructive testing (NDT) technique. A Californium-252 based device was ordered and then installed at RMC for development of applicable techniques for aircraft by the first author. A second and transportable device was then designed, modified and used in trials at RCAF Bases and other locations for one year. This activity was the only foreign loan of the U.S. Californium Loan Program. Around this time, SLOWPOKE-2 reactors were being installed at four Canadian universities, while a new science and engineering building was being built at RMC. A reactor pool was incorporated and efforts to procure a reactor succeeded a decade later with a SLOWPOKE-2 reactor being installed at RMC. The only modification by the vendor for RMC was a thermal column replacing an irradiation site inside the reactor container for a later installation of a neutron beam tube (NBT). Development of a working NBT took several years, starting with the second author. A demonstration of the actual worth of neutron radiography took place with a CF-18 Hornet aircraft being neutron and X-radiographed at McClellan Air Force Base, Sacramento, CA. This inspection was followed by one of the rudders that had indications of water ingress being radiographed successfully at RMC just after the NBT became functional. The next step was to develop a neutron radioscopy system (NRS), initially employing film and then digital imaging, and is in use today for all flight control surfaces (FCS). With the third author, a technique capable of removing water from affected FCS was developed at RMC. Heating equipment and a vacuum system were utilized to carefully remove the water. This technique was proven using a sequence of near real time neutron images obtained during the drying process. The results of the drying process were correlated with a relative humidity

  9. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    PubMed

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  10. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    of them are equipped with instrumentation for condensed matter physics research: - H3 - spectrometer and diffractometer with double monochromator; - H4 - small angle scattering spectrometer; - H5 - polarized neutrons spectrometer; - H6, H7 - two 3-axial crystal neutron spectrometers; - H8 - neutron radiography stand. For two horizontal channels are ongoing exploitation programs: - H2 - station with epithermal neutron beam produced in uranium converter is being developed. Intelligent converter will be installed on the periphery of reactor core. The intensity of the beam will be at the level 2x10{sup 9} n cm{sup -2}s{sup -1} what makes the beam unique in the Europe. - H1 - special pneumatic horizontal mail is being developed for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. The number of neutron irradiation facilities in MARIA reactor is increasing every year. Numerous of thermal neutron irradiation channels including fast hydraulic rabbit system and large size channels for fast neutron irradiation are used routinely. Recently new in-pile facility with ITER-like neutron energy spectrum for 14 MeV neutron irradiation has been constructed. Taking into account its performance and ability of almost incessant operation the facility appears as one of the most powerful 14 MeV neutron sources. The facility shall be used for material research connected with thermonuclear devices (ITER) and 4. generation nuclear reactors. The system of independent fuels channels used in MARIA reactor appear to be very flexible and very convenient to be used as irradiation channels for uranium targets for {sup 99}Mo production. Currently, MARIA reactor supplies ca. 18% world production of {sup 99}Mo. The MARIA reactor research activities are still extended. The current scientific projects are connected e.g. with silicon neutron transmutation doping, in-pile gamma heating measurements, French calculation codes implementation (TRIPOLI4, APOLLO2

  11. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    PubMed

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'

    NASA Astrophysics Data System (ADS)

    Mandy, M. E.

    2016-11-01

    State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).

  13. Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole

    2017-03-01

    The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.

  14. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.

    PubMed

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, T.; Shimazu, Y.; Hibi, K.

    2012-07-01

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of thismore » project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)« less

  16. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  17. Search for neutrino oscillations at the palo verde nuclear reactors

    PubMed

    Boehm; Busenitz; Cook; Gratta; Henrikson; Kornis; Lawrence; Lee; McKinny; Miller; Novikov; Piepke; Ritchie; Tracy; Vogel; Wang; Wolf

    2000-04-24

    We report on the initial results from a measurement of the antineutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. We find that the antineutrino flux agrees with that predicted in the absence of oscillations excluding at 90% C.L. nu;(e)-nu;(x) oscillations with Deltam(2)>1.12x10(-3) eV(2) for maximal mixing and sin (2)2straight theta>0.21 for large Deltam(2). Our results support the conclusion that the atmospheric neutrino oscillations observed by Super-Kamiokande do not involve nu(e).

  18. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production.

    PubMed

    Santos, C A; Nobre, B; Lopes da Silva, T; Pinheiro, H M; Reis, A

    2014-08-20

    Chlorella protothecoides, a lipid-producing microalga, was grown heterotrophically and autotrophically in separate reactors, the off-gases exiting the former being used to aerate the latter. Autotrophic biomass productivity with the two-reactor association, 0.0249gL(-1)h(-1), was 2.2-fold the value obtained in a control autotrophic culture, aerated with ambient air. Fatty acid productivity was 1.7-fold the control value. C. protothecoides heterotrophic biomass productivity was 0.229gL(-1)h(-1). This biomass' fatty acid content was 34.5% (w/w) with a profile suitable for biodiesel production, according to European Standards. The carbon dioxide fixed by the autotrophic biomass was 45mgCO2L(-1)h(-1) in the symbiotic arrangement, 2.1 times the control reactor value. The avoided CO2 atmospheric emission represented 30% of the CO2 produced in the heterotrophic stage, while the released O2 represented 49% of the oxygen demand in that stage. Thus, an increased efficiency in the glucose carbon source use and a higher environmental sustainability were achieved in microalgal biodiesel production using the proposed assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Antineutrino analysis for continuous monitoring of nuclear reactors: Sensitivity study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Christopher; Erickson, Anna

    This paper explores the various contributors to uncertainty on predictions of the antineutrino source term which is used for reactor antineutrino experiments and is proposed as a safeguard mechanism for future reactor installations. The errors introduced during simulation of the reactor burnup cycle from variation in nuclear reaction cross sections, operating power, and other factors are combined with those from experimental and predicted antineutrino yields, resulting from fissions, evaluated, and compared. The most significant contributor to uncertainty on the reactor antineutrino source term when the reactor was modeled in 3D fidelity with assembly-level heterogeneity was found to be the uncertaintymore » on the antineutrino yields. Using the reactor simulation uncertainty data, the dedicated observation of a rigorously modeled small, fast reactor by a few-ton near-field detector was estimated to offer reduction of uncertainty on antineutrino yields in the 3.0–6.5 MeV range to a few percent for the primary power-producing fuel isotopes, even with zero prior knowledge of the yields.« less

  20. The CaV2.3 R-Type Voltage-Gated Ca2+ Channel in Mouse Sleep Architecture

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-01-01

    Study Objectives: Voltage-gated Ca2+ channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca2+ channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca2+ channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca2+ channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3−/− mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca2+ influx into RTN neurons can trigger small-conductance Ca2+-activated K+-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca2+ channels in rodent sleep. Methods: The role of CaV2.3 Ca2+ channels was analyzed in CaV2.3−/− mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. Results: CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3−/− mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca2+ channel expression. The detailed mechanisms of SWS increase in CaV2.3−/− mice remain to be determined. Conclusions: Low-voltage activated CaV2.3 R-type Ca2+ channels in the thalamocortical

  1. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  2. Total reaction cross sections of electronic state-specified transition metal cations: V + +C2H6, C3H8, and C2H4 at 0.2 eV

    NASA Astrophysics Data System (ADS)

    Sanders, Lary; Hanton, Scott D.; Weisshaar, James C.

    1990-03-01

    We describe a crossed beam experiment which measures total cross sections for reaction of electronic state-specified V+ with small hydrocarbons at well-defined collision energy E=0.2 eV. The V+ state distribution created at each ionizing wavelength is directly measured by angle-integrated photoelectron spectroscopy (preceding paper). Reactant and product ions are collected and analyzed by pulsed time-of-flight mass spectrometry following a reaction time of 6 μs. Tests of the performance of the apparatus are described in detail. Our experiment defines the reactant V+ electronic state distribution and the collision energy much more precisely than previous work. For all three hydrocarbons C2H6, C3H8, and C2H4, H2 elimination products dominate at 0.2 eV. We observe a dramatic dependence of cross section on the V+ electronic term. The second excited term 3d34s(3F) is more reactive than either lower energy quintet term 3d4(5D) or 3d34s(5F) by a factor of ≥270, 80, and ≥6 for the C2H6, C3H8, and C2H4 reactions, respectively. The 3d34s(3F) reaction cross sections at 0.2 eV are 20±11 Å2, 37±19 Å2, and 2.7±1.6 Å2, respectively, compared with Langevin cross sections of ˜80 Å2. For the C2H6 and C3H8 reactions, cross sections are independent of initial spin-orbit level J within the 3F term to the limits of our accuracy. Comparison with earlier work by Armentrout and co-workers shows that electronic excitation to d3s(3F) is far more effective at promoting H2 elimination than addition of the same total kinetic energy to reactants. Electron spin is clearly a key determinant of V+ reactivity with small hydrocarbons. We suggest that triplet V+ reacts much more efficiently than quintet V+ because of its ability to conserve total electron spin along paths to insertion in a C-H bond of the hydrocarbon.

  3. CO2 Reduction Assembly Prototype Using Microlith-Based Sabatier Reactor for Ground Demonstration

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2014-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) architectures for both low-earth orbit and long-term manned space missions. Carbon dioxide can be reacted with H2, obtained from the electrolysis of water, via Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the application, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Precision Combustion, Inc. (PCI), with support from NASA, has previously developed an efficient and compact Sabatier reactor based on its Microlith® catalytic technology and demonstrated the capability to achieve high CO2 conversion and CH4 selectivity (i.e., =90% of the thermodynamic equilibrium values) at high space velocities and low operating temperatures. This was made possible through the use of high-heat-transfer and high-surface-area Microlith catalytic substrates. Using this Sabatier reactor, PCI designed, developed, and demonstrated a stand-alone CO2 Reduction Assembly (CRA) test system for ground demonstration and performance validation. The Sabatier reactor was integrated with the necessary balance-of-plant components and controls system, allowing an automated, single "push-button" start-up and shutdown. Additionally, the versatility of the test system prototype was demonstrated by operating it under H2-rich (H2/CO2 of >4), stoichiometric (ratio of 4), and CO2-rich conditions (ratio of <4) without affecting its performance and meeting the equilibrium-predicted water recovery rates. In this paper, the development of the CRA test system for ground demonstration will be discussed. Additionally, the performance results from testing the system at

  4. Development of V2G and G2V Power Profiles and Their Implications on Grid Under Varying Equilibrium of Aggregated Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Jain, Trapti

    2016-04-01

    The objective of this paper is to examine the vehicle-to-grid (V2G) power capability of aggregated electric vehicles (EV) in the manner that they are being adopted by the consumers with their growing infiltration in the vehicles market. The proposed modeling of V2G and grid-to-vehicle (G2V) energy profiles blends the heterogeneous attributes namely, driven mileages, arrival and departure times, travel and parking durations, and speed dependent energy consumption of mobility trends. Three penetration percentages of 25 %, 50 % and 100 % resulting in varied compositions of battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) in the system, as determined by the consumers' acceptance, have been considered to evaluate the grid capacity for V2G. Distinct charge-discharge powers have been selected as per charging standards to match contemporary vehicles and infrastructure requirements. Charging and discharging approaches have been devised to replicate non-linear characteristics of Li-ion battery. Effects of simultaneous conjunction of V2G and G2V power curves with daily conventional load profile are quantified drawn upon workplace-discharging home-charging scheme. Results demonstrated a marked drop in load and hence in market price during morning hours which is hurriedly overcompensated by the hike during evening hours with rising penetration level and charge-discharge power.

  5. Code Verification Capabilities and Assessments in Support of ASC V&V Level 2 Milestone #6035

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William; Budzien, Joanne Louise; Ferguson, Jim Michael

    This document provides a summary of the code verification activities supporting the FY17 Level 2 V&V milestone entitled “Deliver a Capability for V&V Assessments of Code Implementations of Physics Models and Numerical Algorithms in Support of Future Predictive Capability Framework Pegposts.” The physics validation activities supporting this milestone are documented separately. The objectives of this portion of the milestone are: 1) Develop software tools to support code verification analysis; 2) Document standard definitions of code verification test problems; and 3) Perform code verification assessments (focusing on error behavior of algorithms). This report and a set of additional standalone documents servemore » as the compilation of results demonstrating accomplishment of these objectives.« less

  6. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  7. Remediation of 1,2,3-trichlorobenzene contaminated soil using a combined thermal desorption-molten salt oxidation reactor system.

    PubMed

    Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang

    2014-02-01

    A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.

  8. Identification of novel selective V2 receptor non-peptide agonists.

    PubMed

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  9. A novel CaV2.2 channel inhibition by piracetam in peripheral and central neurons.

    PubMed

    Bravo-Martínez, Jorge; Arenas, Isabel; Vivas, Oscar; Rebolledo-Antúnez, Santiago; Vázquez-García, Mario; Larrazolo, Arturo; García, David E

    2012-10-01

    No mechanistic actions for piracetam have been documented to support its nootropic effects. Voltage-gated calcium channels have been proposed as a promising pharmacological target of nootropic drugs. In this study, we investigated the effect of piracetam on Ca(V)2.2 channels in peripheral neurons, using patch-clamp recordings from cultured superior cervical ganglion neurons. In addition, we tested if Ca(V)2.2 channel inhibition could be related with the effects of piracetam on central neurons. We found that piracetam inhibited native Ca(V)2.2 channels in superior cervical ganglion neurons in a dose-dependent manner, with an IC(50) of 3.4 μmol/L and a Hill coefficient of 1.1. GDPβS dialysis did not prevent piracetam-induced inhibition of Ca(V)2.2 channels and G-protein-coupled receptor activation by noradrenaline did not occlude the piracetam effect. Piracetam altered the biophysical characteristics of Ca(V)2.2 channel such as facilitation ratio. In hippocampal slices, piracetam and ω-conotoxin GVIA diminished the frequency of excitatory postsynaptic potentials and action potentials. Our results provide evidence of piracetam's actions on Ca(V)2.2 channels in peripheral neurons, which might explain some of its nootropic effects in central neurons.

  10. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus.

    PubMed

    Miah, Mohammad Asaduzzaman; Elzaki, Mohammed Esmail Abdalla; Han, Zhaojun

    2017-07-01

    Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p -nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min -1  mg protein -1 , respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

  11. International Research Reactor Decommissioning Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less

  12. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less

  13. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth

  14. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  16. Densification of PZT Ceramics with V2O5 Additive.

    DTIC Science & Technology

    1979-01-01

    Additions of V2O5 from 0.1 to 8.0 w/o to a coprecipitated Pb(Zr.53 Ti.47) O3 ceramic promoted rapid densification below 1025 C, eliminating the need...for PbO atmosphere control. Dielectric properties were found to be dependent on the amount of V2O5 added and on the microstructure developed, but were...comparable to reported values for this PZT composition for additions of V2O5 or = 1.5 W/O. The indicated densification mechanism is one of activated sintering catalyzed by generation of oxygen defects on decomposition of the V2O5 .

  17. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    PubMed

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  18. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  19. The Vibrational Deactivation of HF(v = 3) and HF(v = 2) by H Atoms

    DTIC Science & Technology

    1977-08-18

    experiments. A silicon flat in front of the photomultiplier restricted the monitored fluores- cence to wavelengths > I 4tm. An RCA C-31034 (GaAs... stent with the present results f’ir HF(v =1) and HI-F(v = 2’ remioval rates but can not explain the fast HF(v = 3) rate. Wilk-ins performed trajectory...Sciences Laboratory: Development of new materials; metal matrix composites and new forms of carbon; test and evaluation of graphite and ceramics in

  20. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  1. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms.

    PubMed

    Chen, Chih-Cheng; Chiu, Chia-Chen; Lee, Kuan-Der; Hsu, Chia-Chen; Chen, Hong-Chi; Huang, Tim H-M; Hsiao, Shu-Huei; Leu, Yu-Wei

    2017-12-16

    Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Update on reactors and reactor instruments in Asia

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1991-10-01

    The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.

  3. TYLCV-Is movement in planta does not require V2 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hak, Hagit; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Levy, Yael

    Tomato yellow leaf curl virus (TYLCV), a major tomato pathogen causing extensive crop losses, is a whitefly-transmitted geminivirus. V2 mutants of TYLCV-Is and related viruses tend to induce symptomless infection with attenuated viral DNA levels, while accumulating close to wild-type DNA levels in protoplasts, suggesting V2 as a movement protein. The discovery of plant-silencing mechanisms and viral silencing suppressors, V2 included, led us to reconsider V2's involvement in viral movement. We studied two mutant versions of the virus, one impaired in V2 silencing-suppression activity, and another carrying a non-translatable V2. While both mutant viruses spread in the infected plant tomore » newly emerged leaves at the same rate as the wild-type virus, their DNA-accumulation levels were tenfold lower than in the wild-type virus. Thus, we suggest that the setback in virus proliferation, previously ascribed to a movement impediment, is due to lack of silencing-suppression activity. - Highlights: • TYLCV-Is V2 protein is localized in distinct microbodies throughout the cell cytoplasm, around the nucleus and in association with cytoplasmic strands but is not associated with the plasmodesmata. • Disruption of RNA-silencing suppression activity of TYLCV-Is V2 protein causes low titer of the virus in the infected plants. • The movement of TYLCV-Is in planta does not require a functional V2 protein.« less

  4. β-Subunits Promote the Expression of CaV2.2 Channels by Reducing Their Proteasomal Degradation*

    PubMed Central

    Waithe, Dominic; Ferron, Laurent; Page, Karen M.; Chaggar, Kanchan; Dolphin, Annette C.

    2011-01-01

    The β-subunits of voltage-gated calcium channels regulate their functional expression and properties. Two mechanisms have been proposed for this, an effect on gating and an enhancement of expression. With respect to the effect on expression, β-subunits have been suggested to enhance trafficking by masking an unidentified endoplasmic reticulum (ER) retention signal. Here we have investigated whether, and how, β-subunits affect the level of CaV2.2 channels within somata and neurites of cultured sympathetic neurons. We have used YFP-CaV2.2 containing a mutation (W391A), that prevents binding of β-subunits to its I-II linker and found that expression of this channel was much reduced compared with WT CFP-CaV2.2 when both were expressed in the same neuron. This effect was particularly evident in neurites and growth cones. The difference between the levels of YFP-CaV2.2(W391A) and CFP-CaV2.2(WT) was lost in the absence of co-expressed β-subunits. Furthermore, the relative reduction of expression of CaV2.2(W391A) compared with the WT channel was reversed by exposure to two proteasome inhibitors, MG132 and lactacystin, particularly in the somata. In further experiments in tsA-201 cells, we found that proteasome inhibition did not augment the cell surface CaV2.2(W391A) level but resulted in the observation of increased ubiquitination, particularly of mutant channels. In contrast, we found no evidence for selective retention of CaV2.2(W391A) in the ER, in either the soma or growth cones. In conclusion, there is a marked effect of β-subunits on CaV2.2 expression, particularly in neurites, but our results point to protection from proteasomal degradation rather than masking of an ER retention signal. PMID:21233207

  5. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from CO2 Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Muscatello, Anthony

    2015-01-01

    Oxygen recovery from respiratory CO2 is an important aspect of human spaceflight. Methods exist to sequester the CO2, but production of oxygen needs further development. The current ISS Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction is the only real alternative to the Sabatier reaction, but in the last reaction in the cycle (Boudouard) the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling, find a use for this waste product, and increase efficiency, we propose testing various self-cleaning catalyst designs in an existing MSFC Boudouard reaction test bed and to determine which one is the most reliable in conversion and lack of fouling. Challenges include mechanical reliability of the cleaning method and maintaining high conversion efficiency with lower catalyst surface area. The above chemical reactions are well understood, but planned implementations are novel (TRL 2) and haven't been investigated at any level.

  6. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    EPA Science Inventory

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  7. Gas chemical studies using corona discharge reactors

    NASA Astrophysics Data System (ADS)

    Schulze, P.; Stankiewicz, A.; Aicher, M.; Mattner, M.; Ulrich, A.

    2010-12-01

    Corona discharges with voltages up to 60 kV (DC) were studied with the aim to induce chemical reactions in flue gases at atmospheric pressure. Various plasma reactors with different geometries of multi-needle arrays were tested. The power input was optimised by studying the electrical parameters of the set-up systematically. Both, solid and liquid electrodes were used in combination with the needle arrays. A precise positioning of the corona needles allowed operation without a ballast resistor. Formation rates for CO and the sum of NO2 and O3 are reported and discussed. Three catalytic anode-coatings were tested for their potential to decompose carbon dioxide.

  8. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study.

    PubMed

    Hartimath, Siddesh V; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A J O; de Vries, Erik F J

    2018-01-23

    Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [ 18 F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [ 18 F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [ 18 F]FB-IL2v to IL2R was reversible. The volume of distribution (V T ) and the non-displaceable binding potential (BP nd ) of mutant [ 18 F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [ 18 F]FB-IL2 ( p < 0.01). Pretreatment with wt-IL2 significantly reduced the V T and BPnd of mutant [ 18 F]FB-IL2v in the implant ( p < 0.001). This demonstrates that wild-type [ 18 F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [ 18 F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug.

  9. COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP

    PubMed Central

    Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G

    2012-01-01

    Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v

  10. Detached-Eddy Simulation Based on the V2-F Model

    NASA Technical Reports Server (NTRS)

    Jee, Sol Keun; Shariff, Karim R.

    2012-01-01

    Detached-eddy simulation (DES) based on the v(sup 2)-f Reynolds-averaged Navier-Stokes (RANS) model is developed and tested. The v(sup 2)-f model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. The v(sup 2)-f RANS model is modified in order the proposed v(sup 2)-f-based DES formulation reduces to a transport equation for the subgrid-scale kinetic energy isotropic turbulence. First, three coefficients in the elliptic relaxation equation are modified, which is tested in channel flows with friction Reynolds number up to 2000. Then, the proposed v(sup 2)-f DES model formulation is derived. The constant, C(sub DES), required in the DES formulation was calibrated by simulating both decaying and statistically-steady isotropic turbulence. After C(sub DES) was calibrated, the v(sub 2)-f DES formulation is tested for flow around a circular cylinder at a Reynolds number of 3900, in which case turbulence develops after separation. Simulations indicate that this model represents the turbulent wake nearly as accurately as the dynamic Smagorinsky model. Spalart-Allmaras-based DES is also included in the cylinder flow simulation for comparison.

  11. Visual to Parametric Interaction (V2PI)

    PubMed Central

    Maiti, Dipayan; Endert, Alex; North, Chris

    2013-01-01

    Typical data visualizations result from linear pipelines that start by characterizing data using a model or algorithm to reduce the dimension and summarize structure, and end by displaying the data in a reduced dimensional form. Sensemaking may take place at the end of the pipeline when users have an opportunity to observe, digest, and internalize any information displayed. However, some visualizations mask meaningful data structures when model or algorithm constraints (e.g., parameter specifications) contradict information in the data. Yet, due to the linearity of the pipeline, users do not have a natural means to adjust the displays. In this paper, we present a framework for creating dynamic data displays that rely on both mechanistic data summaries and expert judgement. The key is that we develop both the theory and methods of a new human-data interaction to which we refer as “ Visual to Parametric Interaction” (V2PI). With V2PI, the pipeline becomes bi-directional in that users are embedded in the pipeline; users learn from visualizations and the visualizations adjust to expert judgement. We demonstrate the utility of V2PI and a bi-directional pipeline with two examples. PMID:23555552

  12. ECO2N V. 2.0: A New TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, L.; Spycher, N.; Doughty, C.

    2014-12-01

    ECO2N V2.0 is a fluid property module for the TOUGH2 simulator (Version 2.1) that was designed for applications to geologic sequestration of CO 2 in saline aquifers and enhanced geothermal reservoirs. ECO2N V2.0 is an enhanced version of the previous ECO2N V1.0 module (Pruess, 2005). It expands the temperature range up to about 300°C whereas V1.0 can only be used for temperatures below about 110°C. V2.0 includes a comprehensive description of the thermodynamics and thermophysical properties of H 2O - NaCl -CO 2 mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions ofmore » interest (10 °C < T < 300 °C; P < 600 bar; salinity up to halite saturation). This includes density, viscosity, and specific enthalpy of fluid phases as functions of temperature, pressure, and composition, as well as partitioning of mass components H 2O, NaCl and CO 2 among the different phases. In particular, V2.0 accounts for the effects of water on the thermophysical properties of the CO 2-rich phase, which was ignored in V1.0, using a model consistent with the solubility models developed by Spycher and Pruess (2005, 2010). In terms of solubility models, V2.0 uses the same model for partitioning of mass components among the different phases (Spycher and Pruess, 2005) as V1.0 for the low temperature range (<99°C) but uses a new model (Spycher and Pruess, 2010) for the high temperature range (>109°C). In the transition range (99-109°C), a smooth interpolation is applied to estimate the partitioning as a function of the temperature. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO 2-rich) phase, as well as two-phase mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. This report gives technical specifications of ECO2N V2.0 and includes instructions for

  13. C112 C123 generated by two particle correlations through v2 and v3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longacre, Ronald S.

    2018-01-31

    Abstract: In this note we consider the three particle correlators C112 and C123 and how they can be generated from a pure two particle correlation by interacting with a v2 and a v3 of the overall system.

  14. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment

  15. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.

    PubMed

    Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla

    2014-07-01

    The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A V(IV) Hydroxyhydrogenomonophosphate with an Intersecting Tunnel Structure: HK 4[V 10O 10(H 2O) 2(OH) 4(PO 4) 7]·9H 2O

    NASA Astrophysics Data System (ADS)

    Berrah, F.; Guesdon, A.; Leclaire, A.; Borel, M. M.; Provost, J.; Raveau, B.

    1999-12-01

    A V(IV) hydroxyhydrogenomonophosphate HK4[V10O10(H2O)2(OH)4(PO4)7]·9H2O has been obtained, using hydrothermal conditions. Its structure, closely related to that of (CH3)2NH2K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O, differs from the latter by its I41/a space group (instead of P43). This difference corresponds to a "disordering" of the vanadium atoms, with respect to the dimethyl ammonium phase. It is shown that this disorder, which appears in the form of "V5O22" units distributed at random, does not affect the oxygen framework. The analysis of this complex structure shows that it can be described from the stacking along c of [V8P7O38(OH)4(H2O)2]∞ layers interconnected through layers of isolated VO6 octahedra. In this structure, built up of VO6, VO5OH, and VO4(OH)(H2O) octahedra, of VO4OH pyramids, and of PO4 tetrahedra, large "toffee" tunnels and smaller ones with a tulip-shape section are running along a (or b). The first ones are stuffed with H2O molecules forming aquo tubes, where protons are likely "delocalized," whereas the second ones are occupied by K+ cations.

  17. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor

    PubMed Central

    Chen, Pin-Chuan; Park, Daniel S.; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A.; Nikitopoulos, Dimitris E.; Murphy, Michael C.

    2010-01-01

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow

  18. Predominant expansion of V gamma 9/V delta 2 T cells in a tularemia patient.

    PubMed Central

    Sumida, T; Maeda, T; Takahashi, H; Yoshida, S; Yonaha, F; Sakamoto, A; Tomioka, H; Koike, T; Yoshida, S

    1992-01-01

    We describe a 58-year-old man with tularemia and expanding gamma delta T cells in his peripheral blood lymphocytes (PBL) (32.7% of total PBL). In the present work, we analyzed the T-cell receptor V gamma/V delta repertoire of these cells by making use of the polymerase chain reaction and flow cytometry and found that they were mostly CD4- CD8- CD3+ V gamma 9/V delta 2+. The sequence analysis of 16 cDNA clones encoding the V gamma 9-J region revealed that the V gamma 9-Jp combination was strikingly overrepresented but that the junctional (N) region was heterogeneous. This suggested that the gamma delta T cells in PBL from a patient with tularemia were polyclonally expanded. Images PMID:1534075

  19. Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Adams, M. M.; Webster, M. J.; Gattass, R.; Blumberg, D. M.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Previous immunohistochemical studies combined with retrograde tracing in macaque monkeys have demonstrated that corticocortical projections can be differentiated by their content of neurofilament protein. The present study analyzed the distribution of nonphosphorylated neurofilament protein in callosally projecting neurons located at the V1/V2 border. All of the retrogradely labeled neurons were located in layer III at the V1/V2 border and at an immediately adjacent zone of area V2. A quantitative analysis showed that the vast majority (almost 95%) of these interhemispheric projection neurons contain neurofilament protein immunoreactivity. This observation differs from data obtained in other sets of callosal connections, including homotypical interhemispheric projections in the prefrontal, temporal, and parietal association cortices, that were found to contain uniformly low proportions of neurofilament protein-immunoreactive neurons. Comparably, highly variable proportions of neurofilament protein-containing neurons have been reported in intrahemispheric corticocortical pathways, including feedforward and feedback visual connections. These results indicate that neurofilament protein is a prominent neurochemical feature that identifies a particular population of interhemispheric projection neurons at the V1/V2 border and suggest that this biochemical attribute may be critical for the function of this subset of callosal neurons.

  20. Use of ion beams to simulate reaction of reactor fuels with their cladding

    NASA Astrophysics Data System (ADS)

    Birtcher, R. C.; Baldo, P.

    2006-01-01

    Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27Al(p,γ)28Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 °C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm2/dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery.

  1. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells.

    PubMed

    Mudado, M A; Rodrigues, A L; Prado, V F; Beirão, P S L; Cruz, J S

    2004-06-01

    T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 +/- 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 +/- 2.4 and 6.7 +/- 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 +/- 0.97 and 7.5 +/- 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of alpha1G (CaV3.1) and alpha1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.

  2. Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

    PubMed Central

    An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei

    2014-01-01

    Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576

  3. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  5. Vibrational energy transfer in OH X 2Pi(i), v = 2 and 1

    NASA Technical Reports Server (NTRS)

    Raiche, George A.; Jeffries, Jay B.; Rensberger, Karen J.; Crosley, David R.

    1990-01-01

    Using an IR-pump/UV-probe method in a flow discharge cell, vibrational energy transfer in OH X 2Pi(i) has been studied. OH is prepared in v = 2 by overtone excitation, and the time evolution of population in v = 2 and 1 monitored by laser-induced fluorescence. Rate constants for vibrational relaxation by the colliders H2O, NH3, CO2, and CH4 were measured. Ratios of rate constants for removal from the two states, k2/k1, range from two to five.

  6. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  7. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Impact of JAK2V617F Mutation Burden on Disease Phenotype in Chinese Patients with JAK2V617F-positive Polycythemia Vera (PV) and Essential thrombocythemia (ET).

    PubMed

    Zhao, Shixiang; Zhang, Xiang; Xu, Yang; Feng, Yufeng; Sheng, Wenhong; Cen, Jiannong; Wu, Depei; Han, Yue

    2016-01-01

    Most patients with polycythemia vera (PV) and half of essential thrombocythemia (ET) possess an activating JAK2V617F mutation. The objective of this study was to better define the effect of JAK2V617F mutant allele burden on clinical phenotypes in Chinese patients, especially thrombosis. By real-time polymerase chain reaction (RT-PCR), the JAK2V617F mutation burden was detected in 170 JAK2V617F-positive patients, including 54 PV and 116 ET. The results showed that JAK2V617F allele burden was higher in PV than in ET (P< 0.001). Higher percentage of patients had JAK2V617F allele burden over 20% in PV than in ET (68.5% VS 26.7%) (P< 0.001). In PV patients, higher JAK2V617F allele burden was observed in female (P< 0.05) and leukocytosis patients (WBC above 10 × 10(9)/L) (P< 0.001). Meanwhile, ET patients showed increased JAK2V617F allele burden in the group with higher hemoglobin (HGB above 150 g/L) (P< 0.05), leukocytosis (WBC above 10 × 10(9)/L) (P< 0.001), splenomegaly (P< 0.05) and thrombosis (P< 0.05). In conclusion, the JAK2V617F mutation allele burden is higher in Chinese patients with PV than ET. In PV patients, JAK2V617F mutation burden had influence on WBC counts. And the clinical characteristics of ET patients, such as WBC counts, hemoglobin level, splenomegaly and thrombosis, were influenced by JAK2V617F mutation burden. Male, high hemoglobin (HGB above 150 g/L), and increased JAK2V617F mutation burden (JAK2V617F allele burden ≥ 16.5%) were risks of thrombosis (P< 0.05) for ET patients by Logistic Regression.

  10. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals.

    PubMed

    Guan, Jingyang; Berlinger, Sarah A; Li, Xiaozheng; Chao, Zhongmou; Sousa E Silva, Victor; Banta, Scott; West, Alan C

    2017-03-10

    Electrofuels processes are potentially promising platforms for biochemical production from CO 2 using renewable energy. When coupled to solar panels, this approach could avoid the inefficiencies of photosynthesis and there is no competition with food agriculture. In addition, these systems could potentially be used to store intermittent or stranded electricity generated from other renewable sources. Here we develop reactor configurations for continuous electrofuels processes to convert electricity and CO 2 to isobutyric acid (IBA) using genetically modified (GM) chemolithoautotrophic Acidithiobacillus ferrooxidans. These cells oxidize ferrous iron which can be electrochemically reduced. During two weeks of cultivation on ferrous iron, stable cell growth and continuous IBA production from CO 2 were achieved in a process where media was circulated between electrochemical and biochemical rectors. An alternative process with an additional electrochemical cell for accelerated ferrous production was developed, and this system achieved an almost three-fold increase in steady state cell densities, and an almost 4-fold increase in the ferrous iron oxidation rate. Combined, this led to an almost 8-fold increase in the steady state volumetric productivity of IBA up to 0.063±0.012mg/L/h, without a decline in energy efficiency from previous work. Continued development of reactor configurations which can increase the delivery of energy to the genetically modified cells will be required to increase product titers and volumetric productivities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    PubMed

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  12. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    PubMed

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  13. Kinetics study of palm oil hydrolysis using immobilized lipase Candida rugosa in packed bed reactor.

    PubMed

    Min, C S; Bhatia, S; Kamaruddin, A H

    1999-01-01

    Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.

  14. The Representation of Orientation in Macaque V2: Four Stripes Not Three

    PubMed Central

    Felleman, Daniel J.; Lim, Heejin; Xiao, Youping; Wang, Yi; Eriksson, Anastasia; Parajuli, Arun

    2015-01-01

    Area V2 of macaque monkeys is traditionally thought to consist of 3 distinct functional compartments with characteristic cortical connections and functional properties. Orientation selectivity is one property that has frequently been used to distinguish V2 stripes, however, this receptive field property has been found in a high percentage of neurons across V2 compartments. Using quantitative intrinsic cortical imaging, we derived maps of preferred orientation, orientation selectivity, and orientation gradient in thin stripes, thick stripes, and interstripes in area V2. Orientation-selective responses were found in each V2 stripe, but the magnitude and organization of orientation selectivity differed significantly from stripe to stripe. Remarkably, the 2 pale stripes flanking each cytochrome oxidase dense stripe differed significantly in their representation of orientation resulting in their distinction as type-I and type-II interstripes. V2 orientation maps are characterized by clockwise and anticlockwise “orientation pinwheels”, but unlike V1, they are not homogeneously distributed across V2. Furthermore, V2 stripes contain large-scale sequences of preferred orientation. These analyses demonstrate that V2 consists of 4 distinct functional compartments; thick stripes and type-II interstripes, which are strongly orientation selective and thin stripes and type-I interstripes, which are significantly less selective for orientation and exhibit larger orientation gradient magnitudes. PMID:24614951

  15. Performance of a composite membrane bioreactor treating toluene vapors: inocula selection, reactor performance and behavior under transient conditions.

    PubMed

    Kumar, Amit; Dewulf, Jo; Vercruyssen, Aline; Van Langenhove, Herman

    2009-04-01

    In this study, a membrane biofilm reactor performance for toluene as a model pollutant is presented. A composite membrane consisting of a porous polyacrylonitrile (PAN) support layer coated with a very thin (0.3 microm) dense polydimethylsiloxane (PDMS) top layer was used. Batch experiments were performed to select an appropriate inocula (slaughterhouse wastewater treatment sludge with a specific toluene consumption rate of 118+/-23 microg g(-1) VSS L(-1)) among the three available sources of inoculums. The maximum elimination capacity gas-side reactor volume based (EC)v and membrane based (EC)(m, max) obtained were 609 g m(-3) h(-1) and 1.2 g m(-2) h(-1) respectively, which is much higher than other membrane bioreactors. Further experiments involved the study of the membrane biofilm reactor flexibility when operational parameters as temperature, loading rate etc. were modified. In all cases, the membrane biofilm reactor showed a rapid adaptation and new steady-states were obtained within hours. Overall, the results illustrate that membrane bioreactors can potentially be a good option for treatment of air pollutants such as toluene.

  16. State-to-state collisional interelectronic and intraelectronic energy transfer involving CN A 2Π v=3 and X 2Σ+ v=7 rotational levels

    NASA Astrophysics Data System (ADS)

    Jihua, Guo; Ali, Ashraf; Dagdigian, Paul J.

    1986-12-01

    Collisional transfer within the CN A 2Π v=3 vibrational manifold and to the X 2Σ+ v=7 manifold has been studied with initial and final rotational state resolution by an optical-optical double resonance technique. Despite the large energy gap between these two manifolds, the interelectronic cross sections are significant for only a relatively small range of ΔJ, and there is no observable propensity for energy resonant, large ΔJ transitions. The even-odd alternation vs N, observed previously in vA=7 collisions [N. Furio, A. Ali, and P. J. Dagdigian, J. Chem. Phys. 85, 3860 (1986)] and indicative of the near homonuclear form of the CN-Ar interaction potentials, is even more pronounced here for vA=3. The relative rate of intraelectronic and interelectronic energy transfer for the vA=3 N=6 F1f initial level was found to be comparable to that for the corresponding vA=7 level, despite the smaller Franck-Condon factor and larger energy gap to the neighboring vX=vA-4 manifold for the former.

  17. Generation of the V4.2m5 and AMPX and MPACT 51 and 252-Group Libraries with ENDF/B-VII.0 and VII.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog

    The evaluated nuclear data file (ENDF)/B-7.0 v4.1m3 MPACT 47-group library has been used as a main library for the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronics simulator in simulating pressurized water reactor (PWR) problems. Recent analysis for the high void boiling water reactor (BWR) fuels and burnt fuels indicates that the 47-group library introduces relatively large reactivity bias. Since the 47- group structure does not match with the SCALE 6.2 252-group boundaries, the CASL Virtual Environment for Reactor Applications Core Simulator (VERA-CS) MPACT library must be maintained independently, which causes quality assurance concerns. In order to addressmore » this issue, a new 51-group structure has been proposed based on the MPACT 47- g and SCALE 252-g structures. In addition, the new CASL library will include a 19-group structure for gamma production and interaction cross section data based on the SCALE 19- group structure. New AMPX and MPACT 51-group libraries have been developed with the ENDF/B-7.0 and 7.1 evaluated nuclear data. The 19-group gamma data also have been generated for future use, but they are only available on the AMPX 51-g library. In addition, ENDF/B-7.0 and 7.1 MPACT 252-g libraries have been generated for verification purposes. Various benchmark calculations have been performed to verify and validate the newly developed libraries.« less

  18. Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph.

    PubMed

    Liu, Hengwu; Wan, Dongyun; Ishaq, Ahmad; Chen, Lanli; Guo, Beibei; Shi, Siqi; Luo, Hongjie; Gao, Yanfeng

    2016-03-01

    For specific application to an uncooled infrared detector, VO2 thin films should have a series of characteristics including purposefully chosen polymorphs, accurate stoichiometry, phase stabilization, a high temperature-coefficient of resistance (TCR), and suitable square-resistance. This work reports controllable preparation of high-performance VO2 films via post annealing of a sandwich-structured V2O5/metal (V, W)/V2O5 multilayer precursor, which was deposited by RF magnetron sputtering. This sandwich structure can dynamically regulate oxygen contents and doping element levels in the films, enabling us to achieve accurate regulation of stoichiometry and polymorphs. The precursor films undergo a B to M phase transition depending on the quantity of the metal layers. At the thickness of the metal layer below a limitation, the resulting film after heat treatment was VO2 (B), and above the limitation, the product was VO2 (M). The optical modulation of the VO2 (M) in the near-infrared region can be tuned from 1.2 to 39.8% (ΔT2000 nm). TCR values can range from -1.89 to -4.29%/K and the square-resistances at room temperature (R0) from 69.68 to 12.63 kΩ. The simplicity in phase regulation of the present method and the superior optical and electrical properties of the films may allow its wide applications in thermo-opto-electro sensing devices.

  19. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  20. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  1. Interim MELCOR Simulation of the Fukushima Daiichi Unit 2 Accident Reactor Core Isolation Cooling Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kyle W.; Gauntt, Randall O.; Cardoni, Jeffrey N.

    2013-11-01

    Data, a brief description of key boundary conditions, and results of Sandia National Laboratories’ ongoing MELCOR analysis of the Fukushima Unit 2 accident are given for the reactor core isolation cooling (RCIC) system. Important assumptions and related boundary conditions in the current analysis additional to or different than what was assumed/imposed in the work of SAND2012-6173 are identified. This work is for the U.S. Department of Energy’s Nuclear Energy University Programs fiscal year 2014 Reactor Safety Technologies Research and Development Program RC-7: RCIC Performance under Severe Accident Conditions.

  2. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  3. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  4. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  5. Flux effect analysis in WWER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kryukov, A.; Blagoeva, D.; Debarberis, L.

    2013-11-01

    The results of long term research programme concerning the determination of irradiation embrittlement dependence on fast neutron flux for WWER-440 reactor pressure vessel steels before and after annealing are presented in this paper. The study of flux effect was carried out on commercial WWER-440 steels which differ significantly in phosphorous (0.013-0.036 wt%) and copper (0.08-0.20 wt%) contents. All specimens were irradiated in surveillance channel positions under similar conditions at high ˜4 × 1012 сm-2 s-1 and low ˜6 × 1011 сm-2 s-1 fluxes (E > 0.5 MeV) at a temperature of 270 °С. The radiation embrittlement was evaluated by transition temperature shift on the basis of Charpy specimens test results. In case of low flux, the measured Tk shifts could be 25-50 °C bigger than the Tk shifts obtained from high flux data. A significant flux effect is observed in WWER-440 reactor pressure vessel steels with higher copper content (>0.13 wt%).

  6. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  7. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study

    PubMed Central

    Hartimath, Siddesh V.; Manuelli, Valeria; Zijlma, Rolf; Signore, Alberto; Nayak, Tapan K.; Freimoser-Grundschober, Anne; Klein, Christian; Dierckx, Rudi A.J.O.; de Vries, Erik F.J.

    2018-01-01

    Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [18F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [18F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [18F]FB-IL2v to IL2R was reversible. The volume of distribution (VT) and the non-displaceable binding potential (BPnd) of mutant [18F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [18F]FB-IL2 (p < 0.01). Pretreatment with wt-IL2 significantly reduced the VT and BPnd of mutant [18F]FB-IL2v in the implant (p < 0.001). This demonstrates that wild-type [18F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [18F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug. PMID:29467958

  8. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    PubMed Central

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  9. U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor

    NASA Astrophysics Data System (ADS)

    Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.

    2018-02-01

    Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.

  10. Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol-gel method

    NASA Astrophysics Data System (ADS)

    Jodłowski, Przemysław J.; Chlebda, Damian K.; Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2018-01-01

    The aim of this study was to obtain thin zirconium dioxide coatings on structured reactors using the sonochemical sol-gel method. The preparation method of metal oxide layers on metallic structures was based on the synergistic combination of three approaches: the application of ultrasonic irradiation during the synthesis of Zr sol-gel based on a precursor solution containing zirconium(IV) n-propoxide, the addition of stabilszing agents, and the deposition of ZrO2 on the metallic structures using the dip-coating method. As a result, dense, uniform zirconium dioxide films were obtained on the FeCrAlloy supports. The structured reactors were characterised by various physicochemical methods, such as BET, AFM, EDX, XRF, XRD, XPS and in situ Raman spectroscopy. The results of the structural analysis by Raman and XPS spectroscopy confirmed that the metallic surface was covered by a ZrO2 layer without any impurities. SEM/EDX mapping revealed that the deposited ZrO2 covered the metallic support uniformly. The mechanical and high temperature tests showed that the developed ultrasound assisted sol-gel method is an efficient way to obtain thin, well-adhered zirconium dioxide layers on the structured reactors. The prepared metallic supports covered with thin ZrO2 layers may be a good alternative to layered structured reactors in several dynamics flow processes, for example for gas exhaust abatement.

  11. Three-dimensional magnetosheath plasma ion distributions from 200 eV to 2 MeV

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Eastman, T. E.

    1988-01-01

    This paper presents initial measurements, made with ISEE 1 plasma and energetic-particle instruments, of the three-dimensional magnetosheath plasma ion flow and the spectrum over the energy range of 200 eV to 2 MeV, obtained on two magnetosheath traversals, one on the dawn (December 19, 1977) and the other on the dusk (July 7, 1978) flanks of the magnetosphere. The data suggest that the magnetosheath plasma ion population often consisted of a shocked solar wind component, of energy not greater than 5 keV, and a magnetospheric high-energy (not below 5 keV) component. The shocked solar wind component generally behaved independently of the magnetic field direction, indicating that the magnetic field was carried along in the bulk plasma flow. The high-energy tail was highly modulated by the magnetic field.

  12. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on themore » mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tendera, P.

    At present there are two NPPs equipped with PWR units in Czech Republic. The Dukovany NPP is about ten years in operation (four units 440 MW - WWER model 213) and Temelin NPP is under construction (two units 1000 MW-WWER model 320). Both NPPs were built to Soviet design and according to Soviet regulations and standards but most of equipment for primary circuits was supplied by home manufactures. The objective for the Czech LBB programme is to prove the LBB status of the primary piping systems of these NPPs and the LBB concept is a part of strategy to meetmore » western style safety standards. The reason for the Czech LBB project is a lack of some standard safety facilities, too. For both Dukovany and Temolin NPPs a full LBB analysis should be carried out. The application of LBB to the piping system should be also a cost effective means to avoid installations of pipe whip restraints and jet shields. The Czech regulatory body issued non-mandatory requirement {open_quotes}Leak Before Break{close_quotes} which is in compliance with national legal documents and which is based on the US NRC Regulatory Procedures and US standards (ASME, CODE, ANSI). The requirement has been published in the document {open_quotes}Safety of Nuclear Facilities{close_quotes} No. 1/1991 as {open_quotes}Requirements on the Content and Format of Safety Reports and their Supplements{close_quotes} and consists of two parts (1) procedure for obtaining proof of evidence {open_quotes}Leak Before Break{close_quotes} (2) leak detection systems for the pressurized reactor primary circuit. At present some changes concerning both parts of the above document will be introduced. The reasons for this modifications will be presented.« less

  14. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.

    PubMed

    Zarella, Mark D; Ts'o, Daniel Y

    2017-01-01

    Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.

  15. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2

    PubMed Central

    Zarella, Mark D; Ts’o, Daniel Y

    2017-01-01

    Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure–ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure–ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure–ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization. PMID:28761385

  16. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  17. Electrochemical Recovery of Gold from Waste Electric and Electronic Equipment Using Circulating Particulate Bed Reactor (CPBE)

    NASA Astrophysics Data System (ADS)

    Ravinder, T.; Ali, U. F. M.; Ridwan, F. M.; Ibrahim, N.; Azmi, N. H.

    2017-06-01

    The utilization of electrochemical process recovery involving low reactant concentrations of metal requires electrodes with high mass transport rates and specific surface areas. This is essential to increase cross-sectional current densities whilst optimizing the capital and operating costs. Experimental results demonstrated that Circulating Particulate Bed Reactor (CPBE) is suitable for the recovery of low concentrations of gold from aqueous chloride solution containing {{AuCl}}4- and {{AuCl}}2- of less than 0.5 mol m-3(< 102 g m-3). Elemental gold was successfully obtained on 0.5-1 mm gr particles in an electrochemical reactor incorporating a cation- permeable membrane and operated in bath recycle mode. Depletion to concentration < 5 × 10-3 mol m-3 (< 1 g m-3) appeared to be mass transport controlled at an applied potential of +0.20 V (SCE), specific electrical energy consumption (SEEC) of ca. 800-1300 kWh h (tonne Au)-1 for cell voltages (U) of 2.0-3.0 V, and fractional current efficiencies of ca. 0.95. However, atomic absorption and UV spectrophotometry established that as the ([{{AuCl}}4-+[{{AuCl}}2-]) concentration decayed, the [{{AuCl}}4-]:[{{AuCl}}2-] molar ratio changed. A multi-step mechanism for reduction of {{AuCl}}4- ions explained this behavior in terms of changing overpotentials for {{AuCl}}4- and {{AuCl}}2- reduction as total dissolved gold concentration decreased. In addition, SEM images confirmed that adherent and coherent Au deposits were achieved with CPBE for Au deposition under mass transport control at 0.20 V (SCE).

  18. Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation.

    PubMed

    Schaffner, Beatrice; Meier, Anton; Wuillemin, Daniel; Hoffelner, Wolfgang; Steinfeld, Aldo

    2003-01-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. It features two cavities in series, with the inner one functioning as the solar absorber and the outer one functioning as the reaction chamber. The solar reactor can handle thermochemical processes at temperatures above 1,300 K involving multiphases and controlled atmospheres. It further allows for batch or continuous mode of operation and for easy adjustment of the residence time of the reactants to match the kinetics of the reaction. A 10-kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2,000 kW m(-2) and operated in both batch and continuous mode within the temperature range of 1,120-1,400 K. Extraction of over 90% of the toxic compounds originally contained in the EAFD was achieved while the condensable products of the off-gas contained mainly Zn, Pb, and Cl. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles.

  19. Fusion Ash Separation in the Princeton Field-Reversed Configuration Reactor

    NASA Astrophysics Data System (ADS)

    Abbate, Joseph; Yeh, Meagan; McGreivy, Nick; Cohen, Samuel

    2016-10-01

    The Princeton Field-Reversed Configuration (PFRC) concept relies on low-neutron production by D-3He fusion to enable small, safe nuclear-fusion reactors to be built, an approach requiring rapid and efficient extraction of fusion ash and energy produced by D-3He fusion reactions. The ash exhaust stream would contain energetic (0.1-1 MeV) protons, T, 3He, and 4He ions and nearly 1e5 cooler (ca. 100 eV) D ions. The T extracted from the reactor would be a valuable fusion product in that it decays into 3He, which could be used as fuel. If the T were not extracted it would be troublesome because of neutron production by the D-T reaction. This paper discusses methods to separate the various species in a PFRC reactor's exhaust stream. First, we discuss the use of curved magnetic fields to separate the energetic from the cool components. Then we discuss exploiting material properties, specifically reflection, sputtering threshold, and permeability, to allow separation of the hydrogen from the helium isotopes. DOE Contract Number DE-AC02-09CH11466.

  20. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Valette, G; Garcia, G; Pascal, M; Maffrand, J P; Le Fur, G

    2002-01-01

    The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats

  1. MATISSE-v1.5 and MATISSE-v2.0: new developments and comparison with MIRAMER measurements

    NASA Astrophysics Data System (ADS)

    Simoneau, Pierre; Caillault, Karine; Fauqueux, Sandrine; Huet, Thierry; Labarre, Luc; Malherbe, Claire; Rosier, Bernard

    2009-05-01

    MATISSE is a background scene generator developed for the computation of natural background spectral radiance images and useful atmospheric radiatives quantities (radiance and transmission along a line of sight, local illumination, solar irradiance ...). The spectral bandwidth ranges from 0.4 to 14 μm. Natural backgrounds include atmosphere (taking into account spatial variability), low and high altitude clouds, sea and land. The current version MATISSE-v1.5 can be run on SUN and IBM workstations as well as on PC under Windows and Linux environment. An IHM developed under Java environment is also implemented. MATISSE-v2.0 recovers all the MATISSE-v1.5 functionalities, and includes a new sea surface radiance model depending on wind speed, wind direction and the fetch value. The release of this new version in planned for April 2009. This paper gives a description of MATISSE-v1.5 and MATISSE-v2.0 and shows preliminary comparison results between generated images and measured images during the MIRAMER campaign, which hold in May 2008 in the Mediterranean Sea.

  2. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less

  3. A study of thermal hydraulic and kinetic phenomena in HYLIFE-2: An inertial confinement fusion reactor

    NASA Astrophysics Data System (ADS)

    Chen, Xiang Ming

    1993-01-01

    Researchers have studied the different aspects of commercial fusion energy for several decades. A variety of inertial confinement fusion (ICF) reactors have been proposed. Different from the magnetic confinement fusion concept, inertial confinement fusion does not need long-term confinement of the fusion fuel but achieves fusion reaction in a short microexplosion under a high density, high temperature condition. The HYLIFE-2 reactor design started in 1987 is based on the study of a previous concept called HYLIFE (High Yield Lithium Injection Fusion Energy). Similar to the old concept, the HYLIFE-2 design uses a vacuum chamber in which D-T fusion pellets are injected and ignited by high energy beams shot into the reactor through different ports. The reactor vessel is protected from explosion radiations by a liquid fall (blanket) that also breeds tritium through the (n, alpha) reaction of lithium and conveys the fusion energy to the power cycle. In addition to some geometric chances, the new design replaces liquid metal lithium with the molten salt Flibe (Li2BeF4) as the protective blanket material. The objective was to remove the possibility of fire hazard. The important thermal hydraulic issues in the design are (1) equation of state of Flibe; (2) liquid relaxation after isochoric (constant volume) heating; (3) ablation and gas dynamics; (4) interaction of the vapor and liquid; and (5) condensation of the vaporized material. The first four issues have to do with the internal relaxation after the fusion microexplosion in the chamber. Vaporized material, as well as liquid, may assert strong impulses on the chamber wall during the process of relaxing after absorbing the energy from the microexplosion. Item (5) is related to the rapid vacuum recovery between the ignitions. Some aspects of the first four issues are studied.

  4. All solid-state V2O5-based flexible hybrid fiber supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Huan; He, Jin; Cao, Xin; Kang, Liping; He, Xuexia; Xu, Hua; Shi, Feng; Jiang, Ruibin; Lei, Zhibin; Liu, Zong-Huai

    2017-12-01

    Vanadium pentoxide/single-walled carbon nanotube (V2O5-SWCNT) hybrid fibers with good electrochemical performance and flexibility are firstly prepared by using wet-spinning method. V2O5 nanobelt suspension is obtained by mixing V2O5 bulk, 30% H2O2, H2O and followed by hydrothermally treating at 190 °C for 15 h. SWCNT suspension is suspended into V2O5 nanobelt suspension under vigorous stirring, the V2O5-SWCNT homogenous suspension is obtained. It is injected into a coagulation bath composed of 5 wt % CaCl2 ethanol-water solution using syringe pump, V2O5-SWCNT hybrid fibers are prepared by washing with deionized water and drying at room temperature. Reduced graphene oxide (RGO)-SWCNT hybrid fibers are also prepared by the similar wet-spinning approach and followed by reducing GO-SWCNT hybrid fibers in an aqueous solution of hydriodic acid. All solid-state asymmetric V2O5/SWCNT//RGO/SWCNT fiber supercapacitors are assembled with V2O5-SWCNT fiber as positive electrode and RGO-SWCNT fiber as negative electrode by using PVA-H3PO4 as gel electrolyte. The assembled device not only shows maximum volumetric energy density of 1.95 mW h cm-3 at a volumetric power density of 7.5 mW cm-3, superior rate performance and cycling stability, but also exhibits remarkable flexibility to tolerate long-term and repeated bending. This work will open a new application filed of V2O5-based fibers in wearable energy storage devices.

  5. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  6. Locating PHEV exchange stations in V2G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Feng; Bent, Russell; Berscheid, Alan

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problemmore » and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.« less

  7. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    NASA Astrophysics Data System (ADS)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  8. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  9. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors.

    PubMed

    Juul, Kristian Vinter; Bichet, Daniel G; Nielsen, Søren; Nørgaard, Jens Peter

    2014-05-01

    The arginine vasopressin (AVP) type 2 receptor (V2R) is unique among AVP receptor subtypes in signaling through cAMP. Its key function is in the kidneys, facilitating the urine concentrating mechanism through the AVP/V2 type receptor/aquaporin 2 system in the medullary and cortical collecting ducts. Recent clinical and research observations strongly support the existence of an extrarenal V2R. The clinical importance of the extrarenal V2R spans widely from stimulation of coagulation factor in the endothelium to as yet untested potential therapeutic targets. These include V2R-regulated membranous fluid turnover in the inner ear, V2R-regulated mitogensis and apoptosis in certain tumor tissues, and numerous other cell types where the physiological role of V2Rs still requires further research. Here, we review current evidence on the physiological and pathophysiological functions of renal and extrarenal V2Rs. These functions of V2R are important, not only in rare diseases with loss or gain of function of V2R but also in relation to the recent use of nonpeptide V2R antagonists to treat hyponatremia and possibly retard the growth of cysts and development of renal failure in autosomal dominant polycystic kidney disease. The main functions of V2R in principal cells of the collecting duct are water, salt, and urea transport by modifying the trafficking of aquaporin 2, epithelial Na(+) channels, and urea transporters and vasodilation and stimulation of coagulation factor properties, mainly seen with pharmacological doses of 1-desamino-8-D-AVP. The AVPR2 gene is located on the X chromosome, in a region with high probability of escape from inactivation; this may lead to phenotypic sex differences, with females expressing higher levels of transcript than males.

  10. Effect of Ge-GeO2 co-doping on non-ohmic behaviour of TiO2-V2O5-Y2O3 varistor ceramics

    NASA Astrophysics Data System (ADS)

    Kunyong, Kang; Guoyou, Gan; Jikang, Yan; Jianhong, Yi; Jiamin, Zhang; Jinghong, Du; Wenchao, Zhao; Xuequan, Rong

    2015-07-01

    An investigation was made into the effect of doping with the elemental crystal Ge or/and GeO2 on the TiO2-V2O5-Y2O3 varistor ceramics. The result shows that as the doping contents of V2O5 and Y2O3 are 0.5 mol%, respectively, co-doping with 0.3 mol% Ge and 0.9 mol% GeO2 makes the highest α value (α = 12.8), the lowest breakdown voltage V1mA (V1mA = 15.8 V/mm) and the highest grain boundary barrier ΦB (ΦB = 1.48 eV), which is remarkably superior to the TiO2-V2O5-Y2O3 varistor ceramics undoped with Ge and GeO2 and mono-doped with Ge or GeO2. The TiO2-V2O5-Y2O3-Ge-GeO2 ceramic has the prospect of becoming a novel varistor ceramic with excellent electrical properties. Project supported by the National Natural Science Foundation of China (Nos. 51262017, 51362017).

  11. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    PubMed Central

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID

  12. An efficient 14-MeV neutron detector for use in mixed 2. 5- and 14-MeV neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, S.; Bond, D.S.; Hawkes, N.P.

    1993-06-01

    A neutron detector capable of measuring the time-dependent yield of 14-MeV neutrons from a D--D plasma producing predominantly 2.5-MeV neutrons has been developed. The detector consists of a thick polythene recoil proton radiator backed by a graphite foil attached to a large area totally depleted ion-implanted diode. Protons scattered in the forward direction by 14-MeV neutrons pass through the graphite foil and are registered in the diode. Recoil protons from 2.5-MeV neutrons, however, are prevented from reaching the diode by the foil. When operated with a 1.5-MeV energy bias, the measured neutron detection efficiency for 15-MeV neutrons is 3.2[times]10[sup [minus]3]more » per neutron. The corresponding figure for 3.1-MeV neutrons is a factor of 540 lower. The neutron detector and its laboratory calibration are described, as is its deployment at the Joint European Torus where it serves as a triton burn-up monitor.« less

  13. Smallest fullerene-like silicon cage stabilized by a V(2) unit.

    PubMed

    Xu, Hong-Guang; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun

    2014-01-14

    We conducted a combined anion photoelectron spectroscopy and density functional theory study on V2Si20 cluster. Our results show that the V2Si20 cluster has an elongated dodecahedron cage structure with a V2 unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.

  14. Smallest fullerene-like silicon cage stabilized by a V2 unit

    NASA Astrophysics Data System (ADS)

    Xu, Hong-Guang; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun

    2014-01-01

    We conducted a combined anion photoelectron spectroscopy and density functional theory study on V2Si20 cluster. Our results show that the V2Si20 cluster has an elongated dodecahedron cage structure with a V2 unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.

  15. A new 4-variable formula to differentiate normal variant ST segment elevation in V2-V4 (early repolarization) from subtle left anterior descending coronary occlusion - Adding QRS amplitude of V2 improves the model.

    PubMed

    Driver, Brian E; Khalil, Ayesha; Henry, Timothy; Kazmi, Faraz; Adil, Amina; Smith, Stephen W

    Precordial normal variant ST elevation (NV-STE), previously often called "early repolarization," may be difficult to differentiate from subtle ischemic STE due to left anterior descending (LAD) occlusion. We previously derived and validated a logistic regression formula that was far superior to STE alone for differentiating the two entities on the ECG. The tool uses R-wave amplitude in lead V4 (RAV4), ST elevation at 60 ms after the J-point in lead V3 (STE60V3) and the computerized Bazett-corrected QT interval (QTc-B). The 3-variable formula is: 1.196 x STE60V3 + 0.059 × QTc-B - 0.326 × RAV4 with a value ≥23.4 likely to be acute myocardial infarction (AMI). Adding QRS voltage in V2 (QRSV2) would improve the accuracy of the formula. 355 consecutive cases of proven LAD occlusion were reviewed, and those that were obvious ST elevation myocardial infarction were excluded. Exclusion was based on one straight or convex ST segment in V2-V6, 1 millimeter of summed inferior ST depression, any anterior ST depression, Q-waves, "terminal QRS distortion," or any ST elevation >5 mm. The NV-STE group comprised emergency department patients with chest pain who ruled out for AMI by serial troponins, had a cardiologist ECG read of "NV-STE," and had at least 1 mm of STE in V2 and V3. R-wave amplitude in lead V4 (RAV4), ST elevation at 60 ms after the J-point in lead V3 (STE60V3) and the computerized Bazett-corrected QT interval (QTc-B) had previously been measured in all ECGs; physicians blinded to outcome then measured QRSV2 in all ECGs. A 4-variable formula was derived to more accurately classify LAD occlusion vs. NV-STE and optimize area under the curve (AUC) and compared with the previous 3-variable formula. There were 143 subtle LAD occlusions and 171 NV-STE. A low QRSV2 added diagnostic utility. The derived 4-variable formula is: 0.052*QTc-B - 0.151*QRSV2 - 0.268*RV4 + 1.062*STE60V3. The 3-variable formula had an AUC of 0.9538 vs. 0.9686 for the 4-variable formula (p = 0

  16. W' Boson near 2 TeV: Predictions for Run 2 of the LHC.

    PubMed

    Dobrescu, Bogdan A; Liu, Zhen

    2015-11-20

    We present a renormalizable theory that includes a W' boson of mass in the 1.8-2 TeV range, which may explain the excess events reported by the ATLAS Collaboration in a WZ final state, and by the CMS Collaboration in e(+)e(-)jj, Wh(0), and jj final states. The W' boson couples to right-handed quarks and leptons, including Dirac neutrinos with TeV-scale masses. This theory predicts a Z' boson of mass in the 3.4-4.5 TeV range. The cross section times branching fractions for the narrow Z' dijet and dilepton peaks at the 13 TeV LHC are 10 and 0.6 fb, respectively, for M_(Z')=3.4  TeV, and an order of magnitude smaller for M_(Z')=4.5  TeV.

  17. One-step hydrothermal preparation of (NH4)2V3O8/carbon composites and conversion to porous V2O5 nanoparticles as supercapacitor electrode with excellent pseudocapacitive capability

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Zhang, Shaoqing; Hu, Tao; Meng, Changgong

    2017-11-01

    (NH4)2V3O8/carbon composites were successfully achieved using NH4VO3 and glucose as the starting materials via a one-step hydrothermal route for the first time. The composites consisted a layer structured (NH4)2V3O8 and amorphous carbon with aromatic structures containing lots of active function groups. Then porous V2O5 nanoparticles were fabricated by the thermal treatment of (NH4)2V3O8/carbon composites in air atmospheres. The BET specific surface area of (NH4)2V3O8/carbon composites measured 1.68 m2 g-1, whereas BET surface area of porous V2O5 nanoparticles reached 10.6 m2 g-1 and the average pore size totaled 28.9 nm. The synthetic process of (NH4)2V3O8/carbon composites and porous V2O5 nanoparticles was briefly discussed. Electrochemical properties of porous V2O5 nanoparticles as supercapacitor electrodes were investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolytes. The influence of calcined temperature and time and the mole ratio of NH4VO3/glucose on specific capacitance, phase and morphology of samples were discussed in detail. Porous V2O5 nanoparticles respectively exhibited the specific capacitance of 433 and 545 F g-1 in the aqueous and organic electrolytes at the current density of 1 A g-1. After 100 cycles, the capacitance retention was 89.6% in organic electrolyte, whereas it was only 22.9% in aqueous electrolyte. It turned out that electrochemical properties of porous V2O5 nanoparticles were greatly improved by using organic electrolyte.

  18. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    PubMed

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  19. Isolation and characterization of vB_ArS-ArV2 - first Arthrobacter sp. infecting bacteriophage with completely sequenced genome.

    PubMed

    Šimoliūnas, Eugenijus; Kaliniene, Laura; Stasilo, Miroslav; Truncaitė, Lidija; Zajančkauskaitė, Aurelija; Staniulis, Juozas; Nainys, Juozas; Kaupinis, Algirdas; Valius, Mindaugas; Meškys, Rolandas

    2014-01-01

    This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.

  20. Color-Space-Based Visual-MIMO for V2X Communication.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  1. High-rate treatment of molasses wastewater by combination of an acidification reactor and a USSB reactor.

    PubMed

    Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki

    2011-01-01

    A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.

  2. Single π+ electroproduction on the proton in the first and second resonance regions at 0.25GeV22<0.65GeV2

    NASA Astrophysics Data System (ADS)

    Egiyan, H.; Aznauryan, I. G.; Burkert, V. D.; Griffioen, K. A.; Joo, K.; Minehart, R.; Smith, L. C.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Baltzel, N.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Desanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnely, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Goetz, G. T.; Gordon, C. I.; Gothe, R.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B.; Ito, M. M.; Jenkins, D.; Juengst, H. G.; Kelley, J. H.; Kellie, J. D.; Khandaker, M.; Kim, D. H.; Kim, K. Y.; Kim, K.; Kim, M. S.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Longhi, A.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, J.; Zhao, J.; Zhou, Z.

    2006-02-01

    The ep→e'π+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV22<0.65 GeV2 range by use of the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time, to our knowledge, the absolute cross sections were measured, covering nearly the full angular range in the hadronic center-of-mass frame. We extracted the structure functions σTL,σTT, and the linear combination σT+ɛσL by fitting the ϕ dependence of the measured cross sections and compared them with the MAID and Sato-Lee models.

  3. Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials

    DOE PAGES

    Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...

    2017-03-07

    II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less

  4. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1994-01-01

    A high strength, high toughness Cr-W-V ferritic steel composition suitable for fast induced-radioactivity (FIRD) decay after irradiation in a fusion reactor comprises 2.5-3.5 wt % Cr, 2. This invention was made with Government support under contract DE-AC05-840R21400 awarded by the U.S. Department of Energy to Martin Marietta Energy Systems, Inc. and the Government has certain rights in this invention.

  5. Vehicle-to-infrastructure (V2I) program.

    DOT National Transportation Integrated Search

    2017-01-01

    Vehicle-to-infrastructure (V2I) communication, which involves the exchange of safety and operational data between vehicles and elements of the transportation infrastructure, offers a wide range of safety, mobility and environmental benefits. When car...

  6. Fast response of sprayed vanadium pentoxide (V2O5) nanorods towards nitrogen dioxide (NO2) gas detection

    NASA Astrophysics Data System (ADS)

    Mane, A. A.; Suryawanshi, M. P.; Kim, J. H.; Moholkar, A. V.

    2017-05-01

    The V2O5 nanorods have been successfully spray deposited at optimized substrate temperature of 400 °C onto the glass substrates using vanadium trichloride (VCl3) solution of different concentrations. The effect of solution concentration on the physicochemical and NO2 gas sensing properties of sprayed V2O5 nanorods is studied at different operating temperatures and gas concentrations. The XRD study reveals the formation of V2O5 having an orthorhombic symmetry. The FE-SEM micrographs show the nanorods-like morphology of V2O5. The AFM micrographs exhibit a well covered granular surface topography. For direct allowed transition, the band gap energy values are found to be decreased from 2.45 eV to 2.42 eV. The nanorods deposited with 30 mM solution concentration shows the maximum response of 24.2% for 100 ppm NO2 gas concentration at an operating temperature of 200 °C with response and recovery times of 13 s and 140 s, respectively. Finally, the chemisorption mechanism of NO2 gas on the V2O5 nanorods is discussed.

  7. Electrochemical properties of TiO2-V2O5 nanocomposites as a high performance supercapacitors electrode material

    NASA Astrophysics Data System (ADS)

    Ray, Apurba; Roy, Atanu; Sadhukhan, Priyabrata; Chowdhury, Sreya Roy; Maji, Prasenjit; Bhattachrya, Swapan Kumar; Das, Sachindranath

    2018-06-01

    The individual components being ample, inexpensive and non-toxic material, TiO2-V2O5 has drawn more attention compared to other metal oxides. The cost-effective, non-toxic TiO2-V2O5 nanocomposites with various molar ratios of Ti and V have been synthesized through wet chemical method. Microstructure studies have been performed using X-ray diffraction (XRD), FESEM, HRTTEM and other spectroscopic (XPS, FTIR) techniques. The synthesized TiO2-V2O5 nanocomposite with molar ratio 10:20 exhibits 3D, mesoporous interlinked tube-like structure with excellent electrochemical properties by delivering highest specific capacitance of 310 F g-1 at 2 mV s-1 scan rate compared to individual TiO2 and V2O5 material. Increase in vanadium ratio plays a leading role to the chemical properties. The synergistic effects between TiO2 and V2O5 have also been observed in this work. Due to the excellent electrochemical as well as other acceptable performance, the porous interconnected tube like nanocomposite can be used for energy storage application mainly for pseudocapacitor electrode material.

  8. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    NASA Astrophysics Data System (ADS)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  9. Kinetic Parameter Measurements in the MINERVE Reactor

    NASA Astrophysics Data System (ADS)

    Perret, Grégory; Geslot, Benoit; Gruel, Adrien; Blaise, Patrick; Di-Salvo, Jacques; De Izarra, Grégoire; Jammes, Christian; Hursin, Mathieu; Pautz, Andréas

    2017-01-01

    In the framework of an international collaboration, teams of the PSI and CEA research institutes measure the critical decay constant (α0 = β/A), delayed neutron fraction (β) and generation time (A) of the Minerve reactor using the Feynman-α, Power Spectral Density and Rossi-α neutron noise measurement techniques. These measurements contribute to the experimental database of kinetic parameters used to improve nuclear data files and validate modern methods in Monte Carlo codes. Minerve is a zero-power pool reactor composed of a central experimental test lattice surrounded by a large aluminum buffer and four high-enriched driver regions. Measurements are performed in three slightly subcritical configurations (-2 cents to -30 cents) using two high-efficiency 235U fission chambers in the driver regions. Measurement of α0 and β obtained by the two institutes and with the different techniques are consistent for the configurations envisaged. Slight increases of the β values are observed with the subcriticality level. Best estimate values are obtained with the Cross-Power Spectral Density technique at -2 cents, and are worth: β = 716.9±9.0 pcm, α0 = 79.0±0.6 s-1 and A = 90.7±1.4 μs. The kinetic parameters are predicted with MCNP5-v1.6 and TRIPOLI4.9 and the JEFF-3.1/3.1.1 and ENDF/B-VII.1 nuclear data libraries. The predictions for β and α0 overestimate the experimental results by 3-5% and 10-12%, respectively; that for A underestimate the experimental result by 6-7%. The discrepancies are suspected to come from the driven system nature of Minerve and the location of the detectors in the driver regions, which prevent accounting for the full reactor.

  10. Antifoaming effect of chemical compounds in manure biogas reactors.

    PubMed

    Kougias, P G; Tsapekos, P; Boe, K; Angelidaki, I

    2013-10-15

    A precise and efficient antifoaming control strategy in bioprocesses is a challenging task as foaming is a very complex phenomenon. Nevertheless, foam control is necessary, as foam is a major operational problem in biogas reactors. In the present study, the effect of 14 chemical compounds on foam reduction was evaluated at concentration of 0.05%, 0.1% and 0.5% v/v(sample), in raw and digested manure. Moreover, two antifoam injection methods were compared for foam reduction efficiency. Natural oils (rapeseed and sunflower oil), fatty acids (oleic, octanoic and derivative of natural fatty acids), siloxanes (polydimethylsiloxane) and ester (tributylphosphate) were found to be the most efficient compounds to suppress foam. The efficiency of antifoamers was dependant on their physicochemical properties and greatly correlated to their chemical characteristics for dissolving foam. The antifoamers were more efficient in reducing foam when added directly into the liquid phase rather than added in the headspace of the reactor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interaction between control and design of a SHARON reactor: economic considerations in a plant-wide (BSM2) context.

    PubMed

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2007-01-01

    The combined SHARON-Anammox process is a promising technique for nitrogen removal from wastewater streams with high ammonium concentrations. It is typically applied to sludge digestion reject water, in order to relieve the activated sludge tanks, to which this stream is typically recycled. This contribution assesses the impact of the applied control strategy in the SHARON-reactor, both on the effluent quality of the subsequent Anammox reactor as well as on the plant-wide level by means of an operating cost index. Moreover, it is investigated to which extent the usefulness of a certain control strategy depends on the reactor design (volume). A simulation study is carried out using the plant-wide Benchmark Simulation Model no. 2 (BSM2), extended with the SHARON and Anammox processes. The results reveal a discrepancy between optimizing the reject water treatment performance and minimizing plant-wide operating costs.

  12. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    PubMed

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas.

  13. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less

  14. Dynamic friction and wear of a solid film lubricant during radiation exposure in a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Jacobson, T. P.

    1972-01-01

    The effect of nuclear reactor radiation on the performance of a solid film lubricant was studied. The film consisted of molybdenum disulfide and graphite in a sodium silicate binder. Radiation levels of fast neutrons (E or = 1 MeV) were fluxed up to 3.5 times 10 to the 12th power n/sq cm-sec (intensity) and fluences up to 2 times 10 to the 18th power n/sq cm (total exposure). Coating wear lives were much shorter and friction coefficients higher in a high flux region of the reactor than in a low flux region. The amount of total exposure did not affect lubrication behavior as severely as the radiation intensity during sliding.

  15. High-temperature heat capacity of CdO-V2O5 oxides

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.; Galiakhmetova, N. A.

    2017-12-01

    Vanadates Cd2V2O7 and CdV2O6 have been prepared from CdO i V2O5 by three-phase synthesis with subsequent burning at 823-1073 K and 823-853 K, respectively. The molar heat capacity of these oxide compounds has been measured by differential scanning calorimetry. The enthalpy change, the entropy change, and the reduced Gibbs energy are calculated using the experimental dependences C p = f( T). It is shown that there is a correlation between the specific heat capacity and the composition of CdO-V2O5 oxide system.

  16. Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.

    2016-12-01

    TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.

  17. PI-RADS v2 and ADC values: is there room for improvement?

    PubMed

    Jordan, Eric J; Fiske, Charles; Zagoria, Ronald; Westphalen, Antonio C

    2018-03-17

    To determine the diagnostic accuracy of ADC values in combination with PI-RADS v2 for the diagnosis of clinically significant prostate cancer (CS-PCa) compared to PI-RADS v2 alone. This retrospective study included 155 men whom underwent 3-Tesla prostate MRI and subsequent MR/US fusion biopsies at a single non-academic center from 11/2014 to 3/2016. All scans were performed with a surface coil and included T2, diffusion-weighted, and dynamic contrast-enhanced sequences. Suspicious findings were classified using Prostate Imaging Reporting and Data System (PI-RADS) v2 and targeted using MR/US fusion biopsies. Mixed-effect logistic regression analyses were used to determine the ability of PIRADS v2 alone and combined with ADC values to predict CS-PCa. As ADC categories are more practical in clinical situations than numeric values, an additional model with ADC categories of ≤ 800 and > 800 was performed. A total of 243 suspicious lesions were included, 69 of which were CS-PCa, 34 were Gleason score 3+3 PCa, and 140 were negative. The overall PIRADS v2 score, ADC values, and ADC categories are independent statistically significant predictors of CS-PCa (p < 0.001). However, the area under the ROC of PIRADS v2 alone and PIRADS v2 with ADC categories are significantly different in both peripheral and transition zone lesions (p = 0.026 and p = 0.03, respectively) Further analysis of the ROC curves also shows that the main benefit of utilizing ADC values or categories is better discrimination of PI-RADS v2 4 lesions. ADC values and categories help to diagnose CS-PCa when lesions are assigned a PI-RADS v2 score of 4.

  18. Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Losa, Evžen; Baroň, Petr; Šolc, Jaroslav; Švadlenková, Marie; Koleška, Michal; Mareček, Martin; Uhlíř, Jan

    2017-12-01

    The present paper describes reaction rate measurement of 89Y(n,2n)88Y in a well-defined reactor spectrum of a special core assembled in the LR-0 reactor and compares this value with results of simulation. The reaction rate is derived from the measurement of activity of 88Y using gamma-ray spectrometry of irradiated Y2O3 sample. The resulting cross section value averaged in spectrum is 43.9 ± 1.5 μb, averaged in the 235U spectrum is 0.172 ± 0.006 mb. This cross-section is important as it is used as high energy neutron monitor and is therefore included in the International Reactor Dosimetry and Fusion File. Calculations of reaction rates were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. The agreement with uranium description by CIELO library is very good, while in ENDF/B-VII.0 description of uranium, underprediction about 10% in average can be observed.

  19. A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites

    NASA Astrophysics Data System (ADS)

    Yao, Huichao; Chen, Yu; Wei, Yuechang; Zhao, Zhen; Liu, Zhichang; Xu, Chunming

    2012-11-01

    The adsorption of ammonia at Brönsted and Lewis acid sites on three low-index (001), (010) and (100) surfaces of V2O5 catalyst was investigated using density functional theory (DFT) method. Three levels of surface relaxation periodic models including top single layer relaxation (S-model), moderately deeper relaxation (M-model) and full relaxation model (F-model) were applied to examine the effect of the surface relaxation on the binding structures and adsorption energies. The results of calculations showed that on the saturated basal plane V2O5 (001), ammonia adsorption at the Brönsted acid sites (VOH) is energetically more favorable. On unsaturated (010) and (100) surfaces, ammonia is adsorbed strongly on both Brönsted (VOH) and Lewis acid sites (V). Surface relaxations have no influence on ammonia adsorption on saturated (001) surface, while a strong dependence on the relaxation models is observed for NH3-adsorption energies on (010) and (100) surfaces, especially at the Lewis acid sites of both side planes. When complete relaxation considered (F-model), ammonia adsorption on the Lewis acid sites (V) dominates for side planes (010) and (100). In the presence of VOH as neighbor, the ammonia adsorption at V sites is however weakened significantly due to steric hindrance. Hydrogen bonds may play a role, although not determining one, in the respect of the adsorption of ammonia on (010) and (100) surfaces. Moderate relaxation and full relaxation are absolutely necessary for the description of both H and NH3 adsorption on unsaturated (100) and (010) surfaces, respectively.

  20. Determining Reactor Fuel Type from Continuous Antineutrino Monitoring

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Huber, Patrick

    2017-09-01

    We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5-ton antineutrino detector is placed 25 m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90-d periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at approximately 95%. In addition, we demonstrate that antineutrinos can identify the burnup at which weapons-grade mixed-oxide (MOX) fuel would be reduced to reactor-grade MOX, on average, providing assurance that plutonium-disposition goals are met. We also investigate removal scenarios where plutonium is purposefully diverted from a mixture of MOX and low-enriched uranium fuel. Finally, we discuss how our analysis is impacted by a spectral distortion around 6 MeV observed in the antineutrino spectrum measured from commercial power reactors.

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  2. 78 FR 58575 - Review of Experiments for Research Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0219] Review of Experiments for Research Reactors AGENCY... Commission (NRC) is withdrawing Regulatory Guide (RG) 2.4, ``Review of Experiments for Research Reactors... withdrawing RG 2.4, ``Review of Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because...

  3. Accurate 238U(n , 2 n )237U reaction cross-section measurements from 6.5 to 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Krishichayan, Bhike, M.; Tornow, W.; Tonchev, A. P.; Kawano, T.

    2017-10-01

    The cross section for the 238U(n ,2 n )237U reaction has been measured in the incident neutron energy range from 6.5 to 14.8 MeV in small energy steps using an activation technique. Monoenergetic neutron beams were produced via the 2H(d ,n )3He and 3H(d ,n )4He reactions. 238U targets were activated along with Au and Al monitor foils to determine the incident neutron flux. The activity of the reaction products was measured in TUNL's low-background counting facility using high-resolution γ -ray spectroscopy. The results are compared with previous measurements and latest data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the CoH3 code and are compared with the experimental results. The present self-consistent and high-quality data are important for stockpile stewardship and nuclear forensic purposes as well as for the design and operation of fast reactors.

  4. CO2 capture by means of an enzyme-based reactor

    NASA Technical Reports Server (NTRS)

    Cowan, R. M.; Ge, J-J; Qin, Y-J; McGregor, M. L.; Trachtenberg, M. C.

    2003-01-01

    We report a means for efficient and selective extraction of carbon dioxide (CO(2)) at low to medium concentration from mixed gas streams. CO(2) capture was accomplished by use of a novel enzyme-based, facilitated transport contained liquid membrane (EBCLM) reactor. The parametric studies we report explore both structural and operational parameters of this design. The structural parameters include carbonic anhydrase (CA) concentration, buffer concentration and pH, and liquid membrane thickness. The operational parameters are temperature, humidity of the inlet gas stream, and CO(2) concentration in the feed stream. The data show that this system effectively captures CO(2) over the range 400 ppm to at least 100,000 ppm, at or around ambient temperature and pressure. In a single pass across this homogeneous catalyst design, given a feed of 0.1% CO(2), the selectivity of CO(2) versus N(2) is 1,090 : 1 and CO(2) versus O(2) is 790 :1. CO(2) permeance is 4.71 x 10(-8) molm(-2) Pa(-1) sec(-1). The CLM design results in a system that is very stable even in the presence of dry feed and sweep gases.

  5. 58. MILL BUILDING (BUILDING 1558): VIEW FROM SOUTHWEST, WITH V2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. MILL BUILDING (BUILDING 1558): VIEW FROM SOUTHWEST, WITH V-2 ASSEMBLY BUILDING IN BACKGROUND AT FAR RIGHT - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  6. 56. V2 ASSEMBLY BUILDING (BUILDING 1538): VIEW FROM NORTHEAST, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. V-2 ASSEMBLY BUILDING (BUILDING 1538): VIEW FROM NORTHEAST, WITH MILL BUILDING IN BACKGROUND AT FAR RIGHT - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  7. Intermediate Nuclear Structure for 2v 2{beta} Decay of {sup 48}Ca Studied by (p, n) and (n, p) Reactions at 300 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, H.; Yako, K.

    2009-08-26

    Angular distributions of the double differential cross sections for the {sup 48}Ca(p,n) and the {sup 48}Ti(n,p) reactions were measured at 300 MeV. A multipole decomposition technique was applied to the spectra to extract the Gamow-Teller (GT) transition strengths. In the (n, p) spectrum beyond 8 MeV excitation energy extra B(GT{sup +}) strengths which are not predicted by the shell model calculation. This extra B(GT{sup +}) strengths significantly contribute to the nuclear matrix element of the 2v2{beta}-decay.

  8. Nuclear reactors built, being built, or planned, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor ismore » an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  9. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    PubMed Central

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-01-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design. PMID:27677326

  10. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-09-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

  11. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films

    NASA Astrophysics Data System (ADS)

    Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.

    2017-09-01

    Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.

  12. Solving da Vinci stereopsis with depth-edge-selective V2 cells

    PubMed Central

    Assee, Andrew; Qian, Ning

    2007-01-01

    We propose a new model for da Vinci stereopsis based on a coarse-to-fine disparity-energy computation in V1 and disparity-boundary-selective units in V2. Unlike previous work, our model contains only binocular cells, relies on distributed representations of disparity, and has a simple V1-to-V2 feedforward structure. We demonstrate with random dot stereograms that the V2 stage of our model is able to determine the location and the eye-of-origin of monocularly occluded regions and improve disparity map computation. We also examine a few related issues. First, we argue that since monocular regions are binocularly defined, they cannot generally be detected by monocular cells. Second, we show that our coarse-to-fine V1 model for conventional stereopsis explains double matching in Panum’s limiting case. This provides computational support to the notion that the perceived depth of a monocular bar next to a binocular rectangle may not be da Vinci stereopsis per se (Gillam et al., 2003). Third, we demonstrate that some stimuli previously deemed invalid have simple, valid geometric interpretations. Our work suggests that studies of da Vinci stereopsis should focus on stimuli more general than the bar-and-rectangle type and that disparity-boundary-selective V2 cells may provide a simple physiological mechanism for da Vinci stereopsis. PMID:17698163

  13. Structure of V2AlC studied by theory and experiment

    NASA Astrophysics Data System (ADS)

    Schneider, Jochen M.; Mertens, Raphael; Music, Denis

    2006-01-01

    We have studied V2AlC (space group P63/mmc, prototype Cr2AlC) by ab initio calculations. The density of states (DOS) of V2AlC for antiferromagnetic, ferromagnetic, and paramagnetic configurations have been discussed. According to the analysis of DOS and cohesive energy, no significant stability differences between spin-polarized and non-spin-polarized configurations were found. Based on the partial DOS analysis, V2AlC can be classified as a strongly coupled nanolaminate according to our previous work [Z. Sun, D. Music, R. Ahuja, S. Li, and J. M. Schneider, Phys. Rev. B 70, 092102 (2004)]. Furthermore, this phase has been synthesized in the form of thin films by magnetron sputtering. The equilibrium volume, determined by x-ray diffraction, is in good agreement with the theoretical data, implying that ab initio calculations provide an accurate description of V2AlC.

  14. Swarm v2: highly-scalable and high-resolution amplicon clustering

    PubMed Central

    Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah

    2015-01-01

    Previously we presented Swarm v1, a novel and open source amplicon clustering program that produced fine-scale molecular operational taxonomic units (OTUs), free of arbitrary global clustering thresholds and input-order dependency. Swarm v1 worked with an initial phase that used iterative single-linkage with a local clustering threshold (d), followed by a phase that used the internal abundance structures of clusters to break chained OTUs. Here we present Swarm v2, which has two important novel features: (1) a new algorithm for d = 1 that allows the computation time of the program to scale linearly with increasing amounts of data; and (2) the new fastidious option that reduces under-grouping by grafting low abundant OTUs (e.g., singletons and doubletons) onto larger ones. Swarm v2 also directly integrates the clustering and breaking phases, dereplicates sequencing reads with d = 0, outputs OTU representatives in fasta format, and plots individual OTUs as two-dimensional networks. PMID:26713226

  15. Swarm v2: highly-scalable and high-resolution amplicon clustering.

    PubMed

    Mahé, Frédéric; Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah

    2015-01-01

    Previously we presented Swarm v1, a novel and open source amplicon clustering program that produced fine-scale molecular operational taxonomic units (OTUs), free of arbitrary global clustering thresholds and input-order dependency. Swarm v1 worked with an initial phase that used iterative single-linkage with a local clustering threshold (d), followed by a phase that used the internal abundance structures of clusters to break chained OTUs. Here we present Swarm v2, which has two important novel features: (1) a new algorithm for d = 1 that allows the computation time of the program to scale linearly with increasing amounts of data; and (2) the new fastidious option that reduces under-grouping by grafting low abundant OTUs (e.g., singletons and doubletons) onto larger ones. Swarm v2 also directly integrates the clustering and breaking phases, dereplicates sequencing reads with d = 0, outputs OTU representatives in fasta format, and plots individual OTUs as two-dimensional networks.

  16. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less

  17. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  18. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  19. On similarity of various reactor spectra and 235U prompt fission neutron spectrum.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volant, Emmanuelle; Garnier, Cedric

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise andmore » its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of a future national storage

  1. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  2. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  3. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  4. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  5. Constacyclic codes over the ring F_q+v{F}_q+v2F_q and their applications of constructing new non-binary quantum codes

    NASA Astrophysics Data System (ADS)

    Ma, Fanghui; Gao, Jian; Fu, Fang-Wei

    2018-06-01

    Let R={F}_q+v{F}_q+v2{F}_q be a finite non-chain ring, where q is an odd prime power and v^3=v. In this paper, we propose two methods of constructing quantum codes from (α +β vv2)-constacyclic codes over R. The first one is obtained via the Gray map and the Calderbank-Shor-Steane construction from Euclidean dual-containing (α +β vv2)-constacyclic codes over R. The second one is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing (α +β vv2)-constacyclic codes over R. As an application, some new non-binary quantum codes are obtained.

  6. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency–induced bone loss

    PubMed Central

    Cao, Chike; Barnett, Adam S.; Mirando, Anthony J.; Rouse, Douglas; Mun, Se Hwan; Park-Min, Kyung-Hyun; McNulty, Amy L.; Karner, Courtney M.; Hilton, Matthew J.

    2017-01-01

    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage–gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts. PMID:29202453

  7. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss.

    PubMed

    Cao, Chike; Ren, Yinshi; Barnett, Adam S; Mirando, Anthony J; Rouse, Douglas; Mun, Se Hwan; Park-Min, Kyung-Hyun; McNulty, Amy L; Guilak, Farshid; Karner, Courtney M; Hilton, Matthew J; Pitt, Geoffrey S

    2017-11-16

    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.

  8. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines

    PubMed Central

    Quenee, Lauriane E.; Ciletti, Nancy A.; Elli, Derek; Hermanas, Timothy M.; Schneewind, Olaf

    2012-01-01

    Yersinia pestis causes plague, a disease with high mortality in humans that can be transmitted by fleabite or aerosol. A US Food and Drug Administration (FDA)-licensed plague vaccine is currently not available. Vaccine developers have focused on two subunits of Y. pestis: LcrV, a protein at the tip of type III secretion needles, and F1, the fraction 1 pilus antigen. F1-V, a hybrid generated via translational fusion of both antigens, is being developed for licensure as a plague vaccine. The rV10 vaccine is a non-toxigenic variant of LcrV lacking residues 271–300. Here we developed Current Good Manufacturing Practice (cGMP) protocols for rV10. Comparison of clinical grade rV10 with F1-V did not reveal significant differences in plague protection in mice, guinea pigs or cynomolgus macaques. We also developed cGMP protocols for rV10-2, a variant of rV10 with an altered affinity tag. Immunization with rV10-2 adsorbed to aluminum hydroxide elicited antibodies against LcrV and conferred pneumonic plague protection in mice, rats, guinea pigs, cynomolgus macaques and African Green monkeys. The data support further development of rV10-2 for FDA Investigational New Drug (IND) authorization review and clinical testing. PMID:21763383

  9. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2012-11-01

    Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.

  10. First-principles study on the electronic structure and elastic properties of Mo2NiB2 doped with V

    NASA Astrophysics Data System (ADS)

    Li, Jinming; Li, Xiaobo; Gao, Haiyun; Peng, Dian

    2018-04-01

    The content of this study is to analyze the electronic structure and elastic properties that the different structures of Mo2NiB2 and doping with V of the tetragonal M3B2 (Mo2Ni1‑xVxB2 and Mo2‑yNi1‑yV2yB2) (x = 0.25, 0.5, 0.75 and y = 0.125, 0.25, 0.375) by first-principles calculations based on density functional theory (DFT) combined with the projection-plus-wave method. But the calculated formation energy shows that V atoms prefer to substitute the Mo and Ni atoms of the tetragonal Mo2NiB2. Moreover, with the increase of V content, the formation enthalpy of tetragonal Mo2NiB2 is reduced, and the formation enthalpy of Mo1.625Ni0.625V0.75B2 is the least as ‑53.23 kJ/mol. The calculated elastic constant suffices the condition of mechanical stability, indicate that they are stable. The calculated elastic modulus illustrates that Mo2NiB2 having better mechanical properties when V elements are at Mo and Ni sites instead of Ni sites. The calculated and analyzed density of states of Mo1.625Ni0.625V0.75B2 has the smallest the density of states at the Fermi level indicating that it has the more stable structure. For the theoretical analysis of the first-principles calculations, the addition of 15 atom% of the V and V doping modes of Mo and Ni are preferentially replaced by V atoms of Mo2NiB2 ternary boride has the best performance.

  11. Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Srinivasakannan, C.; Peng, Jinhui; Yan, Mi; Zhang, Di; Zhang, Libo

    2015-03-01

    The Cu@Cu2O nanocomposites were synthesized by solution-phase synthesis of Cu nanoparticles in microfluidic reactor at room temperature, followed by controlling the oxidation process. The size, morphology, elemental compositions, and the chemical composition on the surface of Cu@Cu2O nanocomposite were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrated that the surface of the Cu nanoparticles was oxidized to Cu2O which serves as the shell of nanoparticle. The amount of Cu2O can be controlled by varying the drying temperature. Additionally the binary Cu@Cu2O nanocomposite along with H2O2 exhibited its potential as an excellent photocatalyst for degradation of methylene blue (MB) under UV irradiation.

  12. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  13. Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films

    NASA Astrophysics Data System (ADS)

    Mane, A. A.; Moholkar, A. V.

    2017-09-01

    The nanocrystalline V2O5 thin films with different thicknesses have been grown onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD study shows that the films exhibit an orthorhombic crystal structure. The narrow scan X-ray photoelectron spectrum of V-2p core level doublet gives the binding energy difference of 7.3 eV, indicating that the V5+ oxidation state of vanadium. The FE-SEM micrographs show the formation of nanorods-like morphology. The AFM micrographs show the high surface area to volume ratio of nanocrystalline V2O5 thin films. The optical study gives the band gap energy values of 2.41 eV, 2.44 eV, 2.47 eV and 2.38 eV for V2O5 thin films deposited with the thicknesses of 423 nm, 559 nm, 694 nm and 730 nm, respectively. The V2O5 film of thickness 559 nm shows the NO2 gas response of 41% for 100 ppm concentration at operating temperature of 200 °C with response and recovery times of 20 s and 150 s, respectively. Further, it shows the rapid response and reproducibility towards 10 ppm NO2 gas concentration at 200 °C. Finally, NO2 gas sensing mechanism based on chemisorption process is discussed.

  14. Optical Spectroscopy of the Classical Novae V339 Del (2013) and V5668 Sgr (2015 No. 2)

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus G.; Page, Kim; Osborne, Julian P.; Beardmore, Andrew P.

    2016-01-01

    We report the results of optical spectroscopy of the gamma-ray classical novae V339 Del (2013) and V5668 Sgr (PNV J18365700-2855420/Nova Sgr 2015 No. 2) supplemented by UV and X-ray observations obtained with Swift. Our spectra were obtained with the Steward Observatory Bok 2.3 m telescope (+B&C), the MDM 2.4 m Hiltner telescope (+OSMOS), the 6.5 m MMT (+BlueChannel), and the 2 x 8.4 m Large Binocular Telescope (+MODS1 and PEPSI) between 2013 August and 2015 September. The PEPSI spectra cover all or part of the 384-907 nm spectral region at a resolution of up to 270,000 (1 km/s). This is the highest resolution available on any 8-10 m class telescope. V339 Del was discovered on 2015 August 14.58 by Itagaki at V about 6.8. This nova reached a peak magnitude of about 4.3 making it one of the brightest novae of this century. Because of its exceptional brightness it has been observed at a variety of wavelengths and by a host of observatories both on the ground and in space. V5668 Sgr was discovered on 2015 March 15.634 by Seach at a magnitude of 6.0. It subsequently reached a maximum brightness of about 4.0 in late March. High resolution PEPSI spectra obtained in early April show dramatic variations in the multi-component P Cygni-type line profiles. V5668 Sgr was observed to form dust in June thereafter fading to about 13th magnitude. Our recent observations show that it has now evolved into the nebular phase. SS acknowledges partial support from NSF and NASA grants to ASU. CEW acknowledges support from NASA.

  15. First measurement of the 2.4 MeV and 2.9 MeV 6He three-cluster resonant states via the 3H(4He, pα)2n four-body reaction

    NASA Astrophysics Data System (ADS)

    Mandaglio, Giuseppe; Povoroznyk, Orest; Gorpinich, Olga K.; Jachmenjov, Olexiy O.; Anastasi, Antonio; Curciarello, Francesca; de Leo, Veronica; Mokhnach, Hanna V.; Ponkratenko, Oleg; Roznyuk, Yuri; Fazio, Giovanni; Giardina, Giorgio

    2014-06-01

    Two new low-lying 6He levels at excitation energies of about 2.4 MeV and 2.9 MeV were observed in the experimental investigation of the p-α coincidence spectra obtained by the 3H(4He, pα)2n four-body reaction at E4He beam energy of 27.2 MeV. The relevant E* peak energy and Γ energy width spectroscopic parameters for such 6He* excited states decaying into the α+n+n channel were obtained by analyzing the bidimensional (Ep, Eα) energy spectra. The present new result of two low-lying 6He* excited states above the 4He+2n threshold energy of 0.974 MeV is important for the investigation of the nuclear structure of neutron-rich light nuclei and also as a basic test for theoretical models in the study of the three-cluster resonance feature of 6He.

  16. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  17. Synthesis and characterization of new fluoride-containing manganese vanadates A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F

    NASA Astrophysics Data System (ADS)

    Sanjeewa, Liurukara D.; McGuire, Michael A.; Smith Pellizzeri, Tiffany M.; McMillen, Colin D.; Ovidiu Garlea, V.; Willett, Daniel; Chumanov, George; Kolis, Joseph W.

    2016-09-01

    Large single crystals of A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO4F2 building blocks. The A2Mn2V2O7F2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb2Mn2V2O7F2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs2Mn2V2O7F2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains of edge-sharing MnO4F2 units running along the a-axis, and interconnected through V2O7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn2+ indicated that Cs2Mn2V2O7F2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V-O vibrational modes in Cs2Mn2V2O7F2. Mn2(VO4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn2+. These interpenetrating chains are additionally connected through isolated VO4 tetrahedra to form the condensed structure.

  18. Testing the 2-TeV resonance with trileptons

    DOE PAGES

    Das, Arindam; Nagata, Natsumi; Okada, Nobuchika

    2016-03-09

    The CMS collaboration has reported a 2.8 excess in the search of the SU(2) R gauge bosons decaying through right-handed neutrinos into the two electron plus two jets (more » $eejj$) final states. This can be explained if the SU(2) Rcharged gauge bosons W$$±\\atop{R}$$ have a mass of around 2TeV and a right-handed neutrino with a mass of O(1)TeV mainly decays to electron. Indeed, recent results in several other experiments, especially that from the ATLAS diboson resonance search, also indicate signatures of such a 2TeV gauge boson. However, a lack of the same-sign electron events in the CMS $eejj$ search challenges the interpretation of the right-handed neutrino as a Majorana fermion. Taking this situation into account, in this paper, we consider a possibility of explaining the CMS eejj excess based on the SU(2) L ⓍSU(2) RⓍ U(1) B-L gauge theory with pseudo-Dirac neutrinos. We fi nd that both the CMS excess events and the ATLAS diboson anomaly can actually be explained in this framework without conflicting with the current experimental bounds. This setup in general allows sizable left-right mixing in both the charged gauge boson and neutrino sectors, which enables us to probe this model through the trilepton plus missing energy search at the LHC. It turns out that the number of events in this channel predicted in our model is in good agreement with that observed by the CMS collaboration. We also discuss prospects for testing this model at the LHC Run-II experiments.« less

  19. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis

    PubMed Central

    Nienhold, Ronny; Zmajkovic, Jakub; Hao-Shen, Hui; Geier, Florian; Dirnhofer, Stephan; Feenstra, Jelena D. Milosevic

    2016-01-01

    Myeloproliferative neoplasm (MPN) patients frequently show co-occurrence of JAK2-V617F and mutations in epigenetic regulator genes, including EZH2. In this study, we show that JAK2-V617F and loss of Ezh2 in hematopoietic cells contribute synergistically to the development of MPN. The MPN phenotype induced by JAK2-V617F was accentuated in JAK2-V617F;Ezh2−/− mice, resulting in very high platelet and neutrophil counts, more advanced myelofibrosis, and reduced survival. These mice also displayed expansion of the stem cell and progenitor cell compartments and a shift of differentiation toward megakaryopoiesis at the expense of erythropoiesis. Single cell limiting dilution transplantation with bone marrow from JAK2-V617F;Ezh2+/− mice showed increased reconstitution and MPN disease initiation potential compared with JAK2-V617F alone. RNA sequencing in Ezh2-deficient hematopoietic stem cells (HSCs) and megakaryocytic erythroid progenitors identified highly up-regulated genes, including Lin28b and Hmga2, and chromatin immunoprecipitation (ChIP)–quantitative PCR (qPCR) analysis of their promoters revealed decreased H3K27me3 deposition. Forced expression of Hmga2 resulted in increased chimerism and platelet counts in recipients of retrovirally transduced HSCs. JAK2-V617F–expressing mice treated with an Ezh2 inhibitor showed higher platelet counts than vehicle controls. Our data support the proposed tumor suppressor function of EZH2 in patients with MPN and call for caution when considering using Ezh2 inhibitors in MPN. PMID:27401344

  20. Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant.

    PubMed

    Expósito, A J; Patterson, D A; Monteagudo, J M; Durán, A

    2017-01-01

    The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H 2 O 2 /Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35min). The synergism between the UV process and the sonolytic one was quantified as 55.2%. To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H 2 O 2 /Fe process reaching 60% of mineralization would cost 2.1 and 3.8€/m 3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate. In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36€/m 3 . However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, Fabio; Melideo, Daniele; Terzuoli, Fulvio

    2006-07-01

    Coolant mixing phenomena occurring in the pressure vessel of a nuclear reactor constitute one of the main objectives of investigation by researchers concerned with nuclear reactor safety. For instance, mixing plays a relevant role in reactivity-induced accidents initiated by de-boration or boron dilution events, followed by transport of a de-borated slug into the vessel of a pressurized water reactor. Another example is constituted by temperature mixing, which may sensitively affect the consequences of a pressurized thermal shock scenario. Predictive analysis of mixing phenomena is strongly improved by the availability of computational tools able to cope with the inherent three-dimensionality ofmore » such problem, like system codes with three-dimensional capabilities, and Computational Fluid Dynamics (CFD) codes. The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed by the ANSYS CFX-10 CFD code. In particular, the 'swirl' effect that has been observed to take place in the downcomer of such kind of reactor has been addressed, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. Results have been compared against experimental data from V1000CT-2 Benchmark. Moreover, a boron mixing problem has been investigated, in the hypothesis that a de-borated slug, transported by natural circulation, enters the vessel. Sensitivity analyses have been conducted on some geometrical features, model parameters and boundary conditions. (authors)« less

  2. Differentiation of V2a interneurons from human pluripotent stem cells

    PubMed Central

    Butts, Jessica C.; McCreedy, Dylan A.; Martinez-Vargas, Jorge Alexis; Mendoza-Camacho, Frederico N.; Hookway, Tracy A.; Gifford, Casey A.; Taneja, Praveen; Noble-Haeusslein, Linda; McDevitt, Todd C.

    2017-01-01

    The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however, the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here, we report the directed differentiation of CHX10+ V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid, sonic hedgehog, and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10+ cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time, CHX10+ cells expressed neuronal markers [neurofilament, NeuN, and vesicular glutamate transporter 2 (VGlut2)], and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10+ cells within the differentiated population, which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice, hPSC-derived V2a cultures survived at the site of injection, coexpressed NeuN and VGlut2, extended neurites >5 mm, and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI. PMID:28438991

  3. Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bai, Ying; Chen, Shi

    This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni–V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. Thismore » improvement is attributed to reduced electrochemical polarization.« less

  4. Electrical properties of crystallized 30B2O3-70V2O5 glass

    NASA Astrophysics Data System (ADS)

    Gwoo, Donggun; Kim, Taehee; Han, Kyungseok; Choi, Wongyu; Kim, Jonghwan; Ryu, Bongki

    2013-05-01

    30B2O3-70V2O5 binary-system glass was prepared, and variations in structural and electrical property were examined using crystallization. While different related research studies exist, few have evaluated the variations in the structure and properties with changes in the crystallization rate. 30B2O3-70V2O5 glass was annealed in the graphite mold above the glass transition temperature for 2 h and heat-treated at each crystallization temperature for 3 h. 30B2O3-70V2O5 glass showed predominantly electronic conductive characteristic. FTIR was preferentially used for analyzing the structural changes of B-O bond after crystallization, while XRD was utilized to verify the inferred changes in the structure array (BO3 + V2O5 ↔ BO4 + 2VO2). Structural changes induced by heat treatment were confirmed by analyzing the molecular volume determined from the sample density, and conductance was measured to correlate structural and property changes. Conductivity is discussed based on the migration of vanadate ions with different valence states because of the increase in VO2 crystallinity at 130°C, which, however, was not observed at 170°C. After VO2 structures were reinforced, a 1.8-fold increase in conductance was observed (as compared to the annealed sample) after crystallization at 130°C for 3 h.

  5. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  6. Fuel Fabrication and Nuclear Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF 6. UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  7. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile

  8. Impact of Fission Neutron Energies on Reactor Antineutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hermanek, Keith; Littlejohn, Bryce; Gustafson, Ian

    2017-09-01

    Recent measurements of the reactor antineutrino spectra (Double Chooz, Reno, and Daya Bay) have shown a discrepancy in the 5-7 MeV region when compared to current theoretical models (Vogel and Huber-Mueller). There are numerous theories pertaining to this antineutrino anomaly, including theories that point to new physics beyond the standard model. In the paper ``Possible Origins and Implications of the Shoulder in Reactor Neutrino Spectra'' by A. Hayes et al., explanations for this anomaly are suggested. One theory is that there are interactions from fast and epithermal incident neutrons which are significant enough to create more events in the 5-7 MeV by a noticeable amount. In our research, we used the Oklo software network created by Dan Dwyer. This generates ab initio antineutrino and beta decay spectra based on standard fission yield databases ENDF, JENDL, JEFF, and the beta decay transition database ENSDF-6. Utilizing these databases as inputs, we show with reasonable assumptions one can prove contributions of fast and epithermal neutrons is less than 3% in the 5-7 MeV region. We also discovered rare isotopes are present in beta decay chains but not well measured and have no corresponding database information, and studied its effect onto the spectrum.

  9. Fabrication, microstructure and electrical conductivity of V{sub 2}O{sub 5} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, K.; Yoshinaka, M.; Hirota, K.

    1996-05-01

    V{sub 2}O{sub 5} gels corresponding to the formula V{sub 2}O{sub 5} {center_dot} nH{sub 2}O with n = 2.07, 0.5, and 0.2 have been prepared by the hydrolysis of VO(OC{sub 2}H{sub 5}){sub 3}, followed by washing and drying. After dehydration, V{sub 2}O{sub 5} crystallizes at 310--400 C. V{sub 2}O{sub 5} powders with strip-like particles are produced after heating at 630 C. Well-densified V{sub 2}O{sub 5} ceramics (97.7% of theoretical) have been fabricated by the combined use of hot pressing (630C/2h/30MPa) and hot isostatic pressing (630 C/1h/196MPa). The texture is of a plate structure, the grain being {approx}30 {micro}m long and {approx}6more » {micro}m wide. Electrical conductivities have been measured in the temperature range of 25--600 C. Activation energies are determined to be 0.09 and 0.18 eV for initial and final stages, respectively.« less

  10. Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission

    PubMed Central

    Naranjo, David; Wen, Hua; Brehm, Paul

    2015-01-01

    The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925

  11. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  12. Isotopic Transmutations in Irradiated Beryllium and Their Implications on MARIA Reactor Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrzejewski, Krzysztof J.; Kulikowska, Teresa A

    2004-04-15

    Beryllium irradiated by neutrons with energies above 0.7 MeV undergoes (n,{alpha}) and (n,2n) reactions. The Be(n,{alpha}) reaction results in subsequent buildup of {sup 6}Li and {sup 3}He isotopes with large thermal neutron absorption cross sections causing poisoning of irradiated beryllium. The amount of the poison isotopes depends on the neutron flux level and spectrum. The high-flux MARIA reactor operated in Poland since 1975 consists of a beryllium matrix with fuel channels in cutouts of beryllium blocks. As the experimental determination of {sup 6}Li, {sup 3}H, and {sup 3}He content in the operational reactor is impossible, a systematic computational study ofmore » the effect of {sup 3}He and {sup 6}Li presence in beryllium blocks on MARIA reactor reactivity and power density distribution has been undertaken. The analysis of equations governing the transmutation has been done for neutron flux parameters typical for MARIA beryllium blocks. Study of the mutual influence of reactor operational parameters and the buildup of {sup 6}Li, {sup 3}H, and {sup 3}He in beryllium blocks has shown the necessity of a detailed spatial solution of transmutation equations in the reactor, taking into account the whole history of its operation. Therefore, fuel management calculations using the REBUS code with included chains for Be(n,{alpha})-initiated reactions have been done for the whole reactor lifetime. The calculated poisoning of beryllium blocks has been verified against the critical experiment of 1993. Finally, the current {sup 6}Li, {sup 3}H, and {sup 3}He contents, averaged for each beryllium block, have been calculated. The reactivity drop caused by this poisoning is {approx}7%.« less

  13. A W' boson near 2 TeV: Predictions for run 2 of the LHC

    DOE PAGES

    Dobrescu, Bogdan A.; Liu, Zhen

    2015-11-20

    We present a renormalizable theory that includes a W' boson of mass in the 1.8–2 TeV range, which may explain the excess events reported by the ATLAS Collaboration in a WZ final state, and by the CMS Collaboration in e +e – jj, Wh 0, and jj final states. The W' boson couples to right-handed quarks and leptons, including Dirac neutrinos with TeV-scale masses. This theory predicts a Z' boson of mass in the 3.4–4.5 TeV range. The cross section times branching fractions for the narrow Z' dijet and dilepton peaks at the 13 TeV LHC are 10 and 0.6more » fb, respectively, for M Z'=3.4 TeV, and an order of magnitude smaller for M Z'=4.5 TeV.« less

  14. Ultrasound pressure distributions generated by high frequency transducers in large reactors.

    PubMed

    Leong, Thomas; Coventry, Michael; Swiergon, Piotr; Knoerzer, Kai; Juliano, Pablo

    2015-11-01

    The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber's vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. 22. V2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. V-2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST AND UPWARD FROM APRON OF BLAST PIT, 20,000 POUND MOTOR TEST AND LAUNCH FACILITY - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  16. 21. V2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. V-2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH BLAST PIT OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY, IN FOREGROUND, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  17. Thermoelectric Power Measurements of xSb-(60- x)V2O5-40TeO2 Glasses

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Siahkali, Zahra; Moradi, Mohammad

    2016-01-01

    Bulk xSb-(60- x)V2O5-40TeO2 glass systems (with 0 ≤ x ≤ 15 in mol.%) were prepared by using the standard melt quenching procedure, and their Seebeck coefficients, S, were measured within the temperature range of 250-470 K. For the understudied samples, the thermoelectric powers at typical temperatures of 296 K, 370 K and 407 K were measured, and were in the ranges (-405) to (-698) μVK-1, (-394) to (-685) μVK-1 and (-392) to (-691) μVK-1, respectively. The selection of typical temperatures aims at the evaluation of the trend of figure of merit in these glasses. Based on the negative sign of S, the present glasses were found to be n-type semiconductors; also, the experimental relationship between S and C V ( C V = [V4+]/ V tot is the ratio of the content of reduced vanadium ions) satisfied the theoretical Heikes formula, relating S to ln( C V/1 - C V), and also the Mackenzie formula, relating S to ln([V5+]/[V4+]). The parameter α^' in Heikes formula was determined to be ≪1 and so the small polaron hopping conduction mechanism was certified to occur in these glasses; this result confirms the previously reported results of direct current (DC) electrical conduction experiments on the same samples. Results of thermoelectric measurements show the compositional dependence of S on Sb content and C V, indicating that S increases with the increase in Sb content; these results show that the dominant factor determining S is C V. Also, figure of merit was determined for these glasses, which show the highest value for 60V2O5-40TeO2 glass system, as a good candidate in thermoelectric applications.

  18. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  19. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  20. Purification and Chemical Control of Molten Li2BeF 4 for a Fluoride Salt Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian Christopher

    Out of the many proposed generation IV, high-temperature reactors, the molten salt reactor (MSR) is one of the most promising. The first large scale MSR, the molten salt reactor experiment (MSRE), operated from 1965 to 1969 using Li2BeF4, or flibe, as a coolant and solvent for uranium fluoride fuel, at maximum temperatures of 654°C, for over 15000 hours. The MSRE experienced no concept breaking surprises and was considered a success. Newly proposed designs of molten salt reactors use solid fuels, making them less exotic compared to the MSRE. However, any molten salt reactor will require a great deal of research pertaining to the chemical and mechanical mastery of molten salts in order to prepare it for commercialization. To supplement the development of new molten salt reactors, approximately 100 kg of flibe was purified using the standard hydrofluorination process. Roughly half of the purified salt was lithium-7 enriched salt from the secondary loop of the MSRE. Purification rids the salt of impurities and reduces its capacity for corrosion, also known as the redox potential. The redox potential of flibe was measured at various stages of purification for the first time using a dynamic beryllium reference electrode. These redox measurements have been superimposed with metal impurities measurements found by neutron activation analysis. Lastly, reductions of flibe with beryllium metal have been investigated. Over reductions have been performed, which have shown to decrease redox potential while seemingly creating a beryllium-beryllium halide system. Recommendations of the lowest advisable redox potential for corrosion tests are included along with suggestions for future work.

  1. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  2. Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells.

    PubMed

    Robben, J H; Knoers, N V A M; Deen, P M T

    2004-12-01

    Binding of arginine-vasopressin (AVP) to its V2 receptor (V2R) in the basolateral membrane of principal cells induces Aquaporin-2-mediated water reabsorption in the kidney. To study the regulation of the V2R by dDAVP in a proper model, a polarized renal cell line stably-expressing V2R-GFP was generated. Labeled AVP-binding studies revealed an equal basolateral vs. apical membrane distribution for V2R-GFP and endogenous V2R. In these cells, GFP-V2R was expressed in its mature form and localized for 75% in the basolateral membrane and for 25% to late endosomes/lysosomes. dDAVP caused a dose- and time-dependent internalization of V2R-GFP, which was completed within 1 h with 100 nM dDAVP, was prevented by coincubation with a V2R antagonist, and which reduced its half-life from 11.5 to 2.8 h. Semiquantification of the V2R-GFP colocalization with E-cadherin (basolateral membrane), early endosomal antigen-1 (EEA-1) and lysosome-associated membrane protein-2 (LAMP-2) in time revealed that most dDAVP-bound V2R was internalized via early endosomes to late endosomes/lysosomes, where it was degraded. The dDAVP-internalized V2R did not recycle to the basolateral membrane. In conclusion, we established the itinerary of the V2R in a polarized cell model that likely resembles the in vivo V2R localization and regulation by AVP to a great extent.

  3. A Linear trans-Bis(imido) Neptunium(V) Actinyl Analog: Np(V)(NDipp)2((t)Bu2bipy)2Cl (Dipp = 2,6-(i)Pr2C6H3).

    PubMed

    Brown, Jessie L; Batista, Enrique R; Boncella, James M; Gaunt, Andrew J; Reilly, Sean D; Scott, Brian L; Tomson, Neil C

    2015-08-05

    The discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements is presented. Synthesis of the Np(V) complex, Np(NDipp)2((t)Bu2bipy)2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine coligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by (1)H NMR and UV-vis-NIR spectroscopies, and the electronic structure evaluated by DFT calculations.

  4. A Linear trans -Bis(imido) Neptunium(V) Actinyl Analog: Np V (NDipp) 2 ( tBu 2 bipy) 2Cl (Dipp = 2,6- i Pr 2C 6H 3)

    DOE PAGES

    Brown, Jessie L.; Batista, Enrique R.; Boncella, James M.; ...

    2015-07-22

    We present the discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements. Synthesis of the Np(V) complex, Np(NDipp) 2( tBu 2bipy) 2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine co-ligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by 1H NMR and UV/vis/NIR spectroscopies, and the electronic structure evaluated by DFT calculations.

  5. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less

  6. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  7. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vesselmore » and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.« less

  8. Studies on temperature coefficient of resistivity of Cu2Se - V2O5 nanocomposite

    NASA Astrophysics Data System (ADS)

    Sairam, S.; Rai, Ranjan; Molli, Muralikrishna

    2018-05-01

    Nanocomposite of Copper Selenide in Vanadium Pentoxide (Cu2Se-V2O5) was prepared and characterized using XRD for phase analysis, SEM for morphology, and EDAX for elemental analysis. Electrical resistivity measurement was carried out using van der Pauw method as a function of temperature from 35 °C to 170 °C for 5 mol% Cu2Se - 95 mol%V2O5 composite. The temperature coefficient of resistivity was found to be -1.8% per °C.

  9. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    PubMed

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    PubMed

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Plant maintenance and plant life extension issue, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Spent fuel: myths and facts, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; Critical pipe replacement procedure, by Geoff Gilmore, Climax Portable Machine Tools Inc.; Improving maintenance performance, by Larry Meyer and Joe Giuffre, DC Cook Nuclear Plant, American Electric Power; Equipment deficiency intolerance index, by Douglas F. Helms, Tennessee Valley Authority; Plant profile: I and C modernization at Dukovany, by Josef Rosol, CEZ Dukovany NPP, Czech Republic; and, Report: new plant activities.

  12. Application of LIF technique for the space- and time-resolved monitoring of pollutant gas decomposition in nonthermal plasma reactors

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Ohkubo, Toshikazu; Kanazawa, Seiji; Kocik, Marek

    2003-10-01

    Laser-induced fluorescence (LIF) technique aided by intensified CCD light signal detection and fast digital image processing is demonstrated to be a useful diagnostic method for in-situ observation of the discharge-induced plasma-chemistry processes responsible for NOx(NO + NO2) decomposition occurring in non-thermal plasma reactors. In this paper a method and results of the LIF measurement of two-dimensional distribution of the ground-state NO molecule density inside a DC positive streamer corona reactor during NO removal from a flue gas simulator [air/NO(up to 300 ppm)] are presented. Either a needle-to-plate or nozzle-to-plate electrode system, having an electrode gap of 30-50 mm was used for generating the corona discharge in the reactor. The LIF monitoring of NO molecules was carried out under the steady-state DC corona discharge condition. The laser-induced fluorescence on the transition NO X2Π(v"=0)<--A2Σ+(v'=0) at λ=226nm was chosen for monitoring ground-state NO molecules in the reactor. This transition was induced by irradiation of the NO molecules with UV laser pulses generated by a laser system consisted of a XeF excimer laser, dye laser and BBO crystal. The laser pulses from the XeF excimer laser (Lambda Physik, Complex 150, λ=351 nm) pumped the dye laser (Lambda Physik, Scanmate) with Coumarin 47 as a dye, which generated the laser beam of a wavelength turned around λ=450 nm. Then, the tuned dye laser beam pumped the BBO crystal in which the second harmonic radiation of a wavelength correspondingly tuned around λ=226 nm was generated. The 226-nm UV laser pulses of energy of 0.8-2 mJ and duration of about 20 ns were transformed into the form of the so-called laser sheet (width of 1 mm, height of 30-50 mm) which passed between the electrodes through the operating gas. The obtained results, presented in the form of images, which illustrated the two-dimensional distributions of NO molecule concentration in the non-thermal reactor, showed that the

  13. Region 10 Question and Answers #2: Title V Permit Development

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  14. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2.

    PubMed

    Wang, R; Zhu, Y; Deng, L; Zhang, H; Wang, Q; Yin, M; Song, P; Elzaki, M E A; Han, Z; Wu, M

    2017-10-01

    Laodelphax striatellus (Fallén) is one of the most destructive pests of rice, and has developed high resistance to imidacloprid. Our previous work indicated a strong association between imidacloprid resistance and the overexpression of a cytochrome P450 gene CYP6AY3v2 in a L. striatellus imidacloprid resistant strain (Imid-R). In this study, a transgenic Drosophila melanogaster line that overexpressed the L. striatellus CYP6AY3v2 gene was established and was found to confer increased levels of imidacloprid resistance. Furthermore, CYP6AY3v2 was co-expressed with D. melanogaster cytochrome P450 reductase (CPR) in Spodoptera frugiperda 9 (SF9) cells. A carbon monoxide difference spectra analysis indicated that CYP6AY3v2 was expressed predominately in its cytochrome P450 (P450) form, which is indicative of a good-quality functional enzyme. The recombinant CYP6AY3v2 protein efficiently catalysed the model substrate P-nitroanisole to p-nitrophenol with a maximum velocity (V max ) of 60.78 ± 3.93 optical density (mOD)/min/mg protein. In addition, imidacloprid itself was metabolized by the recombinant CYP6AY3v2/nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) CPR microsomes in in vitro assays (catalytic constant (K cat ) = 0.34 pmol/min/pmol P450, michaelis constant (K m ) = 41.98 μM), and imidacloprid depletion and metabolite peak formation were with a time dependence. The data provided direct evidence that CYP6AY3v2 is capable of hydroxylation of imidacloprid and conferring metabolic resistance in L. striatellus. © 2017 The Royal Entomological Society.

  15. Electrochemical Performance of a V2O5 Cathode for a Sodium Ion Battery

    NASA Astrophysics Data System (ADS)

    Van Nghia, Nguyen; Long, Pham Duy; Tan, Ta Anh; Jafian, Samuel; Hung, I.-Ming

    2017-06-01

    In this paper, layered vanadium pentoxide (V2O5) is employed as a cathode material for a sodium ion battery. The V2O5 particle sizes range from 200 nm to 500 nm and the shapes of the aggregated V2O5 particles are non-homogeneous and irregular. The material exhibits a first discharge capacity of approximately 208.1 mAh g-1. The structure of V2O5 changes to a NaxV2O5 structure after Na+ insertion at the first discharge; the structure of NaxV2O5 remains stable␣during cycling. After 40 cycles, the discharge capacity retains 61.2% of the capacity of the second cycle. The capacity of V2O5 at a high charge/discharge current rate of 1.0 C is 49.1% of capacity at 0.1 C. Furthermore, the capacity returns to the initial value as the discharge rate returns to 0.1 C. The results of electrochemical performance tests indicate that V2O5 is a potential cathode material for sodium ion batteries.

  16. The Simulator Development for RDE Reactor

    NASA Astrophysics Data System (ADS)

    Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.

  17. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; He, Shengnan; Li, Long; Wang, Chao

    2018-02-01

    A prospective NASICON-type F-doped Na3V2(PO4)2.93F0.07/C (F-0.07-NVP/C) composite is synthesized by a solid-state reaction method. F-doping can restrain the structural degradation from Na3V2(PO4)3 to V2(PO4)3 and enhance the structural stability. Meanwhile, it can decrease the particle size to diminish the pathway of Na+ diffusion, which can increase ionic conductivity efficiently. The kinetic behavior is significantly improved and it is beneficial to reinforcing the electrochemical performance of F-doping composites. Compared with Undoped-NVP/C sample, F-0.07-NVP/C composite delivers a 113 mAh g-1 discharge capacity at 10 mA g-1, which is very close to the theoretical capacity (117 mAh g-1). As for cycle performance, a reversible capacity of 97.8 mAh g-1 can be obtained and it retains 86% capacity after 1000 cycles at 200 mA g-1. F-0.07-NVP/C composite presents the highest DNa+ (2.62 × 10-15 cm2s-1), two orders of magnitude higher than the undoped sample (4.8 × 10-17 cm2s-1). This outstanding electrochemical performance is ascribed to the synergetic effect from improved kinetic behavior and enhanced structural stability due to F-doping. Hence, the F-doped composite would be a promising cathode material in SIB for energy storage and conversion.

  18. Enhancing the performance of sequencing batch reactors by adding crushed date seeds to remove high concentrations of 2,4-dinitrophenol.

    PubMed

    Al-Mutairi, Nayef Z

    2011-11-01

    Wastewater treatment systems using simultaneous adsorption and biodegradation processes have been successful in treating toxic pollutants present in industrial wastewater. The goal of this investigation was to assess the effectiveness of date seeds in reducing the toxic effects of 2,4-dinitrophenol (DNP) on activated sludge microorganisms. Two identical sequencing batch reactors (SBRs) (4-L glass vessel), each with a 3.5-L working volume, were used. The initial DNP concentrations in the reactor were 50, 75, 100, 250, and 500 mg/L. The reactor amended with date seeds was capable of degrading DNP at significantly greater rates (11 +/- 2.5 mg/L x h) than the control SBR (4 +/- 1.2 mg/L x h) at a 95% confidence level. Date seeds can be added to the mixed liquor of activated sludge treatment plants to remove high concentrations of DNP from wastewater, to protect the treatment plant against toxic components in the influent and enhance the settling characteristics of the mixed liquor.

  19. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.

  20. Enrichment of 57Fe isotope in neutron flux of nuclear reactors observed by Mössbauer spectroscopy.

    PubMed

    Sawicki, Jerzy A

    2018-02-01

    The abundance of 57 Fe isotope in nuclear reactor core materials can be considerably enriched by neutron-capture 56 Fe(n,γ) reactions. This is demonstrated using the sections of Zr-2.5 wt.%Nb pressure tubes removed from two CANDU* reactors. The tubes contained 0.11 and 0.04wt% Fe and were irradiated for about 10 effective full power years (EFPY) up to ~10 26 n/m 2 fast neutron (E > 1MeV) fluencies. The Mössbauer spectra of 57 Fe in irradiated samples indicated up to 10 times larger areas than unirradiated off-cuts from the same pressure tubes. The observed effect is in accord with the values calculated for known thermal neutron-capture cross-sections and resonance capture integrals, neutron flux profiles and spectra, and times of irradiation. The build-up of 57 Fe facilitated recording Mössbauer absorption spectra of alloys with minor amount of Fe down to ~ 400ppm, despite intense background radiation emitted by samples. These findings can open new possibilities in post-irradiation studies of alloys used in nuclear reactors and in other objects subjected to large neutron fluencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Encouraging vehicle-to-grid (V2G) participation through premium tariff rates

    NASA Astrophysics Data System (ADS)

    Richardson, David B.

    2013-12-01

    The provision of vehicle-to-grid (V2G) services to an electric grid by electric vehicles (EVs) can potentially reduce the cost of vehicle ownership through revenue generation. Recent studies indicate that yearly vehicle profit from V2G may not be sufficient to induce widespread participation. This paper investigates the feasibility of a premium tariff rate for V2G power, similar to current feed-in-tariff (FIT) programs for renewable energy. Using Ontario, Canada as a case study, an hourly time-series model for a fleet of commuter EVs is created. Tariff rates for V2G peak power are calculated based on the same return on investment as the current FIT for renewable energy in Ontario. The tariff rates are competitive with the renewable energy tariffs, especially when EVs are allowed to provide ancillary services to the grid in addition to peak power. Despite the guaranteed rate of return, yearly vehicle profit is low. Two variations are considered to increase vehicle profit, thereby enhancing the attractiveness of V2G. A higher return on investment is favored over direct benefits offered to EV owners. A higher return on investment may be justifiable based on the higher level of risk inherent in V2G when compared to renewable energy.

  2. e2v CMOS and CCD sensors and systems for astronomy

    NASA Astrophysics Data System (ADS)

    Jorden, P. R.; Jerram, P. A.; Fryer, M.; Stefanov, K. D.

    2017-07-01

    e2v designs and manufactures a wide range of sensors for space and astronomy applications. This includes high performance CCDs for X-ray, visible and near-IR wavelengths. In this paper we illustrate the maturity of CMOS capability for these applications; examples are presented together with performance data. The majority of e2v sensors for these applications are back-thinned for highest spectral response and designed for very low read-out noise; the combination delivers high signal to noise ratio in association with a variety of formats and package designs. The growing e2v capability in delivery of sub-systems and cryogenic cameras is illustrated—including the 1.2 Giga-pixel J-PAS camera system.

  3. Polarization transfer in the H2(e→,e'p→)n reaction up to Q2=1.61(GeV/c)2

    NASA Astrophysics Data System (ADS)

    Hu, B.; Jones, M. K.; Ulmer, P. E.; Arenhövel, H.; Baker, O. K.; Bertozzi, W.; Brash, E. J.; Calarco, J.; Chen, J.-P.; Chudakov, E.; Cochran, A.; Dumalski, S.; Ent, R.; M. Finn, J.; Garibaldi, F.; Gilad, S.; Gilman, R.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hovebo, J.; Jager, C. W. De; Jeschonnek, S.; Jiang, X.; Keppel, C.; Klein, A.; Kozlov, A.; Kuhn, S.; Kumbartzki, G.; Kuss, M.; Lerose, J. J.; Liang, M.; Liyanage, N.; Lolos, G. J.; Markowitz, P. E. C.; Meekins, D.; Michaels, R.; Mitchell, J.; Papandreou, Z.; Perdrisat, C. F.; Punjabi, V.; Roche, R.; Rowntree, D.; Saha, A.; Strauch, S.; Todor, L.; Urciuoli, G.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B. B.; Woo, R.

    2006-06-01

    The recoil proton polarization was measured in the H2(e→,e'p→)n reaction in Hall A of the Thomas Jefferson National Accelerator Facility. The electron kinematics were centered on the quasielastic peak (xBj≈1) and included three values of the squared four-momentum transfer, Q2=0.43,1.00 and 1.61 (GeV/c)2. For Q2=0.43 and 1.61 (GeV/c)2, the missing momentum, pm, was centered at zero, whereas for Q2=1.00(GeV/c)2 two values of pm were chosen: 0 and 174MeV/c. At low pm, the Q2 dependence of the longitudinal polarization, Pz', is not well described by a state-of-the-art calculation. Further, at higher pm, a 3.5σ discrepancy was observed in the transverse polarization, Px'. Understanding the origin of these discrepancies is important to confidently extract the neutron electric form factor from the analogous H2(e→,e'n→)p experiment.

  4. The Mont Blanc neutrinos from SN 1987A: Could they have been monochromatic (8 MeV) tachyons with m2 = - 0.38 keV2?

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert

    2018-05-01

    According to conventional wisdom the 5 h early Mont Blanc burst probably was not associated with SN 1987A, but if it was genuine, some exotic physics explanation had to be responsible. Here we consider one truly exotic explanation, namely faster-than-light neutrinos having mν2 = - 0.38 keV2. It is shown that the Mont Blanc burst is consistent with the distinctive signature of that explanation i.e., an 8 MeV antineutrino line from SN 1987A. It is further shown that a model of core collapse supernovae involving dark matter particles of mass 8 MeV would in fact yield an 8 MeV antineutrino line. Moreover, that dark matter model predicts 8 MeV ν ,νbar and e+e- pairs from the galactic center, a place where one would expect large amounts of dark matter to collect. The resulting e+ would create γ - rays from the galactic center, and a fit to MeV γ - ray data yields the model's dark matter mass, as well as the calculated source temperature and angular size. These good fits give indirect experimental support for the existence of an 8 MeV antineutrino line from SN 1987A. More direct support comes from the spectrum of N ∼ 1000 events recorded by the Kamiokande-II detector on the day of SN 1987A, which appear to show an 8 MeV line atop the detector background. This νbar line, if genuine, has been well-hidden for 30 years because it occurs very close to the peak of the background. This fact might ordinarily justify extreme skepticism. In the present case, however, a more positive view is called for based on (a) the very high statistical significance of the result (30σ), (b) the use of a detector background independent of the SN 1987A data using a later K-II data set, and (c) the observation of an excess above the background spectrum whose central energy and width both agree with that of an 8 MeV νbar line broadened by 25% resolution. Most importantly, the last observation is in accord with the prior prediction of an 8 MeV νbar line based on the Mont Blanc data, and

  5. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    PubMed

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  6. 2 TeV HEB beam abort at the SSCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schailey, R.; Bull, J.; Clayton, T.

    1993-05-01

    The High Energy Booster (HEB) of the Superconducting Super Collider Laboratory (SSCL) will require a full aperture beam abort over a dynamic energy range of 200 GeV to 2 TeV. Since the HEB is a bi-polar machine, both clockwise (CW) and the counter-clockwise (CCW) beam aborts are required. Also, the stored beam energy of 6.55 MJ in the superconducting HEB imposes upon the full aperture requirement. In this report, we describe the abort channels in the HEB utility straight sections, aperture restrictions, mechanical interferences and solutions, kicker misfires, and a 1 TeV beam absorber.

  7. Energy difference between the (v = 0, R = 1) and the (v = 0, R = 3) states of H2(+), measured with interseries microwave spectroscopy of H2 Rydberg states

    NASA Astrophysics Data System (ADS)

    Arcuni, P. W.; Fu, Z. W.; Lundeen, S. R.

    1990-12-01

    Several transitions between specific Rydberg levels in the nearly degenerate (v = 0, R = 1) n = 28 and (v = 0, R = 3) n = 16 Rydberg manifolds of H2 with microwave spectroscopy. These measurements can be combined with calculations of the Rydberg fine structure to deduce the energy difference between the two states of the free H2(+) core. The result, E(v = 0, R = 3) - E(v = 0, R = 1) = 288.85900(8)/cm, represents the most precise determination to date of any spectral property of the hydrogen molecular ion.

  8. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  9. Investigating the effect of V2O5 addition on sodium barium borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Halder, Rumu; Sengupta, Pranesh; Sudarsan, V.; Kaushik, C. P.; Dey, G. K.

    2016-05-01

    V2O5 doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V2O5 but a phase separation is observed when V2O5 doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O- Na+/Ba2+ linkages are formed.

  10. Smallest fullerene-like silicon cage stabilized by a V{sub 2} unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hong-Guang, E-mail: xuhong@iccas.ac.cn, E-mail: zhengwj@iccas.ac.cn; Kong, Xiang-Yu; Deng, Xiao-Jiao

    We conducted a combined anion photoelectron spectroscopy and density functional theory study on V{sub 2}Si{sub 20} cluster. Our results show that the V{sub 2}Si{sub 20} cluster has an elongated dodecahedron cage structure with a V{sub 2} unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.

  11. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    PubMed

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  12. The high resolution spectrum of 15NH3 in the far-infrared: Rotation-inversion transitions in the ground, v2=1, 2 and v4=1 states

    NASA Astrophysics Data System (ADS)

    Fusina, Luciano; Di Lonardo, Gianfranco; Canè, Elisabetta; Predoi-Cross, Adriana; Rozario, Hoimonti; Herman, Michel

    2017-12-01

    The high resolution spectrum of 15NH3 has been recorded at unapodized resolution of 0.00096 cm-1 in the region 60-600 cm-1 using the Bruker IFS 125 Fourier transform spectrometer located at the far-infrared beam-line, Canadian Light Source. We report on the observation and analysis of the rotation-inversion spectrum in the ground, v2=1, 2 and v4=1 states. All the rotation-inversion transitions in the ground state together with the pure inversion transitions present in the literature were fitted simultaneously on the basis of a rotation-inversion Hamiltonian which includes distortion constants up to the 12th power in the angular momentum and the Δk=±3 and Δk=±6 interaction terms. A set of effective parameters was also obtained for the v2=1 state adopting the same theoretical model. For the v2=2 and v4=1 states only a list of observed transitions is reported. The wavenumbers of all the assigned transitions were compared with their theoretically predicted values [S.N. Yurchenko, J. Quant. Spectrosc. Radiat. Transf., 2015, 152, 28]. The present results noticeably improve the wavenumber line list in the HITRAN data base [L. S. Rothman et al. J. Quant. Spectrosc. Radiat. Transf.,2013, 130, 4].

  13. The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment.

    PubMed

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Morawski, Antoni Waldemar

    2018-06-15

    Large, laboratory scale biological treatment tests of real industrial wastewater, generated in a large industrial laundry facility, was conducted from October 2014 to January 2015. This research sought to develop laundry wastewater treatment technology which included tests of a two-stage Moving Bed Bio Reactor (MBBR); this had two reactors, was filled with carriers Kaldnes K5 (specific area - 800 m 2 /m 3 ) and were realized in aerobic condition. Operating on site, in the laundry, reactors were fed actual wastewater from the laundry retention tank. The laundry wastewater contained mainly surfactants and impurities originating from washed fabrics; a solution of urea to supplement nitrogen content and a solution of acid to correct pH were added. The daily flow of raw wastewater Qd varied from 0.6-1.0 m 3 /d. Wastewater quality indicators showed that the reduction of pollutants was obtained: BOD 5 by 95-98%, COD by 89-94%, the sum of anionic and nonionic surfactants by 85-96%. The quality of the purified wastewater after the start-up period met legal requirements regarding the standards for wastewater discharged into the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The diversity and unit of reactor noise theory

    NASA Astrophysics Data System (ADS)

    Kuang, Zhifeng

    contribution of the terms that are novel as compared to the traditional formulae has been made. The second subject treats a problem in power reactor noise with the Langevin formalism. With a very few exceptions, in all previous work the diffusion approximation was used. In order to extend the treatment to transport theory, in Paper III, we introduced a novel method, i.e. Padé approximation via Lanczos algorithm to calculate the transfer function of a finite slab reactor described by one-group transport equation. It was found that the local-global decomposition of the neutron noise, formerly only reproduced in at least 2- group theory, can be reconstructed. We have also showed the existence of a boundary layer of the neutron noise close to the boundary. Finally, we have explored the possibility of building up a unified theory to account for the coexistence of zero power and power reactor noise in a system. In Paper IV, a unified description of the neutron noise is given by the use of backward master equations in a model where the cross section fluctuations are given as a simple binary pseudorandom process. The general solution contains both the zero power and power reactor noise concurrently, and they can be extracted individually as limiting cases of the general solution. It justified the separate treatments of zero power and power reactor noise. The result was extended to the case including one group of delayed neutron precursors in Paper V.

  15. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells

    PubMed Central

    Wolf, Alexandra; Eulenfeld, René; Gäbler, Karoline; Rolvering, Catherine; Haan, Serge; Behrmann, Iris; Denecke, Bernd; Haan, Claude; Schaper, Fred

    2013-01-01

    The identification of a constitutively active JAK2 mutant, namely JAK2-V617F, was a milestone in the understanding of Philadelphia chromosome-negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine-independent growth. In this study we investigated the mechanism of JAK2-V617F-dependent signaling with a special focus on the activation of the MAPK pathway. We observed JAK2-V617F-dependent deregulated activation of the multi-site docking protein Gab1 as indicated by constitutive, PI3K-dependent membrane localization and tyrosine phosphorylation of Gab1. Furthermore, we demonstrate that PI3K signaling regulates MAPK activation in JAK2-V617F-positve cells. This cross-regulation of the MAPK pathway by PI3K affects JAK2-V617F-specific target gene induction, erythroid colony formation, and regulates proliferation of JAK2-V617F-positive patient cells in a synergistically manner. PMID:24069558

  16. Characterization of CaV1.2 exon 33 heterozygous knockout mice and negative correlation between Rbfox1 and CaV1.2 exon 33 expressions in human heart failure.

    PubMed

    Wang, Juejin; Li, Guang; Yu, Dejie; Wong, Yuk Peng; Yong, Tan Fong; Liang, Mui Cheng; Liao, Ping; Foo, Roger; Hoppe, Uta C; Soong, Tuck Wah

    2018-01-01

    Recently, we reported that homozygous deletion of alternative exon 33 of Ca V 1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased Ca V 1.2 Δ33 I CaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33 +/- cardiomyocytes showed similar Ca V 1.2 channel properties as wild-type cardiomyocyte, even though Ca V 1.2 Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of Ca V 1.2 exon 33. (149 words).

  17. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    PubMed

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  18. vGLUT2 heterozygous mice show more susceptibility to clonic seizures induced by pentylenetetrazol.

    PubMed

    Schallier, Anneleen; Massie, Ann; Loyens, Ellen; Moechars, Diederik; Drinkenburg, Wilhelmus; Michotte, Yvette; Smolders, Ilse

    2009-01-01

    Glutamate, the most abundant excitatory neurotransmitter in the central nervous system, is well known to be implicated in epileptic seizures. Therefore, impairments in glutamate transport could have an involvement in the mechanism of epileptogenesis. The uptake of glutamate into synaptic vesicles is mediated by vesicular glutamate transporters (vGLUTs). There are three known vGLUT isoforms, vGLUT1-3. In this study, we are particularly interested in the vGLUT2 isoform. We investigated the possible role of vGLUT2 in pentylenetetrazol (PTZ)-induced seizure generation. Seizure threshold of PTZ was compared in vGLUT2 heterozygous knock out (HET) and wild type (WT) mice. In comparison with their WT littermates a lower dose of PTZ was needed in the vGLUT2 HET mice until the onset of the first myoclonic jerk. The threshold for PTZ-induced clonic seizure activity was also lower in the vGLUT2 HET mice. These results indicate, for the first time, that vGLUT2 is likely involved in the epileptogenesis of generalized seizures.

  19. Synthesis and characterization of new fluoride-containing manganese vanadates A 2Mn 2V 2O 7F 2 (A=Rb, Cs) and Mn 2VO 4F

    DOE PAGES

    Sanjeewa, Liurukara D.; McGuire, Michael A.; Smith Pellizzeri, Tiffany M.; ...

    2016-05-10

    In large single crystals of A 2Mn 2V 2O 7F 2 (A=Rb, Cs) and Mn 2VO 4F were grown using a high-temperature (~600 °C) hydrothermal technique. We utilized single crystal X-ray diffraction and powder X-ray diffraction in order to characterize the structures, which both possess MnO 4F 2 building blocks. The A 2Mn 2V 2O 7F 2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb 2Mn 2V 2O 7F 2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs 2Mn 2V 2O 7F 2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed ofmore » zigzag chains of edge-sharing MnO 4F 2 units running along the a-axis, and interconnected through V 2O 7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn 2+ indicated that Cs 2Mn 2V 2O 7F 2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs 2Mn 2V 2O 7F 2. Mn 2(VO 4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn 2+. Our interpenetrating chains are additionally connected through isolated VO 4 tetrahedra to form the condensed structure.« less

  20. Crystal-field, exchange interactions and magnetism in pyrochlore ferromagnet R2V2O7 (R3+=Y, Lu)

    NASA Astrophysics Data System (ADS)

    Ali Biswas, A.; Jana, Y. M.

    2013-03-01

    The temperature dependence of the observed bulk magnetic susceptibility, magnetization, paramagnetic Curie temperature θCW, magnetic specific heat of ferromagnetic semi-conducting pyrochlore-based vanadate compounds Y2V2O7 and Lu2V2O7, which are the simplest of R2M2O7 pyrochlore series of oxides, are simulated and analyzed, simultaneously and consistently, within the frame work of the appropriate crystal-field (CF) theory and a mean-field approximation by introducing effective anisotropic molecular-field tensors and also taking account of appreciable spin-orbit coupling. The electronic and magnetic properties are correlated to the structural parameters. Ten-fold degenerate 2D term of 3d1 V4+-ions is split into five Kramers doublets with overall CF splitting Δ1≈2 eV and the total splitting of the 2T2g state Δ0≈0.4 eV under combined actions of octahedral CF, trigonal (D3d) distortion at V-site and spin-orbit coupling. The ground doublet is a well-isolated effectively spin s=1/2 state, characterized by the anisotropic g-tensors and directional magnetic moments. The degeneracy of the ground state is lifted by the spin-spin correlations among V4-tetrahedra at T∼170 K, which causes the formation of ferromagnetic clusters in these pyrochlores. The temperature dependence of the calculated directional site-susceptibilities shows that the V4+ ions have a substantial easy-axis single-ion anisotropy along local <111> axis of a given V4-tetrahedron in the magnetic phase where ferromagnetic clusters coexist with paramagnetic phase.

  1. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  2. G protein modulation of CaV2 voltage-gated calcium channels.

    PubMed

    Currie, Kevin P M

    2010-01-01

    Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.

  3. Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film

    NASA Astrophysics Data System (ADS)

    Sun, Guangyao; Cao, Xun; Gao, Xiang; Long, Shiwei; Liang, Mengshi; Jin, Ping

    2016-10-01

    For VO2-based smart window manufacture, it is a long-standing demand for high-quality thin films deposited at low temperature. Here, the thermochromic films of VO2 were deposited by a magnetron sputtering method at a fairly low temperature of 250 °C without subsequent annealing by embedding a V2O3 interlayer. V2O3 acts as a seed layer to lower the depositing temperature and buffer layer to epitaxial grow VO2 film. The VO2/V2O3 films display high solar modulating ability and narrow hysteresis loop. Our data can serve as a promising point for industrial production with high degree of crystallinity at a low temperature.

  4. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth

  5. Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.

    PubMed

    Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah

    2018-04-12

    Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a

  6. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  7. Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells.

    PubMed

    Bao, Xichang; Zhu, Qianqian; Wang, Ting; Guo, Jing; Yang, Chunpeng; Yu, Donghong; Wang, Ning; Chen, Weichao; Yang, Renqiang

    2015-04-15

    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under the illumination of AM 1.5G (100 mW/cm(2)). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2 plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics.

  8. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    PubMed Central

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical

  9. Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires

    NASA Astrophysics Data System (ADS)

    Pan, Ko-Ying; Wei, Da-Hua

    2018-01-01

    Platinum nanoparticles (Pt NPs) were decorated on vanadium pentoxide nanowires (V2O5 NWs) to form the core-shelled vanadium-platinum nanowires (Pt@V2O5 NWs) and their electrochemical activities for methanol oxidation were investigated. The synthetic procedure involved the synthesis of abundant vanadium pentoxide nanowires (V2O5 NWs) by a direct vapor-solid growth process (VS method), followed by atomic layer depositions (ALD) of platinum nanoparticles (Pt NPs) onto the V2O5 NWs. After the physical examinations, three designed deposition parameters (50, 100 and 150 cycles) of Pt NPs onto the V2O5 NWs by ALD process were successful. From the measurements of current-voltage (I-V) and cyclic voltammetry (CV) curves respectively, both the conductivity and the ratio of the forward anodic peak current (IF) to the reverse anodic peak current (IR) are enhancing proportionately to the deposition cycles of ALD process, which denotes that coating Pt atomic layers onto V2O5 nanowires indeed improves the catalytic performances than that of pure V2O5 nanowires.

  10. Biofilm development during the start-up of a sulfate-reducing down-flow fluidized bed reactor at different COD/SO4(2-) ratios and HRT.

    PubMed

    Piña-Salazar, E Z; Cervantes, F J; Meraz, M; Celis, L B

    2011-01-01

    In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.

  11. Antibacterial, antifungal and anticoagulant activities of chicken PLA2 group V expressed in Pichia pastoris.

    PubMed

    Karray, Aida; Bou Ali, Madiha; Kharrat, Nedia; Gargouri, Youssef; Bezzine, Sofiane

    2018-03-01

    Secretory class V phospholipase A2 (PLA2-V) has been shown to be involved in inflammatory processes in cellular studies, but the biochemical and physical properties of this important enzyme have been unclear. As a first step towards understanding the structure, function and regulation of this PLA2, we report the expression and characterization of PLA2-V from chicken (ChPLA2-V). The ChPLA2-V cDNA was synthesized from chicken heart polyA mRNA by RT-PCR, and an expression construct containing the PLA2 was established. After expression in Pichia pastoris cells, the active enzyme was purified. The purified ChPLA2-V protein was biochemically and physiologically characterized. The recombinant ChPLA2-V has an absolute requirement for Ca 2+ for enzymatic activity. The optimum pH for this enzyme is pH 8.5 in Tris-HCl buffer with phosphatidylcholine as substrate. ChPLA2-V was found to display potent Gram-positive and Gram-negative bactericidal activity and antifungal activity in vitro. The purified enzyme ChPLA2-V with much stronger anticoagulant activity compared with the intestinal and pancreatic chicken PLA2-V was approximately 10 times more active. Chicken group V PLA2, like mammal one, may be considered as a future therapeutic agents against fungal and bacterial infections and as an anticoagulant agent. Copyright © 2017. Published by Elsevier B.V.

  12. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution† †Electronic supplementary information (ESI) available: Tables containing crystallographic data and structure refinements for Na[V(L)22H2O(cr) (CCDC 1413557) (Table S1) and Na[VO2(HL)](cr) (CCDC 1418830) (Table S2), concentrations of the solution samples for NMR (Table S3), 13C NMR spectra of V(v)/glutaroimide-dioxime complexes in H2 17O (Fig. S1), ESI-MS spectra of V(v)/glutaroimide-dioxime complexes in 17O-enriched H2O diluted and sprayed in methanol (Fig. S2), and EPR spectra of Na[V(L)22H2O(s) at 4 K and 300 K (Fig. S3). CCDC 1413557–1418830. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc03958d Click here for additional data file. Click here for additional data file.

    PubMed Central

    Leggett, C. J.; Parker, B. F.; Zhang, Z.; Dau, P. D.; Lukens, W. W.; Peterson, S. M.; Cardenas, A. J. P.; Warner, M. G.; Gibson, J. K.; Arnold, J.

    2016-01-01

    A non-oxido V(v) complex with glutaroimide-dioxime (H3L), a ligand for recovering uranium from seawater, was synthesized from aqueous solution as Na[V(L)22H2O, and the structure determined by X-ray diffraction. It is the first non-oxido V(v) complex that has been directly synthesized in and crystallized from aqueous solution. The distorted octahedral structure contains two fully deprotonated ligands (L3–) coordinating to V5+, each in a tridentate mode via the imide N (R V–N = 1.96 Å) and oxime O atoms (R V–O = 1.87–1.90 Å). Using 17O-labelled vanadate as the starting material, concurrent 17O/51V/1H/13C NMR, in conjunction with ESI-MS, unprecedentedly demonstrated the stepwise displacement of the oxido V 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 O bonds by glutaroimide-dioxime and verified the existence of the “bare” V5

  13. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    PubMed

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  14. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in vapor phase packed bed reactor

    USDA-ARS?s Scientific Manuscript database

    The hydrogenation of furfural to furfuryl alcohol over a CuOCeO2/'-Al2O3 catalyst in a flow reactor is reported. The catalyst was prepared by the wet impregnation of Cu onto a CeO2/'-Al2O3 precursor. The calcined catalyst was then treated with HNO3 to remove surface CuO resulting in a mixed CuCe oxi...

  15. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  16. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.

    PubMed

    Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2012-01-01

    This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion.

  17. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms.

    PubMed

    Wu, Qing-Yun; Ma, Meng-Meng; Fu, Lin; Zhu, Yuan-Yuan; Liu, Yang; Cao, Jiang; Zhou, Ping; Li, Zhen-Yu; Zeng, Ling-Yu; Li, Feng; Wang, Xiao-Yun; Xu, Kai-Lin

    2018-05-18

    Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Evaluating the performance of PI-RADS v2 in the non-academic setting.

    PubMed

    Jordan, Eric J; Fiske, Charles; Zagoria, Ronald J; Westphalen, Antonio C

    2017-11-01

    To evaluate the utility of PI-RADS v2 to diagnose clinically significant prostate cancer (CS-PCa) with magnetic resonance ultrasound (MR/US) fusion-guided prostate biopsies in the non-academic setting. Retrospective analysis of men whom underwent prostate multiparametric MRI and subsequent MR/US fusion biopsies at a single non-academic center from 11/2014 to 3/2016. Prostate MRIs were performed on a 3-Tesla scanner with a surface body coil. The Prostate Imaging Reporting and Data System (PI-RADS) v2 scoring algorithm was utilized and MR/US fusion biopsies were performed in selected cases. Mixed effect logistic regression analyses and receiver-operating characteristic (ROC) curves were performed on PI-RADS v2 alone and combined with PSA density (PSAD) to predict CS-PCa. 170 patients underwent prostate MRI with 282 PI-RADS lesions. MR/US fusion diagnosed 71 CS-PCa, 33 Gleason score 3+3, and 168 negative. PI-RADS v2 score is a statistically significant predictor of CS-PCa (P < 0.001). For each one-point increase in the overall PI-RADS v2 score, the odds of having CS-PCa increases by 4.2 (95% CI 2.2-8.3). The area under the ROC curve for PI-RADS v2 is 0.69 (95% CI 0.63-0.76) and for PI-RADS v2 + PSAD is 0.76 (95% CI 0.69-0.82), statistically higher than PI-RADS v2 alone (P < 0.001). The rate of CS-PCa was about twice higher in men with high PSAD (≥0.15) compared to men with low PSAD (<0.15) when a PI-RADS 4 or 5 lesion was detected (P = 0.005). PI-RADS v2 is a strong predictor of CS-PCa in the non-academic setting and can be further strengthened when utilized with PSA density.

  19. Release of the World Digital Magnetic Anomaly Map version 2 (WDMAM v2) scheduled

    NASA Astrophysics Data System (ADS)

    Dyment, Jérôme; Lesur, Vincent; Choi, Yujin; Hamoudi, Mohamed; Thébault, Erwan; Catalan, Manuel

    2015-04-01

    The World Digital Magnetic Anomaly Map is an international initiative carried out under the auspices of the International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for the Geological Map of the World (CGMW). A first version of the map has been published and distributed eight years ago (WDMAM v1; Korhonen et al., 2007). After a call for an improved second version of the map in 2011, the slow process of data compilation, map preparation, evaluation and finalization is near completion, and the WDMAM v2 will be released at the International Union of Geophysics and Geodesy (IUGG) meeting to be held in Prag in June-July 2015. In this presentation we display several shortcomings of the WDMAM v1, both on continental and oceanic areas, that are hopefully alleviated in the WDMAM v2, and discuss the process leading to the new map. We reiterate a long-standing call for aeromagnetic and marine magnetic data contribution, and explore future directions to pursue the effort toward a more complete, higher resolution magnetic anomaly map of the World.

  20. Development of the cascade inertial-confinement-fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, J.H.

    Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less

  1. Development of the cascade inertial-confinement-fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, J.H.

    Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less

  2. Evaluation of performance with small and scale-up rotating and flat reactors; photocatalytic degradation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol under solar irradiation.

    PubMed

    Kim, Saewon; Cho, Hyekyung; Joo, Hyunku; Her, Namguk; Han, Jonghun; Yi, Kwangbok; Kim, Jong-Oh; Yoon, Jaekyung

    2017-08-15

    In this study, the performances of photocatalytic reactors of the small and scale-up rotating and flat types were evaluated to investigate the treatment of new emerging contaminants such as bisphenol A (BPA), 17α-ethynyl estradiol (EE2), and 17β-estradiol (E2) that are known as endocrine disrupting compounds (EDCs). In the laboratory tests with the small-scale rotating and flat reactors, the degradation efficiencies of the mixed EDCs were significantly influenced by the change of the hydraulic retention time (HRT). In particular, considering the effective two-dimensional reaction area with light and nanotubular TiO 2 (NTT) on a Ti substrate, the rotating reactors showed the more effective performance than the flat reactor because the degradation efficiencies are similar in the small effective area. In addition, the major parameters affecting the photocatalytic activities of the NTT were evaluated for the rotating reactors according to the effects of single and mixed EDCs, the initial concentrations of the EDCs, the UV intensity, and dissolved oxygen. In the extended outdoor tests with the scale-up photocatalytic reactors and NTT, it was confirmed from the four representative demonstrations that an excellent rotating-reactor performance is consistently shown in terms of the degradation of the target pollutants under solar irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Structure and enhanced thermochromic performance of low-temperature fabricated VO 2/V 2O 3 thin film

    DOE PAGES

    Sun, Guangyao; Cao, Xun; Gao, Xiang; ...

    2016-10-06

    For VO 2-based smart window manufacture, it is a long-standing demand for high-quality thin films deposited at low temperature. In this paper, the thermochromic films of VO 2 were deposited by a magnetron sputtering method at a fairly low temperature of 250 °C without subsequent annealing by embedding a V 2O 3 interlayer. V 2O 3 acts as a seed layer to lower the depositing temperature and buffer layer to epitaxial grow VO 2 film. The VO 2/V 2O 3 films display high solar modulating ability and narrow hysteresis loop. Finally, our data can serve as a promising point formore » industrial production with high degree of crystallinity at a low temperature.« less

  4. Quantum state-to-state dynamics for the quenching process of Br(2P1/2) + H2(v(i) = 0, 1, j(i) = 0).

    PubMed

    Xie, Changjian; Jiang, Bin; Xie, Daiqian; Sun, Zhigang

    2012-03-21

    Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data. © 2012 American Institute of Physics

  5. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    PubMed

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  6. Color-Space-Based Visual-MIMO for V2X Communication †

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  7. Strengthening IAEA Safeguards for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half amore » dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan

  8. Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-02-01

    We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ˜5 GeV . That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L /Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δ m322=2.31-0.13+0.11×10-3 eV2 and sin2θ23=0.5 1-0.09+0.07, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.

  9. Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael; Villanueva, G. L.; Bonev, B. P.; Mumma, M. J.; Paganini, L.; Gibb, E. L.; Magee-Sauer, K.

    2011-01-01

    For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2

  10. Survey of NASA V and V Processes/Methods

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles; Nelson, Stacy

    2002-01-01

    The purpose of this report is to describe current NASA Verification and Validation (V&V) techniques and to explain how these techniques are applicable to 2nd Generation RLV Integrated Vehicle Health Management (IVHM) software. It also contains recommendations for special V&V requirements for IVHM. This report is divided into the following three sections: 1) Survey - Current NASA V&V Processes/Methods; 2) Applicability of NASA V&V to 2nd Generation RLV IVHM; and 3) Special 2nd Generation RLV IVHM V&V Requirements.

  11. JAK2 (V617F) mutation is not associated with thrombosis in Behcet syndrome.

    PubMed

    Ar, M Cem; Hatemi, Gülen; Ekizoğlu, Seda; Bilgen, Hülya; Saçli, Sevgi; Buyru, A Nur; Soysal, Teoman; Ülkü, Birsen; Yazici, Hasan

    2012-07-01

    The Janus kinase 2(V617F) (JAK2 (V617F)) mutation is an acquired genetic defect that is considered to enhance thrombosis in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Thrombosis is also a well-defined component of Behcet syndrome (BS). The aim of this study was to determine the frequency of JAK2 ( V617F ) mutation in BS-associated thrombosis. A total of 152 patients with BS (62 with thrombosis and 90 without thrombosis) were enrolled. An additional 186 patients with MPNs and 107 healthy blood donors were included to serve as diseased and healthy controls, respectively. None of the patients with BS and healthy controls carried the JAK2 (V617F) mutation, whereas 67% of patients with MPNs were positive for JAK2 ( V617F ). The frequency of thrombosis in patients with MPNs was not statistically different between carriers and non-carriers of JAK2 ( V617F ) mutation. Our data suggest that JAK2 (V617F) is not directly related to thrombosis in MPNs and in other thrombotic entities, such as BS.

  12. [Effect of Zhenwu Tang on regulating of "AVP-V2R-AQP2" pathway in NRK-52E cells].

    PubMed

    Zhou, Xiao-Jie; Bao, Yu-Ting; Chen, Hong-Shu; Xuan, Ling; Chen, Xue-Ming; Zhang, Jie-Ying; Yang, Yuan-Xiao; Li, Chang-Yu

    2018-02-01

    This study was aimed to investigate the effect and mechanism of Zhenwu Tang on AVP-V2R-AQP2 pathway in NRK-52E cells in vitro . Forty eight male SD rats were randomly divided into eight groups with 6 animals in each group. Distilled water or 22.68 g·kg⁻¹·d⁻¹ Zhenwu Tang(calculated by raw drug dosage meter) was given by gavage. Blood samples were collected by cardiac puncture, and the medicated serum was centrifuged from the blood by 3 000 r·min⁻¹. NRK-52E cells were treated with different medicated serum or dDAVP. The condition of cell proliferation was detected by RTCA. The distribution of V2R and AQP2 in cells were detected by immunofluorescence. The expression of V2R, PKA and AQP2 were detected by Western blot and AQP2 mRNA level was detected by real-time PCR. Results showed that the level of AQP2 mRNA( P <0.01) and protein expression of V2R, PKA and AQP2( P <0.05, P <0.01, P <0.05) of Z7d group which was treated with Zhenwu Tang medicated serum for 24 h were significantly higher than that of normal rat serum group. And the expression level of V2R, p-AQP2 and AQP2( P <0.01, P <0.05, P <0.01) of Z7d+dDAVP group were significantly increased comparing to normal rat serum group. The results indicate that the applying of Zhenwu Tang medicated serum could increase the expression level of V2R, PKA and AQP2 which exist in AVP-V2R-AQP2 pathway in NRK-52E, and there is synergistic effect between Zhenwu Tang medicated serum and dDAVP. So the pathway of AVP-V2R-AQP2 may be one of the mechanism for which Zhenwu Tang regulate balance of water transportation. Copyright© by the Chinese Pharmaceutical Association.

  13. Reactivity control assembly for nuclear reactor. [LMFBR

    DOEpatents

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  14. The origin of 2.7 eV blue luminescence band in zirconium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Zhuravlev, K. S.; Gritsenko, V. A.

    2014-12-28

    The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7 eV peak. There is a broad band at 5.2 eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1 eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7 eV blue luminescence excited near 5.2 eV in a zirconium oxide film is associated with the oxygen vacancy.

  15. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  16. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  17. 76 FR 5102 - Draft NUREG-0561, Revision 2; Physical Protection of Shipments of Irradiated Reactor Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... 3150-AI64 [NRC-2010-0340] Draft NUREG-0561, Revision 2; Physical Protection of Shipments of Irradiated...-0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance on implementing the provisions of proposed 10 CFR Part 73.37, ``Requirements for Physical Protection...

  18. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  19. Fault-tolerant reactor protection system

    DOEpatents

    Gaubatz, Donald C.

    1997-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service.

  20. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  1. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  2. Impedance spectroscopy study on graphene wrapped nanocrystalline V{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaram, D. Surya, E-mail: dsurya.b@gmail.com; Govindaraj, G.; Cheruku, Rajesh

    2016-05-23

    Nanocrystalline V{sub 2}O{sub 5} was synthesized by solvothermal technique, which has potential application as electrode material in supercapacitors. The graphene oxide (GO) was prepared by modified Hummer’s method. The V{sub 2}O{sub 5}/ reduced graphene oxide (RGO) composite was synthesized using surfactant free hydrothermal technique to enhance the functionality in terms of conductivity and surface area of V{sub 2}O{sub 5}. The structural characterization was accomplished through X-ray diffraction and Raman spectroscopy. Morphology was identified by SEM and surface area of VRGO was enhanced by 8 times in comparison with V{sub 2}O{sub 5} nano particles, as confirmed through BET surface area analysis.more » Electrical characterization was done through impedance spectroscopy and the results showed decrease in sample resistance after wrapping V{sub 2}O{sub 5} with RGO.« less

  3. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  4. Photopyroelectric spectroscopic studies of ZnO-MnO(2)-Co(3)O(4)-V(2)O(5) ceramics.

    PubMed

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.

  5. Photopyroelectric Spectroscopic Studies of ZnO-MnO2-Co3O4-V2O5 Ceramics

    PubMed Central

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO2 + 0.4Co3O4 + xV2O5), x = 0–1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300–800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (Eg) was 2.11 eV for 0.3 mol% V2O5 at a sintering temperature of 1025 °C as determined from the plot (ρhυ)2 versus hυ. With a further increase in V2O5, the value of Eg was found to be 2.59 eV. Steepness factor ‘σA’ and ‘σB’, which characterize the slope of exponential optical absorption, is discussed with reference to the variation of Eg. XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively. PMID:21673911

  6. First-Principles Studies on Deoxidizing Mechanism of V2O5 via Hydrogen

    NASA Astrophysics Data System (ADS)

    Zhang, Yanning; Jin, Mengting

    With its high melting point, good plasticity and good corrosion resistance at low temperatures, vanadium has been widely used in the industries of iron and steel, aviation, energy storage, etc. However, the traditional manufacturing technologies of pure vanadium are usually connected with complex manufacturing processes, high costs and serious environment pollution, which more or less hindered its further applications. Recently, hydrogen gas has been considered as a promising reducing agent of V2O5, but experimental studies of deoxidization process of V2O5 single crystal surfaces were found to be extremely difficult. In this work, we perform extensive ab initio studies on the structural and electronic properties of different V2O5 surfaces, as well as the adsorption sites, diffusion and desorption processes of H on these surfaces as a dependence of depth. We found that H atoms adsorb at oxygen site to form surface hydroxyl (OH-) and further to form H2O on V2O5(010) surfaces, and the latter is easier to be desorbed compared with the former. But the desorption of H2O causes significant surface reconstructions, which makes the further deoxidization of V2O5 difficult, particularly on the V2O5 single-layer. Our theoretical results are instructive for understandings of the reduction mechanism of V2O5 by using a green agent of H2, and furthermore for the design of new experiments. Work was supported by the startup fund of China Thousand Young Talents, and National Basic Research Program of China (973 program, No: 2013CB934700). The calculations were supported by Tianhe2-JK in Beijing Computational Science Research Center.

  7. Design of a laboratory scale fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Wikström, E.; Andersson, P.; Marklund, S.

    1998-04-01

    The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion

  8. Potential use of sugar binding proteins in reactors for regeneration of CO2 fixation acceptor D-Ribulose-1,5-bisphosphate

    PubMed Central

    Mahato, Sourav; De, Debojyoti; Dutta, Debajyoti; Kundu, Moloy; Bhattacharya, Sumana; Schiavone, Marc T; Bhattacharya, Sanjoy K

    2004-01-01

    Sugar binding proteins and binders of intermediate sugar metabolites derived from microbes are increasingly being used as reagents in new and expanding areas of biotechnology. The fixation of carbon dioxide at emission source has recently emerged as a technology with potentially significant implications for environmental biotechnology. Carbon dioxide is fixed onto a five carbon sugar D-ribulose-1,5-bisphosphate. We present a review of enzymatic and non-enzymatic binding proteins, for 3-phosphoglycerate (3PGA), 3-phosphoglyceraldehyde (3PGAL), dihydroxyacetone phosphate (DHAP), xylulose-5-phosphate (X5P) and ribulose-1,5-bisphosphate (RuBP) which could be potentially used in reactors regenerating RuBP from 3PGA. A series of reactors combined in a linear fashion has been previously shown to convert 3-PGA, (the product of fixed CO2 on RuBP as starting material) into RuBP (Bhattacharya et al., 2004; Bhattacharya, 2001). This was the basis for designing reactors harboring enzyme complexes/mixtures instead of linear combination of single-enzyme reactors for conversion of 3PGA into RuBP. Specific sugars in such enzyme-complex harboring reactors requires removal at key steps and fed to different reactors necessitating reversible sugar binders. In this review we present an account of existing microbial sugar binding proteins and their potential utility in these operations. PMID:15175111

  9. Structure of V{sub 2}AlC studied by theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Jochen M.; Mertens, Raphael; Music, Denis

    2006-01-01

    We have studied V{sub 2}AlC (space group P6{sub 3}/mmc, prototype Cr{sub 2}AlC) by ab initio calculations. The density of states (DOS) of V{sub 2}AlC for antiferromagnetic, ferromagnetic, and paramagnetic configurations have been discussed. According to the analysis of DOS and cohesive energy, no significant stability differences between spin-polarized and non-spin-polarized configurations were found. Based on the partial DOS analysis, V{sub 2}AlC can be classified as a strongly coupled nanolaminate according to our previous work [Z. Sun, D. Music, R. Ahuja, S. Li, and J. M. Schneider, Phys. Rev. B 70, 092102 (2004)]. Furthermore, this phase has been synthesized in themore » form of thin films by magnetron sputtering. The equilibrium volume, determined by x-ray diffraction, is in good agreement with the theoretical data, implying that ab initio calculations provide an accurate description of V{sub 2}AlC.« less

  10. PIP₂ hydrolysis is responsible for voltage independent inhibition of CaV2.2 channels in sympathetic neurons.

    PubMed

    Vivas, Oscar; Castro, Hector; Arenas, Isabel; Elías-Viñas, David; García, David E

    2013-03-08

    GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Polysilicic acid gel method derived V2O5/SiO2 composite materials: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhou, Linzong; Feng, Xiaofei; Zhao, Ning; Yang, Bin

    2017-01-01

    The V2O5/SiO2 composite was prepared by a sol-gel method followed a sintering procedure. The low-cost Na2SiO3•9H2O was used as silicon source, while NH4VO3 was used as vanadium source. By adding NH4VO3 to Na2SiO3 solution and adjusting the mixture's pH with saturated (NH4)2SO4 solution the polysilicic acid gel was formed to give a homogeneous gel composite with VO3-well-distributed in it. The gel composite was dried at 100 °C to give the xerogel, then the xerogel was calcined in air to obtain the V2O5/SiO2 composite. The V2O5/SiO2 composites were characterized by SEM analysis, FT-IR spectroscopy and powder X-ray diffractions.

  12. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  13. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipenko, M.; Ripani, M.; Ricco, G.

    2015-07-01

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based onmore » conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)« less

  14. Systematic Error Study for ALICE charged-jet v2 Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz, M.; Soltz, R.

    We study the treatment of systematic errors in the determination of v 2 for charged jets in √ sNN = 2:76 TeV Pb-Pb collisions by the ALICE Collaboration. Working with the reported values and errors for the 0-5% centrality data we evaluate the Χ 2 according to the formulas given for the statistical and systematic errors, where the latter are separated into correlated and shape contributions. We reproduce both the Χ 2 and p-values relative to a null (zero) result. We then re-cast the systematic errors into an equivalent co-variance matrix and obtain identical results, demonstrating that the two methodsmore » are equivalent.« less

  15. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  16. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor.

    PubMed

    Sundar, K; Sadiq, I Mohammed; Mukherjee, Amitava; Chandrasekaran, N

    2011-11-30

    Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30°C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand>pebbles>glass beads (4.8 × 10(7), 4.5 × 10(7) and 3.5 × 10(5)CFU/cm(2)), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept.

    PubMed

    Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán

    2016-01-01

    Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.

  18. Neutrino mass hierarchy and precision physics with medium-baseline reactors: Impact of energy-scale and flux-shape uncertainties

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    2015-11-01

    Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.

  19. Dual baseline search for muon antineutrino disappearance at 0.1eV2<Δm2<100eV2

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Dore, U.; Finley, D. A.; Ford, R.; Franke, A. J.; Garcia, F. G.; Garvey, G. T.; Giganti, C.; Gomez-Cadenas, J. J.; Grange, J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Jones, B. J. P.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Mariani, C.; Marsh, W.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mirabal, J.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Mousseau, J.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Osmanov, B.; Otani, M.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; Van de Water, R. G.; Walding, J. J.; Wascko, M. O.; White, D. H.; White, H. B.; Wickremasinghe, D. A.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2012-09-01

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν¯μ at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the νμ background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν¯μ disappearance that dramatically improves upon prior limits in the Δm2=0.1-100eV2 region.

  20. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.